xref: /openbmc/qemu/hw/net/mcf_fec.c (revision 5f333d79)
1 /*
2  * ColdFire Fast Ethernet Controller emulation.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GPL
7  */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "net/net.h"
11 #include "hw/m68k/mcf.h"
12 #include "hw/net/mii.h"
13 /* For crc32 */
14 #include <zlib.h>
15 #include "exec/address-spaces.h"
16 
17 //#define DEBUG_FEC 1
18 
19 #ifdef DEBUG_FEC
20 #define DPRINTF(fmt, ...) \
21 do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
22 #else
23 #define DPRINTF(fmt, ...) do {} while(0)
24 #endif
25 
26 #define FEC_MAX_DESC 1024
27 #define FEC_MAX_FRAME_SIZE 2032
28 
29 typedef struct {
30     MemoryRegion *sysmem;
31     MemoryRegion iomem;
32     qemu_irq *irq;
33     NICState *nic;
34     NICConf conf;
35     uint32_t irq_state;
36     uint32_t eir;
37     uint32_t eimr;
38     int rx_enabled;
39     uint32_t rx_descriptor;
40     uint32_t tx_descriptor;
41     uint32_t ecr;
42     uint32_t mmfr;
43     uint32_t mscr;
44     uint32_t rcr;
45     uint32_t tcr;
46     uint32_t tfwr;
47     uint32_t rfsr;
48     uint32_t erdsr;
49     uint32_t etdsr;
50     uint32_t emrbr;
51 } mcf_fec_state;
52 
53 #define FEC_INT_HB   0x80000000
54 #define FEC_INT_BABR 0x40000000
55 #define FEC_INT_BABT 0x20000000
56 #define FEC_INT_GRA  0x10000000
57 #define FEC_INT_TXF  0x08000000
58 #define FEC_INT_TXB  0x04000000
59 #define FEC_INT_RXF  0x02000000
60 #define FEC_INT_RXB  0x01000000
61 #define FEC_INT_MII  0x00800000
62 #define FEC_INT_EB   0x00400000
63 #define FEC_INT_LC   0x00200000
64 #define FEC_INT_RL   0x00100000
65 #define FEC_INT_UN   0x00080000
66 
67 #define FEC_EN      2
68 #define FEC_RESET   1
69 
70 /* Map interrupt flags onto IRQ lines.  */
71 #define FEC_NUM_IRQ 13
72 static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
73     FEC_INT_TXF,
74     FEC_INT_TXB,
75     FEC_INT_UN,
76     FEC_INT_RL,
77     FEC_INT_RXF,
78     FEC_INT_RXB,
79     FEC_INT_MII,
80     FEC_INT_LC,
81     FEC_INT_HB,
82     FEC_INT_GRA,
83     FEC_INT_EB,
84     FEC_INT_BABT,
85     FEC_INT_BABR
86 };
87 
88 /* Buffer Descriptor.  */
89 typedef struct {
90     uint16_t flags;
91     uint16_t length;
92     uint32_t data;
93 } mcf_fec_bd;
94 
95 #define FEC_BD_R    0x8000
96 #define FEC_BD_E    0x8000
97 #define FEC_BD_O1   0x4000
98 #define FEC_BD_W    0x2000
99 #define FEC_BD_O2   0x1000
100 #define FEC_BD_L    0x0800
101 #define FEC_BD_TC   0x0400
102 #define FEC_BD_ABC  0x0200
103 #define FEC_BD_M    0x0100
104 #define FEC_BD_BC   0x0080
105 #define FEC_BD_MC   0x0040
106 #define FEC_BD_LG   0x0020
107 #define FEC_BD_NO   0x0010
108 #define FEC_BD_CR   0x0004
109 #define FEC_BD_OV   0x0002
110 #define FEC_BD_TR   0x0001
111 
112 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
113 {
114     cpu_physical_memory_read(addr, bd, sizeof(*bd));
115     be16_to_cpus(&bd->flags);
116     be16_to_cpus(&bd->length);
117     be32_to_cpus(&bd->data);
118 }
119 
120 static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
121 {
122     mcf_fec_bd tmp;
123     tmp.flags = cpu_to_be16(bd->flags);
124     tmp.length = cpu_to_be16(bd->length);
125     tmp.data = cpu_to_be32(bd->data);
126     cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
127 }
128 
129 static void mcf_fec_update(mcf_fec_state *s)
130 {
131     uint32_t active;
132     uint32_t changed;
133     uint32_t mask;
134     int i;
135 
136     active = s->eir & s->eimr;
137     changed = active ^s->irq_state;
138     for (i = 0; i < FEC_NUM_IRQ; i++) {
139         mask = mcf_fec_irq_map[i];
140         if (changed & mask) {
141             DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
142             qemu_set_irq(s->irq[i], (active & mask) != 0);
143         }
144     }
145     s->irq_state = active;
146 }
147 
148 static void mcf_fec_do_tx(mcf_fec_state *s)
149 {
150     uint32_t addr;
151     mcf_fec_bd bd;
152     int frame_size;
153     int len, descnt = 0;
154     uint8_t frame[FEC_MAX_FRAME_SIZE];
