1 /* 2 * QEMU NE2000 emulation 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/pci/pci.h" 26 #include "net/net.h" 27 #include "ne2000.h" 28 #include "hw/loader.h" 29 #include "sysemu/sysemu.h" 30 31 /* debug NE2000 card */ 32 //#define DEBUG_NE2000 33 34 #define MAX_ETH_FRAME_SIZE 1514 35 36 #define E8390_CMD 0x00 /* The command register (for all pages) */ 37 /* Page 0 register offsets. */ 38 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */ 39 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */ 40 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */ 41 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */ 42 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */ 43 #define EN0_TSR 0x04 /* Transmit status reg RD */ 44 #define EN0_TPSR 0x04 /* Transmit starting page WR */ 45 #define EN0_NCR 0x05 /* Number of collision reg RD */ 46 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */ 47 #define EN0_FIFO 0x06 /* FIFO RD */ 48 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */ 49 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */ 50 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */ 51 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */ 52 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */ 53 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */ 54 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */ 55 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */ 56 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */ 57 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */ 58 #define EN0_RSR 0x0c /* rx status reg RD */ 59 #define EN0_RXCR 0x0c /* RX configuration reg WR */ 60 #define EN0_TXCR 0x0d /* TX configuration reg WR */ 61 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */ 62 #define EN0_DCFG 0x0e /* Data configuration reg WR */ 63 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */ 64 #define EN0_IMR 0x0f /* Interrupt mask reg WR */ 65 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */ 66 67 #define EN1_PHYS 0x11 68 #define EN1_CURPAG 0x17 69 #define EN1_MULT 0x18 70 71 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */ 72 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */ 73 74 #define EN3_CONFIG0 0x33 75 #define EN3_CONFIG1 0x34 76 #define EN3_CONFIG2 0x35 77 #define EN3_CONFIG3 0x36 78 79 /* Register accessed at EN_CMD, the 8390 base addr. */ 80 #define E8390_STOP 0x01 /* Stop and reset the chip */ 81 #define E8390_START 0x02 /* Start the chip, clear reset */ 82 #define E8390_TRANS 0x04 /* Transmit a frame */ 83 #define E8390_RREAD 0x08 /* Remote read */ 84 #define E8390_RWRITE 0x10 /* Remote write */ 85 #define E8390_NODMA 0x20 /* Remote DMA */ 86 #define E8390_PAGE0 0x00 /* Select page chip registers */ 87 #define E8390_PAGE1 0x40 /* using the two high-order bits */ 88 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */ 89 90 /* Bits in EN0_ISR - Interrupt status register */ 91 #define ENISR_RX 0x01 /* Receiver, no error */ 92 #define ENISR_TX 0x02 /* Transmitter, no error */ 93 #define ENISR_RX_ERR 0x04 /* Receiver, with error */ 94 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */ 95 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */ 96 #define ENISR_COUNTERS 0x20 /* Counters need emptying */ 97 #define ENISR_RDC 0x40 /* remote dma complete */ 98 #define ENISR_RESET 0x80 /* Reset completed */ 99 #define ENISR_ALL 0x3f /* Interrupts we will enable */ 100 101 /* Bits in received packet status byte and EN0_RSR*/ 102 #define ENRSR_RXOK 0x01 /* Received