xref: /openbmc/qemu/hw/net/ne2000.c (revision 49ab747f)
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/pci/pci.h"
26 #include "net/net.h"
27 #include "hw/ne2000.h"
28 #include "hw/loader.h"
29 #include "sysemu/sysemu.h"
30 
31 /* debug NE2000 card */
32 //#define DEBUG_NE2000
33 
34 #define MAX_ETH_FRAME_SIZE 1514
35 
36 #define E8390_CMD	0x00  /* The command register (for all pages) */
37 /* Page 0 register offsets. */
38 #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
39 #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
40 #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
41 #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
42 #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
43 #define EN0_TSR		0x04	/* Transmit status reg RD */
44 #define EN0_TPSR	0x04	/* Transmit starting page WR */
45 #define EN0_NCR		0x05	/* Number of collision reg RD */
46 #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
47 #define EN0_FIFO	0x06	/* FIFO RD */
48 #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
49 #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
50 #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
51 #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
52 #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
53 #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
54 #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
55 #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
56 #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
57 #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
58 #define EN0_RSR		0x0c	/* rx status reg RD */
59 #define EN0_RXCR	0x0c	/* RX configuration reg WR */
60 #define EN0_TXCR	0x0d	/* TX configuration reg WR */
61 #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
62 #define EN0_DCFG	0x0e	/* Data configuration reg WR */
63 #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
64 #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
65 #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
66 
67 #define EN1_PHYS        0x11
68 #define EN1_CURPAG      0x17
69 #define EN1_MULT        0x18
70 
71 #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
72 #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
73 
74 #define EN3_CONFIG0	0x33
75 #define EN3_CONFIG1	0x34
76 #define EN3_CONFIG2	0x35
77 #define EN3_CONFIG3	0x36
78 
79 /*  Register accessed at EN_CMD, the 8390 base addr.  */
80 #define E8390_STOP	0x01	/* Stop and reset the chip */
81 #define E8390_START	0x02	/* Start the chip, clear reset */
82 #define E8390_TRANS	0x04	/* Transmit a frame */
83 #define E8390_RREAD	0x08	/* Remote read */
84 #define E8390_RWRITE	0x10	/* Remote write  */
85 #define E8390_NODMA	0x20	/* Remote DMA */
86 #define E8390_PAGE0	0x00	/* Select page chip registers */
87 #define E8390_PAGE1	0x40	/* using the two high-order bits */
88 #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
89 
90 /* Bits in EN0_ISR - Interrupt status register */
91 #define ENISR_RX	0x01	/* Receiver, no error */
92 #define ENISR_TX	0x02	/* Transmitter, no error */
93 #define ENISR_RX_ERR	0x04	/* Receiver, with error */
94 #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
95 #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
96 #define ENISR_COUNTERS	0x20	/* Counters need emptying */
97 #define ENISR_RDC	0x40	/* remote dma complete */
98 #define ENISR_RESET	0x80	/* Reset completed */
99 #define ENISR_ALL	0x3f	/* Interrupts we will enable */
100 
101 /* Bits in received packet status byte and EN0_RSR*/
102 #define ENRSR_RXOK	0x01	/* Received a good packet */
103 #define ENRSR_CRC	0x02	/* CRC error */
104 #define ENRSR_FAE	0x04	/* frame alignment error */
105 #define ENRSR_FO	0x08	/* FIFO overrun */
106 #define ENRSR_MPA	0x10	/* missed pkt */
107 #define ENRSR_PHY	0x20	/* physical/multicast address */
108 #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
109 #define ENRSR_DEF	0x80	/* deferring */
110 
111 /* Transmitted packet status, EN0_TSR. */
112 #define ENTSR_PTX 0x01	/* Packet transmitted without error */
113 #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
