xref: /openbmc/qemu/hw/net/msf2-emac.c (revision 05caa062)
1 /*
2  * QEMU model of the Smartfusion2 Ethernet MAC.
3  *
4  * Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Refer to section Ethernet MAC in the document:
25  * UG0331: SmartFusion2 Microcontroller Subsystem User Guide
26  * Datasheet URL:
27  * https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/
28  * 56758-soc?lang=en&limit=20&limitstart=220
29  */
30 
31 #include "qemu/osdep.h"
32 #include "qemu/log.h"
33 #include "qapi/error.h"
34 #include "hw/registerfields.h"
35 #include "hw/net/msf2-emac.h"
36 #include "hw/net/mii.h"
37 #include "hw/irq.h"
38 #include "hw/qdev-properties.h"
39 #include "migration/vmstate.h"
40 
41 REG32(CFG1, 0x0)
42     FIELD(CFG1, RESET, 31, 1)
43     FIELD(CFG1, RX_EN, 2, 1)
44     FIELD(CFG1, TX_EN, 0, 1)
45     FIELD(CFG1, LB_EN, 8, 1)
46 REG32(CFG2, 0x4)
47 REG32(IFG, 0x8)
48 REG32(HALF_DUPLEX, 0xc)
49 REG32(MAX_FRAME_LENGTH, 0x10)
50 REG32(MII_CMD, 0x24)
51     FIELD(MII_CMD, READ, 0, 1)
52 REG32(MII_ADDR, 0x28)
53     FIELD(MII_ADDR, REGADDR, 0, 5)
54     FIELD(MII_ADDR, PHYADDR, 8, 5)
55 REG32(MII_CTL, 0x2c)
56 REG32(MII_STS, 0x30)
57 REG32(STA1, 0x40)
58 REG32(STA2, 0x44)
59 REG32(FIFO_CFG0, 0x48)
60 REG32(FIFO_CFG4, 0x58)
61     FIELD(FIFO_CFG4, BCAST, 9, 1)
62     FIELD(FIFO_CFG4, MCAST, 8, 1)
63 REG32(FIFO_CFG5, 0x5C)
64     FIELD(FIFO_CFG5, BCAST, 9, 1)
65     FIELD(FIFO_CFG5, MCAST, 8, 1)
66 REG32(DMA_TX_CTL, 0x180)
67     FIELD(DMA_TX_CTL, EN, 0, 1)
68 REG32(DMA_TX_DESC, 0x184)
69 REG32(DMA_TX_STATUS, 0x188)
70     FIELD(DMA_TX_STATUS, PKTCNT, 16, 8)
71     FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1)
72     FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1)
73 REG32(DMA_RX_CTL, 0x18c)
74     FIELD(DMA_RX_CTL, EN, 0, 1)
75 REG32(DMA_RX_DESC, 0x190)
76 REG32(DMA_RX_STATUS, 0x194)
77     FIELD(DMA_RX_STATUS, PKTCNT, 16, 8)
78     FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1)
79     FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1)
80 REG32(DMA_IRQ_MASK, 0x198)
81 REG32(DMA_IRQ, 0x19c)
82 
83 #define EMPTY_MASK              (1 << 31)
84 #define PKT_SIZE                0x7FF
85 #define PHYADDR                 0x1
86 #define MAX_PKT_SIZE            2048
87 
88 typedef struct {
89     uint32_t pktaddr;
90     uint32_t pktsize;
91     uint32_t next;
92 } EmacDesc;
93 
94 static uint32_t emac_get_isr(MSF2EmacState *s)
95 {
96     uint32_t ier = s->regs[R_DMA_IRQ_MASK];
97     uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF;
98     uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF;
99     uint32_t isr = (rx << 4) | tx;
100 
101     s->regs[R_DMA_IRQ] = ier & isr;
102     return s->regs[R_DMA_IRQ];
103 }
104 
105 static void emac_update_irq(MSF2EmacState *s)
106 {
107     bool intr = emac_get_isr(s);
108 
109     qemu_set_irq(s->irq, intr);
110 }
111 
112 static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
113 {
114     address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
115     /* Convert from LE into host endianness. */
116     d->pktaddr = le32_to_cpu(d->pktaddr);
117     d->pktsize = le32_to_cpu(d->pktsize);
118     d->next = le32_to_cpu(d->next);
119 }
120 
121 static void emac_store_desc(MSF2EmacState *s, const EmacDesc *d, hwaddr desc)
122 {
123     EmacDesc outd;
124     /*
125      * Convert from host endianness into LE. We use a local struct because
126      * calling code may still want to look at the fields afterwards.
