xref: /openbmc/qemu/hw/net/msf2-emac.c (revision af531756)
1 /*
2  * QEMU model of the Smartfusion2 Ethernet MAC.
3  *
4  * Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Refer to section Ethernet MAC in the document:
25  * UG0331: SmartFusion2 Microcontroller Subsystem User Guide
26  * Datasheet URL:
27  * https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/
28  * 56758-soc?lang=en&limit=20&limitstart=220
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/log.h"
34 #include "qapi/error.h"
35 #include "hw/registerfields.h"
36 #include "hw/net/msf2-emac.h"
37 #include "hw/net/mii.h"
38 #include "hw/irq.h"
39 #include "hw/qdev-properties.h"
40 #include "migration/vmstate.h"
41 
42 REG32(CFG1, 0x0)
43     FIELD(CFG1, RESET, 31, 1)
44     FIELD(CFG1, RX_EN, 2, 1)
45     FIELD(CFG1, TX_EN, 0, 1)
46     FIELD(CFG1, LB_EN, 8, 1)
47 REG32(CFG2, 0x4)
48 REG32(IFG, 0x8)
49 REG32(HALF_DUPLEX, 0xc)
50 REG32(MAX_FRAME_LENGTH, 0x10)
51 REG32(MII_CMD, 0x24)
52     FIELD(MII_CMD, READ, 0, 1)
53 REG32(MII_ADDR, 0x28)
54     FIELD(MII_ADDR, REGADDR, 0, 5)
55     FIELD(MII_ADDR, PHYADDR, 8, 5)
56 REG32(MII_CTL, 0x2c)
57 REG32(MII_STS, 0x30)
58 REG32(STA1, 0x40)
59 REG32(STA2, 0x44)
60 REG32(FIFO_CFG0, 0x48)
61 REG32(FIFO_CFG4, 0x58)
62     FIELD(FIFO_CFG4, BCAST, 9, 1)
63     FIELD(FIFO_CFG4, MCAST, 8, 1)
64 REG32(FIFO_CFG5, 0x5C)
65     FIELD(FIFO_CFG5, BCAST, 9, 1)
66     FIELD(FIFO_CFG5, MCAST, 8, 1)
67 REG32(DMA_TX_CTL, 0x180)
68     FIELD(DMA_TX_CTL, EN, 0, 1)
69 REG32(DMA_TX_DESC, 0x184)
70 REG32(DMA_TX_STATUS, 0x188)
71     FIELD(DMA_TX_STATUS, PKTCNT, 16, 8)
72     FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1)
73     FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1)
74 REG32(DMA_RX_CTL, 0x18c)
75     FIELD(DMA_RX_CTL, EN, 0, 1)
76 REG32(DMA_RX_DESC, 0x190)
77 REG32(DMA_RX_STATUS, 0x194)
78     FIELD(DMA_RX_STATUS, PKTCNT, 16, 8)
79     FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1)
80     FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1)
81 REG32(DMA_IRQ_MASK, 0x198)
82 REG32(DMA_IRQ, 0x19c)
83 
84 #define EMPTY_MASK              (1 << 31)
85 #define PKT_SIZE                0x7FF
86 #define PHYADDR                 0x1
87 #define MAX_PKT_SIZE            2048
88 
89 typedef struct {
90     uint32_t pktaddr;
91     uint32_t pktsize;
92     uint32_t next;
93 } EmacDesc;
94 
95 static uint32_t emac_get_isr(MSF2EmacState *s)
96 {
97     uint32_t ier = s->regs[R_DMA_IRQ_MASK];
98     uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF;
99     uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF;
100     uint32_t isr = (rx << 4) | tx;
101 
102     s->regs[R_DMA_IRQ] = ier & isr;
103     return s->regs[R_DMA_IRQ];
104 }
105 
106 static void emac_update_irq(MSF2EmacState *s)
107 {
108     bool intr = emac_get_isr(s);
109 
110     qemu_set_irq(s->irq, intr);
111 }
112 
113 static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
114 {
115     address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
116     /* Convert from LE into host endianness. */
117     d->pktaddr = le32_to_cpu(d->pktaddr);
118     d->pktsize = le32_to_cpu(d->pktsize);
119     d->next = le32_to_cpu(d->next);
120 }
121 
122 static void emac_store_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
123 {
124     /* Convert from host endianness into LE. */
125     d->pktaddr = cpu_to_le32(d->pktaddr);
126     d->pktsize = cpu_to_le32(d->pktsize);
127     d->next = cpu_to_le32(d->next);
128 
129     address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
130 }
131 
132 static void msf2_dma_tx(MSF2EmacState *s)
133 {
134     NetClientState *nc = qemu_get_queue(s->nic);
135     hwaddr desc = s->regs[R_DMA_TX_DESC];
136     uint8_t buf[MAX_PKT_SIZE];
137     EmacDesc d;
138     int size;
139     uint8_t pktcnt;
140     uint32_t status;
141 
142     if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) {
143         return;
144     }
145 
146     while (1) {
147         emac_load_desc(s, &d, desc);
148         if (d.pktsize & EMPTY_MASK) {
149             break;
150         }
151         size = d.pktsize & PKT_SIZE;
152         address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
153                            buf, size);
154         /*
155          * This is very basic way to send packets. Ideally there should be
156          * a FIFO and packets should be sent out from FIFO only when
157          * R_CFG1 bit 0 is set.
