xref: /openbmc/qemu/hw/net/lan9118.c (revision a42e9c41)
1 /*
2  * SMSC LAN9118 Ethernet interface emulation
3  *
4  * Copyright (c) 2009 CodeSourcery, LLC.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GNU GPL v2
8  *
9  * Contributions after 2012-01-13 are licensed under the terms of the
10  * GNU GPL, version 2 or (at your option) any later version.
11  */
12 
13 #include "hw/sysbus.h"
14 #include "net/net.h"
15 #include "hw/devices.h"
16 #include "sysemu/sysemu.h"
17 #include "hw/ptimer.h"
18 /* For crc32 */
19 #include <zlib.h>
20 
21 //#define DEBUG_LAN9118
22 
23 #ifdef DEBUG_LAN9118
24 #define DPRINTF(fmt, ...) \
25 do { printf("lan9118: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { hw_error("lan9118: error: " fmt , ## __VA_ARGS__);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lan9118: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33 
34 #define CSR_ID_REV      0x50
35 #define CSR_IRQ_CFG     0x54
36 #define CSR_INT_STS     0x58
37 #define CSR_INT_EN      0x5c
38 #define CSR_BYTE_TEST   0x64
39 #define CSR_FIFO_INT    0x68
40 #define CSR_RX_CFG      0x6c
41 #define CSR_TX_CFG      0x70
42 #define CSR_HW_CFG      0x74
43 #define CSR_RX_DP_CTRL  0x78
44 #define CSR_RX_FIFO_INF 0x7c
45 #define CSR_TX_FIFO_INF 0x80
46 #define CSR_PMT_CTRL    0x84
47 #define CSR_GPIO_CFG    0x88
48 #define CSR_GPT_CFG     0x8c
49 #define CSR_GPT_CNT     0x90
50 #define CSR_WORD_SWAP   0x98
51 #define CSR_FREE_RUN    0x9c
52 #define CSR_RX_DROP     0xa0
53 #define CSR_MAC_CSR_CMD 0xa4
54 #define CSR_MAC_CSR_DATA 0xa8
55 #define CSR_AFC_CFG     0xac
56 #define CSR_E2P_CMD     0xb0
57 #define CSR_E2P_DATA    0xb4
58 
59 /* IRQ_CFG */
60 #define IRQ_INT         0x00001000
61 #define IRQ_EN          0x00000100
62 #define IRQ_POL         0x00000010
63 #define IRQ_TYPE        0x00000001
64 
65 /* INT_STS/INT_EN */
66 #define SW_INT          0x80000000
67 #define TXSTOP_INT      0x02000000
68 #define RXSTOP_INT      0x01000000
69 #define RXDFH_INT       0x00800000
70 #define TX_IOC_INT      0x00200000
71 #define RXD_INT         0x00100000
72 #define GPT_INT         0x00080000
73 #define PHY_INT         0x00040000
74 #define PME_INT         0x00020000
75 #define TXSO_INT        0x00010000
76 #define RWT_INT         0x00008000
77 #define RXE_INT         0x00004000
78 #define TXE_INT         0x00002000
79 #define TDFU_INT        0x00000800
80 #define TDFO_INT        0x00000400
81 #define TDFA_INT        0x00000200
82 #define TSFF_INT        0x00000100
83 #define TSFL_INT        0x00000080
84 #define RXDF_INT        0x00000040
85 #define RDFL_INT        0x00000020
86 #define RSFF_INT        0x00000010
87 #define RSFL_INT        0x00000008
88 #define GPIO2_INT       0x00000004
89 #define GPIO1_INT       0x00000002
90 #define GPIO0_INT       0x00000001
91 #define RESERVED_INT    0x7c001000
92 
93 #define MAC_CR          1
94 #define MAC_ADDRH       2
95 #define MAC_ADDRL       3
96 #define MAC_HASHH       4
97 #define MAC_HASHL       5
98 #define MAC_MII_ACC     6
99 #define MAC_MII_DATA    7
100 #define MAC_FLOW        8
101 #define MAC_VLAN1       9 /* TODO */
102 #define MAC_VLAN2       10 /* TODO */
103 #define MAC_WUFF        11 /* TODO */
104 #define MAC_WUCSR       12 /* TODO */
105 
106 #define MAC_CR_RXALL    0x80000000
107 #define MAC_CR_RCVOWN   0x00800000
108 #define MAC_CR_LOOPBK   0x00200000
109 #define MAC_CR_FDPX     0x00100000
110 #define MAC_CR_MCPAS    0x00080000
111 #define MAC_CR_PRMS     0x00040000
112 #define MAC_CR_INVFILT  0x00020000
113 #define MAC_CR_PASSBAD  0x00010000
114 #define MAC_CR_HO       0x00008000
115 #define MAC_CR_HPFILT   0x00002000
116 #define MAC_CR_LCOLL    0x00001000
117 #define MAC_CR_BCAST    0x00000800
118 #define MAC_CR_DISRTY   0x00000400
119 #define MAC_CR_PADSTR   0x00000100
120 #define MAC_CR_BOLMT    0x000000c0
121 #define MAC_CR_DFCHK    0x00000020
122 #define MAC_CR_TXEN     0x00000008
123 #define MAC_CR_RXEN     0x00000004
124 #define MAC_CR_RESERVED 0x7f404213
125 
126 #define PHY_INT_ENERGYON            0x80
127 #define PHY_INT_AUTONEG_COMPLETE    0x40
128 #define PHY_INT_FAULT               0x20
129 #define PHY_INT_DOWN                0x10
130 #define PHY_INT_AUTONEG_LP          0x08
131 #define PHY_INT_PARFAULT            0x04
132 #define PHY_INT_AUTONEG_PAGE        0x02
133 
134 #define GPT_TIMER_EN    0x20000000
135 
136 enum tx_state {
137     TX_IDLE,
138     TX_B,
139     TX_DATA
140 };
141 
142 typedef struct {
143     /* state is a tx_state but we can't put enums in VMStateDescriptions. */
144     uint32_t state;
145     uint32_t cmd_a;
146     uint32_t cmd_b;
147     int32_t buffer_size;
148     int32_t offset;
149     int32_t pad;
150     int32_t fifo_used;
151     int32_t len;
152     uint8_t data[2048];
153 } LAN9118Packet;
154 
155 static const VMStateDescription vmstate_lan9118_packet = {
156     .name = "lan9118_packet",
157     .version_id = 1,
158     .minimum_version_id = 1,
159     .fields = (VMStateField[]) {
160         VMSTATE_UINT32(state, LAN9118Packet),
161         VMSTATE_UINT32(cmd_a, LAN9118Packet),
162         VMSTATE_UINT32(cmd_b, LAN9118Packet),
163         VMSTATE_INT32(buffer_size, LAN9118Packet),
164         VMSTATE_INT32(offset, LAN9118Packet),
165         VMSTATE_INT32(pad, LAN9118Packet),
166         VMSTATE_INT32(fifo_used, LAN9118Packet),
167         VMSTATE_INT32(len, LAN9118Packet),
168         VMSTATE_UINT8_ARRAY(data, LAN9118Packet, 2048),
169         VMSTATE_END_OF_LIST()
170     }
171 };
172 
173 #define TYPE_LAN9118 "lan9118"
174 #define LAN9118(obj) OBJECT_CHECK(lan9118_state, (obj), TYPE_LAN9118)
175 
176 typedef struct {
177     SysBusDevice parent_obj;
178 
179     NICState *nic;
180     NICConf conf;
181     qemu_irq irq;
182     MemoryRegion mmio;
183     ptimer_state *timer;
184 
185     uint32_t irq_cfg;
186     uint32_t int_sts;
187     uint32_t int_en;
188     uint32_t fifo_int;
189     uint32_t rx_cfg;
190     uint32_t tx_cfg;
