1 /* 2 * QEMU model of the Smartfusion2 Ethernet MAC. 3 * 4 * Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Refer to section Ethernet MAC in the document: 25 * UG0331: SmartFusion2 Microcontroller Subsystem User Guide 26 * Datasheet URL: 27 * https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/ 28 * 56758-soc?lang=en&limit=20&limitstart=220 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/log.h" 33 #include "qapi/error.h" 34 #include "hw/registerfields.h" 35 #include "hw/net/msf2-emac.h" 36 #include "hw/net/mii.h" 37 #include "hw/irq.h" 38 #include "hw/qdev-properties.h" 39 #include "migration/vmstate.h" 40 41 REG32(CFG1, 0x0) 42 FIELD(CFG1, RESET, 31, 1) 43 FIELD(CFG1, RX_EN, 2, 1) 44 FIELD(CFG1, TX_EN, 0, 1) 45 FIELD(CFG1, LB_EN, 8, 1) 46 REG32(CFG2, 0x4) 47 REG32(IFG, 0x8) 48 REG32(HALF_DUPLEX, 0xc) 49 REG32(MAX_FRAME_LENGTH, 0x10) 50 REG32(MII_CMD, 0x24) 51 FIELD(MII_CMD, READ, 0, 1) 52 REG32(MII_ADDR, 0x28) 53 FIELD(MII_ADDR, REGADDR, 0, 5) 54 FIELD(MII_ADDR, PHYADDR, 8, 5) 55 REG32(MII_CTL, 0x2c) 56 REG32(MII_STS, 0x30) 57 REG32(STA1, 0x40) 58 REG32(STA2, 0x44) 59 REG32(FIFO_CFG0, 0x48) 60 REG32(FIFO_CFG4, 0x58) 61 FIELD(FIFO_CFG4, BCAST, 9, 1) 62 FIELD(FIFO_CFG4, MCAST, 8, 1) 63 REG32(FIFO_CFG5, 0x5C) 64 FIELD(FIFO_CFG5, BCAST, 9, 1) 65 FIELD(FIFO_CFG5, MCAST, 8, 1) 66 REG32(DMA_TX_CTL, 0x180) 67 FIELD(DMA_TX_CTL, EN, 0, 1) 68 REG32(DMA_TX_DESC, 0x184) 69 REG32(DMA_TX_STATUS, 0x188) 70 FIELD(DMA_TX_STATUS, PKTCNT, 16, 8) 71 FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1) 72 FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1) 73 REG32(DMA_RX_CTL, 0x18c) 74 FIELD(DMA_RX_CTL, EN, 0, 1) 75 REG32(DMA_RX_DESC, 0x190) 76 REG32(DMA_RX_STATUS, 0x194) 77 FIELD(DMA_RX_STATUS, PKTCNT, 16, 8) 78 FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1) 79 FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1) 80 REG32(DMA_IRQ_MASK, 0x198) 81 REG32(DMA_IRQ, 0x19c) 82 83 #define EMPTY_MASK (1 << 31) 84 #define PKT_SIZE 0x7FF 85 #define PHYADDR 0x1 86 #define MAX_PKT_SIZE 2048 87 88 typedef struct { 89 uint32_t pktaddr; 90 uint32_t pktsize; 91 uint32_t next; 92 } EmacDesc; 93 94 static uint32_t emac_get_isr(MSF2EmacState *s) 95 { 96 uint32_t ier = s->regs[R_DMA_IRQ_MASK]; 97 uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF; 98 uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF; 99 uint32_t isr = (rx << 4) | tx; 100 101 s->regs[R_DMA_IRQ] = ier & isr; 102 return s->regs[R_DMA_IRQ]; 103 } 104 105 static void emac_update_irq(MSF2EmacState *s) 106 { 107 bool intr = emac_get_isr(s); 108 109 qemu_set_irq(s->irq, intr); 110 } 111 112 static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc) 113 { 114 address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d); 115 /* Convert from LE into host endianness. */ 116 d->pktaddr = le32_to_cpu(d->pktaddr); 117 d->pktsize = le32_to_cpu(d->pktsize); 118 d->next = le32_to_cpu(d->next); 119 } 120 121 static void emac_store_desc(MSF2EmacState *s, const EmacDesc *d, hwaddr desc) 122 { 123 EmacDesc outd; 124 /* 125 * Convert from host endianness into LE. We use a local struct because 126 * calling code may still want to look at the fields afterwards. 127 */ 128 outd.pktaddr = cpu_to_le32(d->pktaddr); 129 outd.pktsize = cpu_to_le32(d->pktsize); 130 outd.next = cpu_to_le32(d->next); 131 132 address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, &outd, sizeof outd); 133 } 134 135 static void msf2_dma_tx(MSF2EmacState *s) 136 { 137 NetClientState *nc = qemu_get_queue(s->nic); 138 hwaddr desc = s->regs[R_DMA_TX_DESC]; 139 uint8_t buf[MAX_PKT_SIZE]; 140 EmacDesc d; 141 int size; 142 uint8_t pktcnt; 143 uint32_t status; 144 145 if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) { 146 return; 147 } 148 149 while (1) { 150 emac_load_desc(s, &d, desc); 151 if (d.pktsize & EMPTY_MASK) { 152 break; 153 } 154 size = d.pktsize & PKT_SIZE; 155 address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED, 156 buf, size); 157 /* 158 * This is very basic way to send packets. Ideally there should