114 #define ENTSR_COL 0x04	/* The transmit collided at least once. */
115 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
116 #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
117 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
118 #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
119 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
120 
121 typedef struct PCINE2000State {
122     PCIDevice dev;
123     NE2000State ne2000;
124 } PCINE2000State;
125 
126 void ne2000_reset(NE2000State *s)
127 {
128     int i;
129 
130     s->isr = ENISR_RESET;
131     memcpy(s->mem, &s->c.macaddr, 6);
132     s->mem[14] = 0x57;
133     s->mem[15] = 0x57;
134 
135     /* duplicate prom data */
136     for(i = 15;i >= 0; i--) {
137         s->mem[2 * i] = s->mem[i];
138         s->mem[2 * i + 1] = s->mem[i];
139     }
140 }
141 
142 static void ne2000_update_irq(NE2000State *s)
143 {
144     int isr;
145     isr = (s->isr & s->imr) & 0x7f;
146 #if defined(DEBUG_NE2000)
147     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 	   isr ? 1 : 0, s->isr, s->imr);
149 #endif
150     qemu_set_irq(s->irq, (isr != 0));
151 }
152 
153 static int ne2000_buffer_full(NE2000State *s)
154 {
155     int avail, index, boundary;
156 
157     index = s->curpag << 8;
158     boundary = s->boundary << 8;
159     if (index < boundary)
160         avail = boundary - index;
161     else
162         avail = (s->stop - s->start) - (index - boundary);
163     if (avail < (MAX_ETH_FRAME_SIZE + 4))
164         return 1;
165     return 0;
166 }
167 
168 int ne2000_can_receive(NetClientState *nc)
169 {
170     NE2000State *s = qemu_get_nic_opaque(nc);
171 
172     if (s->cmd & E8390_STOP)
173         return 1;
174     return !ne2000_buffer_full(s);
175 }
176 
177 #define MIN_BUF_SIZE 60
178 
179 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
180 {
181     NE2000State *s = qemu_get_nic_opaque(nc);
182     int size = size_;
183     uint8_t *p;
184     unsigned int total_len, next, avail, len, index, mcast_idx;
185     uint8_t buf1[60];
186     static const uint8_t broadcast_macaddr[6] =
187         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
188 
189 #if defined(DEBUG_NE2000)
190     printf("NE2000: received len=%d\n", size);
191 #endif
192 
193     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
194         return -1;
195 
196     /* XXX: check this */
197     if (s->rxcr & 0x10) {
198         /* promiscuous: receive all */
199     } else {
200         if (!memcmp(buf,  broadcast_macaddr, 6)) {
201             /* broadcast address */
202             if (!(s->rxcr & 0x04))
203                 return size;
204         } else if (buf[0] & 0x01) {
205             /* multicast */
206             if (!(s->rxcr & 0x08))
207                 return size;
208             mcast_idx = compute_mcast_idx(buf);
209             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
210                 return size;
211         } else if (s->mem[0] == buf[0] &&
212                    s->mem[2] == buf[1] &&
213                    s->mem[4] == buf[2] &&
214                    s->mem[6] == buf[3] &&
215                    s->mem[8] == buf[4] &&
216                    s->mem[10] == buf[5]) {
217             /* match */
218         } else {
219             return size;
220         }
221     }
222 
223 
224     /* if too small buffer, then expand it */
225     if (size < MIN_BUF_SIZE) {
226         memcpy(buf1, buf, size);
227         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
228         buf = buf1;
229         size = MIN_BUF_SIZE;
230     }
231 
232     index = s->curpag << 8;
233     /* 4 bytes for header */
234     total_len = size + 4;
235     /* address for next packet (4 bytes for CRC) */
236     next = index + ((total_len + 4 + 255) & ~0xff);
237     if (next >= s->stop)
238         next -= (s->stop - s->start);
239     /* prepare packet header */
240     p = s->mem + index;
241     s->rsr = ENRSR_RXOK; /* receive status */
242     /* XXX: check this */
243     if (buf[0] & 0x01)
244         s->rsr |= ENRSR_PHY;
245     p[0] = s->rsr;
246     p[1] = next >> 8;