a good packet */ 103 #define ENRSR_CRC 0x02 /* CRC error */ 104 #define ENRSR_FAE 0x04 /* frame alignment error */ 105 #define ENRSR_FO 0x08 /* FIFO overrun */ 106 #define ENRSR_MPA 0x10 /* missed pkt */ 107 #define ENRSR_PHY 0x20 /* physical/multicast address */ 108 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */ 109 #define ENRSR_DEF 0x80 /* deferring */ 110 111 /* Transmitted packet status, EN0_TSR. */ 112 #define ENTSR_PTX 0x01 /* Packet transmitted without error */ 113 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */ 114 #define ENTSR_COL 0x04 /* The transmit collided at least once. */ 115 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */ 116 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */ 117 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */ 118 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */ 119 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */ 120 121 typedef struct PCINE2000State { 122 PCIDevice dev; 123 NE2000State ne2000; 124 } PCINE2000State; 125 126 void ne2000_reset(NE2000State *s) 127 { 128 int i; 129 130 s->isr = ENISR_RESET; 131 memcpy(s->mem, &s->c.macaddr, 6); 132 s->mem[14] = 0x57; 133 s->mem[15] = 0x57; 134 135 /* duplicate prom data */ 136 for(i = 15;i >= 0; i--) { 137 s->mem[2 * i] = s->mem[i]; 138 s->mem[2 * i + 1] = s->mem[i]; 139 } 140 } 141 142 static void ne2000_update_irq(NE2000State *s) 143 { 144 int isr; 145 isr = (s->isr & s->imr) & 0x7f; 146 #if defined(DEBUG_NE2000) 147 printf("NE2000: Set IRQ to %d (%02x %02x)\n", 148 isr ? 1 : 0, s->isr, s->imr); 149 #endif 150 qemu_set_irq(s->irq, (isr != 0)); 151 } 152 153 static int ne2000_buffer_full(NE2000State *s) 154 { 155 int avail, index, boundary; 156 157 index = s->curpag << 8; 158 boundary = s->boundary << 8; 159 if (index < boundary) 160 avail = boundary - index; 161 else 162 avail = (s->stop - s->start) - (index - boundary); 163 if (avail < (MAX_ETH_FRAME_SIZE + 4)) 164 return 1; 165 return 0; 166 } 167 168 #define MIN_BUF_SIZE 60 169 170 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_) 171 { 172 NE2000State *s = qemu_get_nic_opaque(nc); 173 int size = size_; 174 uint8_t *p; 175 unsigned int total_len, next, avail, len, index, mcast_idx; 176 uint8_t buf1[60]; 177 static const uint8_t broadcast_macaddr[6] = 178 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 179 180 #if defined(DEBUG_NE2000) 181 printf("NE2000: received len=%d\n", size); 182 #endif 183 184 if (s->cmd & E8390_STOP || ne2000_buffer_full(s)) 185 return -1; 186 187 /* XXX: check this */ 188 if (s->rxcr & 0x10) { 189 /* promiscuous: receive all */ 190 } else { 191 if (!memcmp(buf, broadcast_macaddr, 6)) { 192 /* broadcast address */ 193 if (!(s->rxcr & 0x04)) 194 return size; 195 } else if (buf[0] & 0x01) { 196 /* multicast */ 197 if (!(s->rxcr & 0x08)) 198 return size; 199 mcast_idx = compute_mcast_idx(buf); 200 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) 201 return size; 202 } else if (s->mem[0] == buf[0] && 203 s->mem[2] == buf[1] && 204 s->mem[4] == buf[2] && 205 s->mem[6] == buf[3] && 206 s->mem[8] == buf[4] && 207 s->mem[10] == buf[5]) { 208 /* match */ 209 } else { 210 return size; 211 } 212 } 213 214 215 /* if too small buffer, then expand it */ 216 if (size < MIN_BUF_SIZE) { 217 memcpy(buf1, buf, size); 218 memset(buf1 + size, 0, MIN_BUF_SIZE - size); 219 buf = buf1; 220 size = MIN_BUF_SIZE; 221 } 222 223 index = s->curpag << 8; 224 if (index >= NE2000_PMEM_END) { 225 index = s->start; 226 } 227 /* 4 bytes for header */ 