xref: /openbmc/qemu/hw/net/ne2000.c (revision 500eb6db)
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "net/eth.h"
27 #include "qemu/module.h"
28 #include "ne2000.h"
29 #include "sysemu/sysemu.h"
30 #include "trace.h"
31 
32 /* debug NE2000 card */
33 //#define DEBUG_NE2000
34 
35 #define MAX_ETH_FRAME_SIZE 1514
36 
37 #define E8390_CMD	0x00  /* The command register (for all pages) */
38 /* Page 0 register offsets. */
39 #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
40 #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
41 #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
42 #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
43 #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
44 #define EN0_TSR		0x04	/* Transmit status reg RD */
45 #define EN0_TPSR	0x04	/* Transmit starting page WR */
46 #define EN0_NCR		0x05	/* Number of collision reg RD */
47 #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
48 #define EN0_FIFO	0x06	/* FIFO RD */
49 #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
50 #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
51 #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
52 #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
53 #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
54 #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
55 #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
56 #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
57 #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
58 #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
59 #define EN0_RSR		0x0c	/* rx status reg RD */
60 #define EN0_RXCR	0x0c	/* RX configuration reg WR */
61 #define EN0_TXCR	0x0d	/* TX configuration reg WR */
62 #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
63 #define EN0_DCFG	0x0e	/* Data configuration reg WR */
64 #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
65 #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
66 #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
67 
68 #define EN1_PHYS        0x11
69 #define EN1_CURPAG      0x17
70 #define EN1_MULT        0x18
71 
72 #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
73 #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
74 
75 #define EN3_CONFIG0	0x33
76 #define EN3_CONFIG1	0x34
77 #define EN3_CONFIG2	0x35
78 #define EN3_CONFIG3	0x36
79 
80 /*  Register accessed at EN_CMD, the 8390 base addr.  */
81 #define E8390_STOP	0x01	/* Stop and reset the chip */
82 #define E8390_START	0x02	/* Start the chip, clear reset */
83 #define E8390_TRANS	0x04	/* Transmit a frame */
84 #define E8390_RREAD	0x08	/* Remote read */
85 #define E8390_RWRITE	0x10	/* Remote write  */
86 #define E8390_NODMA	0x20	/* Remote DMA */
87 #define E8390_PAGE0	0x00	/* Select page chip registers */
88 #define E8390_PAGE1	0x40	/* using the two high-order bits */
89 #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
90 
91 /* Bits in EN0_ISR - Interrupt status register */
92 #define ENISR_RX	0x01	/* Receiver, no error */
93 #define ENISR_TX	0x02	/* Transmitter, no error */
94 #define ENISR_RX_ERR	0x04	/* Receiver, with error */
95 #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
96 #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
97 #define ENISR_COUNTERS	0x20	/* Counters need emptying */
98 #define ENISR_RDC	0x40	/* remote dma complete */
99 #define ENISR_RESET	0x80	/* Reset completed */
100 #define ENISR_ALL	0x3f	/* Interrupts we will enable */
101 
102 /* Bits in received packet status byte and EN0_RSR*/
103 #define ENRSR_RXOK	0x01	/* Received a good packet */
104 #define ENRSR_CRC	0x02	/* CRC error */
105 #define ENRSR_FAE	0x04	/* frame alignment error */
106 #define ENRSR_FO	0x08	/* FIFO overrun */
107 #define ENRSR_MPA	0x10	/* missed pkt */
108 #define ENRSR_PHY	0x20	/* physical/multicast address */
109 #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
110 #define ENRSR_DEF	0x80	/* deferring */
111 
112 /* Transmitted packet status, EN0_TSR. */
113 #define ENTSR_PTX 0x01	/* Packet transmitted without error */
114 #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
115 #define ENTSR_COL 0x04	/* The transmit collided at least once. */
116 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
117 #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
118 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
119 #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