247     p[2] = total_len;
248     p[3] = total_len >> 8;
249     index += 4;
250 
251     /* write packet data */
252     while (size > 0) {
253         if (index <= s->stop)
254             avail = s->stop - index;
255         else
256             avail = 0;
257         len = size;
258         if (len > avail)
259             len = avail;
260         memcpy(s->mem + index, buf, len);
261         buf += len;
262         index += len;
263         if (index == s->stop)
264             index = s->start;
265         size -= len;
266     }
267     s->curpag = next >> 8;
268 
269     /* now we can signal we have received something */
270     s->isr |= ENISR_RX;
271     ne2000_update_irq(s);
272 
273     return size_;
274 }
275 
276 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
277 {
278     NE2000State *s = opaque;
279     int offset, page, index;
280 
281     addr &= 0xf;
282 #ifdef DEBUG_NE2000
283     printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
284 #endif
285     if (addr == E8390_CMD) {
286         /* control register */
287         s->cmd = val;
288         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
289             s->isr &= ~ENISR_RESET;
290             /* test specific case: zero length transfer */
291             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
292                 s->rcnt == 0) {
293                 s->isr |= ENISR_RDC;
294                 ne2000_update_irq(s);
295             }
296             if (val & E8390_TRANS) {
297                 index = (s->tpsr << 8);
298                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
299                 if (index >= NE2000_PMEM_END)
300                     index -= NE2000_PMEM_SIZE;
301                 /* fail safe: check range on the transmitted length  */
302                 if (index + s->tcnt <= NE2000_PMEM_END) {
303                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
304                                      s->tcnt);
305                 }
306                 /* signal end of transfer */
307                 s->tsr = ENTSR_PTX;
308                 s->isr |= ENISR_TX;
309                 s->cmd &= ~E8390_TRANS;
310                 ne2000_update_irq(s);
311             }
312         }
313     } else {
314         page = s->cmd >> 6;
315         offset = addr | (page << 4);
316         switch(offset) {
317         case EN0_STARTPG:
318             s->start = val << 8;
319             break;
320         case EN0_STOPPG:
321             s->stop = val << 8;
322             break;
323         case EN0_BOUNDARY:
324             s->boundary = val;
325             break;
326         case EN0_IMR:
327             s->imr = val;
328             ne2000_update_irq(s);
329             break;
330         case EN0_TPSR:
331             s->tpsr = val;
332             break;
333         case EN0_TCNTLO:
334             s->tcnt = (s->tcnt & 0xff00) | val;
335             break;
336         case EN0_TCNTHI:
337             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
338             break;
339         case EN0_RSARLO:
340             s->rsar = (s->rsar & 0xff00) | val;
341             break;
342         case EN0_RSARHI:
343             s->rsar = (s->rsar & 0x00ff) | (val << 8);
344             break;
345         case EN0_RCNTLO:
346             s->rcnt = (s->rcnt & 0xff00) | val;
347             break;
348         case EN0_RCNTHI:
349             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
350             break;
351         case EN0_RXCR:
352             s->rxcr = val;
353             break;
354         case EN0_DCFG:
355             s->dcfg = val;
356             break;
357         case EN0_ISR:
358             s->isr &= ~(val & 0x7f);
359             ne2000_update_irq(s);
360             break;
361         case EN1_PHYS ... EN1_PHYS + 5:
362             s->phys[offset - EN1_PHYS] = val;
363             break;
364         case EN1_CURPAG:
365             s->curpag = val;
366             break;
367         case EN1_MULT ... EN1_MULT + 7:
368             s->mult[offset - EN1_MULT] = val;
369             break;
370         }