228 total_len = size + 4; 229 /* address for next packet (4 bytes for CRC) */ 230 next = index + ((total_len + 4 + 255) & ~0xff); 231 if (next >= s->stop) 232 next -= (s->stop - s->start); 233 /* prepare packet header */ 234 p = s->mem + index; 235 s->rsr = ENRSR_RXOK; /* receive status */ 236 /* XXX: check this */ 237 if (buf[0] & 0x01) 238 s->rsr |= ENRSR_PHY; 239 p[0] = s->rsr; 240 p[1] = next >> 8; 241 p[2] = total_len; 242 p[3] = total_len >> 8; 243 index += 4; 244 245 /* write packet data */ 246 while (size > 0) { 247 if (index <= s->stop) 248 avail = s->stop - index; 249 else 250 break; 251 len = size; 252 if (len > avail) 253 len = avail; 254 memcpy(s->mem + index, buf, len); 255 buf += len; 256 index += len; 257 if (index == s->stop) 258 index = s->start; 259 size -= len; 260 } 261 s->curpag = next >> 8; 262 263 /* now we can signal we have received something */ 264 s->isr |= ENISR_RX; 265 ne2000_update_irq(s); 266 267 return size_; 268 } 269 270 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val) 271 { 272 NE2000State *s = opaque; 273 int offset, page, index; 274 275 addr &= 0xf; 276 #ifdef DEBUG_NE2000 277 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val); 278 #endif 279 if (addr == E8390_CMD) { 280 /* control register */ 281 s->cmd = val; 282 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */ 283 s->isr &= ~ENISR_RESET; 284 /* test specific case: zero length transfer */ 285 if ((val & (E8390_RREAD | E8390_RWRITE)) && 286 s->rcnt == 0) { 287 s->isr |= ENISR_RDC; 288 ne2000_update_irq(s); 289 } 290 if (val & E8390_TRANS) { 291 index = (s->tpsr << 8); 292 /* XXX: next 2 lines are a hack to make netware 3.11 work */ 293 if (index >= NE2000_PMEM_END) 294 index -= NE2000_PMEM_SIZE; 295 /* fail safe: check range on the transmitted length */ 296 if (index + s->tcnt <= NE2000_PMEM_END) { 297 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index, 298 s->tcnt); 299 } 300 /* signal end of transfer */ 301 s->tsr = ENTSR_PTX; 302 s->isr |= ENISR_TX; 303 s->cmd &= ~E8390_TRANS; 304 ne2000_update_irq(s); 305 } 306 } 307 } else { 308 page = s->cmd >> 6; 309 offset = addr | (page << 4); 310 switch(offset) { 311 case EN0_STARTPG: 312 if (val << 8 <= NE2000_PMEM_END) { 313 s->start = val << 8; 314 } 315 break; 316 case EN0_STOPPG: 317 if (val << 8 <= NE2000_PMEM_END) { 318 s->stop = val << 8; 319 } 320 break; 321 case EN0_BOUNDARY: 322 if (val << 8 < NE2000_PMEM_END) { 323 s->boundary = val; 324 } 325 break; 326 case EN0_IMR: 327 s->imr = val; 328 ne2000_update_irq(s); 329 break; 330 case EN0_TPSR: 331 s->tpsr = val; 332 break; 333 case EN0_TCNTLO: 334 s->tcnt = (s->tcnt & 0xff00) | val; 335 break; 336 case EN0_TCNTHI: 337 s->tcnt = (s->tcnt & 0x00ff) | (val << 8); 338 break; 339 case EN0_RSARLO: 340 s->rsar = (s->rsar & 0xff00) | val; 341 break; 342 case EN0_RSARHI: 343 s->rsar = (s->rsar & 0x00ff) | (val << 8); 344 break; 345 case EN0_RCNTLO: 346 s->rcnt = (s->rcnt & 0xff00) | val; 347 break; 348 case EN0_RCNTHI: 349 s->rcnt = (s->rcnt & 0x00ff) | (val << 8); 350 break; 351 case EN0_RXCR: 352 s->rxcr = val; 353 break; 354 case EN0_DCFG: 355 s->dcfg = val; 356 break; 357 case EN0_ISR: 358 s->isr &= ~(val & 0x7f); 359 ne2000_update_irq(s); 360 break; 361 case EN1_PHYS ... EN1_PHYS + 5: 362 s->phys[offset - EN1_PHYS] = val; 363 break; 364 case EN1_CURPAG: 365 if (val << 8 < NE2000_PMEM_END) { 366 s->curpag = val; 367 } 368 break; 369 case EN1_MULT ... EN1_MULT + 7: 370 s->mult[offset - EN1_MULT] = val; 371 break; 372 } 373 } 374 } 375 