120 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
121 
122 void ne2000_reset(NE2000State *s)
123 {
124     int i;
125 
126     s->isr = ENISR_RESET;
127     memcpy(s->mem, &s->c.macaddr, 6);
128     s->mem[14] = 0x57;
129     s->mem[15] = 0x57;
130 
131     /* duplicate prom data */
132     for(i = 15;i >= 0; i--) {
133         s->mem[2 * i] = s->mem[i];
134         s->mem[2 * i + 1] = s->mem[i];
135     }
136 }
137 
138 static void ne2000_update_irq(NE2000State *s)
139 {
140     int isr;
141     isr = (s->isr & s->imr) & 0x7f;
142 #if defined(DEBUG_NE2000)
143     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
144            isr ? 1 : 0, s->isr, s->imr);
145 #endif
146     qemu_set_irq(s->irq, (isr != 0));
147 }
148 
149 static int ne2000_buffer_full(NE2000State *s)
150 {
151     int avail, index, boundary;
152 
153     if (s->stop <= s->start) {
154         return 1;
155     }
156 
157     index = s->curpag << 8;
158     boundary = s->boundary << 8;
159     if (index < boundary)
160         avail = boundary - index;
161     else
162         avail = (s->stop - s->start) - (index - boundary);
163     if (avail < (MAX_ETH_FRAME_SIZE + 4))
164         return 1;
165     return 0;
166 }
167 
168 #define MIN_BUF_SIZE 60
169 
170 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
171 {
172     NE2000State *s = qemu_get_nic_opaque(nc);
173     size_t size = size_;
174     uint8_t *p;
175     unsigned int total_len, next, avail, len, index, mcast_idx;
176     uint8_t buf1[60];
177     static const uint8_t broadcast_macaddr[6] =
178         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
179 
180 #if defined(DEBUG_NE2000)
181     printf("NE2000: received len=%zu\n", size);
182 #endif
183 
184     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
185         return -1;
186 
187     /* XXX: check this */
188     if (s->rxcr & 0x10) {
189         /* promiscuous: receive all */
190     } else {
191         if (!memcmp(buf,  broadcast_macaddr, 6)) {
192             /* broadcast address */
193             if (!(s->rxcr & 0x04))
194                 return size;
195         } else if (buf[0] & 0x01) {
196             /* multicast */
197             if (!(s->rxcr & 0x08))
198                 return size;
199             mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
200             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
201                 return size;
202         } else if (s->mem[0] == buf[0] &&
203                    s->mem[2] == buf[1] &&
204                    s->mem[4] == buf[2] &&
205                    s->mem[6] == buf[3] &&
206                    s->mem[8] == buf[4] &&
207                    s->mem[10] == buf[5]) {
208             /* match */
209         } else {
210             return size;
211         }
212     }
213 
214 
215     /* if too small buffer, then expand it */
216     if (size < MIN_BUF_SIZE) {
217         memcpy(buf1, buf, size);
218         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
219         buf = buf1;
220         size = MIN_BUF_SIZE;
221     }
222 
223     index = s->curpag << 8;
224     if (index >= NE2000_PMEM_END) {
225         index = s->start;
226     }
227     /* 4 bytes for header */
228     total_len = size + 4;
229     /* address for next packet (4 bytes for CRC) */
230     next = index + ((total_len + 4 + 255) & ~0xff);
231     if (next >= s->stop)
232         next -= (s->stop - s->start);
233     /* prepare packet header */
234     p = s->mem + index;
235     s->rsr = ENRSR_RXOK; /* receive status */
236     /* XXX: check this */
237     if (buf[0] & 0x01)
238         s->rsr |= ENRSR_PHY;
239     p[0] = s->rsr;
240     p[1] = next >> 8;
241     p[2] = total_len;
242     p[3] = total_len >> 8;
243     index += 4;
244 
245     /* write packet data */
246     while (size > 0) {
247         if (index <= s->stop)
248             avail = s->stop - index;
249         else
250             break;
251         len = size;
252         if (len > avail)
253             len = avail;
254         memcpy(s->mem + index, buf, len);
255         buf += len;
256         index += len;
257         if (index == s->stop)
258             index = s->start;
259         size -= len;
260     }
261     s->curpag = next >> 8;
262 
263     /* now we can signal we have received something */
264     s->isr |= ENISR_RX;
265     ne2000_update_irq(s);
266 
267     return size_;
268 }
269 