158          */
159         if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) {
160             qemu_receive_packet(nc, buf, size);
161         } else {
162             qemu_send_packet(nc, buf, size);
163         }
164         d.pktsize |= EMPTY_MASK;
165         emac_store_desc(s, &d, desc);
166         /* update sent packets count */
167         status = s->regs[R_DMA_TX_STATUS];
168         pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT);
169         pktcnt++;
170         s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS,
171                                               PKTCNT, pktcnt);
172         s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK;
173         desc = d.next;
174     }
175     s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK;
176     s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK;
177 }
178 
179 static void msf2_phy_update_link(MSF2EmacState *s)
180 {
181     /* Autonegotiation status mirrors link status. */
182     if (qemu_get_queue(s->nic)->link_down) {
183         s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP |
184                                    MII_BMSR_LINK_ST);
185     } else {
186         s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP |
187                                   MII_BMSR_LINK_ST);
188     }
189 }
190 
191 static void msf2_phy_reset(MSF2EmacState *s)
192 {
193     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
194     s->phy_regs[MII_BMCR] = 0x1140;
195     s->phy_regs[MII_BMSR] = 0x7968;
196     s->phy_regs[MII_PHYID1] = 0x0022;
197     s->phy_regs[MII_PHYID2] = 0x1550;
198     s->phy_regs[MII_ANAR] = 0x01E1;
199     s->phy_regs[MII_ANLPAR] = 0xCDE1;
200 
201     msf2_phy_update_link(s);
202 }
203 
204 static void write_to_phy(MSF2EmacState *s)
205 {
206     uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
207     uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
208                        R_MII_ADDR_REGADDR_MASK;
209     uint16_t data = s->regs[R_MII_CTL] & 0xFFFF;
210 
211     if (phy_addr != PHYADDR) {
212         return;
213     }
214 
215     switch (reg_addr) {
216     case MII_BMCR:
217         if (data & MII_BMCR_RESET) {
218             /* Phy reset */
219             msf2_phy_reset(s);
220             data &= ~MII_BMCR_RESET;
221         }
222         if (data & MII_BMCR_AUTOEN) {
223             /* Complete autonegotiation immediately */
224             data &= ~MII_BMCR_AUTOEN;
225             s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP;
226         }
227         break;
228     }
229 
230     s->phy_regs[reg_addr] = data;
231 }
232 
233 static uint16_t read_from_phy(MSF2EmacState *s)
234 {
235     uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
236     uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
237                        R_MII_ADDR_REGADDR_MASK;
238 
239     if (phy_addr == PHYADDR) {
240         return s->phy_regs[reg_addr];
241     } else {
242         return 0xFFFF;
243     }
244 }
245 
246 static void msf2_emac_do_reset(MSF2EmacState *s)
247 {
248     memset(&s->regs[0], 0, sizeof(s->regs));
249     s->regs[R_CFG1] = 0x80000000;
250     s->regs[R_CFG2] = 0x00007000;
251     s->regs[R_IFG] = 0x40605060;
252     s->regs[R_HALF_DUPLEX] = 0x00A1F037;
253     s->regs[R_MAX_FRAME_LENGTH] = 0x00000600;
254     s->regs[R_FIFO_CFG5] = 0X3FFFF;
255 
256     msf2_phy_reset(s);
257 }
258 
259 static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size)
260 {
261     MSF2EmacState *s = opaque;
262     uint32_t r = 0;
263 
264     addr >>= 2;
265 
266     switch (addr) {
267     case R_DMA_IRQ:
268         r = emac_get_isr(s);
269         break;
270     default:
271         if (addr >= ARRAY_SIZE(s->regs)) {
272             qemu_log_mask(LOG_GUEST_ERROR,
273                           "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
274                           addr * 4);
275             return r;
276         }
277         r = s->regs[addr];
278         break;
279     }
280     return r;
281 }
282 
283 static void emac_write(void *opaque, hwaddr addr, uint64_t val64,
284         unsigned int size)
285 {
286     MSF2EmacState *s = opaque;
287     uint32_t value = val64;
288     uint32_t enreqbits;
289     uint8_t pktcnt;
290 
291     addr >>= 2;
292     switch (addr) {
293     case R_DMA_TX_CTL:
294         s->regs[addr] = value;
295         if (value & R_DMA_TX_CTL_EN_MASK) {
296             msf2_dma_tx(s);
297         }
298         break;
299     case R_DMA_RX_CTL:
300         s->regs[addr] = value;
301         if (value & R_DMA_RX_CTL_EN_MASK) {
302             s->rx_desc = s->regs[R_DMA_RX_DESC];
303             qemu_flush_queued_packets(qemu_get_queue(s->nic));
304         }
305         break;
306     case R_CFG1:
307         s->regs[addr] = value;
308         if (value & R_CFG1_RESET_MASK) {
309             msf2_emac_do_reset(s);
310         }
311         break;
312     case R_FIFO_CFG0:
313        /*
314         * For our implementation, turning on modules is instantaneous,
315         * so the states requested via the *ENREQ bits appear in the
316         * *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC
317         * module are not emulated here since it deals with start of frames,
318         * inter-packet gap and control frames.
