1 /* 2 * QEMU model of the Smartfusion2 Ethernet MAC. 3 * 4 * Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Refer to section Ethernet MAC in the document: 25 * UG0331: SmartFusion2 Microcontroller Subsystem User Guide 26 * Datasheet URL: 27 * https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/ 28 * 56758-soc?lang=en&limit=20&limitstart=220 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qemu/log.h" 33 #include "qapi/error.h" 34 #include "hw/registerfields.h" 35 #include "hw/net/msf2-emac.h" 36 #include "hw/net/mii.h" 37 #include "hw/irq.h" 38 #include "hw/qdev-properties.h" 39 #include "migration/vmstate.h" 40 41 REG32(CFG1, 0x0) 42 FIELD(CFG1, RESET, 31, 1) 43 FIELD(CFG1, RX_EN, 2, 1) 44 FIELD(CFG1, TX_EN, 0, 1) 45 FIELD(CFG1, LB_EN, 8, 1) 46 REG32(CFG2, 0x4) 47 REG32(IFG, 0x8) 48 REG32(HALF_DUPLEX, 0xc) 49 REG32(MAX_FRAME_LENGTH, 0x10) 50 REG32(MII_CMD, 0x24) 51 FIELD(MII_CMD, READ, 0, 1) 52 REG32(MII_ADDR, 0x28) 53 FIELD(MII_ADDR, REGADDR, 0, 5) 54 FIELD(MII_ADDR, PHYADDR, 8, 5) 55 REG32(MII_CTL, 0x2c) 56 REG32(MII_STS, 0x30) 57 REG32(STA1, 0x40) 58 REG32(STA2, 0x44) 59 REG32(FIFO_CFG0, 0x48) 60 REG32(FIFO_CFG4, 0x58) 61 FIELD(FIFO_CFG4, BCAST, 9, 1) 62 FIELD(FIFO_CFG4, MCAST, 8, 1) 63 REG32(FIFO_CFG5, 0x5C) 64 FIELD(FIFO_CFG5, BCAST, 9, 1) 65 FIELD(FIFO_CFG5, MCAST, 8, 1) 66 REG32(DMA_TX_CTL, 0x180) 67 FIELD(DMA_TX_CTL, EN, 0, 1) 68 REG32(DMA_TX_DESC, 0x184) 69 REG32(DMA_TX_STATUS, 0x188) 70 FIELD(DMA_TX_STATUS, PKTCNT, 16, 8) 71 FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1) 72 FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1) 73 REG32(DMA_RX_CTL, 0x18c) 74 FIELD(DMA_RX_CTL, EN, 0, 1) 75 REG32(DMA_RX_DESC, 0x190) 76 REG32(DMA_RX_STATUS, 0x194) 77 FIELD(DMA_RX_STATUS, PKTCNT, 16, 8) 78 FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1) 79 FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1) 80 REG32(DMA_IRQ_MASK, 0x198) 81 REG32(DMA_IRQ, 0x19c) 82 83 #define EMPTY_MASK (1 << 31) 84 #define PKT_SIZE 0x7FF 85 #define PHYADDR 0x1 86 #define MAX_PKT_SIZE 2048 87 88 typedef struct { 89 uint32_t pktaddr; 90 uint32_t pktsize; 91 uint32_t next; 92 } EmacDesc; 93 94 static uint32_t emac_get_isr(MSF2EmacState *s) 95 { 96 uint32_t ier = s->regs[R_DMA_IRQ_MASK]; 97 uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF; 98 uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF; 99 uint32_t isr = (rx << 4) | tx; 100 101 s->regs[R_DMA_IRQ] = ier & isr; 102 return s->regs[R_DMA_IRQ]; 103 } 104 105 static void emac_update_irq(MSF2EmacState *s) 106 { 107 bool intr = emac_get_isr(s); 108 109 qemu_set_irq(s->irq, intr); 110 } 111 112 static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc) 113 { 114 address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d); 115 /* Convert from LE into host endianness. */ 116 d->pktaddr = le32_to_cpu(d->pktaddr); 117 d->pktsize = le32_to_cpu(d->pktsize); 118 d->next = le32_to_cpu(d->next); 119 } 120 121 static void emac_store_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc) 122 { 123 /* Convert from host endianness into LE. */ 124 d->pktaddr = cpu_to_le32(d->pktaddr); 125 d->pktsize = cpu_to_le32(d->pktsize); 126 d->next = cpu_to_le32(d->next); 127 128 address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d); 129 } 130 131 static void msf2_dma_tx(MSF2EmacState *s) 132 { 133 NetClientState *nc = qemu_get_queue(s->nic); 134 hwaddr desc = s->regs[R_DMA_TX_DESC]; 135 uint8_t buf[MAX_PKT_SIZE]; 136 EmacDesc d; 137 int size; 138 uint8_t pktcnt; 139 uint32_t status; 140 141 if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) { 142 return; 143 } 144 145 while (1) { 146 emac_load_desc(s, &d, desc); 147 if (d.pktsize & EMPTY_MASK) { 148 break; 149 } 150 size = d.pktsize & PKT_SIZE; 151 address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED, 152 buf, size); 153 /* 154 * This is very basic way to send packets. Ideally there should be 155 * a FIFO and packets should be sent out from FIFO only when 156 * R_CFG1 bit 0 is set. 157 */ 