270 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
271 {
272     NE2000State *s = opaque;
273     int offset, page, index;
274 
275     addr &= 0xf;
276     trace_ne2000_ioport_write(addr, val);
277     if (addr == E8390_CMD) {
278         /* control register */
279         s->cmd = val;
280         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
281             s->isr &= ~ENISR_RESET;
282             /* test specific case: zero length transfer */
283             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
284                 s->rcnt == 0) {
285                 s->isr |= ENISR_RDC;
286                 ne2000_update_irq(s);
287             }
288             if (val & E8390_TRANS) {
289                 index = (s->tpsr << 8);
290                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
291                 if (index >= NE2000_PMEM_END)
292                     index -= NE2000_PMEM_SIZE;
293                 /* fail safe: check range on the transmitted length  */
294                 if (index + s->tcnt <= NE2000_PMEM_END) {
295                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
296                                      s->tcnt);
297                 }
298                 /* signal end of transfer */
299                 s->tsr = ENTSR_PTX;
300                 s->isr |= ENISR_TX;
301                 s->cmd &= ~E8390_TRANS;
302                 ne2000_update_irq(s);
303             }
304         }
305     } else {
306         page = s->cmd >> 6;
307         offset = addr | (page << 4);
308         switch(offset) {
309         case EN0_STARTPG:
310             if (val << 8 <= NE2000_PMEM_END) {
311                 s->start = val << 8;
312             }
313             break;
314         case EN0_STOPPG:
315             if (val << 8 <= NE2000_PMEM_END) {
316                 s->stop = val << 8;
317             }
318             break;
319         case EN0_BOUNDARY:
320             if (val << 8 < NE2000_PMEM_END) {
321                 s->boundary = val;
322             }
323             break;
324         case EN0_IMR:
325             s->imr = val;
326             ne2000_update_irq(s);
327             break;
328         case EN0_TPSR:
329             s->tpsr = val;
330             break;
331         case EN0_TCNTLO:
332             s->tcnt = (s->tcnt & 0xff00) | val;
333             break;
334         case EN0_TCNTHI:
335             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
336             break;
337         case EN0_RSARLO:
338             s->rsar = (s->rsar & 0xff00) | val;
339             break;
340         case EN0_RSARHI:
341             s->rsar = (s->rsar & 0x00ff) | (val << 8);
342             break;
343         case EN0_RCNTLO:
344             s->rcnt = (s->rcnt & 0xff00) | val;
345             break;
346         case EN0_RCNTHI:
347             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
348             break;
349         case EN0_RXCR:
350             s->rxcr = val;
351             break;
352         case EN0_DCFG:
353             s->dcfg = val;
354             break;
355         case EN0_ISR:
356             s->isr &= ~(val & 0x7f);
357             ne2000_update_irq(s);
358             break;
359         case EN1_PHYS ... EN1_PHYS + 5:
360             s->phys[offset - EN1_PHYS] = val;
361             break;
362         case EN1_CURPAG:
363             if (val << 8 < NE2000_PMEM_END) {
364                 s->curpag = val;
365             }
366             break;
367         case EN1_MULT ... EN1_MULT + 7:
368             s->mult[offset - EN1_MULT] = val;
369             break;
370         }
371     }
372 }
373 
374 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
375 {
376     NE2000State *s = opaque;
377     int offset, page, ret;
378 
379     addr &= 0xf;
380     if (addr == E8390_CMD) {
381         ret = s->cmd;
382     } else {
383         page = s->cmd >> 6;
384         offset = addr | (page << 4);
385         switch(offset) {
386         case EN0_TSR:
387             ret = s->tsr;
388             break;
389         case EN0_BOUNDARY:
390             ret = s->boundary;
391             break;
392         case EN0_ISR:
393             ret = s->isr;
394             break;
395         case EN0_RSARLO:
396             ret = s->rsar & 0x00ff;
397             break;
398         case EN0_RSARHI:
399             ret = s->rsar >> 8;
400             break;