155     uint8_t *ptr;
156 
157     DPRINTF("do_tx\n");
158     ptr = frame;
159     frame_size = 0;
160     addr = s->tx_descriptor;
161     while (descnt++ < FEC_MAX_DESC) {
162         mcf_fec_read_bd(&bd, addr);
163         DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
164                 addr, bd.flags, bd.length, bd.data);
165         if ((bd.flags & FEC_BD_R) == 0) {
166             /* Run out of descriptors to transmit.  */
167             break;
168         }
169         len = bd.length;
170         if (frame_size + len > FEC_MAX_FRAME_SIZE) {
171             len = FEC_MAX_FRAME_SIZE - frame_size;
172             s->eir |= FEC_INT_BABT;
173         }
174         cpu_physical_memory_read(bd.data, ptr, len);
175         ptr += len;
176         frame_size += len;
177         if (bd.flags & FEC_BD_L) {
178             /* Last buffer in frame.  */
179             DPRINTF("Sending packet\n");
180             qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
181             ptr = frame;
182             frame_size = 0;
183             s->eir |= FEC_INT_TXF;
184         }
185         s->eir |= FEC_INT_TXB;
186         bd.flags &= ~FEC_BD_R;
187         /* Write back the modified descriptor.  */
188         mcf_fec_write_bd(&bd, addr);
189         /* Advance to the next descriptor.  */
190         if ((bd.flags & FEC_BD_W) != 0) {
191             addr = s->etdsr;
192         } else {
193             addr += 8;
194         }
195     }
196     s->tx_descriptor = addr;
197 }
198 
199 static void mcf_fec_enable_rx(mcf_fec_state *s)
200 {
201     NetClientState *nc = qemu_get_queue(s->nic);
202     mcf_fec_bd bd;
203 
204     mcf_fec_read_bd(&bd, s->rx_descriptor);
205     s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
206     if (s->rx_enabled) {
207         qemu_flush_queued_packets(nc);
208     }
209 }
210 
211 static void mcf_fec_reset(mcf_fec_state *s)
212 {
213     s->eir = 0;
214     s->eimr = 0;
215     s->rx_enabled = 0;
216     s->ecr = 0;
217     s->mscr = 0;
218     s->rcr = 0x05ee0001;
219     s->tcr = 0;
220     s->tfwr = 0;
221     s->rfsr = 0x500;
222 }
223 
224 #define MMFR_WRITE_OP	(1 << 28)
225 #define MMFR_READ_OP	(2 << 28)
226 #define MMFR_PHYADDR(v)	(((v) >> 23) & 0x1f)
227 #define MMFR_REGNUM(v)	(((v) >> 18) & 0x1f)
228 
229 static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
230 {
231     uint64_t v;
232 
233     if (s->mmfr & MMFR_WRITE_OP)
234         return s->mmfr;
235     if (MMFR_PHYADDR(s->mmfr) != 1)
236         return s->mmfr |= 0xffff;
237 
238     switch (MMFR_REGNUM(s->mmfr)) {
239     case MII_BMCR:
240         v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
241         break;
242     case MII_BMSR:
243         v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
244             MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
245             MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
246         break;
247     case MII_PHYID1:
248         v = DP83848_PHYID1;
249         break;
250     case MII_PHYID2:
251         v = DP83848_PHYID2;
252         break;
253     case MII_ANAR:
254         v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
255             MII_ANAR_10 | MII_ANAR_CSMACD;
256         break;
257     case MII_ANLPAR:
258         v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
259             MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
260         break;
261     default:
262         v = 0xffff;
263         break;
264     }
265     s->mmfr = (s->mmfr & ~0xffff) | v;
266     return s->mmfr;
267 }
268 
269 static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
270                              unsigned size)
271 {
272     mcf_fec_state *s = (mcf_fec_state *)opaque;
273     switch (addr & 0x3ff) {
274     case 0x004: return s->eir;
275     case 0x008: return s->eimr;
276     case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
277     case 0x014: return 0; /* TDAR */
278     case 0x024: return s->ecr;