be 159 * a FIFO and packets should be sent out from FIFO only when 160 * R_CFG1 bit 0 is set. 161 */ 162 if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) { 163 qemu_receive_packet(nc, buf, size); 164 } else { 165 qemu_send_packet(nc, buf, size); 166 } 167 d.pktsize |= EMPTY_MASK; 168 emac_store_desc(s, &d, desc); 169 /* update sent packets count */ 170 status = s->regs[R_DMA_TX_STATUS]; 171 pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT); 172 pktcnt++; 173 s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS, 174 PKTCNT, pktcnt); 175 s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK; 176 desc = d.next; 177 } 178 s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK; 179 s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK; 180 } 181 182 static void msf2_phy_update_link(MSF2EmacState *s) 183 { 184 /* Autonegotiation status mirrors link status. */ 185 if (qemu_get_queue(s->nic)->link_down) { 186 s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP | 187 MII_BMSR_LINK_ST); 188 } else { 189 s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP | 190 MII_BMSR_LINK_ST); 191 } 192 } 193 194 static void msf2_phy_reset(MSF2EmacState *s) 195 { 196 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs)); 197 s->phy_regs[MII_BMCR] = 0x1140; 198 s->phy_regs[MII_BMSR] = 0x7968; 199 s->phy_regs[MII_PHYID1] = 0x0022; 200 s->phy_regs[MII_PHYID2] = 0x1550; 201 s->phy_regs[MII_ANAR] = 0x01E1; 202 s->phy_regs[MII_ANLPAR] = 0xCDE1; 203 204 msf2_phy_update_link(s); 205 } 206 207 static void write_to_phy(MSF2EmacState *s) 208 { 209 uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK; 210 uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) & 211 R_MII_ADDR_REGADDR_MASK; 212 uint16_t data = s->regs[R_MII_CTL] & 0xFFFF; 213 214 if (phy_addr != PHYADDR) { 215 return; 216 } 217 218 switch (reg_addr) { 219 case MII_BMCR: 220 if (data & MII_BMCR_RESET) { 221 /* Phy reset */ 222 msf2_phy_reset(s); 223 data &= ~MII_BMCR_RESET; 224 } 225 if (data & MII_BMCR_AUTOEN) { 226 /* Complete autonegotiation immediately */ 227 data &= ~MII_BMCR_AUTOEN; 228 s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP; 229 } 230 break; 231 } 232 233 s->phy_regs[reg_addr] = data; 234 } 235 236 static uint16_t read_from_phy(MSF2EmacState *s) 237 { 238 uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK; 239 uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) & 240 R_MII_ADDR_REGADDR_MASK; 241 242 if (phy_addr == PHYADDR) { 243 return s->phy_regs[reg_addr]; 244 } else { 245 return 0xFFFF; 246 } 247 } 248 249 static void msf2_emac_do_reset(MSF2EmacState *s) 250 { 251 memset(&s->regs[0], 0, sizeof(s->regs)); 252 s->regs[R_CFG1] = 0x80000000; 253 s->regs[R_CFG2] = 0x00007000; 254 s->regs[R_IFG] = 0x40605060; 255 s->regs[R_HALF_DUPLEX] = 0x00A1F037; 256 s->regs[R_MAX_FRAME_LENGTH] = 0x00000600; 257 s->regs[R_FIFO_CFG5] = 0X3FFFF; 258 259 msf2_phy_reset(s); 260 } 261 262 static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size) 263 { 264 MSF2EmacState *s = opaque; 265 uint32_t r = 0; 266 267 addr >>= 2; 268 269 switch (addr) { 270 case R_DMA_IRQ: 271 r = emac_get_isr(s); 272 break; 273 default: 274 if (addr >= ARRAY_SIZE(s->regs)) { 275 qemu_log_mask(LOG_GUEST_ERROR, 276 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, 277 addr * 4); 278 return r; 279 } 280 r = s->regs[addr]; 281 break; 282 } 283 return r; 284 } 285 286 static void emac_write(void *opaque, hwaddr addr, uint64_t val64, 287 unsigned int size) 288 { 289 MSF2EmacState *s = opaque; 290 uint32_t value = val64; 291 uint32_t enreqbits; 292 uint8_t pktcnt; 293 294 addr >>= 2; 295 switch (addr) { 296 case R_DMA_TX_CTL: 297 s->regs[addr] = value; 298 if (value & R_DMA_TX_CTL_EN_MASK) { 299 msf2_dma_tx(s); 300 } 301 break; 302 case R_DMA_RX_CTL: 303 s->regs[addr] = value; 304 if (value & R_DMA_RX_CTL_EN_MASK) { 305 s->rx_desc = s->regs[R_DMA_RX_DESC]; 306 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 307 } 308 break; 309 case R_CFG1: 310 s->regs[addr] = value; 311 if (value & R_CFG1_RESET_MASK) { 312 msf2_emac_do_reset(s); 313 } 314 break; 315 case R_FIFO_CFG0: 316 /* 317 * For our implementation, turning on modules is instantaneous, 318 * so the states requested via the *ENREQ bits appear in the 319 * *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC 320 * module are not emulated here since it deals with start of frames, 321 * inter-packet gap and control frames. 