401         case EN1_PHYS ... EN1_PHYS + 5:
402             ret = s->phys[offset - EN1_PHYS];
403             break;
404         case EN1_CURPAG:
405             ret = s->curpag;
406             break;
407         case EN1_MULT ... EN1_MULT + 7:
408             ret = s->mult[offset - EN1_MULT];
409             break;
410         case EN0_RSR:
411             ret = s->rsr;
412             break;
413         case EN2_STARTPG:
414             ret = s->start >> 8;
415             break;
416         case EN2_STOPPG:
417             ret = s->stop >> 8;
418             break;
419         case EN0_RTL8029ID0:
420             ret = 0x50;
421             break;
422         case EN0_RTL8029ID1:
423             ret = 0x43;
424             break;
425         case EN3_CONFIG0:
426             ret = 0;		/* 10baseT media */
427             break;
428         case EN3_CONFIG2:
429             ret = 0x40;		/* 10baseT active */
430             break;
431         case EN3_CONFIG3:
432             ret = 0x40;		/* Full duplex */
433             break;
434         default:
435             ret = 0x00;
436             break;
437         }
438     }
439     trace_ne2000_ioport_read(addr, ret);
440     return ret;
441 }
442 
443 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
444                                      uint32_t val)
445 {
446     if (addr < 32 ||
447         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
448         s->mem[addr] = val;
449     }
450 }
451 
452 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
453                                      uint32_t val)
454 {
455     addr &= ~1; /* XXX: check exact behaviour if not even */
456     if (addr < 32 ||
457         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
458         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
459     }
460 }
461 
462 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
463                                      uint32_t val)
464 {
465     addr &= ~1; /* XXX: check exact behaviour if not even */
466     if (addr < 32
467         || (addr >= NE2000_PMEM_START
468             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
469         stl_le_p(s->mem + addr, val);
470     }
471 }
472 
473 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
474 {
475     if (addr < 32 ||
476         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
477         return s->mem[addr];
478     } else {
479         return 0xff;
480     }
481 }
482 
483 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
484 {
485     addr &= ~1; /* XXX: check exact behaviour if not even */
486     if (addr < 32 ||
487         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
488         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
489     } else {
490         return 0xffff;
491     }
492 }
493 
494 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
495 {
496     addr &= ~1; /* XXX: check exact behaviour if not even */
497     if (addr < 32
498         || (addr >= NE2000_PMEM_START
499             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
500         return ldl_le_p(s->mem + addr);
501     } else {
502         return 0xffffffff;
503     }
504 }
505 
506 static inline void ne2000_dma_update(NE2000State *s, int len)
507 {
508     s->rsar += len;
509     /* wrap */
510     /* XXX: check what to do if rsar > stop */
511     if (s->rsar == s->stop)
512         s->rsar = s->start;
513 
514     if (s->rcnt <= len) {
515         s->rcnt = 0;
516         /* signal end of transfer */
517         s->isr |= ENISR_RDC;
518         ne2000_update_irq(s);
519     } else {
520         s->rcnt -= len;
521     }
522 }
523 
524 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
525 {
526     NE2000State *s = opaque;
527 
528 #ifdef DEBUG_NE2000
529     printf("NE2000: asic write val=0x%04x\n", val);
530 #endif
531     if (s->rcnt == 0)
532         return;
533     if (s->dcfg & 0x01) {
534         /* 16 bit access */
535         ne2000_mem_writew(s, s->rsar, val);
536         ne2000_dma_update(s, 2);
537     } else {
538         /* 8 bit access */
539         ne2000_mem_writeb(s, s->rsar, val);
540         ne2000_dma_update(s, 1);
541     }
542 }
543 
544 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
545 {
546     NE2000State *s = opaque;
547     int ret;
548 
549     if (s->dcfg & 0x01) {
550         /* 16 bit access */
551         ret = ne2000_mem_readw(s, s->rsar);
