1 /* 2 * SMSC LAN9118 Ethernet interface emulation 3 * 4 * Copyright (c) 2009 CodeSourcery, LLC. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GNU GPL v2 8 * 9 * Contributions after 2012-01-13 are licensed under the terms of the 10 * GNU GPL, version 2 or (at your option) any later version. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "hw/sysbus.h" 15 #include "migration/vmstate.h" 16 #include "net/net.h" 17 #include "net/eth.h" 18 #include "hw/hw.h" 19 #include "hw/irq.h" 20 #include "hw/net/lan9118.h" 21 #include "hw/ptimer.h" 22 #include "hw/qdev-properties.h" 23 #include "qapi/error.h" 24 #include "qemu/log.h" 25 #include "qemu/module.h" 26 /* For crc32 */ 27 #include <zlib.h> 28 #include "qom/object.h" 29 30 //#define DEBUG_LAN9118 31 32 #ifdef DEBUG_LAN9118 33 #define DPRINTF(fmt, ...) \ 34 do { printf("lan9118: " fmt , ## __VA_ARGS__); } while (0) 35 #define BADF(fmt, ...) \ 36 do { hw_error("lan9118: error: " fmt , ## __VA_ARGS__);} while (0) 37 #else 38 #define DPRINTF(fmt, ...) do {} while(0) 39 #define BADF(fmt, ...) \ 40 do { fprintf(stderr, "lan9118: error: " fmt , ## __VA_ARGS__);} while (0) 41 #endif 42 43 /* The tx and rx fifo ports are a range of aliased 32-bit registers */ 44 #define RX_DATA_FIFO_PORT_FIRST 0x00 45 #define RX_DATA_FIFO_PORT_LAST 0x1f 46 #define TX_DATA_FIFO_PORT_FIRST 0x20 47 #define TX_DATA_FIFO_PORT_LAST 0x3f 48 49 #define RX_STATUS_FIFO_PORT 0x40 50 #define RX_STATUS_FIFO_PEEK 0x44 51 #define TX_STATUS_FIFO_PORT 0x48 52 #define TX_STATUS_FIFO_PEEK 0x4c 53 54 #define CSR_ID_REV 0x50 55 #define CSR_IRQ_CFG 0x54 56 #define CSR_INT_STS 0x58 57 #define CSR_INT_EN 0x5c 58 #define CSR_BYTE_TEST 0x64 59 #define CSR_FIFO_INT 0x68 60 #define CSR_RX_CFG 0x6c 61 #define CSR_TX_CFG 0x70 62 #define CSR_HW_CFG 0x74 63 #define CSR_RX_DP_CTRL 0x78 64 #define CSR_RX_FIFO_INF 0x7c 65 #define CSR_TX_FIFO_INF 0x80 66 #define CSR_PMT_CTRL 0x84 67 #define CSR_GPIO_CFG 0x88 68 #define CSR_GPT_CFG 0x8c 69 #define CSR_GPT_CNT 0x90 70 #define CSR_WORD_SWAP 0x98 71 #define CSR_FREE_RUN 0x9c 72 #define CSR_RX_DROP 0xa0 73 #define CSR_MAC_CSR_CMD 0xa4 74 #define CSR_MAC_CSR_DATA 0xa8 75 #define CSR_AFC_CFG 0xac 76 #define CSR_E2P_CMD 0xb0 77 #define CSR_E2P_DATA 0xb4 78 79 #define E2P_CMD_MAC_ADDR_LOADED 0x100 80 81 /* IRQ_CFG */ 82 #define IRQ_INT 0x00001000 83 #define IRQ_EN 0x00000100 84 #define IRQ_POL 0x00000010 85 #define IRQ_TYPE 0x00000001 86 87 /* INT_STS/INT_EN */ 88 #define SW_INT 0x80000000 89 #define TXSTOP_INT 0x02000000 90 #define RXSTOP_INT 0x01000000 91 #define RXDFH_INT 0x00800000 92 #define TX_IOC_INT 0x00200000 93 #define RXD_INT 0x00100000 94 #define GPT_INT 0x00080000 95 #define PHY_INT 0x00040000 96 #define PME_INT 0x00020000 97 #define TXSO_INT 0x00010000 98 #define RWT_INT 0x00008000 99 #define RXE_INT 0x00004000 100 #define TXE_INT 0x00002000 101 #define TDFU_INT 0x00000800 102 #define TDFO_INT 0x00000400 103 #define TDFA_INT 0x00000200 104 #define TSFF_INT 0x00000100 105 #define TSFL_INT 0x00000080 106 #define RXDF_INT 0x00000040 107 #define RDFL_INT 0x00000020 108 #define RSFF_INT 0x00000010 109 #define RSFL_INT 0x00000008 110 #define GPIO2_INT 0x00000004 111 #define GPIO1_INT 0x00000002 112 #define GPIO0_INT 0x00000001 113 #define RESERVED_INT 0x7c001000 114 115 #define MAC_CR 1 116 #define MAC_ADDRH 2 117 #define MAC_ADDRL 3 118 #define MAC_HASHH 4 119 #define MAC_HASHL 5 120 #define MAC_MII_ACC 6 121 #define MAC_MII_DATA 7 122 #define MAC_FLOW 8 123 #define MAC_VLAN1 9 /* TODO */ 124 #define MAC_VLAN2 10 /* TODO */ 125 #define MAC_WUFF 11 /* TODO */ 126 #define MAC_WUCSR 12 /* TODO */ 127 128 #define MAC_CR_RXALL 0x80000000 129 #define MAC_CR_RCVOWN 0x00800000 130 #define MAC_CR_LOOPBK 0x00200000 131 #define MAC_CR_FDPX 0x00100000 132 #define MAC_CR_MCPAS 0x00080000 133 #define MAC_CR_PRMS 0x00040000 134 #define MAC_CR_INVFILT 0x00020000 135 #define MAC_CR_PASSBAD 0x00010000 136 #define MAC_CR_HO 0x00008000 137 #define MAC_CR_HPFILT 0x00002000 138 #define MAC_CR_LCOLL 0x00001000 139 #define MAC_CR_BCAST 0x00000800 140 #define MAC_CR_DISRTY 0x00000400 141 #define MAC_CR_PADSTR 0x00000100 142 #define MAC_CR_BOLMT 0x000000c0 143 #define MAC_CR_DFCHK 0x00000020 144 #define MAC_CR_TXEN 0x00000008 145 #define MAC_CR_RXEN 0x00000004 146 #define MAC_CR_RESERVED 0x7f404213 147 148 #define PHY_INT_ENERGYON 0x80 149 #define PHY_INT_AUTONEG_COMPLETE 0x40 150 #define PHY_INT_FAULT 0x20 151 #define PHY_INT_DOWN 0x10 152 #define PHY_INT_AUTONEG_LP 0x08 153 #define PHY_INT_PARFAULT 0x04 154 #define PHY_INT_AUTONEG_PAGE 0x02 155 156 #define GPT_TIMER_EN 0x20000000 157 158 enum tx_state { 159 TX_IDLE, 160 TX_B, 161 TX_DATA 162 }; 163 164 typedef struct { 165 /* state is a tx_state but we can't put enums in VMStateDescriptions. */ 166 uint32_t state; 167 uint32_t cmd_a; 168 uint32_t cmd_b; 169 int32_t buffer_size; 170 int32_t offset; 171 int32_t pad; 