xref: /openbmc/qemu/hw/net/ne2000.c (revision 1d48474d)
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "net/net.h"
28 #include "ne2000.h"
29 #include "hw/loader.h"
30 #include "sysemu/sysemu.h"
31 
32 /* debug NE2000 card */
33 //#define DEBUG_NE2000
34 
35 #define MAX_ETH_FRAME_SIZE 1514
36 
37 #define E8390_CMD	0x00  /* The command register (for all pages) */
38 /* Page 0 register offsets. */
39 #define EN0_CLDALO	0x01	/* Low byte of current local dma addr  RD */
40 #define EN0_STARTPG	0x01	/* Starting page of ring bfr WR */
41 #define EN0_CLDAHI	0x02	/* High byte of current local dma addr  RD */
42 #define EN0_STOPPG	0x02	/* Ending page +1 of ring bfr WR */
43 #define EN0_BOUNDARY	0x03	/* Boundary page of ring bfr RD WR */
44 #define EN0_TSR		0x04	/* Transmit status reg RD */
45 #define EN0_TPSR	0x04	/* Transmit starting page WR */
46 #define EN0_NCR		0x05	/* Number of collision reg RD */
47 #define EN0_TCNTLO	0x05	/* Low  byte of tx byte count WR */
48 #define EN0_FIFO	0x06	/* FIFO RD */
49 #define EN0_TCNTHI	0x06	/* High byte of tx byte count WR */
50 #define EN0_ISR		0x07	/* Interrupt status reg RD WR */
51 #define EN0_CRDALO	0x08	/* low byte of current remote dma address RD */
52 #define EN0_RSARLO	0x08	/* Remote start address reg 0 */
53 #define EN0_CRDAHI	0x09	/* high byte, current remote dma address RD */
54 #define EN0_RSARHI	0x09	/* Remote start address reg 1 */
55 #define EN0_RCNTLO	0x0a	/* Remote byte count reg WR */
56 #define EN0_RTL8029ID0	0x0a	/* Realtek ID byte #1 RD */
57 #define EN0_RCNTHI	0x0b	/* Remote byte count reg WR */
58 #define EN0_RTL8029ID1	0x0b	/* Realtek ID byte #2 RD */
59 #define EN0_RSR		0x0c	/* rx status reg RD */
60 #define EN0_RXCR	0x0c	/* RX configuration reg WR */
61 #define EN0_TXCR	0x0d	/* TX configuration reg WR */
62 #define EN0_COUNTER0	0x0d	/* Rcv alignment error counter RD */
63 #define EN0_DCFG	0x0e	/* Data configuration reg WR */
64 #define EN0_COUNTER1	0x0e	/* Rcv CRC error counter RD */
65 #define EN0_IMR		0x0f	/* Interrupt mask reg WR */
66 #define EN0_COUNTER2	0x0f	/* Rcv missed frame error counter RD */
67 
68 #define EN1_PHYS        0x11
69 #define EN1_CURPAG      0x17
70 #define EN1_MULT        0x18
71 
72 #define EN2_STARTPG	0x21	/* Starting page of ring bfr RD */
73 #define EN2_STOPPG	0x22	/* Ending page +1 of ring bfr RD */
74 
75 #define EN3_CONFIG0	0x33
76 #define EN3_CONFIG1	0x34
77 #define EN3_CONFIG2	0x35
78 #define EN3_CONFIG3	0x36
79 
80 /*  Register accessed at EN_CMD, the 8390 base addr.  */
81 #define E8390_STOP	0x01	/* Stop and reset the chip */
82 #define E8390_START	0x02	/* Start the chip, clear reset */
83 #define E8390_TRANS	0x04	/* Transmit a frame */
84 #define E8390_RREAD	0x08	/* Remote read */
85 #define E8390_RWRITE	0x10	/* Remote write  */
86 #define E8390_NODMA	0x20	/* Remote DMA */
87 #define E8390_PAGE0	0x00	/* Select page chip registers */
88 #define E8390_PAGE1	0x40	/* using the two high-order bits */
89 #define E8390_PAGE2	0x80	/* Page 3 is invalid. */
90 
91 /* Bits in EN0_ISR - Interrupt status register */
92 #define ENISR_RX	0x01	/* Receiver, no error */
93 #define ENISR_TX	0x02	/* Transmitter, no error */
94 #define ENISR_RX_ERR	0x04	/* Receiver, with error */
95 #define ENISR_TX_ERR	0x08	/* Transmitter, with error */
96 #define ENISR_OVER	0x10	/* Receiver overwrote the ring */
97 #define ENISR_COUNTERS	0x20	/* Counters need emptying */
98 #define ENISR_RDC	0x40	/* remote dma complete */
99 #define ENISR_RESET	0x80	/* Reset completed */
100 #define ENISR_ALL	0x3f	/* Interrupts we will enable */
101 
102 /* Bits in received packet status byte and EN0_RSR*/
103 #define ENRSR_RXOK	0x01	/* Received a good packet */
104 #define ENRSR_CRC	0x02	/* CRC error */
105 #define ENRSR_FAE	0x04	/* frame alignment error */
106 #define ENRSR_FO	0x08	/* FIFO overrun */
107 #define ENRSR_MPA	0x10	/* missed pkt */
108 #define ENRSR_PHY	0x20	/* physical/multicast address */
109 #define ENRSR_DIS	0x40	/* receiver disable. set in monitor mode */
110 #define ENRSR_DEF	0x80	/* deferring */
111 
112 /* Transmitted packet status, EN0_TSR. */
113 #define ENTSR_PTX 0x01	/* Packet transmitted without error */
114 #define ENTSR_ND  0x02	/* The transmit wasn't deferred. */