191     uint32_t hw_cfg;
192     uint32_t pmt_ctrl;
193     uint32_t gpio_cfg;
194     uint32_t gpt_cfg;
195     uint32_t word_swap;
196     uint32_t free_timer_start;
197     uint32_t mac_cmd;
198     uint32_t mac_data;
199     uint32_t afc_cfg;
200     uint32_t e2p_cmd;
201     uint32_t e2p_data;
202 
203     uint32_t mac_cr;
204     uint32_t mac_hashh;
205     uint32_t mac_hashl;
206     uint32_t mac_mii_acc;
207     uint32_t mac_mii_data;
208     uint32_t mac_flow;
209 
210     uint32_t phy_status;
211     uint32_t phy_control;
212     uint32_t phy_advertise;
213     uint32_t phy_int;
214     uint32_t phy_int_mask;
215 
216     int32_t eeprom_writable;
217     uint8_t eeprom[128];
218 
219     int32_t tx_fifo_size;
220     LAN9118Packet *txp;
221     LAN9118Packet tx_packet;
222 
223     int32_t tx_status_fifo_used;
224     int32_t tx_status_fifo_head;
225     uint32_t tx_status_fifo[512];
226 
227     int32_t rx_status_fifo_size;
228     int32_t rx_status_fifo_used;
229     int32_t rx_status_fifo_head;
230     uint32_t rx_status_fifo[896];
231     int32_t rx_fifo_size;
232     int32_t rx_fifo_used;
233     int32_t rx_fifo_head;
234     uint32_t rx_fifo[3360];
235     int32_t rx_packet_size_head;
236     int32_t rx_packet_size_tail;
237     int32_t rx_packet_size[1024];
238 
239     int32_t rxp_offset;
240     int32_t rxp_size;
241     int32_t rxp_pad;
242 
243     uint32_t write_word_prev_offset;
244     uint32_t write_word_n;
245     uint16_t write_word_l;
246     uint16_t write_word_h;
247     uint32_t read_word_prev_offset;
248     uint32_t read_word_n;
249     uint32_t read_long;
250 
251     uint32_t mode_16bit;
252 } lan9118_state;
253 
254 static const VMStateDescription vmstate_lan9118 = {
255     .name = "lan9118",
256     .version_id = 2,
257     .minimum_version_id = 1,
258     .fields = (VMStateField[]) {
259         VMSTATE_PTIMER(timer, lan9118_state),
260         VMSTATE_UINT32(irq_cfg, lan9118_state),
261         VMSTATE_UINT32(int_sts, lan9118_state),
262         VMSTATE_UINT32(int_en, lan9118_state),
263         VMSTATE_UINT32(fifo_int, lan9118_state),
264         VMSTATE_UINT32(rx_cfg, lan9118_state),
265         VMSTATE_UINT32(tx_cfg, lan9118_state),
266         VMSTATE_UINT32(hw_cfg, lan9118_state),
267         VMSTATE_UINT32(pmt_ctrl, lan9118_state),
268         VMSTATE_UINT32(gpio_cfg, lan9118_state),
269         VMSTATE_UINT32(gpt_cfg, lan9118_state),
270         VMSTATE_UINT32(word_swap, lan9118_state),
271         VMSTATE_UINT32(free_timer_start, lan9118_state),
272         VMSTATE_UINT32(mac_cmd, lan9118_state),
273         VMSTATE_UINT32(mac_data, lan9118_state),
274         VMSTATE_UINT32(afc_cfg, lan9118_state),
275         VMSTATE_UINT32(e2p_cmd, lan9118_state),
276         VMSTATE_UINT32(e2p_data, lan9118_state),
277         VMSTATE_UINT32(mac_cr, lan9118_state),
278         VMSTATE_UINT32(mac_hashh, lan9118_state),
279         VMSTATE_UINT32(mac_hashl, lan9118_state),
280         VMSTATE_UINT32(mac_mii_acc, lan9118_state),
281         VMSTATE_UINT32(mac_mii_data, lan9118_state),
282         VMSTATE_UINT32(mac_flow, lan9118_state),
283         VMSTATE_UINT32(phy_status, lan9118_state),
284         VMSTATE_UINT32(phy_control, lan9118_state),
285         VMSTATE_UINT32(phy_advertise, lan9118_state),
286         VMSTATE_UINT32(phy_int, lan9118_state),
287         VMSTATE_UINT32(phy_int_mask, lan9118_state),
288         VMSTATE_INT32(eeprom_writable, lan9118_state),
289         VMSTATE_UINT8_ARRAY(eeprom, lan9118_state, 128),
290         VMSTATE_INT32(tx_fifo_size, lan9118_state),
291         /* txp always points at tx_packet so need not be saved */
292         VMSTATE_STRUCT(tx_packet, lan9118_state, 0,
293                        vmstate_lan9118_packet, LAN9118Packet),
294         VMSTATE_INT32(tx_status_fifo_used, lan9118_state),
295         VMSTATE_INT32(tx_status_fifo_head, lan9118_state),
296         VMSTATE_UINT32_ARRAY(tx_status_fifo, lan9118_state, 512),
297         VMSTATE_INT32(rx_status_fifo_size, lan9118_state),
298         VMSTATE_INT32(rx_status_fifo_used, lan9118_state),
299         VMSTATE_INT32(rx_status_fifo_head, lan9118_state),
300         VMSTATE_UINT32_ARRAY(rx_status_fifo, lan9118_state, 896),
301         VMSTATE_INT32(rx_fifo_size, lan9118_state),
302         VMSTATE_INT32(rx_fifo_used, lan9118_state),
303         VMSTATE_INT32(rx_fifo_head, lan9118_state),
304         VMSTATE_UINT32_ARRAY(rx_fifo, lan9118_state, 3360),
305         VMSTATE_INT32(rx_packet_size_head, lan9118_state),
306         VMSTATE_INT32(rx_packet_size_tail, lan9118_state),
307         VMSTATE_INT32_ARRAY(rx_packet_size, lan9118_state, 1024),
308         VMSTATE_INT32(rxp_offset, lan9118_state),
309         VMSTATE_INT32(rxp_size, lan9118_state),
310         VMSTATE_INT32(rxp_pad, lan9118_state),
311         VMSTATE_UINT32_V(write_word_prev_offset, lan9118_state, 2),
312         VMSTATE_UINT32_V(write_word_n, lan9118_state, 2),
313         VMSTATE_UINT16_V(write_word_l, lan9118_state, 2),
314         VMSTATE_UINT16_V(write_word_h, lan9118_state, 2),
315         VMSTATE_UINT32_V(read_word_prev_offset, lan9118_state, 2),
316         VMSTATE_UINT32_V(read_word_n, lan9118_state, 2),
317         VMSTATE_UINT32_V(read_long, lan9118_state, 2),
318         VMSTATE_UINT32_V(mode_16bit, lan9118_state, 2),
319         VMSTATE_END_OF_LIST()
320     }
321 };
322 
323 static void lan9118_update(lan9118_state *s)
324 {
325     int level;
326 
327     /* TODO: Implement FIFO level IRQs.  */
328     level = (s->int_sts & s->int_en) != 0;
329     if (level) {
330         s->irq_cfg |= IRQ_INT;
331     } else {
332         s->irq_cfg &= ~IRQ_INT;
333     }
334     if ((s->irq_cfg & IRQ_EN) == 0) {
335         level = 0;
336     }
337     if ((s->irq_cfg & (IRQ_TYPE | IRQ_POL)) != (IRQ_TYPE | IRQ_POL)) {
338         /* Interrupt is active low unless we're configured as
339          * active-high polarity, push-pull type.