322 */ 323 enreqbits = extract32(value, 8, 5); 324 s->regs[addr] = deposit32(value, 16, 5, enreqbits); 325 break; 326 case R_DMA_TX_DESC: 327 if (value & 0x3) { 328 qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be" 329 " 32 bit aligned\n"); 330 } 331 /* Ignore [1:0] bits */ 332 s->regs[addr] = value & ~3; 333 break; 334 case R_DMA_RX_DESC: 335 if (value & 0x3) { 336 qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be" 337 " 32 bit aligned\n"); 338 } 339 /* Ignore [1:0] bits */ 340 s->regs[addr] = value & ~3; 341 break; 342 case R_DMA_TX_STATUS: 343 if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) { 344 s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK; 345 } 346 if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) { 347 pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT); 348 pktcnt--; 349 s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS, 350 PKTCNT, pktcnt); 351 if (pktcnt == 0) { 352 s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK; 353 } 354 } 355 break; 356 case R_DMA_RX_STATUS: 357 if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) { 358 s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK; 359 } 360 if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) { 361 pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT); 362 pktcnt--; 363 s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS, 364 PKTCNT, pktcnt); 365 if (pktcnt == 0) { 366 s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK; 367 } 368 } 369 break; 370 case R_DMA_IRQ: 371 break; 372 case R_MII_CMD: 373 if (value & R_MII_CMD_READ_MASK) { 374 s->regs[R_MII_STS] = read_from_phy(s); 375 } 376 break; 377 case R_MII_CTL: 378 s->regs[addr] = value; 379 write_to_phy(s); 380 break; 381 case R_STA1: 382 s->regs[addr] = value; 383 /* 384 * R_STA1 [31:24] : octet 1 of mac address 385 * R_STA1 [23:16] : octet 2 of mac address 386 * R_STA1 [15:8] : octet 3 of mac address 387 * R_STA1 [7:0] : octet 4 of mac address 388 */ 389 stl_be_p(s->mac_addr, value); 390 break; 391 case R_STA2: 392 s->regs[addr] = value; 393 /* 394 * R_STA2 [31:24] : octet 5 of mac address 395 * R_STA2 [23:16] : octet 6 of mac address 396 */ 397 stw_be_p(s->mac_addr + 4, value >> 16); 398 break; 399 default: 400 if (addr >= ARRAY_SIZE(s->regs)) { 401 qemu_log_mask(LOG_GUEST_ERROR, 402 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, 403 addr * 4); 404 return; 405 } 406 s->regs[addr] = value; 407 break; 408 } 409 emac_update_irq(s); 410 } 411 412 static const MemoryRegionOps emac_ops = { 413 .read = emac_read, 414 .write = emac_write, 415 .endianness = DEVICE_NATIVE_ENDIAN, 416 .impl = { 417 .min_access_size = 4, 418 .max_access_size = 4 419 } 420 }; 421 422 static bool emac_can_rx(NetClientState *nc) 423 { 424 MSF2EmacState *s = qemu_get_nic_opaque(nc); 425 426 return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) && 427 (s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK); 428 } 429 430 static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf) 431 { 432 /* The broadcast MAC address: FF:FF:FF:FF:FF:FF */ 433 const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 434 0xFF, 0xFF }; 435 bool bcast_en = true; 436 bool mcast_en = true; 437 438 if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) { 439 bcast_en = true; /* Broadcast dont care for drop circuitry */ 440 } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) { 441 bcast_en = false; 442 } 443 444 if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) { 445 mcast_en = true; /* Multicast dont care for drop circuitry */ 446 } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) { 447 mcast_en = false; 448 } 