115 #define ENTSR_COL 0x04	/* The transmit collided at least once. */
116 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
117 #define ENTSR_CRS 0x10	/* The carrier sense was lost. */
118 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
119 #define ENTSR_CDH 0x40	/* The collision detect "heartbeat" signal was lost. */
120 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
121 
122 typedef struct PCINE2000State {
123     PCIDevice dev;
124     NE2000State ne2000;
125 } PCINE2000State;
126 
127 void ne2000_reset(NE2000State *s)
128 {
129     int i;
130 
131     s->isr = ENISR_RESET;
132     memcpy(s->mem, &s->c.macaddr, 6);
133     s->mem[14] = 0x57;
134     s->mem[15] = 0x57;
135 
136     /* duplicate prom data */
137     for(i = 15;i >= 0; i--) {
138         s->mem[2 * i] = s->mem[i];
139         s->mem[2 * i + 1] = s->mem[i];
140     }
141 }
142 
143 static void ne2000_update_irq(NE2000State *s)
144 {
145     int isr;
146     isr = (s->isr & s->imr) & 0x7f;
147 #if defined(DEBUG_NE2000)
148     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
149 	   isr ? 1 : 0, s->isr, s->imr);
150 #endif
151     qemu_set_irq(s->irq, (isr != 0));
152 }
153 
154 static int ne2000_buffer_full(NE2000State *s)
155 {
156     int avail, index, boundary;
157 
158     if (s->stop <= s->start) {
159         return 1;
160     }
161 
162     index = s->curpag << 8;
163     boundary = s->boundary << 8;
164     if (index < boundary)
165         avail = boundary - index;
166     else
167         avail = (s->stop - s->start) - (index - boundary);
168     if (avail < (MAX_ETH_FRAME_SIZE + 4))
169         return 1;
170     return 0;
171 }
172 
173 #define MIN_BUF_SIZE 60
174 
175 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
176 {
177     NE2000State *s = qemu_get_nic_opaque(nc);
178     int size = size_;
179     uint8_t *p;
180     unsigned int total_len, next, avail, len, index, mcast_idx;
181     uint8_t buf1[60];
182     static const uint8_t broadcast_macaddr[6] =
183         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
184 
185 #if defined(DEBUG_NE2000)
186     printf("NE2000: received len=%d\n", size);
187 #endif
188 
189     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
190         return -1;
191 
192     /* XXX: check this */
193     if (s->rxcr & 0x10) {
194         /* promiscuous: receive all */
195     } else {
196         if (!memcmp(buf,  broadcast_macaddr, 6)) {
197             /* broadcast address */
198             if (!(s->rxcr & 0x04))
199                 return size;
200         } else if (buf[0] & 0x01) {
201             /* multicast */
202             if (!(s->rxcr & 0x08))
203                 return size;
204             mcast_idx = compute_mcast_idx(buf);
205             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
206                 return size;
207         } else if (s->mem[0] == buf[0] &&
208                    s->mem[2] == buf[1] &&
209                    s->mem[4] == buf[2] &&
210                    s->mem[6] == buf[3] &&
211                    s->mem[8] == buf[4] &&
212                    s->mem[10] == buf[5]) {
213             /* match */
214         } else {
215             return size;
216         }
217     }
218 
219 
220     /* if too small buffer, then expand it */
221     if (size < MIN_BUF_SIZE) {
222         memcpy(buf1, buf, size);
223         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
224         buf = buf1;
225         size = MIN_BUF_SIZE;
226     }
227 
228     index = s->curpag << 8;
229     if (index >= NE2000_PMEM_END) {
230         index = s->start;
231     }
232     /* 4 bytes for header */
233     total_len = size + 4;
234     /* address for next packet (4 bytes for CRC) */
235     next = index + ((total_len + 4 + 255) & ~0xff);
236     if (next >= s->stop)
237         next -= (s->stop - s->start);
238     /* prepare packet header */
239     p = s->mem + index;
240     s->rsr = ENRSR_RXOK; /* receive status */
241     /* XXX: check this */
242     if (buf[0] & 0x01)
243         s->rsr |= ENRSR_PHY;
244     p[0] = s->rsr;
245     p[1] = next >> 8;
246     p[2] = total_len;
247     p[3] = total_len >> 8;
248     index += 4;
249 
250     /* write packet data */
251     while (size > 0) {