371     }
372 }
373 
374 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
375 {
376     NE2000State *s = opaque;
377     int offset, page, ret;
378 
379     addr &= 0xf;
380     if (addr == E8390_CMD) {
381         ret = s->cmd;
382     } else {
383         page = s->cmd >> 6;
384         offset = addr | (page << 4);
385         switch(offset) {
386         case EN0_TSR:
387             ret = s->tsr;
388             break;
389         case EN0_BOUNDARY:
390             ret = s->boundary;
391             break;
392         case EN0_ISR:
393             ret = s->isr;
394             break;
395 	case EN0_RSARLO:
396 	    ret = s->rsar & 0x00ff;
397 	    break;
398 	case EN0_RSARHI:
399 	    ret = s->rsar >> 8;
400 	    break;
401         case EN1_PHYS ... EN1_PHYS + 5:
402             ret = s->phys[offset - EN1_PHYS];
403             break;
404         case EN1_CURPAG:
405             ret = s->curpag;
406             break;
407         case EN1_MULT ... EN1_MULT + 7:
408             ret = s->mult[offset - EN1_MULT];
409             break;
410         case EN0_RSR:
411             ret = s->rsr;
412             break;
413         case EN2_STARTPG:
414             ret = s->start >> 8;
415             break;
416         case EN2_STOPPG:
417             ret = s->stop >> 8;
418             break;
419 	case EN0_RTL8029ID0:
420 	    ret = 0x50;
421 	    break;
422 	case EN0_RTL8029ID1:
423 	    ret = 0x43;
424 	    break;
425 	case EN3_CONFIG0:
426 	    ret = 0;		/* 10baseT media */
427 	    break;
428 	case EN3_CONFIG2:
429 	    ret = 0x40;		/* 10baseT active */
430 	    break;
431 	case EN3_CONFIG3:
432 	    ret = 0x40;		/* Full duplex */
433 	    break;
434         default:
435             ret = 0x00;
436             break;
437         }
438     }
439 #ifdef DEBUG_NE2000
440     printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
441 #endif
442     return ret;
443 }
444 
445 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
446                                      uint32_t val)
447 {
448     if (addr < 32 ||
449         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
450         s->mem[addr] = val;
451     }
452 }
453 
454 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
455                                      uint32_t val)
456 {
457     addr &= ~1; /* XXX: check exact behaviour if not even */
458     if (addr < 32 ||
459         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
460         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
461     }
462 }
463 
464 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
465                                      uint32_t val)
466 {
467     addr &= ~1; /* XXX: check exact behaviour if not even */
468     if (addr < 32 ||
469         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
470         cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
471     }
472 }
473 
474 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
475 {
476     if (addr < 32 ||
477         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
478         return s->mem[addr];
479     } else {
480         return 0xff;
481     }
482 }
483 
484 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
485 {
486     addr &= ~1; /* XXX: check exact behaviour if not even */
487     if (addr < 32 ||
488         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
489         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
490     } else {
491         return 0xffff;
492     }
493 }
494 
495 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
496 {
497     addr &= ~1; /* XXX: check exact behaviour if not even */
498     if (addr < 32 ||
499         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
500         return le32_to_cpupu((uint32_t *)(s->mem + addr));
501     } else {
502         return 0xffffffff;
503     }
504 }
505 
506 static inline void ne2000_dma_update(NE2000State *s, int len)
507 {
508     s->rsar += len;
509     /* wrap */
510     /* XXX: check what to do if rsar > stop */
511     if (s->rsar == s->stop)
512         s->rsar = s->start;
513 
514     if (s->rcnt <= len) {
