xref: /openbmc/qemu/hw/net/imx_fec.c (revision a9ded601)
1 /*
2  * i.MX Fast Ethernet Controller emulation.
3  *
4  * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
5  *
6  * Based on Coldfire Fast Ethernet Controller emulation.
7  *
8  * Copyright (c) 2007 CodeSourcery.
9  *
10  *  This program is free software; you can redistribute it and/or modify it
11  *  under the terms of the GNU General Public License as published by the
12  *  Free Software Foundation; either version 2 of the License, or
13  *  (at your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "hw/net/imx_fec.h"
26 #include "sysemu/dma.h"
27 #include "qemu/log.h"
28 #include "net/checksum.h"
29 #include "net/eth.h"
30 
31 /* For crc32 */
32 #include <zlib.h>
33 
34 #ifndef DEBUG_IMX_FEC
35 #define DEBUG_IMX_FEC 0
36 #endif
37 
38 #define FEC_PRINTF(fmt, args...) \
39     do { \
40         if (DEBUG_IMX_FEC) { \
41             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \
42                                              __func__, ##args); \
43         } \
44     } while (0)
45 
46 #ifndef DEBUG_IMX_PHY
47 #define DEBUG_IMX_PHY 0
48 #endif
49 
50 #define PHY_PRINTF(fmt, args...) \
51     do { \
52         if (DEBUG_IMX_PHY) { \
53             fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \
54                                                  __func__, ##args); \
55         } \
56     } while (0)
57 
58 #define IMX_MAX_DESC    1024
59 
60 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
61 {
62     static char tmp[20];
63     sprintf(tmp, "index %d", index);
64     return tmp;
65 }
66 
67 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
68 {
69     switch (index) {
70     case ENET_FRBR:
71         return "FRBR";
72     case ENET_FRSR:
73         return "FRSR";
74     case ENET_MIIGSK_CFGR:
75         return "MIIGSK_CFGR";
76     case ENET_MIIGSK_ENR:
77         return "MIIGSK_ENR";
78     default:
79         return imx_default_reg_name(s, index);
80     }
81 }
82 
83 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
84 {
85     switch (index) {
86     case ENET_RSFL:
87         return "RSFL";
88     case ENET_RSEM:
89         return "RSEM";
90     case ENET_RAEM:
91         return "RAEM";
92     case ENET_RAFL:
93         return "RAFL";
94     case ENET_TSEM:
95         return "TSEM";
96     case ENET_TAEM:
97         return "TAEM";
98     case ENET_TAFL:
99         return "TAFL";
100     case ENET_TIPG:
101         return "TIPG";
102     case ENET_FTRL:
103         return "FTRL";
104     case ENET_TACC:
105         return "TACC";
106     case ENET_RACC:
107         return "RACC";
108     case ENET_ATCR:
109         return "ATCR";
110     case ENET_ATVR:
111         return "ATVR";
112     case ENET_ATOFF:
113         return "ATOFF";
114     case ENET_ATPER:
115         return "ATPER";
116     case ENET_ATCOR:
117         return "ATCOR";
118     case ENET_ATINC:
119         return "ATINC";
120     case ENET_ATSTMP:
121         return "ATSTMP";
122     case ENET_TGSR:
123         return "TGSR";
124     case ENET_TCSR0:
125         return "TCSR0";
126     case ENET_TCCR0:
127         return "TCCR0";
128     case ENET_TCSR1:
129         return "TCSR1";
130     case ENET_TCCR1:
131         return "TCCR1";
132     case ENET_TCSR2:
133         return "TCSR2";
134     case ENET_TCCR2:
135         return "TCCR2";
136     case ENET_TCSR3:
137         return "TCSR3";
138     case ENET_TCCR3:
139         return "TCCR3";
140     default:
141         return imx_default_reg_name(s, index);
142     }
143 }
144 
145 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
146 {
147     switch (index) {
148     case ENET_EIR:
149         return "EIR";
150     case ENET_EIMR:
151         return "EIMR";
152     case ENET_RDAR:
153         return "RDAR";
154     case ENET_TDAR:
155         return "TDAR";
156     case ENET_ECR:
157         return "ECR";
158     case ENET_MMFR:
159         return "MMFR";
160     case ENET_MSCR:
161         return "MSCR";
162     case ENET_MIBC:
163         return "MIBC";
164     case ENET_RCR:
165         return "RCR";
166     case ENET_TCR:
167         return "TCR";
168     case ENET_PALR:
169         return "PALR";
170     case ENET_PAUR:
171         return "PAUR";
172     case ENET_OPD:
173         return "OPD";
174     case ENET_IAUR:
175         return "IAUR";
176     case ENET_IALR:
177         return "IALR";
178     case ENET_GAUR:
179         return "GAUR";
180     case ENET_GALR:
181         return "GALR";
182     case ENET_TFWR:
183         return "TFWR";
184     case ENET_RDSR:
185         return "RDSR";
186     case ENET_TDSR:
187         return "TDSR";
188     case ENET_MRBR:
189         return "MRBR";
190     default:
191         if (s->is_fec) {
192             return imx_fec_reg_name(s, index);
193         } else {
194             return imx_enet_reg_name(s, index);
195         }
196     }
197 }
198 
199 static const VMStateDescription vmstate_imx_eth = {
200     .name = TYPE_IMX_FEC,
201     .version_id = 2,
202     .minimum_version_id = 2,
203     .fields = (VMStateField[]) {
204         VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
205         VMSTATE_UINT32(rx_descriptor, IMXFECState),
206         VMSTATE_UINT32(tx_descriptor, IMXFECState),
207 
208         VMSTATE_UINT32(phy_status, IMXFECState),
209         VMSTATE_UINT32(phy_control, IMXFECState),
210         VMSTATE_UINT32(phy_advertise, IMXFECState),
211         VMSTATE_UINT32(phy_int, IMXFECState),
212         VMSTATE_UINT32(phy_int_mask, IMXFECState),
213         VMSTATE_END_OF_LIST()
214     }
215 };
216 
217 #define PHY_INT_ENERGYON            (1 << 7)
218 #define PHY_INT_AUTONEG_COMPLETE    (1 << 6)
219 #define PHY_INT_FAULT               (1 << 5)
220 #define PHY_INT_DOWN                (1 << 4)
221 #define PHY_INT_AUTONEG_LP          (1 << 3)
222 #define PHY_INT_PARFAULT            (1 << 2)
223 #define PHY_INT_AUTONEG_PAGE        (1 << 1)
224 
225 static void imx_eth_update(IMXFECState *s);
226 
227 /*
228  * The MII phy could raise a GPIO to the processor which in turn
229  * could be handled as an interrpt by the OS.