340          */
341         level = !level;
342     }
343     qemu_set_irq(s->irq, level);
344 }
345 
346 static void lan9118_mac_changed(lan9118_state *s)
347 {
348     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
349 }
350 
351 static void lan9118_reload_eeprom(lan9118_state *s)
352 {
353     int i;
354     if (s->eeprom[0] != 0xa5) {
355         s->e2p_cmd &= ~0x10;
356         DPRINTF("MACADDR load failed\n");
357         return;
358     }
359     for (i = 0; i < 6; i++) {
360         s->conf.macaddr.a[i] = s->eeprom[i + 1];
361     }
362     s->e2p_cmd |= 0x10;
363     DPRINTF("MACADDR loaded from eeprom\n");
364     lan9118_mac_changed(s);
365 }
366 
367 static void phy_update_irq(lan9118_state *s)
368 {
369     if (s->phy_int & s->phy_int_mask) {
370         s->int_sts |= PHY_INT;
371     } else {
372         s->int_sts &= ~PHY_INT;
373     }
374     lan9118_update(s);
375 }
376 
377 static void phy_update_link(lan9118_state *s)
378 {
379     /* Autonegotiation status mirrors link status.  */
380     if (qemu_get_queue(s->nic)->link_down) {
381         s->phy_status &= ~0x0024;
382         s->phy_int |= PHY_INT_DOWN;
383     } else {
384         s->phy_status |= 0x0024;
385         s->phy_int |= PHY_INT_ENERGYON;
386         s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
387     }
388     phy_update_irq(s);
389 }
390 
391 static void lan9118_set_link(NetClientState *nc)
392 {
393     phy_update_link(qemu_get_nic_opaque(nc));
394 }
395 
396 static void phy_reset(lan9118_state *s)
397 {
398     s->phy_status = 0x7809;
399     s->phy_control = 0x3000;
400     s->phy_advertise = 0x01e1;
401     s->phy_int_mask = 0;
402     s->phy_int = 0;
403     phy_update_link(s);
404 }
405 
406 static void lan9118_reset(DeviceState *d)
407 {
408     lan9118_state *s = LAN9118(d);
409 
410     s->irq_cfg &= (IRQ_TYPE | IRQ_POL);
411     s->int_sts = 0;
412     s->int_en = 0;
413     s->fifo_int = 0x48000000;
414     s->rx_cfg = 0;
415     s->tx_cfg = 0;
416     s->hw_cfg = s->mode_16bit ? 0x00050000 : 0x00050004;
417     s->pmt_ctrl &= 0x45;
418     s->gpio_cfg = 0;
419     s->txp->fifo_used = 0;
420     s->txp->state = TX_IDLE;
421     s->txp->cmd_a = 0xffffffffu;
422     s->txp->cmd_b = 0xffffffffu;
423     s->txp->len = 0;
424     s->txp->fifo_used = 0;
425     s->tx_fifo_size = 4608;
426     s->tx_status_fifo_used = 0;
427     s->rx_status_fifo_size = 704;
428     s->rx_fifo_size = 2640;
429     s->rx_fifo_used = 0;
430     s->rx_status_fifo_size = 176;
431     s->rx_status_fifo_used = 0;
432     s->rxp_offset = 0;
433     s->rxp_size = 0;
434     s->rxp_pad = 0;
435     s->rx_packet_size_tail = s->rx_packet_size_head;
436     s->rx_packet_size[s->rx_packet_size_head] = 0;
437     s->mac_cmd = 0;
438     s->mac_data = 0;
439     s->afc_cfg = 0;
440     s->e2p_cmd = 0;
441     s->e2p_data = 0;
442     s->free_timer_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40;
443 
444     ptimer_stop(s->timer);
445     ptimer_set_count(s->timer, 0xffff);
446     s->gpt_cfg = 0xffff;
447 
448     s->mac_cr = MAC_CR_PRMS;
449     s->mac_hashh = 0;
450     s->mac_hashl = 0;
451     s->mac_mii_acc = 0;
452     s->mac_mii_data = 0;
453     s->mac_flow = 0;
454 
455     s->read_word_n = 0;
456     s->write_word_n = 0;
457 
458     phy_reset(s);
459 
460     s->eeprom_writable = 0;
461     lan9118_reload_eeprom(s);
462 }
463 
464 static int lan9118_can_receive(NetClientState *nc)
465 {
466     return 1;
467 }
468 
469 static void rx_fifo_push(lan9118_state *s, uint32_t val)
470 {
471     int fifo_pos;
472     fifo_pos = s->rx_fifo_head + s->rx_fifo_used;
473     if (fifo_pos >= s->rx_fifo_size)
474       fifo_pos -= s->rx_fifo_size;
475     s->rx_fifo[fifo_pos] = val;
476     s->rx_fifo_used++;
477 }
478 
479 /* Return nonzero if the packet is accepted by the filter.  */
480 static int lan9118_filter(lan9118_state *s, const uint8_t *addr)
481 {
482     int multicast;
483     uint32_t hash;
484 
485     if (s->mac_cr & MAC_CR_PRMS) {
486         return 1;
487     }
488     if (addr[0] == 0xff && addr[1] == 0xff && addr[2] == 0xff &&
489         addr[3] == 0xff && addr[4] == 0xff && addr[5] == 0xff) {
490         return (s->mac_cr & MAC_CR_BCAST) == 0;
491     }
492 
493     multicast = addr[0] & 1;
494     if (multicast &&s->mac_cr & MAC_CR_MCPAS) {
495         return 1;
496     }
497     if (multicast ? (s->mac_cr & MAC_CR_HPFILT) == 0
498                   : (s->mac_cr & MAC_CR_HO) == 0) {
499         /* Exact matching.  */
500         hash = memcmp(addr, s->conf.macaddr.a, 6);
501         if (s->mac_cr & MAC_CR_INVFILT) {
502             return hash != 0;
503         } else {
504             return hash == 0;
505         }
506     } else {
507         /* Hash matching  */
508         hash = compute_mcast_idx(addr);
509         if (hash & 0x20) {
510             return (s->mac_hashh >> (hash & 0x1f)) & 1;
511         } else {
512             return (s->mac_hashl >> (hash & 0x1f)) & 1;
513         }
514     }
515 }
516 
517 static ssize_t lan9118_receive(NetClientState *nc, const uint8_t *buf,
518                                size_t size)
519 {
520     lan9118_state *s = qemu_get_nic_opaque(nc);
521     int fifo_len;
522     int offset;
523     int src_pos;
524     int n;
525     int filter;
526     uint32_t val;
527     uint32_t crc;
528     uint32_t status;
529 
530     if ((s->mac_cr & MAC_CR_RXEN) == 0) {
531         return -1;
532     }
533 
534     if (size >= 2048 || size < 14) {
535         return -1;
536     }
537 
538     /* TODO: Implement FIFO overflow notification.  */
539     if (s->rx_status_fifo_used == s->rx_status_fifo_size) {
540         return -1;
541     }
542 
543     filter = lan9118_filter(s, buf);
544     if (!filter && (s->mac_cr & MAC_CR_RXALL) == 0) {
545         return size;
546     }
547 
548     offset = (s->rx_cfg >> 8) & 0x1f;
549     n = offset & 3;
550     fifo_len = (size + n + 3) >> 2;