158 if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) { 159 qemu_receive_packet(nc, buf, size); 160 } else { 161 qemu_send_packet(nc, buf, size); 162 } 163 d.pktsize |= EMPTY_MASK; 164 emac_store_desc(s, &d, desc); 165 /* update sent packets count */ 166 status = s->regs[R_DMA_TX_STATUS]; 167 pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT); 168 pktcnt++; 169 s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS, 170 PKTCNT, pktcnt); 171 s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK; 172 desc = d.next; 173 } 174 s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK; 175 s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK; 176 } 177 178 static void msf2_phy_update_link(MSF2EmacState *s) 179 { 180 /* Autonegotiation status mirrors link status. */ 181 if (qemu_get_queue(s->nic)->link_down) { 182 s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP | 183 MII_BMSR_LINK_ST); 184 } else { 185 s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP | 186 MII_BMSR_LINK_ST); 187 } 188 } 189 190 static void msf2_phy_reset(MSF2EmacState *s) 191 { 192 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs)); 193 s->phy_regs[MII_BMCR] = 0x1140; 194 s->phy_regs[MII_BMSR] = 0x7968; 195 s->phy_regs[MII_PHYID1] = 0x0022; 196 s->phy_regs[MII_PHYID2] = 0x1550; 197 s->phy_regs[MII_ANAR] = 0x01E1; 198 s->phy_regs[MII_ANLPAR] = 0xCDE1; 199 200 msf2_phy_update_link(s); 201 } 202 203 static void write_to_phy(MSF2EmacState *s) 204 { 205 uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK; 206 uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) & 207 R_MII_ADDR_REGADDR_MASK; 208 uint16_t data = s->regs[R_MII_CTL] & 0xFFFF; 209 210 if (phy_addr != PHYADDR) { 211 return; 212 } 213 214 switch (reg_addr) { 215 case MII_BMCR: 216 if (data & MII_BMCR_RESET) { 217 /* Phy reset */ 218 msf2_phy_reset(s); 219 data &= ~MII_BMCR_RESET; 220 } 221 if (data & MII_BMCR_AUTOEN) { 222 /* Complete autonegotiation immediately */ 223 data &= ~MII_BMCR_AUTOEN; 224 s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP; 225 } 226 break; 227 } 228 229 s->phy_regs[reg_addr] = data; 230 } 231 232 static uint16_t read_from_phy(MSF2EmacState *s) 233 { 234 uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK; 235 uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) & 236 R_MII_ADDR_REGADDR_MASK; 237 238 if (phy_addr == PHYADDR) { 239 return s->phy_regs[reg_addr]; 240 } else { 241 return 0xFFFF; 242 } 243 } 244 245 static void msf2_emac_do_reset(MSF2EmacState *s) 246 { 247 memset(&s->regs[0], 0, sizeof(s->regs)); 248 s->regs[R_CFG1] = 0x80000000; 249 s->regs[R_CFG2] = 0x00007000; 250 s->regs[R_IFG] = 0x40605060; 251 s->regs[R_HALF_DUPLEX] = 0x00A1F037; 252 s->regs[R_MAX_FRAME_LENGTH] = 0x00000600; 253 s->regs[R_FIFO_CFG5] = 0X3FFFF; 254 255 msf2_phy_reset(s); 256 } 257 258 static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size) 259 { 260 MSF2EmacState *s = opaque; 261 uint32_t r = 0; 262 263 addr >>= 2; 264 265 switch (addr) { 266 case R_DMA_IRQ: 267 r = emac_get_isr(s); 268 break; 269 default: 270 if (addr >= ARRAY_SIZE(s->regs)) { 271 qemu_log_mask(LOG_GUEST_ERROR, 272 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, 273 addr * 4); 274 return r; 275 } 276 r = s->regs[addr]; 277 break; 278 } 279 return r; 280 } 281 282 static void emac_write(void *opaque, hwaddr addr, uint64_t val64, 283 unsigned int size) 284 { 285 MSF2EmacState *s = opaque; 286 uint32_t value = val64; 287 uint32_t enreqbits; 288 uint8_t pktcnt; 289 290 addr >>= 2; 291 switch (addr) { 292 case R_DMA_TX_CTL: 293 s->regs[addr] = value; 294 if (value & R_DMA_TX_CTL_EN_MASK) { 295 msf2_dma_tx(s); 296 } 297 break; 298 case R_DMA_RX_CTL: 299 s->regs[addr] = value; 300 if (value & R_DMA_RX_CTL_EN_MASK) { 301 s->rx_desc = s->regs[R_DMA_RX_DESC]; 302 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 303 } 304 break; 305 case R_CFG1: 306 s->regs[addr] = value; 307 if (value & R_CFG1_RESET_MASK) { 308 msf2_emac_do_reset(s); 309 } 310 break; 311 case R_FIFO_CFG0: 312 /* 313 * For our implementation, turning on modules is instantaneous, 314 * so the states requested via the *ENREQ bits appear in the 315 * *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC 316 * module are not emulated here since it deals with start of frames, 317 * inter-packet gap and control frames. 