279     case 0x040: return mcf_fec_read_mdio(s);
280     case 0x044: return s->mscr;
281     case 0x064: return 0; /* MIBC */
282     case 0x084: return s->rcr;
283     case 0x0c4: return s->tcr;
284     case 0x0e4: /* PALR */
285         return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
286               | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
287         break;
288     case 0x0e8: /* PAUR */
289         return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
290     case 0x0ec: return 0x10000; /* OPD */
291     case 0x118: return 0;
292     case 0x11c: return 0;
293     case 0x120: return 0;
294     case 0x124: return 0;
295     case 0x144: return s->tfwr;
296     case 0x14c: return 0x600;
297     case 0x150: return s->rfsr;
298     case 0x180: return s->erdsr;
299     case 0x184: return s->etdsr;
300     case 0x188: return s->emrbr;
301     default:
302         hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
303         return 0;
304     }
305 }
306 
307 static void mcf_fec_write(void *opaque, hwaddr addr,
308                           uint64_t value, unsigned size)
309 {
310     mcf_fec_state *s = (mcf_fec_state *)opaque;
311     switch (addr & 0x3ff) {
312     case 0x004:
313         s->eir &= ~value;
314         break;
315     case 0x008:
316         s->eimr = value;
317         break;
318     case 0x010: /* RDAR */
319         if ((s->ecr & FEC_EN) && !s->rx_enabled) {
320             DPRINTF("RX enable\n");
321             mcf_fec_enable_rx(s);
322         }
323         break;
324     case 0x014: /* TDAR */
325         if (s->ecr & FEC_EN) {
326             mcf_fec_do_tx(s);
327         }
328         break;
329     case 0x024:
330         s->ecr = value;
331         if (value & FEC_RESET) {
332             DPRINTF("Reset\n");
333             mcf_fec_reset(s);
334         }
335         if ((s->ecr & FEC_EN) == 0) {
336             s->rx_enabled = 0;
337         }
338         break;
339     case 0x040:
340         s->mmfr = value;
341         s->eir |= FEC_INT_MII;
342         break;
343     case 0x044:
344         s->mscr = value & 0xfe;
345         break;
346     case 0x064:
347         /* TODO: Implement MIB.  */
348         break;
349     case 0x084:
350         s->rcr = value & 0x07ff003f;
351         /* TODO: Implement LOOP mode.  */
352         break;
353     case 0x0c4: /* TCR */
354         /* We transmit immediately, so raise GRA immediately.  */
355         s->tcr = value;
356         if (value & 1)
357             s->eir |= FEC_INT_GRA;
358         break;
359     case 0x0e4: /* PALR */
360         s->conf.macaddr.a[0] = value >> 24;
361         s->conf.macaddr.a[1] = value >> 16;
362         s->conf.macaddr.a[2] = value >> 8;
363         s->conf.macaddr.a[3] = value;
364         break;
365     case 0x0e8: /* PAUR */
366         s->conf.macaddr.a[4] = value >> 24;
367         s->conf.macaddr.a[5] = value >> 16;
368         break;
369     case 0x0ec:
370         /* OPD */
371         break;
372     case 0x118:
373     case 0x11c:
374     case 0x120:
375     case 0x124:
376         /* TODO: implement MAC hash filtering.  */
377         break;
378     case 0x144:
379         s->tfwr = value & 3;
380         break;
381     case 0x14c:
382         /* FRBR writes ignored.  */
383         break;
384     case 0x150:
385         s->rfsr = (value & 0x3fc) | 0x400;
386         break;
387     case 0x180:
388         s->erdsr = value & ~3;
389         s->rx_descriptor = s->erdsr;
390         break;
391     case 0x184:
392         s->etdsr = value & ~3;
393         s->tx_descriptor = s->etdsr;
394         break;
395     case 0x188:
396         s->emrbr = value & 0x7f0;
397         break;
398     default:
399         hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
400     }
401     mcf_fec_update(s);
402 }
403 
404 static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
405 {
406     mcf_fec_bd bd;
407     uint32_t addr;
408 
409     /* Walk descriptor list to determine if we have enough buffer */