551     /* Add a word for the CRC.  */
552     fifo_len++;
553     if (s->rx_fifo_size - s->rx_fifo_used < fifo_len) {
554         return -1;
555     }
556 
557     DPRINTF("Got packet len:%d fifo:%d filter:%s\n",
558             (int)size, fifo_len, filter ? "pass" : "fail");
559     val = 0;
560     crc = bswap32(crc32(~0, buf, size));
561     for (src_pos = 0; src_pos < size; src_pos++) {
562         val = (val >> 8) | ((uint32_t)buf[src_pos] << 24);
563         n++;
564         if (n == 4) {
565             n = 0;
566             rx_fifo_push(s, val);
567             val = 0;
568         }
569     }
570     if (n) {
571         val >>= ((4 - n) * 8);
572         val |= crc << (n * 8);
573         rx_fifo_push(s, val);
574         val = crc >> ((4 - n) * 8);
575         rx_fifo_push(s, val);
576     } else {
577         rx_fifo_push(s, crc);
578     }
579     n = s->rx_status_fifo_head + s->rx_status_fifo_used;
580     if (n >= s->rx_status_fifo_size) {
581         n -= s->rx_status_fifo_size;
582     }
583     s->rx_packet_size[s->rx_packet_size_tail] = fifo_len;
584     s->rx_packet_size_tail = (s->rx_packet_size_tail + 1023) & 1023;
585     s->rx_status_fifo_used++;
586 
587     status = (size + 4) << 16;
588     if (buf[0] == 0xff && buf[1] == 0xff && buf[2] == 0xff &&
589         buf[3] == 0xff && buf[4] == 0xff && buf[5] == 0xff) {
590         status |= 0x00002000;
591     } else if (buf[0] & 1) {
592         status |= 0x00000400;
593     }
594     if (!filter) {
595         status |= 0x40000000;
596     }
597     s->rx_status_fifo[n] = status;
598 
599     if (s->rx_status_fifo_used > (s->fifo_int & 0xff)) {
600         s->int_sts |= RSFL_INT;
601     }
602     lan9118_update(s);
603 
604     return size;
605 }
606 
607 static uint32_t rx_fifo_pop(lan9118_state *s)
608 {
609     int n;
610     uint32_t val;
611 
612     if (s->rxp_size == 0 && s->rxp_pad == 0) {
613         s->rxp_size = s->rx_packet_size[s->rx_packet_size_head];
614         s->rx_packet_size[s->rx_packet_size_head] = 0;
615         if (s->rxp_size != 0) {
616             s->rx_packet_size_head = (s->rx_packet_size_head + 1023) & 1023;
617             s->rxp_offset = (s->rx_cfg >> 10) & 7;
618             n = s->rxp_offset + s->rxp_size;
619             switch (s->rx_cfg >> 30) {
620             case 1:
621                 n = (-n) & 3;
622                 break;
623             case 2:
624                 n = (-n) & 7;
625                 break;
626             default:
627                 n = 0;
628                 break;
629             }
630             s->rxp_pad = n;
631             DPRINTF("Pop packet size:%d offset:%d pad: %d\n",
632                     s->rxp_size, s->rxp_offset, s->rxp_pad);
633         }
634     }
635     if (s->rxp_offset > 0) {
636         s->rxp_offset--;
637         val = 0;
638     } else if (s->rxp_size > 0) {
639         s->rxp_size--;
640         val = s->rx_fifo[s->rx_fifo_head++];
641         if (s->rx_fifo_head >= s->rx_fifo_size) {
642             s->rx_fifo_head -= s->rx_fifo_size;
643         }
644         s->rx_fifo_used--;
645     } else if (s->rxp_pad > 0) {
646         s->rxp_pad--;
647         val =  0;
648     } else {
649         DPRINTF("RX underflow\n");
650         s->int_sts |= RXE_INT;
651         val =  0;
652     }
653     lan9118_update(s);
654     return val;
655 }
656 
657 static void do_tx_packet(lan9118_state *s)
658 {
659     int n;
660     uint32_t status;
661 
662     /* FIXME: Honor TX disable, and allow queueing of packets.  */
663     if (s->phy_control & 0x4000)  {
664         /* This assumes the receive routine doesn't touch the VLANClient.  */
665         lan9118_receive(qemu_get_queue(s->nic), s->txp->data, s->txp->len);
666     } else {
667         qemu_send_packet(qemu_get_queue(s->nic), s->txp->data, s->txp->len);
668     }
669     s->txp->fifo_used = 0;
670 
671     if (s->tx_status_fifo_used == 512) {
672         /* Status FIFO full */
673         return;
674     }
675     /* Add entry to status FIFO.  */
676     status = s->txp->cmd_b & 0xffff0000u;
677     DPRINTF("Sent packet tag:%04x len %d\n", status >> 16, s->txp->len);
678     n = (s->tx_status_fifo_head + s->tx_status_fifo_used) & 511;
679     s->tx_status_fifo[n] = status;
680     s->tx_status_fifo_used++;
681     if (s->tx_status_fifo_used == 512) {
682         s->int_sts |= TSFF_INT;
683         /* TODO: Stop transmission.  */
684     }
685 }
686 
687 static uint32_t rx_status_fifo_pop(lan9118_state *s)
688 {
689     uint32_t val;
690 
691     val = s->rx_status_fifo[s->rx_status_fifo_head];
692     if (s->rx_status_fifo_used != 0) {
693         s->rx_status_fifo_used--;
694         s->rx_status_fifo_head++;
695         if (s->rx_status_fifo_head >= s->rx_status_fifo_size) {
696             s->rx_status_fifo_head -= s->rx_status_fifo_size;
697         }
698         /* ??? What value should be returned when the FIFO is empty?  */
699         DPRINTF("RX status pop 0x%08x\n", val);
700     }
701     return val;
702 }
703 
704 static uint32_t tx_status_fifo_pop(lan9118_state *s)
705 {
706     uint32_t val;
707 
708     val = s->tx_status_fifo[s->tx_status_fifo_head];
709     if (s->tx_status_fifo_used != 0) {
710         s->tx_status_fifo_used--;
711         s->tx_status_fifo_head = (s->tx_status_fifo_head + 1) & 511;
712         /* ??? What value should be returned when the FIFO is empty?  */
713     }
714     return val;
715 }
716 
717 static void tx_fifo_push(lan9118_state *s, uint32_t val)
718 {
719     int n;
720 
721     if (s->txp->fifo_used == s->tx_fifo_size) {
722         s->int_sts |= TDFO_INT;
723         return;
724     }
725     switch (s->txp->state) {
726     case TX_IDLE:
727         s->txp->cmd_a = val & 0x831f37ff;
728         s->txp->fifo_used++;
729         s->txp->state = TX_B;
730         break;
731     case TX_B:
732         if (s->txp->cmd_a & 0x2000) {