318 */ 319 enreqbits = extract32(value, 8, 5); 320 s->regs[addr] = deposit32(value, 16, 5, enreqbits); 321 break; 322 case R_DMA_TX_DESC: 323 if (value & 0x3) { 324 qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be" 325 " 32 bit aligned\n"); 326 } 327 /* Ignore [1:0] bits */ 328 s->regs[addr] = value & ~3; 329 break; 330 case R_DMA_RX_DESC: 331 if (value & 0x3) { 332 qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be" 333 " 32 bit aligned\n"); 334 } 335 /* Ignore [1:0] bits */ 336 s->regs[addr] = value & ~3; 337 break; 338 case R_DMA_TX_STATUS: 339 if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) { 340 s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK; 341 } 342 if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) { 343 pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT); 344 pktcnt--; 345 s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS, 346 PKTCNT, pktcnt); 347 if (pktcnt == 0) { 348 s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK; 349 } 350 } 351 break; 352 case R_DMA_RX_STATUS: 353 if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) { 354 s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK; 355 } 356 if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) { 357 pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT); 358 pktcnt--; 359 s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS, 360 PKTCNT, pktcnt); 361 if (pktcnt == 0) { 362 s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK; 363 } 364 } 365 break; 366 case R_DMA_IRQ: 367 break; 368 case R_MII_CMD: 369 if (value & R_MII_CMD_READ_MASK) { 370 s->regs[R_MII_STS] = read_from_phy(s); 371 } 372 break; 373 case R_MII_CTL: 374 s->regs[addr] = value; 375 write_to_phy(s); 376 break; 377 case R_STA1: 378 s->regs[addr] = value; 379 /* 380 * R_STA1 [31:24] : octet 1 of mac address 381 * R_STA1 [23:16] : octet 2 of mac address 382 * R_STA1 [15:8] : octet 3 of mac address 383 * R_STA1 [7:0] : octet 4 of mac address 384 */ 385 stl_be_p(s->mac_addr, value); 386 break; 387 case R_STA2: 388 s->regs[addr] = value; 389 /* 390 * R_STA2 [31:24] : octet 5 of mac address 391 * R_STA2 [23:16] : octet 6 of mac address 392 */ 393 stw_be_p(s->mac_addr + 4, value >> 16); 394 break; 395 default: 396 if (addr >= ARRAY_SIZE(s->regs)) { 397 qemu_log_mask(LOG_GUEST_ERROR, 398 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, 399 addr * 4); 400 return; 401 } 402 s->regs[addr] = value; 403 break; 404 } 405 emac_update_irq(s); 406 } 407 408 static const MemoryRegionOps emac_ops = { 409 .read = emac_read, 410 .write = emac_write, 411 .endianness = DEVICE_NATIVE_ENDIAN, 412 .impl = { 413 .min_access_size = 4, 414 .max_access_size = 4 415 } 416 }; 417 418 static bool emac_can_rx(NetClientState *nc) 419 { 420 MSF2EmacState *s = qemu_get_nic_opaque(nc); 421 422 return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) && 423 (s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK); 424 } 425 426 static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf) 427 { 428 /* The broadcast MAC address: FF:FF:FF:FF:FF:FF */ 429 const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 430 0xFF, 0xFF }; 431 bool bcast_en = true; 432 bool mcast_en = true; 433 434 if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) { 435 bcast_en = true; /* Broadcast dont care for drop circuitry */ 436 } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) { 437 bcast_en = false; 438 } 439 440 if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) { 441 mcast_en = true; /* Multicast dont care for drop circuitry */ 442 } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) { 443 mcast_en = false; 444 } 445 446 