252         if (index <= s->stop)
253             avail = s->stop - index;
254         else
255             break;
256         len = size;
257         if (len > avail)
258             len = avail;
259         memcpy(s->mem + index, buf, len);
260         buf += len;
261         index += len;
262         if (index == s->stop)
263             index = s->start;
264         size -= len;
265     }
266     s->curpag = next >> 8;
267 
268     /* now we can signal we have received something */
269     s->isr |= ENISR_RX;
270     ne2000_update_irq(s);
271 
272     return size_;
273 }
274 
275 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
276 {
277     NE2000State *s = opaque;
278     int offset, page, index;
279 
280     addr &= 0xf;
281 #ifdef DEBUG_NE2000
282     printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
283 #endif
284     if (addr == E8390_CMD) {
285         /* control register */
286         s->cmd = val;
287         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
288             s->isr &= ~ENISR_RESET;
289             /* test specific case: zero length transfer */
290             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
291                 s->rcnt == 0) {
292                 s->isr |= ENISR_RDC;
293                 ne2000_update_irq(s);
294             }
295             if (val & E8390_TRANS) {
296                 index = (s->tpsr << 8);
297                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
298                 if (index >= NE2000_PMEM_END)
299                     index -= NE2000_PMEM_SIZE;
300                 /* fail safe: check range on the transmitted length  */
301                 if (index + s->tcnt <= NE2000_PMEM_END) {
302                     qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
303                                      s->tcnt);
304                 }
305                 /* signal end of transfer */
306                 s->tsr = ENTSR_PTX;
307                 s->isr |= ENISR_TX;
308                 s->cmd &= ~E8390_TRANS;
309                 ne2000_update_irq(s);
310             }
311         }
312     } else {
313         page = s->cmd >> 6;
314         offset = addr | (page << 4);
315         switch(offset) {
316         case EN0_STARTPG:
317             if (val << 8 <= NE2000_PMEM_END) {
318                 s->start = val << 8;
319             }
320             break;
321         case EN0_STOPPG:
322             if (val << 8 <= NE2000_PMEM_END) {
323                 s->stop = val << 8;
324             }
325             break;
326         case EN0_BOUNDARY:
327             if (val << 8 < NE2000_PMEM_END) {
328                 s->boundary = val;
329             }
330             break;
331         case EN0_IMR:
332             s->imr = val;
333             ne2000_update_irq(s);
334             break;
335         case EN0_TPSR:
336             s->tpsr = val;
337             break;
338         case EN0_TCNTLO:
339             s->tcnt = (s->tcnt & 0xff00) | val;
340             break;
341         case EN0_TCNTHI:
342             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
343             break;
344         case EN0_RSARLO:
345             s->rsar = (s->rsar & 0xff00) | val;
346             break;
347         case EN0_RSARHI:
348             s->rsar = (s->rsar & 0x00ff) | (val << 8);
349             break;
350         case EN0_RCNTLO:
351             s->rcnt = (s->rcnt & 0xff00) | val;
352             break;
353         case EN0_RCNTHI:
354             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
355             break;
356         case EN0_RXCR:
357             s->rxcr = val;
358             break;
359         case EN0_DCFG:
360             s->dcfg = val;
361             break;
362         case EN0_ISR:
363             s->isr &= ~(val & 0x7f);
364             ne2000_update_irq(s);
365             break;
366         case EN1_PHYS ... EN1_PHYS + 5:
367             s->phys[offset - EN1_PHYS] = val;
368             break;
369         case EN1_CURPAG:
370             if (val << 8 < NE2000_PMEM_END) {
371                 s->curpag = val;
372             }
373             break;
374         case EN1_MULT ... EN1_MULT + 7:
375             s->mult[offset - EN1_MULT] = val;