733             /* First segment */
734             s->txp->cmd_b = val;
735             s->txp->fifo_used++;
736             s->txp->buffer_size = s->txp->cmd_a & 0x7ff;
737             s->txp->offset = (s->txp->cmd_a >> 16) & 0x1f;
738             /* End alignment does not include command words.  */
739             n = (s->txp->buffer_size + s->txp->offset + 3) >> 2;
740             switch ((n >> 24) & 3) {
741             case 1:
742                 n = (-n) & 3;
743                 break;
744             case 2:
745                 n = (-n) & 7;
746                 break;
747             default:
748                 n = 0;
749             }
750             s->txp->pad = n;
751             s->txp->len = 0;
752         }
753         DPRINTF("Block len:%d offset:%d pad:%d cmd %08x\n",
754                 s->txp->buffer_size, s->txp->offset, s->txp->pad,
755                 s->txp->cmd_a);
756         s->txp->state = TX_DATA;
757         break;
758     case TX_DATA:
759         if (s->txp->offset >= 4) {
760             s->txp->offset -= 4;
761             break;
762         }
763         if (s->txp->buffer_size <= 0 && s->txp->pad != 0) {
764             s->txp->pad--;
765         } else {
766             n = 4;
767             while (s->txp->offset) {
768                 val >>= 8;
769                 n--;
770                 s->txp->offset--;
771             }
772             /* Documentation is somewhat unclear on the ordering of bytes
773                in FIFO words.  Empirical results show it to be little-endian.
774                */
775             /* TODO: FIFO overflow checking.  */
776             while (n--) {
777                 s->txp->data[s->txp->len] = val & 0xff;
778                 s->txp->len++;
779                 val >>= 8;
780                 s->txp->buffer_size--;
781             }
782             s->txp->fifo_used++;
783         }
784         if (s->txp->buffer_size <= 0 && s->txp->pad == 0) {
785             if (s->txp->cmd_a & 0x1000) {
786                 do_tx_packet(s);
787             }
788             if (s->txp->cmd_a & 0x80000000) {
789                 s->int_sts |= TX_IOC_INT;
790             }
791             s->txp->state = TX_IDLE;
792         }
793         break;
794     }
795 }
796 
797 static uint32_t do_phy_read(lan9118_state *s, int reg)
798 {
799     uint32_t val;
800 
801     switch (reg) {
802     case 0: /* Basic Control */
803         return s->phy_control;
804     case 1: /* Basic Status */
805         return s->phy_status;
806     case 2: /* ID1 */
807         return 0x0007;
808     case 3: /* ID2 */
809         return 0xc0d1;
810     case 4: /* Auto-neg advertisement */
811         return s->phy_advertise;
812     case 5: /* Auto-neg Link Partner Ability */
813         return 0x0f71;
814     case 6: /* Auto-neg Expansion */
815         return 1;
816         /* TODO 17, 18, 27, 29, 30, 31 */
817     case 29: /* Interrupt source.  */
818         val = s->phy_int;
819         s->phy_int = 0;
820         phy_update_irq(s);
821         return val;
822     case 30: /* Interrupt mask */
823         return s->phy_int_mask;
824     default:
825         BADF("PHY read reg %d\n", reg);
826         return 0;
827     }
828 }
829 
830 static void do_phy_write(lan9118_state *s, int reg, uint32_t val)
831 {
832     switch (reg) {
833     case 0: /* Basic Control */
834         if (val & 0x8000) {
835             phy_reset(s);
836             break;
837         }
838         s->phy_control = val & 0x7980;
839         /* Complete autonegotiation immediately.  */
840         if (val & 0x1000) {
841             s->phy_status |= 0x0020;
842         }
843         break;
844     case 4: /* Auto-neg advertisement */
845         s->phy_advertise = (val & 0x2d7f) | 0x80;
846         break;
847         /* TODO 17, 18, 27, 31 */
848     case 30: /* Interrupt mask */
849         s->phy_int_mask = val & 0xff;
850         phy_update_irq(s);
851         break;
852     default:
853         BADF("PHY write reg %d = 0x%04x\n", reg, val);
854     }
855 }
856 
857 static void do_mac_write(lan9118_state *s, int reg, uint32_t val)
858 {
859     switch (reg) {
860     case MAC_CR:
861         if ((s->mac_cr & MAC_CR_RXEN) != 0 && (val & MAC_CR_RXEN) == 0) {
862             s->int_sts |= RXSTOP_INT;
863         }
864         s->mac_cr = val & ~MAC_CR_RESERVED;
865         DPRINTF("MAC_CR: %08x\n", val);
866         break;
867     case MAC_ADDRH:
868         s->conf.macaddr.a[4] = val & 0xff;
869         s->conf.macaddr.a[5] = (val >> 8) & 0xff;
870         lan9118_mac_changed(s);
871         break;
872     case MAC_ADDRL:
873         s->conf.macaddr.a[0] = val & 0xff;
874         s->conf.macaddr.a[1] = (val >> 8) & 0xff;
875         s->conf.macaddr.a[2] = (val >> 16) & 0xff;
876         s->conf.macaddr.a[3] = (val >> 24) & 0xff;
877         lan9118_mac_changed(s);
878         break;
879     case MAC_HASHH:
880         s->mac_hashh = val;
881         break;
882     case MAC_HASHL:
883         s->mac_hashl = val;
884         break;
885     case MAC_MII_ACC:
886         s->mac_mii_acc = val & 0xffc2;
887         if (val & 2) {
888             DPRINTF("PHY write %d = 0x%04x\n",
889                     (val >> 6) & 0x1f, s->mac_mii_data);
890             do_phy_write(s, (val >> 6) & 0x1f, s->mac_mii_data);
891         } else {
892             s->mac_mii_data = do_phy_read(s, (val >> 6) & 0x1f);
893             DPRINTF("PHY read %d = 0x%04x\n",
894                     (val >> 6) & 0x1f, s->mac_mii_data);
895         }
896         break;
897     case MAC_MII_DATA:
898         s->mac_mii_data = val & 0xffff;
899         break;
900     case MAC_FLOW:
901         s->mac_flow = val & 0xffff0000;
902         break;
903     case MAC_VLAN1:
904         /* Writing to this register changes a condition for
905          * FrameTooLong bit in rx_status.  Since we do not set
906          * FrameTooLong anyway, just ignore write to this.