127      */
128     outd.pktaddr = cpu_to_le32(d->pktaddr);
129     outd.pktsize = cpu_to_le32(d->pktsize);
130     outd.next = cpu_to_le32(d->next);
131 
132     address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, &outd, sizeof outd);
133 }
134 
135 static void msf2_dma_tx(MSF2EmacState *s)
136 {
137     NetClientState *nc = qemu_get_queue(s->nic);
138     hwaddr desc = s->regs[R_DMA_TX_DESC];
139     uint8_t buf[MAX_PKT_SIZE];
140     EmacDesc d;
141     int size;
142     uint8_t pktcnt;
143     uint32_t status;
144 
145     if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) {
146         return;
147     }
148 
149     while (1) {
150         emac_load_desc(s, &d, desc);
151         if (d.pktsize & EMPTY_MASK) {
152             break;
153         }
154         size = d.pktsize & PKT_SIZE;
155         address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
156                            buf, size);
157         /*
158          * This is very basic way to send packets. Ideally there should be
159          * a FIFO and packets should be sent out from FIFO only when
160          * R_CFG1 bit 0 is set.
161          */
162         if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) {
163             qemu_receive_packet(nc, buf, size);
164         } else {
165             qemu_send_packet(nc, buf, size);
166         }
167         d.pktsize |= EMPTY_MASK;
168         emac_store_desc(s, &d, desc);
169         /* update sent packets count */
170         status = s->regs[R_DMA_TX_STATUS];
171         pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT);
172         pktcnt++;
173         s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS,
174                                               PKTCNT, pktcnt);
175         s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK;
176         desc = d.next;
177     }
178     s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK;
179     s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK;
180 }
181 
182 static void msf2_phy_update_link(MSF2EmacState *s)
183 {
184     /* Autonegotiation status mirrors link status. */
185     if (qemu_get_queue(s->nic)->link_down) {
186         s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP |
187                                    MII_BMSR_LINK_ST);
188     } else {
189         s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP |
190                                   MII_BMSR_LINK_ST);
191     }
192 }
193 
194 static void msf2_phy_reset(MSF2EmacState *s)
195 {
196     memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
197     s->phy_regs[MII_BMCR] = 0x1140;
198     s->phy_regs[MII_BMSR] = 0x7968;
199     s->phy_regs[MII_PHYID1] = 0x0022;
200     s->phy_regs[MII_PHYID2] = 0x1550;
201     s->phy_regs[MII_ANAR] = 0x01E1;
202     s->phy_regs[MII_ANLPAR] = 0xCDE1;
203 
204     msf2_phy_update_link(s);
205 }
206 
207 static void write_to_phy(MSF2EmacState *s)
208 {
209     uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
210     uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
211                        R_MII_ADDR_REGADDR_MASK;
212     uint16_t data = s->regs[R_MII_CTL] & 0xFFFF;
213 
214     if (phy_addr != PHYADDR) {
215         return;
216     }
217 
218     switch (reg_addr) {
219     case MII_BMCR:
220         if (data & MII_BMCR_RESET) {
221             /* Phy reset */
222             msf2_phy_reset(s);
223             data &= ~MII_BMCR_RESET;
224         }
225         if (data & MII_BMCR_AUTOEN) {
226             /* Complete autonegotiation immediately */
227             data &= ~MII_BMCR_AUTOEN;
228             s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP;
229         }
230         break;
231     }
232 
233     s->phy_regs[reg_addr] = data;
234 }
235 
236 static uint16_t read_from_phy(MSF2EmacState *s)
237 {
238     uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
239     uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
240                        R_MII_ADDR_REGADDR_MASK;
241 
242     if (phy_addr == PHYADDR) {
243         return s->phy_regs[reg_addr];
244     } else {
245         return 0xFFFF;
246     }
247 }
248 
249 static void msf2_emac_do_reset(MSF2EmacState *s)
250 {
251     memset(&s->regs[0], 0, sizeof(s->regs));
252     s->regs[R_CFG1] = 0x80000000;
253     s->regs[R_CFG2] = 0x00007000;
254     s->regs[R_IFG] = 0x40605060;
255     s->regs[R_HALF_DUPLEX] = 0x00A1F037;
256     s->regs[R_MAX_FRAME_LENGTH] = 0x00000600;
257     s->regs[R_FIFO_CFG5] = 0X3FFFF;
258 
259     msf2_phy_reset(s);
260 }
261 
262 static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size)
263 {
264     MSF2EmacState *s = opaque;
265     uint32_t r = 0;
266 
267     addr >>= 2;
268 
269     switch (addr) {
270     case R_DMA_IRQ:
271         r = emac_get_isr(s);
272         break;
273     default:
274         if (addr >= ARRAY_SIZE(s->regs)) {
275             qemu_log_mask(LOG_GUEST_ERROR,
276                           "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
277                           addr * 4);
278             return r;
279         }
280         r = s->regs[addr];
281         break;
282     }
283     return r;
284 }
285 
286 static void emac_write(void *opaque, hwaddr addr, uint64_t val64,
287         unsigned int size)
288 {
289     MSF2EmacState *s = opaque;
290     uint32_t value = val64;
291     uint32_t enreqbits;
292     uint8_t pktcnt;
293 
294     addr >>= 2;
295     switch (addr) {
296     case R_DMA_TX_CTL:
297         s->regs[addr] = value;
298         if (value & R_DMA_TX_CTL_EN_MASK) {
299             msf2_dma_tx(s);
300         }
301         break;
302     case R_DMA_RX_CTL:
303         s->regs[addr] = value;
304         if (value & R_DMA_RX_CTL_EN_MASK) {
305             s->rx_desc = s->regs[R_DMA_RX_DESC];
306             qemu_flush_queued_packets(qemu_get_queue(s->nic));
307         }
308         break;
309     case R_CFG1:
310         s->regs[addr] = value;
311         if (value & R_CFG1_RESET_MASK) {
312             msf2_emac_do_reset(s);
313         }
314         break;
315     case R_FIFO_CFG0:
316        /*
317         * For our implementation, turning on modules is instantaneous,
318         * so the states requested via the *ENREQ bits appear in the
319         * *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC
320         * module are not emulated here since it deals with start of frames,
321         * inter-packet gap and control frames.