376             break;
377         }
378     }
379 }
380 
381 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
382 {
383     NE2000State *s = opaque;
384     int offset, page, ret;
385 
386     addr &= 0xf;
387     if (addr == E8390_CMD) {
388         ret = s->cmd;
389     } else {
390         page = s->cmd >> 6;
391         offset = addr | (page << 4);
392         switch(offset) {
393         case EN0_TSR:
394             ret = s->tsr;
395             break;
396         case EN0_BOUNDARY:
397             ret = s->boundary;
398             break;
399         case EN0_ISR:
400             ret = s->isr;
401             break;
402 	case EN0_RSARLO:
403 	    ret = s->rsar & 0x00ff;
404 	    break;
405 	case EN0_RSARHI:
406 	    ret = s->rsar >> 8;
407 	    break;
408         case EN1_PHYS ... EN1_PHYS + 5:
409             ret = s->phys[offset - EN1_PHYS];
410             break;
411         case EN1_CURPAG:
412             ret = s->curpag;
413             break;
414         case EN1_MULT ... EN1_MULT + 7:
415             ret = s->mult[offset - EN1_MULT];
416             break;
417         case EN0_RSR:
418             ret = s->rsr;
419             break;
420         case EN2_STARTPG:
421             ret = s->start >> 8;
422             break;
423         case EN2_STOPPG:
424             ret = s->stop >> 8;
425             break;
426 	case EN0_RTL8029ID0:
427 	    ret = 0x50;
428 	    break;
429 	case EN0_RTL8029ID1:
430 	    ret = 0x43;
431 	    break;
432 	case EN3_CONFIG0:
433 	    ret = 0;		/* 10baseT media */
434 	    break;
435 	case EN3_CONFIG2:
436 	    ret = 0x40;		/* 10baseT active */
437 	    break;
438 	case EN3_CONFIG3:
439 	    ret = 0x40;		/* Full duplex */
440 	    break;
441         default:
442             ret = 0x00;
443             break;
444         }
445     }
446 #ifdef DEBUG_NE2000
447     printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
448 #endif
449     return ret;
450 }
451 
452 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
453                                      uint32_t val)
454 {
455     if (addr < 32 ||
456         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
457         s->mem[addr] = val;
458     }
459 }
460 
461 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
462                                      uint32_t val)
463 {
464     addr &= ~1; /* XXX: check exact behaviour if not even */
465     if (addr < 32 ||
466         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
467         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
468     }
469 }
470 
471 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
472                                      uint32_t val)
473 {
474     addr &= ~1; /* XXX: check exact behaviour if not even */
475     if (addr < 32
476         || (addr >= NE2000_PMEM_START
477             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
478         stl_le_p(s->mem + addr, val);
479     }
480 }
481 
482 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
483 {
484     if (addr < 32 ||
485         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
486         return s->mem[addr];
487     } else {
488         return 0xff;
489     }
490 }
491 
492 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
493 {
494     addr &= ~1; /* XXX: check exact behaviour if not even */
495     if (addr < 32 ||
496         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
497         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
498     } else {
499         return 0xffff;
500     }
501 }
502 
503 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
504 {
505     addr &= ~1; /* XXX: check exact behaviour if not even */
506     if (addr < 32
507         || (addr >= NE2000_PMEM_START
508             && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
509         return ldl_le_p(s->mem + addr);
510     } else {
511         return 0xffffffff;
512     }
513 }
514 
515 static inline void ne2000_dma_update(NE2000State *s, int len)
516 {
517     s->rsar += len;
518     /* wrap */
519     /* XXX: check what to do if rsar > stop */
520     if (s->rsar == s->stop)
521         s->rsar = s->start;
522 
523     if (s->rcnt <= len) {
524         s->rcnt = 0;