376 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr) 377 { 378 NE2000State *s = opaque; 379 int offset, page, ret; 380 381 addr &= 0xf; 382 if (addr == E8390_CMD) { 383 ret = s->cmd; 384 } else { 385 page = s->cmd >> 6; 386 offset = addr | (page << 4); 387 switch(offset) { 388 case EN0_TSR: 389 ret = s->tsr; 390 break; 391 case EN0_BOUNDARY: 392 ret = s->boundary; 393 break; 394 case EN0_ISR: 395 ret = s->isr; 396 break; 397 case EN0_RSARLO: 398 ret = s->rsar & 0x00ff; 399 break; 400 case EN0_RSARHI: 401 ret = s->rsar >> 8; 402 break; 403 case EN1_PHYS ... EN1_PHYS + 5: 404 ret = s->phys[offset - EN1_PHYS]; 405 break; 406 case EN1_CURPAG: 407 ret = s->curpag; 408 break; 409 case EN1_MULT ... EN1_MULT + 7: 410 ret = s->mult[offset - EN1_MULT]; 411 break; 412 case EN0_RSR: 413 ret = s->rsr; 414 break; 415 case EN2_STARTPG: 416 ret = s->start >> 8; 417 break; 418 case EN2_STOPPG: 419 ret = s->stop >> 8; 420 break; 421 case EN0_RTL8029ID0: 422 ret = 0x50; 423 break; 424 case EN0_RTL8029ID1: 425 ret = 0x43; 426 break; 427 case EN3_CONFIG0: 428 ret = 0; /* 10baseT media */ 429 break; 430 case EN3_CONFIG2: 431 ret = 0x40; /* 10baseT active */ 432 break; 433 case EN3_CONFIG3: 434 ret = 0x40; /* Full duplex */ 435 break; 436 default: 437 ret = 0x00; 438 break; 439 } 440 } 441 #ifdef DEBUG_NE2000 442 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret); 443 #endif 444 return ret; 445 } 446 447 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 448 uint32_t val) 449 { 450 if (addr < 32 || 451 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 452 s->mem[addr] = val; 453 } 454 } 455 456 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 457 uint32_t val) 458 { 459 addr &= ~1; /* XXX: check exact behaviour if not even */ 460 if (addr < 32 || 461 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 462 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val); 463 } 464 } 465 466 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 467 uint32_t val) 468 { 469 addr &= ~1; /* XXX: check exact behaviour if not even */ 470 if (addr < 32 || 471 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 472 stl_le_p(s->mem + addr, val); 473 } 474 } 475 476 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr) 477 { 478 if (addr < 32 || 479 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 480 return s->mem[addr]; 481 } else { 482 return 0xff; 483 } 484 } 485 486 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr) 487 { 488 addr &= ~1; /* XXX: check exact behaviour if not even */ 489 if (addr < 32 || 490 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 491 return le16_to_cpu(*(uint16_t *)(s->mem + addr)); 492 } else { 493 return 0xffff; 494 } 495 } 496 497 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr) 498 { 499 addr &= ~1; /* XXX: check exact behaviour if not even */ 500 if (addr < 32 || 501 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { 502 return ldl_le_p(s->mem + addr); 503 } else { 504 return 0xffffffff; 505 } 506 } 507 508 static inline void ne2000_dma_update(NE2000State *s, int len) 509 { 510 s->rsar += len; 511 /* wrap */ 512 /* XXX: check what to do if rsar > stop */ 513 if (s->rsar == s->stop) 514 s->rsar = s->start; 515 516 if (s->rcnt <= len) { 517 s->rcnt = 0; 518 /* signal end of transfer */ 519 s->isr |= ENISR_RDC; 520 ne2000_update_irq(s); 521 } else { 522 s->rcnt -= len; 523 } 524 } 525 526 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val) 527 { 528 NE2000State *s = opaque; 529 530 #ifdef