172 int32_t fifo_used; 173 int32_t len; 174 uint8_t data[2048]; 175 } LAN9118Packet; 176 177 static const VMStateDescription vmstate_lan9118_packet = { 178 .name = "lan9118_packet", 179 .version_id = 1, 180 .minimum_version_id = 1, 181 .fields = (VMStateField[]) { 182 VMSTATE_UINT32(state, LAN9118Packet), 183 VMSTATE_UINT32(cmd_a, LAN9118Packet), 184 VMSTATE_UINT32(cmd_b, LAN9118Packet), 185 VMSTATE_INT32(buffer_size, LAN9118Packet), 186 VMSTATE_INT32(offset, LAN9118Packet), 187 VMSTATE_INT32(pad, LAN9118Packet), 188 VMSTATE_INT32(fifo_used, LAN9118Packet), 189 VMSTATE_INT32(len, LAN9118Packet), 190 VMSTATE_UINT8_ARRAY(data, LAN9118Packet, 2048), 191 VMSTATE_END_OF_LIST() 192 } 193 }; 194 195 OBJECT_DECLARE_SIMPLE_TYPE(lan9118_state, LAN9118) 196 197 struct lan9118_state { 198 SysBusDevice parent_obj; 199 200 NICState *nic; 201 NICConf conf; 202 qemu_irq irq; 203 MemoryRegion mmio; 204 ptimer_state *timer; 205 206 uint32_t irq_cfg; 207 uint32_t int_sts; 208 uint32_t int_en; 209 uint32_t fifo_int; 210 uint32_t rx_cfg; 211 uint32_t tx_cfg; 212 uint32_t hw_cfg; 213 uint32_t pmt_ctrl; 214 uint32_t gpio_cfg; 215 uint32_t gpt_cfg; 216 uint32_t word_swap; 217 uint32_t free_timer_start; 218 uint32_t mac_cmd; 219 uint32_t mac_data; 220 uint32_t afc_cfg; 221 uint32_t e2p_cmd; 222 uint32_t e2p_data; 223 224 uint32_t mac_cr; 225 uint32_t mac_hashh; 226 uint32_t mac_hashl; 227 uint32_t mac_mii_acc; 228 uint32_t mac_mii_data; 229 uint32_t mac_flow; 230 231 uint32_t phy_status; 232 uint32_t phy_control; 233 uint32_t phy_advertise; 234 uint32_t phy_int; 235 uint32_t phy_int_mask; 236 237 int32_t eeprom_writable; 238 uint8_t eeprom[128]; 239 240 int32_t tx_fifo_size; 241 LAN9118Packet *txp; 242 LAN9118Packet tx_packet; 243 244 int32_t tx_status_fifo_used; 245 int32_t tx_status_fifo_head; 246 uint32_t tx_status_fifo[512]; 247 248 int32_t rx_status_fifo_size; 249 int32_t rx_status_fifo_used; 250 int32_t rx_status_fifo_head; 251 uint32_t rx_status_fifo[896]; 252 int32_t rx_fifo_size; 253 int32_t rx_fifo_used; 254 int32_t rx_fifo_head; 255 uint32_t rx_fifo[3360]; 256 int32_t rx_packet_size_head; 257 int32_t rx_packet_size_tail; 258 int32_t rx_packet_size[1024]; 259 260 int32_t rxp_offset; 261 int32_t rxp_size; 262 int32_t rxp_pad; 263 264 uint32_t write_word_prev_offset; 265 uint32_t write_word_n; 266 uint16_t write_word_l; 267 uint16_t write_word_h; 268 uint32_t read_word_prev_offset; 269 uint32_t read_word_n; 270 uint32_t read_long; 271 272 uint32_t mode_16bit; 273 }; 274 275 static const VMStateDescription vmstate_lan9118 = { 276 .name = "lan9118", 277 .version_id = 2, 278 .minimum_version_id = 1, 279 .fields = (VMStateField[]) { 280 VMSTATE_PTIMER(timer, lan9118_state), 281 VMSTATE_UINT32(irq_cfg, lan9118_state), 282 VMSTATE_UINT32(int_sts, lan9118_state), 283 VMSTATE_UINT32(int_en, lan9118_state), 284 VMSTATE_UINT32(fifo_int, lan9118_state), 285 VMSTATE_UINT32(rx_cfg, lan9118_state), 286 VMSTATE_UINT32(tx_cfg, lan9118_state), 287 VMSTATE_UINT32(hw_cfg, lan9118_state), 288 VMSTATE_UINT32(pmt_ctrl, lan9118_state), 289 VMSTATE_UINT32(gpio_cfg, lan9118_state), 290 VMSTATE_UINT32(gpt_cfg, lan9118_state), 291 VMSTATE_UINT32(word_swap, lan9118_state), 292 VMSTATE_UINT32(free_timer_start, lan9118_state), 293 VMSTATE_UINT32(mac_cmd, lan9118_state), 294 VMSTATE_UINT32(mac_data, lan9118_state), 295 VMSTATE_UINT32(afc_cfg, lan9118_state), 296 VMSTATE_UINT32(e2p_cmd, lan9118_state), 297 VMSTATE_UINT32(e2p_data, lan9118_state), 298 VMSTATE_UINT32(mac_cr, lan9118_state), 299 VMSTATE_UINT32(mac_hashh, lan9118_state), 300 VMSTATE_UINT32(mac_hashl, lan9118_state), 301 VMSTATE_UINT32(mac_mii_acc, lan9118_state), 302 VMSTATE_UINT32(mac_mii_data, lan9118_state), 303 VMSTATE_UINT32(mac_flow, lan9118_state), 304 VMSTATE_UINT32(phy_status, lan9118_state), 305 VMSTATE_UINT32(phy_control, lan9118_state), 306 VMSTATE_UINT32(phy_advertise, lan9118_state), 307 VMSTATE_UINT32(phy_int, lan9118_state), 308 VMSTATE_UINT32(phy_int_mask, lan9118_state), 309 VMSTATE_INT32(eeprom_writable, lan9118_state), 310 VMSTATE_UINT8_ARRAY(eeprom, lan9118_state, 128), 311 VMSTATE_INT32(tx_fifo_size, lan9118_state), 312 /* txp always points at tx_packet so need not be saved */ 313 VMSTATE_STRUCT(tx_packet, lan9118_state, 0, 314 vmstate_lan9118_packet, LAN9118Packet), 315 VMSTATE_INT32(tx_status_fifo_used, lan9118_state), 316 VMSTATE_INT32(tx_status_fifo_head, lan9118_state), 317 VMSTATE_UINT32_ARRAY(tx_status_fifo, lan9118_state, 512), 318 VMSTATE_INT32(rx_status_fifo_size, lan9118_state), 319 VMSTATE_INT32(rx_status_fifo_used, lan9118_state), 320 VMSTATE_INT32(rx_status_fifo_head, lan9118_state), 321 VMSTATE_UINT32_ARRAY(rx_status_fifo, lan9118_state, 896), 322 VMSTATE_INT32(rx_fifo_size, lan9118_state), 323 VMSTATE_INT32(rx_fifo_used, lan9118_state), 324 VMSTATE_INT32(rx_fifo_head, lan9118_state), 325 VMSTATE_UINT32_ARRAY(rx_fifo, lan9118_state, 