907          */
908         break;
909     default:
910         hw_error("lan9118: Unimplemented MAC register write: %d = 0x%x\n",
911                  s->mac_cmd & 0xf, val);
912     }
913 }
914 
915 static uint32_t do_mac_read(lan9118_state *s, int reg)
916 {
917     switch (reg) {
918     case MAC_CR:
919         return s->mac_cr;
920     case MAC_ADDRH:
921         return s->conf.macaddr.a[4] | (s->conf.macaddr.a[5] << 8);
922     case MAC_ADDRL:
923         return s->conf.macaddr.a[0] | (s->conf.macaddr.a[1] << 8)
924                | (s->conf.macaddr.a[2] << 16) | (s->conf.macaddr.a[3] << 24);
925     case MAC_HASHH:
926         return s->mac_hashh;
927         break;
928     case MAC_HASHL:
929         return s->mac_hashl;
930         break;
931     case MAC_MII_ACC:
932         return s->mac_mii_acc;
933     case MAC_MII_DATA:
934         return s->mac_mii_data;
935     case MAC_FLOW:
936         return s->mac_flow;
937     default:
938         hw_error("lan9118: Unimplemented MAC register read: %d\n",
939                  s->mac_cmd & 0xf);
940     }
941 }
942 
943 static void lan9118_eeprom_cmd(lan9118_state *s, int cmd, int addr)
944 {
945     s->e2p_cmd = (s->e2p_cmd & 0x10) | (cmd << 28) | addr;
946     switch (cmd) {
947     case 0:
948         s->e2p_data = s->eeprom[addr];
949         DPRINTF("EEPROM Read %d = 0x%02x\n", addr, s->e2p_data);
950         break;
951     case 1:
952         s->eeprom_writable = 0;
953         DPRINTF("EEPROM Write Disable\n");
954         break;
955     case 2: /* EWEN */
956         s->eeprom_writable = 1;
957         DPRINTF("EEPROM Write Enable\n");
958         break;
959     case 3: /* WRITE */
960         if (s->eeprom_writable) {
961             s->eeprom[addr] &= s->e2p_data;
962             DPRINTF("EEPROM Write %d = 0x%02x\n", addr, s->e2p_data);
963         } else {
964             DPRINTF("EEPROM Write %d (ignored)\n", addr);
965         }
966         break;
967     case 4: /* WRAL */
968         if (s->eeprom_writable) {
969             for (addr = 0; addr < 128; addr++) {
970                 s->eeprom[addr] &= s->e2p_data;
971             }
972             DPRINTF("EEPROM Write All 0x%02x\n", s->e2p_data);
973         } else {
974             DPRINTF("EEPROM Write All (ignored)\n");
975         }
976         break;
977     case 5: /* ERASE */
978         if (s->eeprom_writable) {
979             s->eeprom[addr] = 0xff;
980             DPRINTF("EEPROM Erase %d\n", addr);
981         } else {
982             DPRINTF("EEPROM Erase %d (ignored)\n", addr);
983         }
984         break;
985     case 6: /* ERAL */
986         if (s->eeprom_writable) {
987             memset(s->eeprom, 0xff, 128);
988             DPRINTF("EEPROM Erase All\n");
989         } else {
990             DPRINTF("EEPROM Erase All (ignored)\n");
991         }
992         break;
993     case 7: /* RELOAD */
994         lan9118_reload_eeprom(s);
995         break;
996     }
997 }
998 
999 static void lan9118_tick(void *opaque)
1000 {
1001     lan9118_state *s = (lan9118_state *)opaque;
1002     if (s->int_en & GPT_INT) {
1003         s->int_sts |= GPT_INT;
1004     }
1005     lan9118_update(s);
1006 }
1007 
1008 static void lan9118_writel(void *opaque, hwaddr offset,
1009                            uint64_t val, unsigned size)
1010 {
1011     lan9118_state *s = (lan9118_state *)opaque;
1012     offset &= 0xff;
1013 
1014     //DPRINTF("Write reg 0x%02x = 0x%08x\n", (int)offset, val);
1015     if (offset >= 0x20 && offset < 0x40) {
1016         /* TX FIFO */
1017         tx_fifo_push(s, val);
1018         return;
1019     }
1020     switch (offset) {
1021     case CSR_IRQ_CFG:
1022         /* TODO: Implement interrupt deassertion intervals.  */
1023         val &= (IRQ_EN | IRQ_POL | IRQ_TYPE);
1024         s->irq_cfg = (s->irq_cfg & IRQ_INT) | val;
1025         break;
1026     case CSR_INT_STS:
1027         s->int_sts &= ~val;
1028         break;
1029     case CSR_INT_EN:
1030         s->int_en = val & ~RESERVED_INT;
1031         s->int_sts |= val & SW_INT;
1032         break;
1033     case CSR_FIFO_INT:
1034         DPRINTF("FIFO INT levels %08x\n", val);
1035         s->fifo_int = val;
1036         break;
1037     case CSR_RX_CFG:
1038         if (val & 0x8000) {
1039             /* RX_DUMP */
1040             s->rx_fifo_used = 0;
1041             s->rx_status_fifo_used = 0;
1042             s->rx_packet_size_tail = s->rx_packet_size_head;
1043             s->rx_packet_size[s->rx_packet_size_head] = 0;
1044         }
1045         s->rx_cfg = val & 0xcfff1ff0;
1046         break;
1047     case CSR_TX_CFG:
1048         if (val & 0x8000) {
1049             s->tx_status_fifo_used = 0;
1050         }
1051         if (val & 0x4000) {
1052             s->txp->state = TX_IDLE;
1053             s->txp->fifo_used = 0;
1054             s->txp->cmd_a = 0xffffffff;
1055         }
1056         s->tx_cfg = val & 6;
1057         break;
1058     case CSR_HW_CFG:
1059         if (val & 1) {
1060             /* SRST */
1061             lan9118_reset(DEVICE(s));
1062         } else {
1063             s->hw_cfg = (val & 0x003f300) | (s->hw_cfg & 0x4);
1064         }
1065         break;
1066     case CSR_RX_DP_CTRL:
1067         if (val & 0x80000000) {
1068             /* Skip forward to next packet.  */
1069             s->rxp_pad = 0;
1070             s->rxp_offset = 0;
1071             if (s->rxp_size == 0) {
1072                 /* Pop a word to start the next packet.  */