449 450 if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) { 451 return bcast_en; 452 } 453 454 if (buf[0] & 1) { 455 return mcast_en; 456 } 457 458 return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr)); 459 } 460 461 static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size) 462 { 463 MSF2EmacState *s = qemu_get_nic_opaque(nc); 464 EmacDesc d; 465 uint8_t pktcnt; 466 uint32_t status; 467 468 if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) { 469 return size; 470 } 471 if (!addr_filter_ok(s, buf)) { 472 return size; 473 } 474 475 emac_load_desc(s, &d, s->rx_desc); 476 477 if (d.pktsize & EMPTY_MASK) { 478 address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED, 479 buf, size & PKT_SIZE); 480 d.pktsize = size & PKT_SIZE; 481 emac_store_desc(s, &d, s->rx_desc); 482 /* update received packets count */ 483 status = s->regs[R_DMA_RX_STATUS]; 484 pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT); 485 pktcnt++; 486 s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS, 487 PKTCNT, pktcnt); 488 s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK; 489 s->rx_desc = d.next; 490 } else { 491 s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK; 492 s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK; 493 } 494 emac_update_irq(s); 495 return size; 496 } 497 498 static void msf2_emac_reset(DeviceState *dev) 499 { 500 MSF2EmacState *s = MSS_EMAC(dev); 501 502 msf2_emac_do_reset(s); 503 } 504 505 static void emac_set_link(NetClientState *nc) 506 { 507 MSF2EmacState *s = qemu_get_nic_opaque(nc); 508 509 msf2_phy_update_link(s); 510 } 511 512 static NetClientInfo net_msf2_emac_info = { 513 .type = NET_CLIENT_DRIVER_NIC, 514 .size = sizeof(NICState), 515 .can_receive = emac_can_rx, 516 .receive = emac_rx, 517 .link_status_changed = emac_set_link, 518 }; 519 520 static void msf2_emac_realize(DeviceState *dev, Error **errp) 521 { 522 MSF2EmacState *s = MSS_EMAC(dev); 523 524 if (!s->dma_mr) { 525 error_setg(errp, "MSS_EMAC 'ahb-bus' link not set"); 526 return; 527 } 528 529 address_space_init(&s->dma_as, s->dma_mr, "emac-ahb"); 530 531 qemu_macaddr_default_if_unset(&s->conf.macaddr); 532 s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf, 533 object_get_typename(OBJECT(dev)), dev->id, 534 &dev->mem_reentrancy_guard, s); 535 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 536 } 537 538 static void msf2_emac_init(Object *obj) 539 { 540 MSF2EmacState *s = MSS_EMAC(obj); 541 542 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq); 543 544 memory_region_init_io(&s->mmio, obj, &emac_ops, s, 545 "msf2-emac", R_MAX * 4); 546 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); 547 } 548 549 static Property msf2_emac_properties[] = { 550 DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr, 551 TYPE_MEMORY_REGION, MemoryRegion *), 552 DEFINE_NIC_PROPERTIES(MSF2EmacState, conf), 553 DEFINE_PROP_END_OF_LIST(), 554 }; 555 556 static const VMStateDescription vmstate_msf2_emac = { 557 .name = TYPE_MSS_EMAC, 558 .version_id = 1, 559 .minimum_version_id = 1, 560 .fields = (VMStateField[]) { 561 VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN), 562 VMSTATE_UINT32(rx_desc, MSF2EmacState), 563 VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS), 564 VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX), 565 VMSTATE_END_OF_LIST() 566 } 567 }; 568 569 static void msf2_emac_class_init(ObjectClass *klass, void *data) 570 { 571 DeviceClass *dc = DEVICE_CLASS(klass); 572 573 dc->realize = msf2_emac_realize; 574 dc->reset = msf2_emac_reset; 575 dc->vmsd = &vmstate_msf2_emac; 576 device_class_set_props(dc, msf2_emac_properties); 577 } 578 579 static const TypeInfo msf2_emac_info = { 580 .name = TYPE_MSS_EMAC, 581 .parent = TYPE_SYS_BUS_DEVICE, 582 .instance_size = sizeof(MSF2EmacState), 583 .instance_init = msf2_emac_init, 584 .class_init = msf2_emac_class_init, 585 }; 586 587 static void msf2_emac_register_types(void) 588 { 589 type_register_static(&msf2_emac_info); 590 } 591 592 type_init(msf2_emac_register_types) 593