319         */
320         enreqbits = extract32(value, 8, 5);
321         s->regs[addr] = deposit32(value, 16, 5, enreqbits);
322         break;
323     case R_DMA_TX_DESC:
324         if (value & 0x3) {
325             qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be"
326                           " 32 bit aligned\n");
327         }
328         /* Ignore [1:0] bits */
329         s->regs[addr] = value & ~3;
330         break;
331     case R_DMA_RX_DESC:
332         if (value & 0x3) {
333             qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be"
334                           " 32 bit aligned\n");
335         }
336         /* Ignore [1:0] bits */
337         s->regs[addr] = value & ~3;
338         break;
339     case R_DMA_TX_STATUS:
340         if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) {
341             s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK;
342         }
343         if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) {
344             pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT);
345             pktcnt--;
346             s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS,
347                                        PKTCNT, pktcnt);
348             if (pktcnt == 0) {
349                 s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK;
350             }
351         }
352         break;
353     case R_DMA_RX_STATUS:
354         if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) {
355             s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK;
356         }
357         if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) {
358             pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT);
359             pktcnt--;
360             s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS,
361                                        PKTCNT, pktcnt);
362             if (pktcnt == 0) {
363                 s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK;
364             }
365         }
366         break;
367     case R_DMA_IRQ:
368         break;
369     case R_MII_CMD:
370         if (value & R_MII_CMD_READ_MASK) {
371             s->regs[R_MII_STS] = read_from_phy(s);
372         }
373         break;
374     case R_MII_CTL:
375         s->regs[addr] = value;
376         write_to_phy(s);
377         break;
378     case R_STA1:
379         s->regs[addr] = value;
380        /*
381         * R_STA1 [31:24] : octet 1 of mac address
382         * R_STA1 [23:16] : octet 2 of mac address
383         * R_STA1 [15:8] : octet 3 of mac address
384         * R_STA1 [7:0] : octet 4 of mac address
385         */
386         stl_be_p(s->mac_addr, value);
387         break;
388     case R_STA2:
389         s->regs[addr] = value;
390        /*
391         * R_STA2 [31:24] : octet 5 of mac address
392         * R_STA2 [23:16] : octet 6 of mac address
393         */
394         stw_be_p(s->mac_addr + 4, value >> 16);
395         break;
396     default:
397         if (addr >= ARRAY_SIZE(s->regs)) {
398             qemu_log_mask(LOG_GUEST_ERROR,
399                           "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
400                           addr * 4);
401             return;
402         }
403         s->regs[addr] = value;
404         break;
405     }
406     emac_update_irq(s);
407 }
408 
409 static const MemoryRegionOps emac_ops = {
410     .read = emac_read,
411     .write = emac_write,
412     .endianness = DEVICE_NATIVE_ENDIAN,
413     .impl = {
414         .min_access_size = 4,
415         .max_access_size = 4
416     }
417 };
418 
419 static bool emac_can_rx(NetClientState *nc)
420 {
421     MSF2EmacState *s = qemu_get_nic_opaque(nc);
422 
423     return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) &&
424            (s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK);
425 }
426 
427 static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf)
428 {
429     /* The broadcast MAC address: FF:FF:FF:FF:FF:FF */
430     const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF,
431                                               0xFF, 0xFF };
432     bool bcast_en = true;
433     bool mcast_en = true;
434 
435     if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) {
436         bcast_en = true; /* Broadcast dont care for drop circuitry */
437     } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) {
438         bcast_en = false;
439     }
440 
441     if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) {
442         mcast_en = true; /* Multicast dont care for drop circuitry */
443     } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) {