3360), 326 VMSTATE_INT32(rx_packet_size_head, lan9118_state), 327 VMSTATE_INT32(rx_packet_size_tail, lan9118_state), 328 VMSTATE_INT32_ARRAY(rx_packet_size, lan9118_state, 1024), 329 VMSTATE_INT32(rxp_offset, lan9118_state), 330 VMSTATE_INT32(rxp_size, lan9118_state), 331 VMSTATE_INT32(rxp_pad, lan9118_state), 332 VMSTATE_UINT32_V(write_word_prev_offset, lan9118_state, 2), 333 VMSTATE_UINT32_V(write_word_n, lan9118_state, 2), 334 VMSTATE_UINT16_V(write_word_l, lan9118_state, 2), 335 VMSTATE_UINT16_V(write_word_h, lan9118_state, 2), 336 VMSTATE_UINT32_V(read_word_prev_offset, lan9118_state, 2), 337 VMSTATE_UINT32_V(read_word_n, lan9118_state, 2), 338 VMSTATE_UINT32_V(read_long, lan9118_state, 2), 339 VMSTATE_UINT32_V(mode_16bit, lan9118_state, 2), 340 VMSTATE_END_OF_LIST() 341 } 342 }; 343 344 static void lan9118_update(lan9118_state *s) 345 { 346 int level; 347 348 /* TODO: Implement FIFO level IRQs. */ 349 level = (s->int_sts & s->int_en) != 0; 350 if (level) { 351 s->irq_cfg |= IRQ_INT; 352 } else { 353 s->irq_cfg &= ~IRQ_INT; 354 } 355 if ((s->irq_cfg & IRQ_EN) == 0) { 356 level = 0; 357 } 358 if ((s->irq_cfg & (IRQ_TYPE | IRQ_POL)) != (IRQ_TYPE | IRQ_POL)) { 359 /* Interrupt is active low unless we're configured as 360 * active-high polarity, push-pull type. 361 */ 362 level = !level; 363 } 364 qemu_set_irq(s->irq, level); 365 } 366 367 static void lan9118_mac_changed(lan9118_state *s) 368 { 369 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 370 } 371 372 static void lan9118_reload_eeprom(lan9118_state *s) 373 { 374 int i; 375 if (s->eeprom[0] != 0xa5) { 376 s->e2p_cmd &= ~E2P_CMD_MAC_ADDR_LOADED; 377 DPRINTF("MACADDR load failed\n"); 378 return; 379 } 380 for (i = 0; i < 6; i++) { 381 s->conf.macaddr.a[i] = s->eeprom[i + 1]; 382 } 383 s->e2p_cmd |= E2P_CMD_MAC_ADDR_LOADED; 384 DPRINTF("MACADDR loaded from eeprom\n"); 385 lan9118_mac_changed(s); 386 } 387 388 static void phy_update_irq(lan9118_state *s) 389 { 390 if (s->phy_int & s->phy_int_mask) { 391 s->int_sts |= PHY_INT; 392 } else { 393 s->int_sts &= ~PHY_INT; 394 } 395 lan9118_update(s); 396 } 397 398 static void phy_update_link(lan9118_state *s) 399 { 400 /* Autonegotiation status mirrors link status. */ 401 if (qemu_get_queue(s->nic)->link_down) { 402 s->phy_status &= ~0x0024; 403 s->phy_int |= PHY_INT_DOWN; 404 } else { 405 s->phy_status |= 0x0024; 406 s->phy_int |= PHY_INT_ENERGYON; 407 s->phy_int |= PHY_INT_AUTONEG_COMPLETE; 408 } 409 phy_update_irq(s); 410 } 411 412 static void lan9118_set_link(NetClientState *nc) 413 { 414 phy_update_link(qemu_get_nic_opaque(nc)); 415 } 416 417 static void phy_reset(lan9118_state *s) 418 { 419 s->phy_status = 0x7809; 420 s->phy_control = 0x3000; 421 s->phy_advertise = 0x01e1; 422 s->phy_int_mask = 0; 423 s->phy_int = 0; 424 phy_update_link(s); 425 } 426 427 static void lan9118_reset(DeviceState *d) 428 { 429 lan9118_state *s = LAN9118(d); 430 431 s->irq_cfg &= (IRQ_TYPE | IRQ_POL); 432 s->int_sts = 0; 433 s->int_en = 0; 434 s->fifo_int = 0x48000000; 435 s->rx_cfg = 0; 436 s->tx_cfg = 0; 437 s->hw_cfg = s->mode_16bit ? 0x00050000 : 0x00050004; 438 s->pmt_ctrl &= 0x45; 439 s->gpio_cfg = 0; 440 s->txp->fifo_used = 0; 441 s->txp->state = TX_IDLE; 442 s->txp->cmd_a = 0xffffffffu; 443 s->txp->cmd_b = 0xffffffffu; 444 s->txp->len = 0; 445 s->txp->fifo_used = 0; 446 s->tx_fifo_size = 4608; 447 s->tx_status_fifo_used = 0; 448 s->rx_status_fifo_size = 704; 449 s->rx_fifo_size = 2640; 450 s->rx_fifo_used = 0; 451 s->rx_status_fifo_size = 176; 452 s->rx_status_fifo_used = 0; 453 s->rxp_offset = 0; 454 s->rxp_size = 0; 455 s->rxp_pad = 0; 456 s->rx_packet_size_tail = s->rx_packet_size_head; 457 s->rx_packet_size[s->rx_packet_size_head] = 0; 458 s->mac_cmd = 0; 459 s->mac_data = 0; 460 s->afc_cfg = 0; 461 s->e2p_cmd = 0; 462 s->e2p_data = 0; 463 s->free_timer_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40; 464 465 ptimer_transaction_begin(s->timer); 466 ptimer_stop(s->timer); 467 ptimer_set_count(s->timer, 0xffff); 468 ptimer_transaction_commit(s->timer); 469 s->gpt_cfg = 0xffff; 470 471 s->mac_cr = MAC_CR_PRMS; 472 s->mac_hashh = 0; 473 s->mac_hashl = 0; 474 s->mac_mii_acc = 0; 475 s->mac_mii_data = 0; 476 s->mac_flow = 0; 477 478 s->read_word_n = 0; 479 s->write_word_n = 0; 480 481 phy_reset(s); 482 483 s->eeprom_writable = 0; 484 lan9118_reload_eeprom(s); 485 } 486 487 static void rx_fifo_push(lan9118_state *s, uint32_t val) 488 { 489 int fifo_pos; 490 fifo_pos = s->rx_fifo_head + s->rx_fifo_used; 491 if (fifo_pos >= s->rx_fifo_size) 492 fifo_pos -= s->rx_fifo_size; 493 s->rx_fifo[fifo_pos] = val; 494 s->rx_fifo_used++; 495 } 496 497 /* Return nonzero if the packet is accepted by the filter. */ 498 static int lan9118_filter(lan9118_state *s, const uint8_t *addr) 499 { 500 int multicast; 501 uint32_t hash; 502 503 if (s->mac_cr & MAC_CR_PRMS) { 504 return 1; 505 } 506 if (addr[0] == 0xff && addr[1] == 0xff && addr[2] == 0xff && 507 addr[3] == 0xff && addr[4] == 0xff && addr[5] == 0xff) { 508 return (s->mac_cr & MAC_CR_BCAST) == 0; 509 } 510 511 multicast = addr[0] & 1; 512 if (multicast &&s->mac_cr & MAC_CR_MCPAS) { 513 return 1; 514 } 515 if (multicast ? (s->mac_cr & MAC_CR_HPFILT) == 0 516 : (s->mac_cr & MAC_CR_HO) == 0) { 517 /* Exact matching. */ 518 hash = memcmp(addr, s->conf.macaddr.a, 6); 519 if (s->mac_cr & MAC_CR_INVFILT) { 520 return hash != 0; 521 } else { 522 return hash == 0; 523 } 524 } else { 525 /* Hash matching */ 526 hash = net_crc32(addr, ETH_ALEN) >> 26; 527 if (hash & 0x20) { 528 return (s->mac_hashh >> (hash & 0x1f)) & 1; 529 } else { 530 return (s->mac_hashl >> (hash & 0x1f)) & 1; 531 } 532 } 533 } 534 535 static ssize_t lan9118_receive(NetClientState *nc, const uint8_t *buf, 536 size_t size) 537 { 538 lan9118_state *s = qemu_get_nic_opaque(nc); 539 int fifo_len; 540 int offset; 541 int src_pos; 542 int n; 543 int filter; 544 uint32_t val; 545 uint32_t crc; 546 uint32_t status; 547 548 if ((s->mac_cr & MAC_CR_RXEN) == 0) { 549 return -1; 550 } 551 552 if (size >= 2048 || size < 14) { 553 return -1; 554 } 555 556 /* TODO: Implement FIFO overflow notification. */ 557 if (s->rx_status_fifo_used == s->rx_status_fifo_size) { 558 return -1; 559 } 560 561 filter = lan9118_filter(s, buf); 562 if (!filter && (s->mac_cr & MAC_CR_RXALL) == 0) { 563 return size; 564 } 565 566 offset = (s->rx_cfg >> 8) & 0x1f; 567 n = offset & 3; 568 fifo_len = (size + n + 3) >> 2; 569 /* Add a word for the CRC. */ 570 fifo_len++; 571 if (s->rx_fifo_size - s->rx_fifo_used < fifo_len) { 572 return -1; 573 } 574 575 DPRINTF("Got packet len:%d fifo:%d filter:%s\n", 576 (int)size, fifo_len, filter ? "pass" : "fail"); 577 val = 0; 578 crc = bswap32(crc32(~0, buf, size)); 579 for (src_pos = 0; src_pos < size; src_pos++) { 580 val = (val >> 8) | ((uint32_t)buf[src_pos] << 24); 581 n++; 582 if (n == 4) { 583 n = 0; 584 rx_fifo_push(s, val); 585 val = 0; 586 } 587 } 588 if (n) { 589 val >>= ((4 - n) * 8); 590 val |= crc << (n * 8); 591 rx_fifo_push(s, val); 592 val = crc >> ((4 - n) * 8); 593 rx_fifo_push(s, val); 594 } else { 595 rx_fifo_push(s, crc); 596 } 597 n = s->rx_status_fifo_head + s->rx_status_fifo_used; 598 if (n >= s->rx_status_fifo_size) { 599 n -= s->rx_status_fifo_size; 600 } 601 s->rx_packet_size[s->rx_packet_size_tail] = fifo_len; 602 s->rx_packet_size_tail = (s->rx_packet_size_tail + 1023) & 1023; 603 s->rx_status_fifo_used++; 604 605 status = (size + 4) << 16; 606 if (buf[0] == 0xff && buf[1] == 0xff && buf[2] == 0xff && 607 buf[3] == 0xff && buf[4] == 0xff && buf[5] == 0xff) { 608 status |= 0x00002000; 609 } else if (buf[0] & 1) { 610 status |= 0x00000400; 611 } 612 if (!filter) { 613 status |= 0x40000000; 614 } 615 s->rx_status_fifo[n] = status; 616 617 if (s->rx_status_fifo_used > (s->fifo_int & 0xff)) { 618 s->int_sts |= RSFL_INT; 619 } 620 lan9118_update(s); 621 622 return size; 623 } 624 625 static uint32_t rx_fifo_pop(lan9118_state *s) 626 { 627 int n; 628 uint32_t val; 629 630 if (s->rxp_size == 0 && s->rxp_pad == 0) { 631 s->rxp_size = s->rx_packet_size[s->rx_packet_size_head]; 632 s->rx_packet_size[s->rx_packet_size_head] = 0; 633 if (s->rxp_size != 0) { 634 s->rx_packet_size_head = (s->rx_packet_size_head + 1023) & 1023; 635 s->rxp_offset = (s->rx_cfg >> 10) & 7; 636 n = s->rxp_offset + s->rxp_size; 637 switch (s->rx_cfg >> 30) { 638 case 1: 639 n = (-n) & 3; 640 break; 641 case 2: 642 n = (-n) & 7; 643 break; 644 default: 645 n = 0; 646 break; 647 } 648 s->rxp_pad = n; 649 DPRINTF("Pop packet size:%d offset:%d pad: %d\n", 650 s->rxp_size, s->rxp_offset, s->rxp_pad); 651 } 652 } 653 if (s->rxp_offset > 0) { 654 s->rxp_offset--; 655 val = 0; 656 } else if (s->rxp_size > 0) { 657 s->rxp_size--; 658 val = s->rx_fifo[s->rx_fifo_head++]; 659 if (s->rx_fifo_head >= s->rx_fifo_size) { 660 s->rx_fifo_head -= s->rx_fifo_size; 661 } 662 s->rx_fifo_used--; 663 } else if (s->rxp_pad > 0) { 664 s->rxp_pad--; 665 val = 0; 666 } else { 667 DPRINTF("RX underflow\n"); 668 s->int_sts |= RXE_INT; 669 val = 0; 670 } 671 lan9118_update(s); 672 return val; 673 } 674 675 static void do_tx_packet(lan9118_state *s) 676 { 677 int n; 678 uint32_t status; 679 680 /* FIXME: Honor TX disable, and allow queueing of packets. */ 681 if (s->phy_control & 0x4000) { 682 /* This assumes the receive routine doesn't touch the VLANClient. */ 683 qemu_receive_packet(qemu_get_queue(s->nic), s->txp->data, s->txp->len); 684 } else { 685 qemu_send_packet(qemu_get_queue(s->nic), s->txp->data, s->txp->len); 686 } 687 s->txp->fifo_used = 0; 688 689 if (s->tx_status_fifo_used == 512) { 690 /* Status FIFO full */ 691 return; 692 } 693 /* Add entry to status FIFO. */ 694 status = s->txp->cmd_b & 0xffff0000u; 695 DPRINTF("Sent packet tag:%04x len %d\n", status >> 16, s->txp->len); 696 n = (s->tx_status_fifo_head + s->tx_status_fifo_used) & 511; 697 s->tx_status_fifo[n] = status; 698 s->tx_status_fifo_used++; 699 if (s->tx_status_fifo_used == 512) { 700 s->int_sts |= TSFF_INT; 701 /* TODO: Stop transmission. */ 702 } 703 } 704 705 static uint32_t rx_status_fifo_pop(lan9118_state *s) 706 { 707 uint32_t val; 708 709 val = s->rx_status_fifo[s->rx_status_fifo_head]; 710 if (s->rx_status_fifo_used != 0) { 711 s->rx_status_fifo_used--; 712 s->rx_status_fifo_head++; 713 if (s->rx_status_fifo_head >= s->rx_status_fifo_size) { 714 s->rx_status_fifo_head -= s->rx_status_fifo_size; 715 } 716 /* ??? What value should be returned when the FIFO is empty? */ 717 DPRINTF("RX status pop 0x%08x\n", val); 718 } 719 return val; 720 } 721 722 static uint32_t tx_status_fifo_pop(lan9118_state *s) 723 { 724 uint32_t val; 725 726 val = s->tx_status_fifo[s->tx_status_fifo_head]; 727 if (s->tx_status_fifo_used != 0) { 728 s->tx_status_fifo_used--; 729 s->tx_status_fifo_head = (s->tx_status_fifo_head + 1) & 511; 730 /* ??? What value should be returned when the FIFO is empty? */ 731 } 732 return val; 733 } 734 735 static void tx_fifo_push(lan9118_state *s, uint32_t val) 736 { 737 int n; 738 739 if (s->txp->fifo_used == s->tx_fifo_size) { 740 s->int_sts |= TDFO_INT; 741 return; 742 } 743 switch (s->txp->state) { 744 case TX_IDLE: 745 s->txp->cmd_a = val & 0x831f37ff; 746 s->txp->fifo_used++; 747 s->txp->state = TX_B; 748 s->txp->buffer_size = extract32(s->txp->cmd_a, 0, 11); 749 s->txp->offset = extract32(s->txp->cmd_a, 16, 5); 750 break; 751 case TX_B: 752 if (s->txp->cmd_a & 0x2000) { 753 /* First segment */ 754 s->txp->cmd_b = val; 755 s->txp->fifo_used++; 756 /* End alignment does not include command words. */ 757 n = (s->txp->buffer_size + s->txp->offset + 3) >> 2; 758 switch ((n >> 24) & 3) { 759 case 1: 760 n = (-n) & 3; 761 break; 762 case 2: 763 n = (-n) & 7; 764 break; 765 default: 766 n = 0; 767 } 768 s->txp->pad = n; 769 s->txp->len = 0; 770 } 771 DPRINTF("Block len:%d offset:%d pad:%d cmd %08x\n", 772 s->txp->buffer_size, s->txp->offset, s->txp->pad, 773 s->txp->cmd_a); 774 s->txp->state = TX_DATA; 775 break; 776 case TX_DATA: 777 if (s->txp->offset >= 4) { 778 s->txp->offset -= 4; 779 break; 780 } 781 if (s->txp->buffer_size <= 0 && s->txp->pad != 0) { 782 s->txp->pad--; 783 } else { 784 n = MIN(4, s->txp->buffer_size + s->txp->offset); 785 while (s->txp->offset) { 786 val >>= 8; 787 n--; 788 s->txp->offset--; 789 } 790 /* Documentation is somewhat unclear on the ordering of bytes 791 in FIFO words. Empirical results show it to be little-endian. 792 */ 793 /* TODO: FIFO overflow checking. */ 794 while (n--) { 795 s->txp->data[s->txp->len] = val & 0xff; 796 s->txp->len++; 797 val >>= 8; 798 s->txp->buffer_size--; 799 } 800 s->txp->fifo_used++; 801 } 802 if (s->txp->buffer_size <= 0 && s->txp->pad == 0) { 803 if (s->txp->cmd_a & 0x1000) { 804 do_tx_packet(s); 805 } 806 if (s->txp->cmd_a & 0x80000000) { 807 s->int_sts |= TX_IOC_INT; 808 } 809 s->txp->state = TX_IDLE; 810 } 811 break; 812 } 813 } 814 815 static uint32_t do_phy_read(lan9118_state *s, int reg) 816 { 817 uint32_t val; 818 819 switch (reg) { 820 case 0: /* Basic Control */ 821 return s->phy_control; 822 case 1: /* Basic Status */ 823 return s->phy_status; 824 case 2: /* ID1 */ 825 return 0x0007; 826 case 3: /* ID2 */ 827 return 0xc0d1; 828 case 4: /* Auto-neg advertisement */ 829 return s->phy_advertise; 830 case 5: /* Auto-neg Link Partner Ability */ 831 return 0x0f71; 832 case 6: /* Auto-neg Expansion */ 833 return 1; 834 /* TODO 17, 18, 27, 29, 30, 31 */ 835 case 29: /* Interrupt source. */ 836 val = s->phy_int; 837 s->phy_int = 0; 838 phy_update_irq(s); 839 return val; 840 case 30: /* Interrupt mask */ 841 return s->phy_int_mask; 842 default: 843 BADF("PHY read reg %d\n", reg); 844 return 0; 845 } 846 } 847 848 static void do_phy_write(lan9118_state *s, int reg, uint32_t val) 849 { 850 switch (reg) { 851 case 0: /* Basic Control */ 852 if (val & 0x8000) { 853 phy_reset(s); 854 break; 855 } 856 s->phy_control = val & 0x7980; 857 /* Complete autonegotiation immediately. */ 858 if (val & 0x1000) { 859 s->phy_status |= 0x0020; 860 } 861 break; 862 case 4: /* Auto-neg advertisement */ 863 s->phy_advertise = (val & 0x2d7f) | 0x80; 864 break; 865 /* TODO 17, 18, 27, 31 */ 866 case 30: /* Interrupt mask */ 867 s->phy_int_mask = val & 0xff; 868 phy_update_irq(s); 869 break; 870 default: 871 BADF("PHY write reg %d = 0x%04x\n", reg, val); 872 } 873 } 874 875 static void do_mac_write(lan9118_state *s, int reg, uint32_t val) 876 { 877 switch (reg) { 878 case MAC_CR: 879 if ((s->mac_cr & MAC_CR_RXEN) != 0 && (val & MAC_CR_RXEN) == 0) { 880 s->int_sts |= RXSTOP_INT; 881 } 882 s->mac_cr = val & ~MAC_CR_RESERVED; 883 DPRINTF("MAC_CR: %08x\n", val); 884 break; 885 case MAC_ADDRH: 886 s->conf.macaddr.a[4] = val & 0xff; 887 s->conf.macaddr.a[5] = (val >> 8) & 0xff; 888 lan9118_mac_changed(s); 889 break; 890 case MAC_ADDRL: 891 s->conf.macaddr.a[0] = val & 0xff; 892 s->conf.macaddr.a[1] = (val >> 8) & 0xff; 893 s->conf.macaddr.a[2] = (val >> 16) & 0xff; 894 s->conf.macaddr.a[3] = (val >> 24) & 0xff; 895 lan9118_mac_changed(s); 896 break; 897 case MAC_HASHH: 898 s->mac_hashh = val; 899 break; 900 case MAC_HASHL: 901 s->mac_hashl = val; 902 break; 903 case MAC_MII_ACC: 904 s->mac_mii_acc = val & 0xffc2; 905 if (val & 2) { 906 DPRINTF("PHY write %d = 0x%04x\n", 907 (val >> 6) & 0x1f, s->mac_mii_data); 908 do_phy_write(s, (val >> 6) & 0x1f, s->mac_mii_data); 909 } else { 910 s->mac_mii_data = do_phy_read(s, (val >> 6) & 0x1f); 911 DPRINTF("PHY read %d = 0x%04x\n", 912 (val >> 6) & 0x1f, s->mac_mii_data); 913 } 914 break; 915 case MAC_MII_DATA: 916 s->mac_mii_data = val & 0xffff; 917 break; 918 case MAC_FLOW: 919 s->mac_flow = val & 0xffff0000; 920 break; 921 case MAC_VLAN1: 922 /* Writing to this register changes a condition for 923 * FrameTooLong bit in rx_status. Since we do not set 924 * FrameTooLong anyway, just ignore write to this. 925 */ 926 break; 927 default: 928 qemu_log_mask(LOG_GUEST_ERROR, 929 "lan9118: Unimplemented MAC register write: %d = 0x%x\n", 930 s->mac_cmd & 0xf, val); 931 } 932 } 933 934 static uint32_t do_mac_read(lan9118_state *s, int reg) 935 { 936 switch (reg) { 937 case MAC_CR: 938 return s->mac_cr; 939 case MAC_ADDRH: 940 return s->conf.macaddr.a[4] | (s->conf.macaddr.a[5] << 8); 941 case MAC_ADDRL: 942 return s->conf.macaddr.a[0] | (s->conf.macaddr.a[1] << 8) 943 | (s->conf.macaddr.a[2] << 16) | (s->conf.macaddr.a[3] << 24); 944 case MAC_HASHH: 945 return s->mac_hashh; 946 case MAC_HASHL: 947 return s->mac_hashl; 948 case MAC_MII_ACC: 949 return s->mac_mii_acc; 950 case MAC_MII_DATA: 951 return s->mac_mii_data; 952 case MAC_FLOW: 953 return s->mac_flow; 954 default: 955 qemu_log_mask(LOG_GUEST_ERROR, 956 "lan9118: Unimplemented MAC register read: %d\n", 957 s->mac_cmd & 0xf); 958 return 0; 959 } 960 } 961 962 static void lan9118_eeprom_cmd(lan9118_state *s, int cmd, int addr) 963 { 964 s->e2p_cmd = (s->e2p_cmd & E2P_CMD_MAC_ADDR_LOADED) | (cmd << 28) | addr; 965 switch (cmd) { 966 case 0: 967 s->e2p_data = s->eeprom[addr]; 968 DPRINTF("EEPROM Read %d = 0x%02x\n", addr, s->e2p_data); 969 break; 970 case 1: 971 s->eeprom_writable = 0; 972 DPRINTF("EEPROM Write Disable\n"); 973 break; 974 case 2: /* EWEN */ 975 s->eeprom_writable = 1; 976 DPRINTF("EEPROM Write Enable\n"); 977 break; 978 case 3: /* WRITE */ 979 if (s->eeprom_writable) { 980 s->eeprom[addr] &= s->e2p_data; 981 DPRINTF("EEPROM Write %d = 0x%02x\n", addr, s->e2p_data); 982 } else { 983 DPRINTF("EEPROM Write %d (ignored)\n", addr); 984 } 985 break; 986 case 4: /* WRAL */ 987 if (s->eeprom_writable) { 988 for (addr = 0; addr < 128; addr++) { 989 s->eeprom[addr] &= s->e2p_data; 990 } 991 DPRINTF("EEPROM Write All 0x%02x\n", s->e2p_data); 992 } else { 993 DPRINTF("EEPROM Write All (ignored)\n"); 994 } 995 break; 996 case 5: /* ERASE */ 997 if (s->eeprom_writable) { 998 s->eeprom[addr] = 0xff; 999 DPRINTF("EEPROM Erase %d\n", addr); 1000 } else { 1001 DPRINTF("EEPROM Erase %d (ignored)\n", addr); 1002 } 1003 break; 1004 case 6: /* ERAL */ 1005 if (s->eeprom_writable) { 1006 memset(s->eeprom, 0xff, 128); 1007 DPRINTF("EEPROM Erase All\n"); 1008 } else { 1009 DPRINTF("EEPROM Erase All (ignored)\n"); 1010 } 1011 break; 1012 case 7: /* RELOAD */ 1013 lan9118_reload_eeprom(s); 1014 break; 1015 } 1016 } 1017 1018 static void lan9118_tick(void *opaque) 1019 { 1020 lan9118_state *s = (lan9118_state *)opaque; 1021 if (s->int_en & GPT_INT) { 1022 s->int_sts |= GPT_INT; 1023 } 1024 lan9118_update(s); 1025 } 1026 1027 static void lan9118_writel(void *opaque, hwaddr offset, 1028 uint64_t val, unsigned size) 1029 { 1030 lan9118_state *s = (lan9118_state *)opaque; 1031 offset &= 0xff; 1032 1033 //DPRINTF("Write reg 0x%02x = 0x%08x\n", (int)offset, val); 1034 if (offset >= TX_DATA_FIFO_PORT_FIRST && 1035 offset <= TX_DATA_FIFO_PORT_LAST) { 1036 /* TX FIFO */ 1037 tx_fifo_push(s, val); 1038 return; 1039 } 1040 switch (offset) { 1041 case CSR_IRQ_CFG: 1042 /* TODO: Implement interrupt deassertion intervals. */ 1043 val &= (IRQ_EN | IRQ_POL | IRQ_TYPE); 1044 s->irq_cfg = (s->irq_cfg & IRQ_INT) | val; 1045 break; 1046 case CSR_INT_STS: 1047 s->int_sts &= ~val; 1048 break; 1049 case CSR_INT_EN: 1050 s->int_en = val & ~RESERVED_INT; 1051 s->int_sts |= val & SW_INT; 1052 break; 1053 case CSR_FIFO_INT: 1054 DPRINTF("FIFO INT levels %08x\n", val); 1055 s->fifo_int = val; 1056 break; 1057 case CSR_RX_CFG: 1058 if (val & 0x8000) { 1059 /* RX_DUMP */ 1060 s->rx_fifo_used = 0; 1061 s->rx_status_fifo_used = 0; 1062 s->rx_packet_size_tail = s->rx_packet_size_head; 1063 s->rx_packet_size[s->rx_packet_size_head] = 0; 1064 } 1065 s->rx_cfg = val & 0xcfff1ff0; 1066 break; 