1073                 rx_fifo_pop(s);
1074                 s->rxp_pad = 0;
1075                 s->rxp_offset = 0;
1076             }
1077             s->rx_fifo_head += s->rxp_size;
1078             if (s->rx_fifo_head >= s->rx_fifo_size) {
1079                 s->rx_fifo_head -= s->rx_fifo_size;
1080             }
1081         }
1082         break;
1083     case CSR_PMT_CTRL:
1084         if (val & 0x400) {
1085             phy_reset(s);
1086         }
1087         s->pmt_ctrl &= ~0x34e;
1088         s->pmt_ctrl |= (val & 0x34e);
1089         break;
1090     case CSR_GPIO_CFG:
1091         /* Probably just enabling LEDs.  */
1092         s->gpio_cfg = val & 0x7777071f;
1093         break;
1094     case CSR_GPT_CFG:
1095         if ((s->gpt_cfg ^ val) & GPT_TIMER_EN) {
1096             if (val & GPT_TIMER_EN) {
1097                 ptimer_set_count(s->timer, val & 0xffff);
1098                 ptimer_run(s->timer, 0);
1099             } else {
1100                 ptimer_stop(s->timer);
1101                 ptimer_set_count(s->timer, 0xffff);
1102             }
1103         }
1104         s->gpt_cfg = val & (GPT_TIMER_EN | 0xffff);
1105         break;
1106     case CSR_WORD_SWAP:
1107         /* Ignored because we're in 32-bit mode.  */
1108         s->word_swap = val;
1109         break;
1110     case CSR_MAC_CSR_CMD:
1111         s->mac_cmd = val & 0x4000000f;
1112         if (val & 0x80000000) {
1113             if (val & 0x40000000) {
1114                 s->mac_data = do_mac_read(s, val & 0xf);
1115                 DPRINTF("MAC read %d = 0x%08x\n", val & 0xf, s->mac_data);
1116             } else {
1117                 DPRINTF("MAC write %d = 0x%08x\n", val & 0xf, s->mac_data);
1118                 do_mac_write(s, val & 0xf, s->mac_data);
1119             }
1120         }
1121         break;
1122     case CSR_MAC_CSR_DATA:
1123         s->mac_data = val;
1124         break;
1125     case CSR_AFC_CFG:
1126         s->afc_cfg = val & 0x00ffffff;
1127         break;
1128     case CSR_E2P_CMD:
1129         lan9118_eeprom_cmd(s, (val >> 28) & 7, val & 0x7f);
1130         break;
1131     case CSR_E2P_DATA:
1132         s->e2p_data = val & 0xff;
1133         break;
1134 
1135     default:
1136         hw_error("lan9118_write: Bad reg 0x%x = %x\n", (int)offset, (int)val);
1137         break;
1138     }
1139     lan9118_update(s);
1140 }
1141 
1142 static void lan9118_writew(void *opaque, hwaddr offset,
1143                            uint32_t val)
1144 {
1145     lan9118_state *s = (lan9118_state *)opaque;
1146     offset &= 0xff;
1147 
1148     if (s->write_word_prev_offset != (offset & ~0x3)) {
1149         /* New offset, reset word counter */
1150         s->write_word_n = 0;
1151         s->write_word_prev_offset = offset & ~0x3;
1152     }
1153 
1154     if (offset & 0x2) {
1155         s->write_word_h = val;
1156     } else {
1157         s->write_word_l = val;
1158     }
1159 
1160     //DPRINTF("Writew reg 0x%02x = 0x%08x\n", (int)offset, val);
1161     s->write_word_n++;
1162     if (s->write_word_n == 2) {
1163         s->write_word_n = 0;
1164         lan9118_writel(s, offset & ~3, s->write_word_l +
1165                 (s->write_word_h << 16), 4);
1166     }
1167 }
1168 
1169 static void lan9118_16bit_mode_write(void *opaque, hwaddr offset,
1170                                      uint64_t val, unsigned size)
1171 {
1172     switch (size) {
1173     case 2:
1174         lan9118_writew(opaque, offset, (uint32_t)val);
1175         return;
1176     case 4:
1177         lan9118_writel(opaque, offset, val, size);
1178         return;
1179     }
1180 
1181     hw_error("lan9118_write: Bad size 0x%x\n", size);
1182 }
1183 
1184 static uint64_t lan9118_readl(void *opaque, hwaddr offset,
1185                               unsigned size)
1186 {
1187     lan9118_state *s = (lan9118_state *)opaque;
1188 
1189     //DPRINTF("Read reg 0x%02x\n", (int)offset);
1190     if (offset < 0x20) {
1191         /* RX FIFO */
1192         return rx_fifo_pop(s);
1193     }
1194     switch (offset) {
1195     case 0x40:
1196         return rx_status_fifo_pop(s);
1197     case 0x44:
1198         return s->rx_status_fifo[s->tx_status_fifo_head];
1199     case 0x48:
1200         return tx_status_fifo_pop(s);
1201     case 0x4c:
1202         return s->tx_status_fifo[s->tx_status_fifo_head];
1203     case CSR_ID_REV:
1204         return 0x01180001;
1205     case CSR_IRQ_CFG:
1206         return s->irq_cfg;
1207     case CSR_INT_STS:
1208         return s->int_sts;
1209     case CSR_INT_EN:
1210         return s->int_en;
1211     case CSR_BYTE_TEST:
1212         return 0x87654321;
1213     case CSR_FIFO_INT:
1214         return s->fifo_int;
1215     case CSR_RX_CFG:
1216         return s->rx_cfg;
1217     case CSR_TX_CFG:
1218         return s->tx_cfg;
1219     case CSR_HW_CFG:
1220         return s->hw_cfg;
1221     case CSR_RX_DP_CTRL:
1222         return 0;
1223     case CSR_RX_FIFO_INF:
1224         return (s->rx_status_fifo_used << 16) | (s->rx_fifo_used << 2);
1225     case CSR_TX_FIFO_INF:
1226         return (s->tx_status_fifo_used << 16)
1227                | (s->tx_fifo_size - s->txp->fifo_used);
1228     case CSR_PMT_CTRL:
1229         return s->pmt_ctrl;
1230     case CSR_GPIO_CFG:
1231         return s->gpio_cfg;
1232     case CSR_GPT_CFG:
1233         return s->gpt_cfg;
1234     case CSR_GPT_CNT:
1235         return ptimer_get_count(s->timer);