if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) { 447 return bcast_en; 448 } 449 450 if (buf[0] & 1) { 451 return mcast_en; 452 } 453 454 return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr)); 455 } 456 457 static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size) 458 { 459 MSF2EmacState *s = qemu_get_nic_opaque(nc); 460 EmacDesc d; 461 uint8_t pktcnt; 462 uint32_t status; 463 464 if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) { 465 return size; 466 } 467 if (!addr_filter_ok(s, buf)) { 468 return size; 469 } 470 471 emac_load_desc(s, &d, s->rx_desc); 472 473 if (d.pktsize & EMPTY_MASK) { 474 address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED, 475 buf, size & PKT_SIZE); 476 d.pktsize = size & PKT_SIZE; 477 emac_store_desc(s, &d, s->rx_desc); 478 /* update received packets count */ 479 status = s->regs[R_DMA_RX_STATUS]; 480 pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT); 481 pktcnt++; 482 s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS, 483 PKTCNT, pktcnt); 484 s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK; 485 s->rx_desc = d.next; 486 } else { 487 s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK; 488 s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK; 489 } 490 emac_update_irq(s); 491 return size; 492 } 493 494 static void msf2_emac_reset(DeviceState *dev) 495 { 496 MSF2EmacState *s = MSS_EMAC(dev); 497 498 msf2_emac_do_reset(s); 499 } 500 501 static void emac_set_link(NetClientState *nc) 502 { 503 MSF2EmacState *s = qemu_get_nic_opaque(nc); 504 505 msf2_phy_update_link(s); 506 } 507 508 static NetClientInfo net_msf2_emac_info = { 509 .type = NET_CLIENT_DRIVER_NIC, 510 .size = sizeof(NICState), 511 .can_receive = emac_can_rx, 512 .receive = emac_rx, 513 .link_status_changed = emac_set_link, 514 }; 515 516 static void msf2_emac_realize(DeviceState *dev, Error **errp) 517 { 518 MSF2EmacState *s = MSS_EMAC(dev); 519 520 if (!s->dma_mr) { 521 error_setg(errp, "MSS_EMAC 'ahb-bus' link not set"); 522 return; 523 } 524 525 address_space_init(&s->dma_as, s->dma_mr, "emac-ahb"); 526 527 qemu_macaddr_default_if_unset(&s->conf.macaddr); 528 s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf, 529 object_get_typename(OBJECT(dev)), dev->id, s); 530 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 531 } 532 533 static void msf2_emac_init(Object *obj) 534 { 535 MSF2EmacState *s = MSS_EMAC(obj); 536 537 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq); 538 539 memory_region_init_io(&s->mmio, obj, &emac_ops, s, 540 "msf2-emac", R_MAX * 4); 541 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); 542 } 543 544 static Property msf2_emac_properties[] = { 545 DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr, 546 TYPE_MEMORY_REGION, MemoryRegion *), 547 DEFINE_NIC_PROPERTIES(MSF2EmacState, conf), 548 DEFINE_PROP_END_OF_LIST(), 549 }; 550 551 static const VMStateDescription vmstate_msf2_emac = { 552 .name = TYPE_MSS_EMAC, 553 .version_id = 1, 554 .minimum_version_id = 1, 555 .fields = (VMStateField[]) { 556 VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN), 557 VMSTATE_UINT32(rx_desc, MSF2EmacState), 558 VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS), 559 VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX), 560 VMSTATE_END_OF_LIST() 561 } 562 }; 563 564 static void msf2_emac_class_init(ObjectClass *klass, void *data) 565 { 566 DeviceClass *dc = DEVICE_CLASS(klass); 567 568 dc->realize = msf2_emac_realize; 569 dc->reset = msf2_emac_reset; 570 dc->vmsd = &vmstate_msf2_emac; 571 device_class_set_props(dc, msf2_emac_properties); 572 } 573 574 static const TypeInfo msf2_emac_info = { 575 .name = TYPE_MSS_EMAC, 576 .parent = TYPE_SYS_BUS_DEVICE, 577 .instance_size = sizeof(MSF2EmacState), 578 .instance_init = msf2_emac_init, 579 .class_init = msf2_emac_class_init, 580 }; 581 582 static void msf2_emac_register_types(void) 583 { 584 type_register_static(&msf2_emac_info); 585 } 586 587 type_init(msf2_emac_register_types) 588