525         /* signal end of transfer */
526         s->isr |= ENISR_RDC;
527         ne2000_update_irq(s);
528     } else {
529         s->rcnt -= len;
530     }
531 }
532 
533 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
534 {
535     NE2000State *s = opaque;
536 
537 #ifdef DEBUG_NE2000
538     printf("NE2000: asic write val=0x%04x\n", val);
539 #endif
540     if (s->rcnt == 0)
541         return;
542     if (s->dcfg & 0x01) {
543         /* 16 bit access */
544         ne2000_mem_writew(s, s->rsar, val);
545         ne2000_dma_update(s, 2);
546     } else {
547         /* 8 bit access */
548         ne2000_mem_writeb(s, s->rsar, val);
549         ne2000_dma_update(s, 1);
550     }
551 }
552 
553 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
554 {
555     NE2000State *s = opaque;
556     int ret;
557 
558     if (s->dcfg & 0x01) {
559         /* 16 bit access */
560         ret = ne2000_mem_readw(s, s->rsar);
561         ne2000_dma_update(s, 2);
562     } else {
563         /* 8 bit access */
564         ret = ne2000_mem_readb(s, s->rsar);
565         ne2000_dma_update(s, 1);
566     }
567 #ifdef DEBUG_NE2000
568     printf("NE2000: asic read val=0x%04x\n", ret);
569 #endif
570     return ret;
571 }
572 
573 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
574 {
575     NE2000State *s = opaque;
576 
577 #ifdef DEBUG_NE2000
578     printf("NE2000: asic writel val=0x%04x\n", val);
579 #endif
580     if (s->rcnt == 0)
581         return;
582     /* 32 bit access */
583     ne2000_mem_writel(s, s->rsar, val);
584     ne2000_dma_update(s, 4);
585 }
586 
587 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
588 {
589     NE2000State *s = opaque;
590     int ret;
591 
592     /* 32 bit access */
593     ret = ne2000_mem_readl(s, s->rsar);
594     ne2000_dma_update(s, 4);
595 #ifdef DEBUG_NE2000
596     printf("NE2000: asic readl val=0x%04x\n", ret);
597 #endif
598     return ret;
599 }
600 
601 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
602 {
603     /* nothing to do (end of reset pulse) */
604 }
605 
606 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
607 {
608     NE2000State *s = opaque;
609     ne2000_reset(s);
610     return 0;
611 }
612 
613 static int ne2000_post_load(void* opaque, int version_id)
614 {
615     NE2000State* s = opaque;
616 
617     if (version_id < 2) {
618         s->rxcr = 0x0c;
619     }
620     return 0;
621 }
622 
623 const VMStateDescription vmstate_ne2000 = {
624     .name = "ne2000",
625     .version_id = 2,
626     .minimum_version_id = 0,
627     .post_load = ne2000_post_load,
628     .fields = (VMStateField[]) {
629         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
630         VMSTATE_UINT8(cmd, NE2000State),
631         VMSTATE_UINT32(start, NE2000State),
632         VMSTATE_UINT32(stop, NE2000State),
633         VMSTATE_UINT8(boundary, NE2000State),
634         VMSTATE_UINT8(tsr, NE2000State),
635         VMSTATE_UINT8(tpsr, NE2000State),
636         VMSTATE_UINT16(tcnt, NE2000State),
637         VMSTATE_UINT16(rcnt, NE2000State),
638         VMSTATE_UINT32(rsar, NE2000State),
639         VMSTATE_UINT8(rsr, NE2000State),
640         VMSTATE_UINT8(isr, NE2000State),
641         VMSTATE_UINT8(dcfg, NE2000State),
642         VMSTATE_UINT8(imr, NE2000State),
643         VMSTATE_BUFFER(phys, NE2000State),
644         VMSTATE_UINT8(curpag, NE2000State),
645         VMSTATE_BUFFER(mult, NE2000State),
646         VMSTATE_UNUSED(4), /* was irq */
647         VMSTATE_BUFFER(mem, NE2000State),
648         VMSTATE_END_OF_LIST()
649     }
650 };
651 
652 static const VMStateDescription vmstate_pci_ne2000 = {
653     .name = "ne2000",
654     .version_id = 3,
655     .minimum_version_id = 3,
656     .fields = (VMStateField[]) {
657         VMSTATE_PCI_DEVICE(dev, PCINE2000State),
658         VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
659         VMSTATE_END_OF_LIST()
660     }
661 };
662 
663 static uint64_t ne2000_read(void *opaque, hwaddr addr,
664                             unsigned size)
665 {
666     NE2000State *s = opaque;
667 
668     if (addr < 0x10 && size == 1) {
669         return ne2000_ioport_read(s, addr);
670     } else if (addr == 0x10) {
671         if (size <= 2) {