322         */
323         enreqbits = extract32(value, 8, 5);
324         s->regs[addr] = deposit32(value, 16, 5, enreqbits);
325         break;
326     case R_DMA_TX_DESC:
327         if (value & 0x3) {
328             qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be"
329                           " 32 bit aligned\n");
330         }
331         /* Ignore [1:0] bits */
332         s->regs[addr] = value & ~3;
333         break;
334     case R_DMA_RX_DESC:
335         if (value & 0x3) {
336             qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be"
337                           " 32 bit aligned\n");
338         }
339         /* Ignore [1:0] bits */
340         s->regs[addr] = value & ~3;
341         break;
342     case R_DMA_TX_STATUS:
343         if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) {
344             s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK;
345         }
346         if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) {
347             pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT);
348             pktcnt--;
349             s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS,
350                                        PKTCNT, pktcnt);
351             if (pktcnt == 0) {
352                 s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK;
353             }
354         }
355         break;
356     case R_DMA_RX_STATUS:
357         if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) {
358             s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK;
359         }
360         if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) {
361             pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT);
362             pktcnt--;
363             s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS,
364                                        PKTCNT, pktcnt);
365             if (pktcnt == 0) {
366                 s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK;
367             }
368         }
369         break;
370     case R_DMA_IRQ:
371         break;
372     case R_MII_CMD:
373         if (value & R_MII_CMD_READ_MASK) {
374             s->regs[R_MII_STS] = read_from_phy(s);
375         }
376         break;
377     case R_MII_CTL:
378         s->regs[addr] = value;
379         write_to_phy(s);
380         break;
381     case R_STA1:
382         s->regs[addr] = value;
383        /*
384         * R_STA1 [31:24] : octet 1 of mac address
385         * R_STA1 [23:16] : octet 2 of mac address
386         * R_STA1 [15:8] : octet 3 of mac address
387         * R_STA1 [7:0] : octet 4 of mac address
388         */
389         stl_be_p(s->mac_addr, value);
390         break;
391     case R_STA2:
392         s->regs[addr] = value;
393        /*
394         * R_STA2 [31:24] : octet 5 of mac address
395         * R_STA2 [23:16] : octet 6 of mac address
396         */
397         stw_be_p(s->mac_addr + 4, value >> 16);
398         break;
399     default:
400         if (addr >= ARRAY_SIZE(s->regs)) {
401             qemu_log_mask(LOG_GUEST_ERROR,
402                           "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
403                           addr * 4);
404             return;
405         }
406         s->regs[addr] = value;
407         break;
408     }
409     emac_update_irq(s);
410 }
411 
412 static const MemoryRegionOps emac_ops = {
413     .read = emac_read,
414     .write = emac_write,
415     .endianness = DEVICE_NATIVE_ENDIAN,
416     .impl = {
417         .min_access_size = 4,
418         .max_access_size = 4
419     }
420 };
421 
422 static bool emac_can_rx(NetClientState *nc)
423 {
424     MSF2EmacState *s = qemu_get_nic_opaque(nc);
425 
426     return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) &&
427            (s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK);
428 }
429 
430 static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf)
431 {
432     /* The broadcast MAC address: FF:FF:FF:FF:FF:FF */
433     const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF,
434                                               0xFF, 0xFF };
435     bool bcast_en = true;
436     bool mcast_en = true;
437 
438     if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) {
439         bcast_en = true; /* Broadcast dont care for drop circuitry */
440     } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) {
441         bcast_en = false;
442     }
443 
444     if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) {
445         mcast_en = true; /* Multicast dont care for drop circuitry */
446     } else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) {
447         mcast_en = false;