552         ne2000_dma_update(s, 2);
553     } else {
554         /* 8 bit access */
555         ret = ne2000_mem_readb(s, s->rsar);
556         ne2000_dma_update(s, 1);
557     }
558 #ifdef DEBUG_NE2000
559     printf("NE2000: asic read val=0x%04x\n", ret);
560 #endif
561     return ret;
562 }
563 
564 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
565 {
566     NE2000State *s = opaque;
567 
568 #ifdef DEBUG_NE2000
569     printf("NE2000: asic writel val=0x%04x\n", val);
570 #endif
571     if (s->rcnt == 0)
572         return;
573     /* 32 bit access */
574     ne2000_mem_writel(s, s->rsar, val);
575     ne2000_dma_update(s, 4);
576 }
577 
578 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
579 {
580     NE2000State *s = opaque;
581     int ret;
582 
583     /* 32 bit access */
584     ret = ne2000_mem_readl(s, s->rsar);
585     ne2000_dma_update(s, 4);
586 #ifdef DEBUG_NE2000
587     printf("NE2000: asic readl val=0x%04x\n", ret);
588 #endif
589     return ret;
590 }
591 
592 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
593 {
594     /* nothing to do (end of reset pulse) */
595 }
596 
597 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
598 {
599     NE2000State *s = opaque;
600     ne2000_reset(s);
601     return 0;
602 }
603 
604 static int ne2000_post_load(void* opaque, int version_id)
605 {
606     NE2000State* s = opaque;
607 
608     if (version_id < 2) {
609         s->rxcr = 0x0c;
610     }
611     return 0;
612 }
613 
614 const VMStateDescription vmstate_ne2000 = {
615     .name = "ne2000",
616     .version_id = 2,
617     .minimum_version_id = 0,
618     .post_load = ne2000_post_load,
619     .fields = (VMStateField[]) {
620         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
621         VMSTATE_UINT8(cmd, NE2000State),
622         VMSTATE_UINT32(start, NE2000State),
623         VMSTATE_UINT32(stop, NE2000State),
624         VMSTATE_UINT8(boundary, NE2000State),
625         VMSTATE_UINT8(tsr, NE2000State),
626         VMSTATE_UINT8(tpsr, NE2000State),
627         VMSTATE_UINT16(tcnt, NE2000State),
628         VMSTATE_UINT16(rcnt, NE2000State),
629         VMSTATE_UINT32(rsar, NE2000State),
630         VMSTATE_UINT8(rsr, NE2000State),
631         VMSTATE_UINT8(isr, NE2000State),
632         VMSTATE_UINT8(dcfg, NE2000State),
633         VMSTATE_UINT8(imr, NE2000State),
634         VMSTATE_BUFFER(phys, NE2000State),
635         VMSTATE_UINT8(curpag, NE2000State),
636         VMSTATE_BUFFER(mult, NE2000State),
637         VMSTATE_UNUSED(4), /* was irq */
638         VMSTATE_BUFFER(mem, NE2000State),
639         VMSTATE_END_OF_LIST()
640     }
641 };
642 
643 static uint64_t ne2000_read(void *opaque, hwaddr addr,
644                             unsigned size)
645 {
646     NE2000State *s = opaque;
647     uint64_t val;
648 
649     if (addr < 0x10 && size == 1) {
650         val = ne2000_ioport_read(s, addr);
651     } else if (addr == 0x10) {
652         if (size <= 2) {
653             val = ne2000_asic_ioport_read(s, addr);
654         } else {
655             val = ne2000_asic_ioport_readl(s, addr);
656         }
657     } else if (addr == 0x1f && size == 1) {
658         val = ne2000_reset_ioport_read(s, addr);
659     } else {
660         val = ((uint64_t)1 << (size * 8)) - 1;
661     }
662     trace_ne2000_read(addr, val);
663 
664     return val;
665 }
666 
667 static void ne2000_write(void *opaque, hwaddr addr,
668                          uint64_t data, unsigned size)
669 {
670     NE2000State *s = opaque;
671 
672     trace_ne2000_write(addr, data);
673     if (addr < 0x10 && size == 1) {
674         ne2000_ioport_write(s, addr, data);
675     } else if (addr == 0x10) {
676         if (size <= 2) {
677             ne2000_asic_ioport_write(s, addr, data);
678         } else {
679             ne2000_asic_ioport_writel(s, addr, data);
680         }
681     } else if (addr == 0x1f && size == 1) {
682         ne2000_reset_ioport_write(s, addr, data);
683     }
684 }
685 
686 static const MemoryRegionOps ne2000_ops = {
687     .read = ne2000_read,
688     .write = ne2000_write,
689     .endianness = DEVICE_LITTLE_ENDIAN,
690 };
691 
692 /***********************************************************/
693 /* PCI NE2000 definitions */
694 
695 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
696 {
697     memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
698 }
699