DEBUG_NE2000 531 printf("NE2000: asic write val=0x%04x\n", val); 532 #endif 533 if (s->rcnt == 0) 534 return; 535 if (s->dcfg & 0x01) { 536 /* 16 bit access */ 537 ne2000_mem_writew(s, s->rsar, val); 538 ne2000_dma_update(s, 2); 539 } else { 540 /* 8 bit access */ 541 ne2000_mem_writeb(s, s->rsar, val); 542 ne2000_dma_update(s, 1); 543 } 544 } 545 546 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr) 547 { 548 NE2000State *s = opaque; 549 int ret; 550 551 if (s->dcfg & 0x01) { 552 /* 16 bit access */ 553 ret = ne2000_mem_readw(s, s->rsar); 554 ne2000_dma_update(s, 2); 555 } else { 556 /* 8 bit access */ 557 ret = ne2000_mem_readb(s, s->rsar); 558 ne2000_dma_update(s, 1); 559 } 560 #ifdef DEBUG_NE2000 561 printf("NE2000: asic read val=0x%04x\n", ret); 562 #endif 563 return ret; 564 } 565 566 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val) 567 { 568 NE2000State *s = opaque; 569 570 #ifdef DEBUG_NE2000 571 printf("NE2000: asic writel val=0x%04x\n", val); 572 #endif 573 if (s->rcnt == 0) 574 return; 575 /* 32 bit access */ 576 ne2000_mem_writel(s, s->rsar, val); 577 ne2000_dma_update(s, 4); 578 } 579 580 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr) 581 { 582 NE2000State *s = opaque; 583 int ret; 584 585 /* 32 bit access */ 586 ret = ne2000_mem_readl(s, s->rsar); 587 ne2000_dma_update(s, 4); 588 #ifdef DEBUG_NE2000 589 printf("NE2000: asic readl val=0x%04x\n", ret); 590 #endif 591 return ret; 592 } 593 594 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val) 595 { 596 /* nothing to do (end of reset pulse) */ 597 } 598 599 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr) 600 { 601 NE2000State *s = opaque; 602 ne2000_reset(s); 603 return 0; 604 } 605 606 static int ne2000_post_load(void* opaque, int version_id) 607 { 608 NE2000State* s = opaque; 609 610 if (version_id < 2) { 611 s->rxcr = 0x0c; 612 } 613 return 0; 614 } 615 616 const VMStateDescription vmstate_ne2000 = { 617 .name = "ne2000", 618 .version_id = 2, 619 .minimum_version_id = 0, 620 .post_load = ne2000_post_load, 621 .fields = (VMStateField[]) { 622 VMSTATE_UINT8_V(rxcr, NE2000State, 2), 623 VMSTATE_UINT8(cmd, NE2000State), 624 VMSTATE_UINT32(start, NE2000State), 625 VMSTATE_UINT32(stop, NE2000State), 626 VMSTATE_UINT8(boundary, NE2000State), 627 VMSTATE_UINT8(tsr, NE2000State), 628 VMSTATE_UINT8(tpsr, NE2000State), 629 VMSTATE_UINT16(tcnt, NE2000State), 630 VMSTATE_UINT16(rcnt, NE2000State), 631 VMSTATE_UINT32(rsar, NE2000State), 632 VMSTATE_UINT8(rsr, NE2000State), 633 VMSTATE_UINT8(isr, NE2000State), 634 VMSTATE_UINT8(dcfg, NE2000State), 635 VMSTATE_UINT8(imr, NE2000State), 636 VMSTATE_BUFFER(phys, NE2000State), 637 VMSTATE_UINT8(curpag, NE2000State), 638 VMSTATE_BUFFER(mult, NE2000State), 639 VMSTATE_UNUSED(4), /* was irq */ 640 VMSTATE_BUFFER(mem, NE2000State), 641 VMSTATE_END_OF_LIST() 642 } 643 }; 644 645 static const VMStateDescription vmstate_pci_ne2000 = { 646 .name = "ne2000", 647 .version_id = 3, 648 .minimum_version_id = 3, 649 .fields = (VMStateField[]) { 650 VMSTATE_PCI_DEVICE(dev, PCINE2000State), 651 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State), 652 VMSTATE_END_OF_LIST() 653 } 654 }; 655 656 static uint64_t ne2000_read(void *opaque, hwaddr addr, 657 unsigned size) 658 { 659 NE2000State *s = opaque; 660 661 if (addr < 0x10 && size == 1) { 662 return ne2000_ioport_read(s, addr); 663 } else if (addr == 0x10) { 664 if (size <= 2) { 665 return ne2000_asic_ioport_read(s, addr); 666 } else { 667 return ne2000_asic_ioport_readl(s, addr); 