448     }
449 
450     if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) {
451         return bcast_en;
452     }
453 
454     if (buf[0] & 1) {
455         return mcast_en;
456     }
457 
458     return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr));
459 }
460 
461 static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size)
462 {
463     MSF2EmacState *s = qemu_get_nic_opaque(nc);
464     EmacDesc d;
465     uint8_t pktcnt;
466     uint32_t status;
467 
468     if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) {
469         return size;
470     }
471     if (!addr_filter_ok(s, buf)) {
472         return size;
473     }
474 
475     emac_load_desc(s, &d, s->rx_desc);
476 
477     if (d.pktsize & EMPTY_MASK) {
478         address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
479                             buf, size & PKT_SIZE);
480         d.pktsize = size & PKT_SIZE;
481         emac_store_desc(s, &d, s->rx_desc);
482         /* update received packets count */
483         status = s->regs[R_DMA_RX_STATUS];
484         pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT);
485         pktcnt++;
486         s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS,
487                                               PKTCNT, pktcnt);
488         s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK;
489         s->rx_desc = d.next;
490     } else {
491         s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK;
492         s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK;
493     }
494     emac_update_irq(s);
495     return size;
496 }
497 
498 static void msf2_emac_reset(DeviceState *dev)
499 {
500     MSF2EmacState *s = MSS_EMAC(dev);
501 
502     msf2_emac_do_reset(s);
503 }
504 
505 static void emac_set_link(NetClientState *nc)
506 {
507     MSF2EmacState *s = qemu_get_nic_opaque(nc);
508 
509     msf2_phy_update_link(s);
510 }
511 
512 static NetClientInfo net_msf2_emac_info = {
513     .type = NET_CLIENT_DRIVER_NIC,
514     .size = sizeof(NICState),
515     .can_receive = emac_can_rx,
516     .receive = emac_rx,
517     .link_status_changed = emac_set_link,
518 };
519 
520 static void msf2_emac_realize(DeviceState *dev, Error **errp)
521 {
522     MSF2EmacState *s = MSS_EMAC(dev);
523 
524     if (!s->dma_mr) {
525         error_setg(errp, "MSS_EMAC 'ahb-bus' link not set");
526         return;
527     }
528 
529     address_space_init(&s->dma_as, s->dma_mr, "emac-ahb");
530 
531     qemu_macaddr_default_if_unset(&s->conf.macaddr);
532     s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf,
533                           object_get_typename(OBJECT(dev)), dev->id,
534                           &dev->mem_reentrancy_guard, s);
535     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
536 }
537 
538 static void msf2_emac_init(Object *obj)
539 {
540     MSF2EmacState *s = MSS_EMAC(obj);
541 
542     sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
543 
544     memory_region_init_io(&s->mmio, obj, &emac_ops, s,
545                           "msf2-emac", R_MAX * 4);
546     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
547 }
548 
549 static Property msf2_emac_properties[] = {
550     DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr,
551                      TYPE_MEMORY_REGION, MemoryRegion *),
552     DEFINE_NIC_PROPERTIES(MSF2EmacState, conf),
553     DEFINE_PROP_END_OF_LIST(),
554 };
555 
556 static const VMStateDescription vmstate_msf2_emac = {
557     .name = TYPE_MSS_EMAC,
558     .version_id = 1,
559     .minimum_version_id = 1,
560     .fields = (const VMStateField[]) {
561         VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN),
562         VMSTATE_UINT32(rx_desc, MSF2EmacState),
563         VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS),
564         VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX),
565         VMSTATE_END_OF_LIST()
566     }
567 };
568 
569 static void msf2_emac_class_init(ObjectClass *klass, void *data)
570 {
571     DeviceClass *dc = DEVICE_CLASS(klass);
572 
573     dc->realize = msf2_emac_realize;
574     dc->reset = msf2_emac_reset;
575     dc->vmsd = &vmstate_msf2_emac;
576     device_class_set_props(dc, msf2_emac_properties);
577 }
578 
579 static const TypeInfo msf2_emac_info = {
580     .name          = TYPE_MSS_EMAC,
581     .parent        = TYPE_SYS_BUS_DEVICE,
582     .instance_size = sizeof(MSF2EmacState),
583     .instance_init = msf2_emac_init,
584     .class_init    = msf2_emac_class_init,
585 };
586 
587 static void msf2_emac_register_types(void)
588 {
589     type_register_static(&msf2_emac_info);
590 }
591 
592 type_init(msf2_emac_register_types)
593