515         s->rcnt = 0;
516         /* signal end of transfer */
517         s->isr |= ENISR_RDC;
518         ne2000_update_irq(s);
519     } else {
520         s->rcnt -= len;
521     }
522 }
523 
524 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
525 {
526     NE2000State *s = opaque;
527 
528 #ifdef DEBUG_NE2000
529     printf("NE2000: asic write val=0x%04x\n", val);
530 #endif
531     if (s->rcnt == 0)
532         return;
533     if (s->dcfg & 0x01) {
534         /* 16 bit access */
535         ne2000_mem_writew(s, s->rsar, val);
536         ne2000_dma_update(s, 2);
537     } else {
538         /* 8 bit access */
539         ne2000_mem_writeb(s, s->rsar, val);
540         ne2000_dma_update(s, 1);
541     }
542 }
543 
544 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
545 {
546     NE2000State *s = opaque;
547     int ret;
548 
549     if (s->dcfg & 0x01) {
550         /* 16 bit access */
551         ret = ne2000_mem_readw(s, s->rsar);
552         ne2000_dma_update(s, 2);
553     } else {
554         /* 8 bit access */
555         ret = ne2000_mem_readb(s, s->rsar);
556         ne2000_dma_update(s, 1);
557     }
558 #ifdef DEBUG_NE2000
559     printf("NE2000: asic read val=0x%04x\n", ret);
560 #endif
561     return ret;
562 }
563 
564 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
565 {
566     NE2000State *s = opaque;
567 
568 #ifdef DEBUG_NE2000
569     printf("NE2000: asic writel val=0x%04x\n", val);
570 #endif
571     if (s->rcnt == 0)
572         return;
573     /* 32 bit access */
574     ne2000_mem_writel(s, s->rsar, val);
575     ne2000_dma_update(s, 4);
576 }
577 
578 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
579 {
580     NE2000State *s = opaque;
581     int ret;
582 
583     /* 32 bit access */
584     ret = ne2000_mem_readl(s, s->rsar);
585     ne2000_dma_update(s, 4);
586 #ifdef DEBUG_NE2000
587     printf("NE2000: asic readl val=0x%04x\n", ret);
588 #endif
589     return ret;
590 }
591 
592 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
593 {
594     /* nothing to do (end of reset pulse) */
595 }
596 
597 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
598 {
599     NE2000State *s = opaque;
600     ne2000_reset(s);
601     return 0;
602 }
603 
604 static int ne2000_post_load(void* opaque, int version_id)
605 {
606     NE2000State* s = opaque;
607 
608     if (version_id < 2) {
609         s->rxcr = 0x0c;
610     }
611     return 0;
612 }
613 
614 const VMStateDescription vmstate_ne2000 = {
615     .name = "ne2000",
616     .version_id = 2,
617     .minimum_version_id = 0,
618     .minimum_version_id_old = 0,
619     .post_load = ne2000_post_load,
620     .fields      = (VMStateField []) {
621         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
622         VMSTATE_UINT8(cmd, NE2000State),
623         VMSTATE_UINT32(start, NE2000State),
624         VMSTATE_UINT32(stop, NE2000State),
625         VMSTATE_UINT8(boundary, NE2000State),
626         VMSTATE_UINT8(tsr, NE2000State),
627         VMSTATE_UINT8(tpsr, NE2000State),
628         VMSTATE_UINT16(tcnt, NE2000State),
629         VMSTATE_UINT16(rcnt, NE2000State),
630         VMSTATE_UINT32(rsar, NE2000State),
631         VMSTATE_UINT8(rsr, NE2000State),
632         VMSTATE_UINT8(isr, NE2000State),
633         VMSTATE_UINT8(dcfg, NE2000State),
634         VMSTATE_UINT8(imr, NE2000State),
635         VMSTATE_BUFFER(phys, NE2000State),
636         VMSTATE_UINT8(curpag, NE2000State),
637         VMSTATE_BUFFER(mult, NE2000State),
638         VMSTATE_UNUSED(4), /* was irq */
639         VMSTATE_BUFFER(mem, NE2000State),
640         VMSTATE_END_OF_LIST()
641     }
642 };
643 
644 static const VMStateDescription vmstate_pci_ne2000 = {
645     .name = "ne2000",
646     .version_id = 3,
647     .minimum_version_id = 3,
648     .minimum_version_id_old = 3,
649     .fields      = (VMStateField []) {
650         VMSTATE_PCI_DEVICE(dev, PCINE2000State),
651         VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
652         VMSTATE_END_OF_LIST()
653     }
654 };
655 
656 static uint64_t ne2000_read(void *opaque, hwaddr addr,