1236     case CSR_WORD_SWAP:
1237         return s->word_swap;
1238     case CSR_FREE_RUN:
1239         return (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40) - s->free_timer_start;
1240     case CSR_RX_DROP:
1241         /* TODO: Implement dropped frames counter.  */
1242         return 0;
1243     case CSR_MAC_CSR_CMD:
1244         return s->mac_cmd;
1245     case CSR_MAC_CSR_DATA:
1246         return s->mac_data;
1247     case CSR_AFC_CFG:
1248         return s->afc_cfg;
1249     case CSR_E2P_CMD:
1250         return s->e2p_cmd;
1251     case CSR_E2P_DATA:
1252         return s->e2p_data;
1253     }
1254     hw_error("lan9118_read: Bad reg 0x%x\n", (int)offset);
1255     return 0;
1256 }
1257 
1258 static uint32_t lan9118_readw(void *opaque, hwaddr offset)
1259 {
1260     lan9118_state *s = (lan9118_state *)opaque;
1261     uint32_t val;
1262 
1263     if (s->read_word_prev_offset != (offset & ~0x3)) {
1264         /* New offset, reset word counter */
1265         s->read_word_n = 0;
1266         s->read_word_prev_offset = offset & ~0x3;
1267     }
1268 
1269     s->read_word_n++;
1270     if (s->read_word_n == 1) {
1271         s->read_long = lan9118_readl(s, offset & ~3, 4);
1272     } else {
1273         s->read_word_n = 0;
1274     }
1275 
1276     if (offset & 2) {
1277         val = s->read_long >> 16;
1278     } else {
1279         val = s->read_long & 0xFFFF;
1280     }
1281 
1282     //DPRINTF("Readw reg 0x%02x, val 0x%x\n", (int)offset, val);
1283     return val;
1284 }
1285 
1286 static uint64_t lan9118_16bit_mode_read(void *opaque, hwaddr offset,
1287                                         unsigned size)
1288 {
1289     switch (size) {
1290     case 2:
1291         return lan9118_readw(opaque, offset);
1292     case 4:
1293         return lan9118_readl(opaque, offset, size);
1294     }
1295 
1296     hw_error("lan9118_read: Bad size 0x%x\n", size);
1297     return 0;
1298 }
1299 
1300 static const MemoryRegionOps lan9118_mem_ops = {
1301     .read = lan9118_readl,
1302     .write = lan9118_writel,
1303     .endianness = DEVICE_NATIVE_ENDIAN,
1304 };
1305 
1306 static const MemoryRegionOps lan9118_16bit_mem_ops = {
1307     .read = lan9118_16bit_mode_read,
1308     .write = lan9118_16bit_mode_write,
1309     .endianness = DEVICE_NATIVE_ENDIAN,
1310 };
1311 
1312 static void lan9118_cleanup(NetClientState *nc)
1313 {
1314     lan9118_state *s = qemu_get_nic_opaque(nc);
1315 
1316     s->nic = NULL;
1317 }
1318 
1319 static NetClientInfo net_lan9118_info = {
1320     .type = NET_CLIENT_OPTIONS_KIND_NIC,
1321     .size = sizeof(NICState),
1322     .can_receive = lan9118_can_receive,
1323     .receive = lan9118_receive,
1324     .cleanup = lan9118_cleanup,
1325     .link_status_changed = lan9118_set_link,
1326 };
1327 
1328 static int lan9118_init1(SysBusDevice *sbd)
1329 {
1330     DeviceState *dev = DEVICE(sbd);
1331     lan9118_state *s = LAN9118(dev);
1332     QEMUBH *bh;
1333     int i;
1334     const MemoryRegionOps *mem_ops =
1335             s->mode_16bit ? &lan9118_16bit_mem_ops : &lan9118_mem_ops;
1336 
1337     memory_region_init_io(&s->mmio, OBJECT(dev), mem_ops, s,
1338                           "lan9118-mmio", 0x100);
1339     sysbus_init_mmio(sbd, &s->mmio);
1340     sysbus_init_irq(sbd, &s->irq);
1341     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1342 
1343     s->nic = qemu_new_nic(&net_lan9118_info, &s->conf,
1344                           object_get_typename(OBJECT(dev)), dev->id, s);
1345     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1346     s->eeprom[0] = 0xa5;
1347     for (i = 0; i < 6; i++) {
1348         s->eeprom[i + 1] = s->conf.macaddr.a[i];
1349     }
1350     s->pmt_ctrl = 1;
1351     s->txp = &s->tx_packet;
1352 
1353     bh = qemu_bh_new(lan9118_tick, s);
1354     s->timer = ptimer_init(bh);
1355     ptimer_set_freq(s->timer, 10000);
1356     ptimer_set_limit(s->timer, 0xffff, 1);
1357 
1358     return 0;
1359 }
1360 
1361 static Property lan9118_properties[] = {
1362     DEFINE_NIC_PROPERTIES(lan9118_state, conf),
1363     DEFINE_PROP_UINT32("mode_16bit", lan9118_state, mode_16bit, 0),
1364     DEFINE_PROP_END_OF_LIST(),
1365 };
1366 
1367 static void lan9118_class_init(ObjectClass *klass, void *data)
1368 {
1369     DeviceClass *dc = DEVICE_CLASS(klass);
1370     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1371 
1372     k->init = lan9118_init1;
1373     dc->reset = lan9118_reset;
1374     dc->props = lan9118_properties;
1375     dc->vmsd = &vmstate_lan9118;
1376 }
1377 
1378 static const TypeInfo lan9118_info = {
1379     .name          = TYPE_LAN9118,
1380     .parent        = TYPE_SYS_BUS_DEVICE,
1381     .instance_size = sizeof(lan9118_state),
1382     .class_init    = lan9118_class_init,
1383 };
1384 
1385 static void lan9118_register_types(void)
1386 {
1387     type_register_static(&lan9118_info);
1388 }
1389 
1390 /* Legacy helper function.  Should go away when machine config files are
1391    implemented.  */
1392 void lan9118_init(NICInfo *nd, uint32_t base, qemu_irq irq)
1393 {
1394     DeviceState *dev;
1395     SysBusDevice *s;
1396 
1397     qemu_check_nic_model(nd, "lan9118");
1398     dev = qdev_create(NULL, TYPE_LAN9118);
1399     qdev_set_nic_properties(dev, nd);
1400     qdev_init_nofail(dev);
1401     s = SYS_BUS_DEVICE(dev);
1402     sysbus_mmio_map(s, 0, base);
1403     sysbus_connect_irq(s, 0, irq);
1404 }
1405 
1406 type_init(lan9118_register_types)
1407