410     addr = s->rx_descriptor;
411     while (want > 0) {
412         mcf_fec_read_bd(&bd, addr);
413         if ((bd.flags & FEC_BD_E) == 0) {
414             return 0;
415         }
416         if (want < s->emrbr) {
417             return 1;
418         }
419         want -= s->emrbr;
420         /* Advance to the next descriptor.  */
421         if ((bd.flags & FEC_BD_W) != 0) {
422             addr = s->erdsr;
423         } else {
424             addr += 8;
425         }
426     }
427     return 0;
428 }
429 
430 static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
431 {
432     mcf_fec_state *s = qemu_get_nic_opaque(nc);
433     mcf_fec_bd bd;
434     uint32_t flags = 0;
435     uint32_t addr;
436     uint32_t crc;
437     uint32_t buf_addr;
438     uint8_t *crc_ptr;
439     unsigned int buf_len;
440     size_t retsize;
441 
442     DPRINTF("do_rx len %d\n", size);
443     if (!s->rx_enabled) {
444         return -1;
445     }
446     /* 4 bytes for the CRC.  */
447     size += 4;
448     crc = cpu_to_be32(crc32(~0, buf, size));
449     crc_ptr = (uint8_t *)&crc;
450     /* Huge frames are truncted.  */
451     if (size > FEC_MAX_FRAME_SIZE) {
452         size = FEC_MAX_FRAME_SIZE;
453         flags |= FEC_BD_TR | FEC_BD_LG;
454     }
455     /* Frames larger than the user limit just set error flags.  */
456     if (size > (s->rcr >> 16)) {
457         flags |= FEC_BD_LG;
458     }
459     /* Check if we have enough space in current descriptors */
460     if (!mcf_fec_have_receive_space(s, size)) {
461         return 0;
462     }
463     addr = s->rx_descriptor;
464     retsize = size;
465     while (size > 0) {
466         mcf_fec_read_bd(&bd, addr);
467         buf_len = (size <= s->emrbr) ? size: s->emrbr;
468         bd.length = buf_len;
469         size -= buf_len;
470         DPRINTF("rx_bd %x length %d\n", addr, bd.length);
471         /* The last 4 bytes are the CRC.  */
472         if (size < 4)
473             buf_len += size - 4;
474         buf_addr = bd.data;
475         cpu_physical_memory_write(buf_addr, buf, buf_len);
476         buf += buf_len;
477         if (size < 4) {
478             cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
479             crc_ptr += 4 - size;
480         }
481         bd.flags &= ~FEC_BD_E;
482         if (size == 0) {
483             /* Last buffer in frame.  */
484             bd.flags |= flags | FEC_BD_L;
485             DPRINTF("rx frame flags %04x\n", bd.flags);
486             s->eir |= FEC_INT_RXF;
487         } else {
488             s->eir |= FEC_INT_RXB;
489         }
490         mcf_fec_write_bd(&bd, addr);
491         /* Advance to the next descriptor.  */
492         if ((bd.flags & FEC_BD_W) != 0) {
493             addr = s->erdsr;
494         } else {
495             addr += 8;
496         }
497     }
498     s->rx_descriptor = addr;
499     mcf_fec_enable_rx(s);
500     mcf_fec_update(s);
501     return retsize;
502 }
503 
504 static const MemoryRegionOps mcf_fec_ops = {
505     .read = mcf_fec_read,
506     .write = mcf_fec_write,
507     .endianness = DEVICE_NATIVE_ENDIAN,
508 };
509 
510 static NetClientInfo net_mcf_fec_info = {
511     .type = NET_CLIENT_DRIVER_NIC,
512     .size = sizeof(NICState),
513     .receive = mcf_fec_receive,
514 };
515 
516 void mcf_fec_init(MemoryRegion *sysmem, NICInfo *nd,
517                   hwaddr base, qemu_irq *irq)
518 {
519     mcf_fec_state *s;
520 
521     qemu_check_nic_model(nd, "mcf_fec");
522 
523     s = (mcf_fec_state *)g_malloc0(sizeof(mcf_fec_state));
524     s->sysmem = sysmem;
525     s->irq = irq;
526 
527     memory_region_init_io(&s->iomem, NULL, &mcf_fec_ops, s, "fec", 0x400);
528     memory_region_add_subregion(sysmem, base, &s->iomem);
529 
530     s->conf.macaddr = nd->macaddr;
531     s->conf.peers.ncs[0] = nd->netdev;
532 
533     s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf, nd->model, nd->name, s);
534 
535     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
536 }
537