444         mcast_en = false;
445     }
446 
447     if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) {
448         return bcast_en;
449     }
450 
451     if (buf[0] & 1) {
452         return mcast_en;
453     }
454 
455     return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr));
456 }
457 
458 static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size)
459 {
460     MSF2EmacState *s = qemu_get_nic_opaque(nc);
461     EmacDesc d;
462     uint8_t pktcnt;
463     uint32_t status;
464 
465     if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) {
466         return size;
467     }
468     if (!addr_filter_ok(s, buf)) {
469         return size;
470     }
471 
472     emac_load_desc(s, &d, s->rx_desc);
473 
474     if (d.pktsize & EMPTY_MASK) {
475         address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
476                             buf, size & PKT_SIZE);
477         d.pktsize = size & PKT_SIZE;
478         emac_store_desc(s, &d, s->rx_desc);
479         /* update received packets count */
480         status = s->regs[R_DMA_RX_STATUS];
481         pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT);
482         pktcnt++;
483         s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS,
484                                               PKTCNT, pktcnt);
485         s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK;
486         s->rx_desc = d.next;
487     } else {
488         s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK;
489         s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK;
490     }
491     emac_update_irq(s);
492     return size;
493 }
494 
495 static void msf2_emac_reset(DeviceState *dev)
496 {
497     MSF2EmacState *s = MSS_EMAC(dev);
498 
499     msf2_emac_do_reset(s);
500 }
501 
502 static void emac_set_link(NetClientState *nc)
503 {
504     MSF2EmacState *s = qemu_get_nic_opaque(nc);
505 
506     msf2_phy_update_link(s);
507 }
508 
509 static NetClientInfo net_msf2_emac_info = {
510     .type = NET_CLIENT_DRIVER_NIC,
511     .size = sizeof(NICState),
512     .can_receive = emac_can_rx,
513     .receive = emac_rx,
514     .link_status_changed = emac_set_link,
515 };
516 
517 static void msf2_emac_realize(DeviceState *dev, Error **errp)
518 {
519     MSF2EmacState *s = MSS_EMAC(dev);
520 
521     if (!s->dma_mr) {
522         error_setg(errp, "MSS_EMAC 'ahb-bus' link not set");
523         return;
524     }
525 
526     address_space_init(&s->dma_as, s->dma_mr, "emac-ahb");
527 
528     qemu_macaddr_default_if_unset(&s->conf.macaddr);
529     s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf,
530                           object_get_typename(OBJECT(dev)), dev->id, s);
531     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
532 }
533 
534 static void msf2_emac_init(Object *obj)
535 {
536     MSF2EmacState *s = MSS_EMAC(obj);
537 
538     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
539 
540     memory_region_init_io(&s->mmio, obj, &emac_ops, s,
541                           "msf2-emac", R_MAX * 4);
542     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
543 }
544 
545 static Property msf2_emac_properties[] = {
546     DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr,
547                      TYPE_MEMORY_REGION, MemoryRegion *),
548     DEFINE_NIC_PROPERTIES(MSF2EmacState, conf),
549     DEFINE_PROP_END_OF_LIST(),
550 };
551 
552 static const VMStateDescription vmstate_msf2_emac = {
553     .name = TYPE_MSS_EMAC,
554     .version_id = 1,
555     .minimum_version_id = 1,
556     .fields = (VMStateField[]) {
557         VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN),
558         VMSTATE_UINT32(rx_desc, MSF2EmacState),
559         VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS),
560         VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX),
561         VMSTATE_END_OF_LIST()
562     }
563 };
564 
565 static void msf2_emac_class_init(ObjectClass *klass, void *data)
566 {
567     DeviceClass *dc = DEVICE_CLASS(klass);
568 
569     dc->realize = msf2_emac_realize;
570     dc->reset = msf2_emac_reset;
571     dc->vmsd = &vmstate_msf2_emac;
572     device_class_set_props(dc, msf2_emac_properties);
573 }
574 
575 static const TypeInfo msf2_emac_info = {
576     .name          = TYPE_MSS_EMAC,
577     .parent        = TYPE_SYS_BUS_DEVICE,
578     .instance_size = sizeof(MSF2EmacState),
579     .instance_init = msf2_emac_init,
580     .class_init    = msf2_emac_class_init,
581 };
582 
583 static void msf2_emac_register_types(void)
584 {
585     type_register_static(&msf2_emac_info);
586 }
587 
588 type_init(msf2_emac_register_types)
589