668 } 669 } else if (addr == 0x1f && size == 1) { 670 return ne2000_reset_ioport_read(s, addr); 671 } 672 return ((uint64_t)1 << (size * 8)) - 1; 673 } 674 675 static void ne2000_write(void *opaque, hwaddr addr, 676 uint64_t data, unsigned size) 677 { 678 NE2000State *s = opaque; 679 680 if (addr < 0x10 && size == 1) { 681 ne2000_ioport_write(s, addr, data); 682 } else if (addr == 0x10) { 683 if (size <= 2) { 684 ne2000_asic_ioport_write(s, addr, data); 685 } else { 686 ne2000_asic_ioport_writel(s, addr, data); 687 } 688 } else if (addr == 0x1f && size == 1) { 689 ne2000_reset_ioport_write(s, addr, data); 690 } 691 } 692 693 static const MemoryRegionOps ne2000_ops = { 694 .read = ne2000_read, 695 .write = ne2000_write, 696 .endianness = DEVICE_LITTLE_ENDIAN, 697 }; 698 699 /***********************************************************/ 700 /* PCI NE2000 definitions */ 701 702 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size) 703 { 704 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size); 705 } 706 707 static NetClientInfo net_ne2000_info = { 708 .type = NET_CLIENT_OPTIONS_KIND_NIC, 709 .size = sizeof(NICState), 710 .receive = ne2000_receive, 711 }; 712 713 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp) 714 { 715 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); 716 NE2000State *s; 717 uint8_t *pci_conf; 718 719 pci_conf = d->dev.config; 720 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 721 722 s = &d->ne2000; 723 ne2000_setup_io(s, DEVICE(pci_dev), 0x100); 724 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io); 725 s->irq = pci_allocate_irq(&d->dev); 726 727 qemu_macaddr_default_if_unset(&s->c.macaddr); 728 ne2000_reset(s); 729 730 s->nic = qemu_new_nic(&net_ne2000_info, &s->c, 731 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s); 732 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a); 733 } 734 735 static void pci_ne2000_exit(PCIDevice *pci_dev) 736 { 737 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); 738 NE2000State *s = &d->ne2000; 739 740 qemu_del_nic(s->nic); 741 qemu_free_irq(s->irq); 742 } 743 744 static void ne2000_instance_init(Object *obj) 745 { 746 PCIDevice *pci_dev = PCI_DEVICE(obj); 747 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); 748 NE2000State *s = &d->ne2000; 749 750 device_add_bootindex_property(obj, &s->c.bootindex, 751 "bootindex", "/ethernet-phy@0", 752 &pci_dev->qdev, NULL); 753 } 754 755 static Property ne2000_properties[] = { 756 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c), 757 DEFINE_PROP_END_OF_LIST(), 758 }; 759 760 static void ne2000_class_init(ObjectClass *klass, void *data) 761 { 762 DeviceClass *dc = DEVICE_CLASS(klass); 763 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 764 765 k->realize = pci_ne2000_realize; 766 k->exit = pci_ne2000_exit; 767 k->romfile = "efi-ne2k_pci.rom", 768 k->vendor_id = PCI_VENDOR_ID_REALTEK; 769 k->device_id = PCI_DEVICE_ID_REALTEK_8029; 770 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 771 dc->vmsd = &vmstate_pci_ne2000; 772 dc->props = ne2000_properties; 773 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 774 } 775 776 static const TypeInfo ne2000_info = { 777 .name = "ne2k_pci", 778 .parent = TYPE_PCI_DEVICE, 779 .instance_size = sizeof(PCINE2000State), 780 .class_init = ne2000_class_init, 781 .instance_init = ne2000_instance_init, 782 }; 783 784 static void ne2000_register_types(void) 785 { 786 type_register_static(&ne2000_info); 787 } 788 789 type_init(ne2000_register_types) 790