1067 case CSR_TX_CFG: 1068 if (val & 0x8000) { 1069 s->tx_status_fifo_used = 0; 1070 } 1071 if (val & 0x4000) { 1072 s->txp->state = TX_IDLE; 1073 s->txp->fifo_used = 0; 1074 s->txp->cmd_a = 0xffffffff; 1075 } 1076 s->tx_cfg = val & 6; 1077 break; 1078 case CSR_HW_CFG: 1079 if (val & 1) { 1080 /* SRST */ 1081 lan9118_reset(DEVICE(s)); 1082 } else { 1083 s->hw_cfg = (val & 0x003f300) | (s->hw_cfg & 0x4); 1084 } 1085 break; 1086 case CSR_RX_DP_CTRL: 1087 if (val & 0x80000000) { 1088 /* Skip forward to next packet. */ 1089 s->rxp_pad = 0; 1090 s->rxp_offset = 0; 1091 if (s->rxp_size == 0) { 1092 /* Pop a word to start the next packet. */ 1093 rx_fifo_pop(s); 1094 s->rxp_pad = 0; 1095 s->rxp_offset = 0; 1096 } 1097 s->rx_fifo_head += s->rxp_size; 1098 if (s->rx_fifo_head >= s->rx_fifo_size) { 1099 s->rx_fifo_head -= s->rx_fifo_size; 1100 } 1101 } 1102 break; 1103 case CSR_PMT_CTRL: 1104 if (val & 0x400) { 1105 phy_reset(s); 1106 } 1107 s->pmt_ctrl &= ~0x34e; 1108 s->pmt_ctrl |= (val & 0x34e); 1109 break; 1110 case CSR_GPIO_CFG: 1111 /* Probably just enabling LEDs. */ 1112 s->gpio_cfg = val & 0x7777071f; 1113 break; 1114 case CSR_GPT_CFG: 1115 if ((s->gpt_cfg ^ val) & GPT_TIMER_EN) { 1116 ptimer_transaction_begin(s->timer); 1117 if (val & GPT_TIMER_EN) { 1118 ptimer_set_count(s->timer, val & 0xffff); 1119 ptimer_run(s->timer, 0); 1120 } else { 1121 ptimer_stop(s->timer); 1122 ptimer_set_count(s->timer, 0xffff); 1123 } 1124 ptimer_transaction_commit(s->timer); 1125 } 1126 s->gpt_cfg = val & (GPT_TIMER_EN | 0xffff); 1127 break; 1128 case CSR_WORD_SWAP: 1129 /* Ignored because we're in 32-bit mode. */ 1130 s->word_swap = val; 1131 break; 1132 case CSR_MAC_CSR_CMD: 1133 s->mac_cmd = val & 0x4000000f; 1134 if (val & 0x80000000) { 1135 if (val & 0x40000000) { 1136 s->mac_data = do_mac_read(s, val & 0xf); 1137 DPRINTF("MAC read %d = 0x%08x\n", val & 0xf, s->mac_data); 1138 } else { 1139 DPRINTF("MAC write %d = 0x%08x\n", val & 0xf, s->mac_data); 1140 do_mac_write(s, val & 0xf, s->mac_data); 1141 } 1142 } 1143 break; 1144 case CSR_MAC_CSR_DATA: 1145 s->mac_data = val; 1146 break; 1147 case CSR_AFC_CFG: 1148 s->afc_cfg = val & 0x00ffffff; 1149 break; 1150 case CSR_E2P_CMD: 1151 lan9118_eeprom_cmd(s, (val >> 28) & 7, val & 0x7f); 1152 break; 1153 case CSR_E2P_DATA: 1154 s->e2p_data = val & 0xff; 1155 break; 1156 1157 default: 1158 qemu_log_mask(LOG_GUEST_ERROR, "lan9118_write: Bad reg 0x%x = %x\n", 1159 (int)offset, (int)val); 1160 break; 1161 } 1162 lan9118_update(s); 1163 } 1164 1165 static void lan9118_writew(void *opaque, hwaddr offset, 1166 uint32_t val) 1167 { 1168 lan9118_state *s = (lan9118_state *)opaque; 1169 offset &= 0xff; 1170 1171 if (s->write_word_prev_offset != (offset & ~0x3)) { 1172 /* New offset, reset word counter */ 1173 s->write_word_n = 0; 1174 s->write_word_prev_offset = offset & ~0x3; 1175 } 1176 1177 if (offset & 0x2) { 1178 s->write_word_h = val; 1179 } else { 1180 s->write_word_l = val; 1181 } 1182 1183 //DPRINTF("Writew reg 0x%02x = 0x%08x\n", (int)offset, val); 1184 s->write_word_n++; 1185 if (s->write_word_n == 2) { 1186 s->write_word_n = 0; 1187 lan9118_writel(s, offset & ~3, s->write_word_l + 1188 (s->write_word_h << 16), 4); 1189 } 1190 } 1191 1192 static void lan9118_16bit_mode_write(void *opaque, hwaddr offset, 1193 uint64_t val, unsigned size) 1194 { 1195 switch (size) { 1196 case 2: 1197 lan9118_writew(opaque, offset, (uint32_t)val); 1198 return; 1199 case 4: 1200 lan9118_writel(opaque, offset, val, size); 1201 return; 1202 } 1203 1204 hw_error("lan9118_write: Bad size 0x%x\n", size); 1205 } 1206 1207 static uint64_t lan9118_readl(void *opaque, hwaddr offset, 1208 unsigned size) 1209 { 1210 lan9118_state *s = (lan9118_state *)opaque; 1211 1212 //DPRINTF("Read reg 0x%02x\n", (int)offset); 1213 if (offset <= RX_DATA_FIFO_PORT_LAST) { 1214 /* RX FIFO */ 1215 return rx_fifo_pop(s); 1216 } 1217 switch (offset) { 1218 case RX_STATUS_FIFO_PORT: 1219 return rx_status_fifo_pop(s); 1220 case RX_STATUS_FIFO_PEEK: 1221 return s->rx_status_fifo[s->rx_status_fifo_head]; 1222 case TX_STATUS_FIFO_PORT: 1223 return tx_status_fifo_pop(s); 1224 case TX_STATUS_FIFO_PEEK: 1225 return s->tx_status_fifo[s->tx_status_fifo_head]; 1226 case CSR_ID_REV: 1227 return 0x01180001; 1228 case CSR_IRQ_CFG: 1229 return s->irq_cfg; 1230 case CSR_INT_STS: 1231 return s->int_sts; 1232 case CSR_INT_EN: 1233 return s->int_en; 1234 case CSR_BYTE_TEST: 1235 return 0x87654321; 1236 case CSR_FIFO_INT: 1237 return s->fifo_int; 1238 case CSR_RX_CFG: 1239 return s->rx_cfg; 1240 case CSR_TX_CFG: 1241 return s->tx_cfg; 1242 case CSR_HW_CFG: 1243 return s->hw_cfg; 1244 case CSR_RX_DP_CTRL: 1245 return 0; 1246 case CSR_RX_FIFO_INF: 1247 return (s->rx_status_fifo_used << 16) | (s->rx_fifo_used << 2); 1248 case CSR_TX_FIFO_INF: 1249 return (s->tx_status_fifo_used << 16) 1250 | (s->tx_fifo_size - s->txp->fifo_used); 