672             return ne2000_asic_ioport_read(s, addr);
673         } else {
674             return ne2000_asic_ioport_readl(s, addr);
675         }
676     } else if (addr == 0x1f && size == 1) {
677         return ne2000_reset_ioport_read(s, addr);
678     }
679     return ((uint64_t)1 << (size * 8)) - 1;
680 }
681 
682 static void ne2000_write(void *opaque, hwaddr addr,
683                          uint64_t data, unsigned size)
684 {
685     NE2000State *s = opaque;
686 
687     if (addr < 0x10 && size == 1) {
688         ne2000_ioport_write(s, addr, data);
689     } else if (addr == 0x10) {
690         if (size <= 2) {
691             ne2000_asic_ioport_write(s, addr, data);
692         } else {
693             ne2000_asic_ioport_writel(s, addr, data);
694         }
695     } else if (addr == 0x1f && size == 1) {
696         ne2000_reset_ioport_write(s, addr, data);
697     }
698 }
699 
700 static const MemoryRegionOps ne2000_ops = {
701     .read = ne2000_read,
702     .write = ne2000_write,
703     .endianness = DEVICE_LITTLE_ENDIAN,
704 };
705 
706 /***********************************************************/
707 /* PCI NE2000 definitions */
708 
709 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
710 {
711     memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
712 }
713 
714 static NetClientInfo net_ne2000_info = {
715     .type = NET_CLIENT_DRIVER_NIC,
716     .size = sizeof(NICState),
717     .receive = ne2000_receive,
718 };
719 
720 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
721 {
722     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
723     NE2000State *s;
724     uint8_t *pci_conf;
725 
726     pci_conf = d->dev.config;
727     pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
728 
729     s = &d->ne2000;
730     ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
731     pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
732     s->irq = pci_allocate_irq(&d->dev);
733 
734     qemu_macaddr_default_if_unset(&s->c.macaddr);
735     ne2000_reset(s);
736 
737     s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
738                           object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
739     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
740 }
741 
742 static void pci_ne2000_exit(PCIDevice *pci_dev)
743 {
744     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
745     NE2000State *s = &d->ne2000;
746 
747     qemu_del_nic(s->nic);
748     qemu_free_irq(s->irq);
749 }
750 
751 static void ne2000_instance_init(Object *obj)
752 {
753     PCIDevice *pci_dev = PCI_DEVICE(obj);
754     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
755     NE2000State *s = &d->ne2000;
756 
757     device_add_bootindex_property(obj, &s->c.bootindex,
758                                   "bootindex", "/ethernet-phy@0",
759                                   &pci_dev->qdev, NULL);
760 }
761 
762 static Property ne2000_properties[] = {
763     DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
764     DEFINE_PROP_END_OF_LIST(),
765 };
766 
767 static void ne2000_class_init(ObjectClass *klass, void *data)
768 {
769     DeviceClass *dc = DEVICE_CLASS(klass);
770     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
771 
772     k->realize = pci_ne2000_realize;
773     k->exit = pci_ne2000_exit;
774     k->romfile = "efi-ne2k_pci.rom",
775     k->vendor_id = PCI_VENDOR_ID_REALTEK;
776     k->device_id = PCI_DEVICE_ID_REALTEK_8029;
777     k->class_id = PCI_CLASS_NETWORK_ETHERNET;
778     dc->vmsd = &vmstate_pci_ne2000;
779     dc->props = ne2000_properties;
780     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
781 }
782 
783 static const TypeInfo ne2000_info = {
784     .name          = "ne2k_pci",
785     .parent        = TYPE_PCI_DEVICE,
786     .instance_size = sizeof(PCINE2000State),
787     .class_init    = ne2000_class_init,
788     .instance_init = ne2000_instance_init,
789     .interfaces = (InterfaceInfo[]) {
790         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
791         { },
792     },
793 };
794 
795 static void ne2000_register_types(void)
796 {
797     type_register_static(&ne2000_info);
798 }
799 
800 type_init(ne2000_register_types)
801