657                             unsigned size)
658 {
659     NE2000State *s = opaque;
660 
661     if (addr < 0x10 && size == 1) {
662         return ne2000_ioport_read(s, addr);
663     } else if (addr == 0x10) {
664         if (size <= 2) {
665             return ne2000_asic_ioport_read(s, addr);
666         } else {
667             return ne2000_asic_ioport_readl(s, addr);
668         }
669     } else if (addr == 0x1f && size == 1) {
670         return ne2000_reset_ioport_read(s, addr);
671     }
672     return ((uint64_t)1 << (size * 8)) - 1;
673 }
674 
675 static void ne2000_write(void *opaque, hwaddr addr,
676                          uint64_t data, unsigned size)
677 {
678     NE2000State *s = opaque;
679 
680     if (addr < 0x10 && size == 1) {
681         ne2000_ioport_write(s, addr, data);
682     } else if (addr == 0x10) {
683         if (size <= 2) {
684             ne2000_asic_ioport_write(s, addr, data);
685         } else {
686             ne2000_asic_ioport_writel(s, addr, data);
687         }
688     } else if (addr == 0x1f && size == 1) {
689         ne2000_reset_ioport_write(s, addr, data);
690     }
691 }
692 
693 static const MemoryRegionOps ne2000_ops = {
694     .read = ne2000_read,
695     .write = ne2000_write,
696     .endianness = DEVICE_NATIVE_ENDIAN,
697 };
698 
699 /***********************************************************/
700 /* PCI NE2000 definitions */
701 
702 void ne2000_setup_io(NE2000State *s, unsigned size)
703 {
704     memory_region_init_io(&s->io, &ne2000_ops, s, "ne2000", size);
705 }
706 
707 static void ne2000_cleanup(NetClientState *nc)
708 {
709     NE2000State *s = qemu_get_nic_opaque(nc);
710 
711     s->nic = NULL;
712 }
713 
714 static NetClientInfo net_ne2000_info = {
715     .type = NET_CLIENT_OPTIONS_KIND_NIC,
716     .size = sizeof(NICState),
717     .can_receive = ne2000_can_receive,
718     .receive = ne2000_receive,
719     .cleanup = ne2000_cleanup,
720 };
721 
722 static int pci_ne2000_init(PCIDevice *pci_dev)
723 {
724     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
725     NE2000State *s;
726     uint8_t *pci_conf;
727 
728     pci_conf = d->dev.config;
729     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
730 
731     s = &d->ne2000;
732     ne2000_setup_io(s, 0x100);
733     pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
734     s->irq = d->dev.irq[0];
735 
736     qemu_macaddr_default_if_unset(&s->c.macaddr);
737     ne2000_reset(s);
738 
739     s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
740                           object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
741     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
742 
743     add_boot_device_path(s->c.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
744 
745     return 0;
746 }
747 
748 static void pci_ne2000_exit(PCIDevice *pci_dev)
749 {
750     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
751     NE2000State *s = &d->ne2000;
752 
753     memory_region_destroy(&s->io);
754     qemu_del_nic(s->nic);
755 }
756 
757 static Property ne2000_properties[] = {
758     DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
759     DEFINE_PROP_END_OF_LIST(),
760 };
761 
762 static void ne2000_class_init(ObjectClass *klass, void *data)
763 {
764     DeviceClass *dc = DEVICE_CLASS(klass);
765     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
766 
767     k->init = pci_ne2000_init;
768     k->exit = pci_ne2000_exit;
769     k->romfile = "efi-ne2k_pci.rom",
770     k->vendor_id = PCI_VENDOR_ID_REALTEK;
771     k->device_id = PCI_DEVICE_ID_REALTEK_8029;
772     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
773     dc->vmsd = &vmstate_pci_ne2000;
774     dc->props = ne2000_properties;
775 }
776 
777 static const TypeInfo ne2000_info = {
778     .name          = "ne2k_pci",
779     .parent        = TYPE_PCI_DEVICE,
780     .instance_size = sizeof(PCINE2000State),
781     .class_init    = ne2000_class_init,
782 };
783 
784 static void ne2000_register_types(void)
785 {
786     type_register_static(&ne2000_info);
787 }
788 
789 type_init(ne2000_register_types)
790