1251 case CSR_PMT_CTRL: 1252 return s->pmt_ctrl; 1253 case CSR_GPIO_CFG: 1254 return s->gpio_cfg; 1255 case CSR_GPT_CFG: 1256 return s->gpt_cfg; 1257 case CSR_GPT_CNT: 1258 return ptimer_get_count(s->timer); 1259 case CSR_WORD_SWAP: 1260 return s->word_swap; 1261 case CSR_FREE_RUN: 1262 return (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / 40) - s->free_timer_start; 1263 case CSR_RX_DROP: 1264 /* TODO: Implement dropped frames counter. */ 1265 return 0; 1266 case CSR_MAC_CSR_CMD: 1267 return s->mac_cmd; 1268 case CSR_MAC_CSR_DATA: 1269 return s->mac_data; 1270 case CSR_AFC_CFG: 1271 return s->afc_cfg; 1272 case CSR_E2P_CMD: 1273 return s->e2p_cmd; 1274 case CSR_E2P_DATA: 1275 return s->e2p_data; 1276 } 1277 qemu_log_mask(LOG_GUEST_ERROR, "lan9118_read: Bad reg 0x%x\n", (int)offset); 1278 return 0; 1279 } 1280 1281 static uint32_t lan9118_readw(void *opaque, hwaddr offset) 1282 { 1283 lan9118_state *s = (lan9118_state *)opaque; 1284 uint32_t val; 1285 1286 if (s->read_word_prev_offset != (offset & ~0x3)) { 1287 /* New offset, reset word counter */ 1288 s->read_word_n = 0; 1289 s->read_word_prev_offset = offset & ~0x3; 1290 } 1291 1292 s->read_word_n++; 1293 if (s->read_word_n == 1) { 1294 s->read_long = lan9118_readl(s, offset & ~3, 4); 1295 } else { 1296 s->read_word_n = 0; 1297 } 1298 1299 if (offset & 2) { 1300 val = s->read_long >> 16; 1301 } else { 1302 val = s->read_long & 0xFFFF; 1303 } 1304 1305 //DPRINTF("Readw reg 0x%02x, val 0x%x\n", (int)offset, val); 1306 return val; 1307 } 1308 1309 static uint64_t lan9118_16bit_mode_read(void *opaque, hwaddr offset, 1310 unsigned size) 1311 { 1312 switch (size) { 1313 case 2: 1314 return lan9118_readw(opaque, offset); 1315 case 4: 1316 return lan9118_readl(opaque, offset, size); 1317 } 1318 1319 hw_error("lan9118_read: Bad size 0x%x\n", size); 1320 return 0; 1321 } 1322 1323 static const MemoryRegionOps lan9118_mem_ops = { 1324 .read = lan9118_readl, 1325 .write = lan9118_writel, 1326 .endianness = DEVICE_NATIVE_ENDIAN, 1327 }; 1328 1329 static const MemoryRegionOps lan9118_16bit_mem_ops = { 1330 .read = lan9118_16bit_mode_read, 1331 .write = lan9118_16bit_mode_write, 1332 .endianness = DEVICE_NATIVE_ENDIAN, 1333 }; 1334 1335 static NetClientInfo net_lan9118_info = { 1336 .type = NET_CLIENT_DRIVER_NIC, 1337 .size = sizeof(NICState), 1338 .receive = lan9118_receive, 1339 .link_status_changed = lan9118_set_link, 1340 }; 1341 1342 static void lan9118_realize(DeviceState *dev, Error **errp) 1343 { 1344 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1345 lan9118_state *s = LAN9118(dev); 1346 int i; 1347 const MemoryRegionOps *mem_ops = 1348 s->mode_16bit ? &lan9118_16bit_mem_ops : &lan9118_mem_ops; 1349 1350 memory_region_init_io(&s->mmio, OBJECT(dev), mem_ops, s, 1351 "lan9118-mmio", 0x100); 1352 sysbus_init_mmio(sbd, &s->mmio); 1353 sysbus_init_irq(sbd, &s->irq); 1354 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1355 1356 s->nic = qemu_new_nic(&net_lan9118_info, &s->conf, 1357 object_get_typename(OBJECT(dev)), dev->id, s); 1358 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 1359 s->eeprom[0] = 0xa5; 1360 for (i = 0; i < 6; i++) { 1361 s->eeprom[i + 1] = s->conf.macaddr.a[i]; 1362 } 1363 s->pmt_ctrl = 1; 1364 s->txp = &s->tx_packet; 1365 1366 s->timer = ptimer_init(lan9118_tick, s, PTIMER_POLICY_DEFAULT); 1367 ptimer_transaction_begin(s->timer); 1368 ptimer_set_freq(s->timer, 10000); 1369 ptimer_set_limit(s->timer, 0xffff, 1); 1370 ptimer_transaction_commit(s->timer); 1371 } 1372 1373 static Property lan9118_properties[] = { 1374 DEFINE_NIC_PROPERTIES(lan9118_state, conf), 1375 DEFINE_PROP_UINT32("mode_16bit", lan9118_state, mode_16bit, 0), 1376 DEFINE_PROP_END_OF_LIST(), 1377 }; 1378 1379 static void lan9118_class_init(ObjectClass *klass, void *data) 1380 { 1381 DeviceClass *dc = DEVICE_CLASS(klass); 1382 1383 dc->reset = lan9118_reset; 1384 device_class_set_props(dc, lan9118_properties); 1385 dc->vmsd = &vmstate_lan9118; 1386 dc->realize = lan9118_realize; 1387 } 1388 1389 static const TypeInfo lan9118_info = { 1390 .name = TYPE_LAN9118, 1391 .parent = TYPE_SYS_BUS_DEVICE, 1392 .instance_size = sizeof(lan9118_state), 1393 .class_init = lan9118_class_init, 1394 }; 1395 1396 static void lan9118_register_types(void) 1397 { 1398 type_register_static(&lan9118_info); 1399 } 1400 1401 /* Legacy helper function. Should go away when machine config files are 1402 implemented. */ 1403 void lan9118_init(NICInfo *nd, uint32_t base, qemu_irq irq) 1404 { 1405 DeviceState *dev; 1406 SysBusDevice *s; 1407 1408 qemu_check_nic_model(nd, "lan9118"); 1409 dev = qdev_new(TYPE_LAN9118); 1410 qdev_set_nic_properties(dev, nd); 1411 s = SYS_BUS_DEVICE(dev); 1412 sysbus_realize_and_unref(s, &error_fatal); 1413 sysbus_mmio_map(s, 0, base); 1414 sysbus_connect_irq(s, 0, irq); 1415 } 1416 1417 type_init(lan9118_register_types) 1418