230  * For now we don't handle any GPIO/interrupt line, so the OS will
231  * have to poll for the PHY status.
232  */
233 static void phy_update_irq(IMXFECState *s)
234 {
235     imx_eth_update(s);
236 }
237 
238 static void phy_update_link(IMXFECState *s)
239 {
240     /* Autonegotiation status mirrors link status.  */
241     if (qemu_get_queue(s->nic)->link_down) {
242         PHY_PRINTF("link is down\n");
243         s->phy_status &= ~0x0024;
244         s->phy_int |= PHY_INT_DOWN;
245     } else {
246         PHY_PRINTF("link is up\n");
247         s->phy_status |= 0x0024;
248         s->phy_int |= PHY_INT_ENERGYON;
249         s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
250     }
251     phy_update_irq(s);
252 }
253 
254 static void imx_eth_set_link(NetClientState *nc)
255 {
256     phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
257 }
258 
259 static void phy_reset(IMXFECState *s)
260 {
261     s->phy_status = 0x7809;
262     s->phy_control = 0x3000;
263     s->phy_advertise = 0x01e1;
264     s->phy_int_mask = 0;
265     s->phy_int = 0;
266     phy_update_link(s);
267 }
268 
269 static uint32_t do_phy_read(IMXFECState *s, int reg)
270 {
271     uint32_t val;
272 
273     if (reg > 31) {
274         /* we only advertise one phy */
275         return 0;
276     }
277 
278     switch (reg) {
279     case 0:     /* Basic Control */
280         val = s->phy_control;
281         break;
282     case 1:     /* Basic Status */
283         val = s->phy_status;
284         break;
285     case 2:     /* ID1 */
286         val = 0x0007;
287         break;
288     case 3:     /* ID2 */
289         val = 0xc0d1;
290         break;
291     case 4:     /* Auto-neg advertisement */
292         val = s->phy_advertise;
293         break;
294     case 5:     /* Auto-neg Link Partner Ability */
295         val = 0x0f71;
296         break;
297     case 6:     /* Auto-neg Expansion */
298         val = 1;
299         break;
300     case 29:    /* Interrupt source.  */
301         val = s->phy_int;
302         s->phy_int = 0;
303         phy_update_irq(s);
304         break;
305     case 30:    /* Interrupt mask */
306         val = s->phy_int_mask;
307         break;
308     case 17:
309     case 18:
310     case 27:
311     case 31:
312         qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
313                       TYPE_IMX_FEC, __func__, reg);
314         val = 0;
315         break;
316     default:
317         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
318                       TYPE_IMX_FEC, __func__, reg);
319         val = 0;
320         break;
321     }
322 
323     PHY_PRINTF("read 0x%04x @ %d\n", val, reg);
324 
325     return val;
326 }
327 
328 static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
329 {
330     PHY_PRINTF("write 0x%04x @ %d\n", val, reg);
331 
332     if (reg > 31) {
333         /* we only advertise one phy */
334         return;
335     }
336 
337     switch (reg) {
338     case 0:     /* Basic Control */
339         if (val & 0x8000) {
340             phy_reset(s);
341         } else {
342             s->phy_control = val & 0x7980;
343             /* Complete autonegotiation immediately.  */
344             if (val & 0x1000) {
345                 s->phy_status |= 0x0020;
346             }
347         }
348         break;
349     case 4:     /* Auto-neg advertisement */
350         s->phy_advertise = (val & 0x2d7f) | 0x80;
351         break;
352     case 30:    /* Interrupt mask */
353         s->phy_int_mask = val & 0xff;
354         phy_update_irq(s);
355         break;
356     case 17:
357     case 18:
358     case 27:
359     case 31:
360         qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
361                       TYPE_IMX_FEC, __func__, reg);
362         break;
363     default:
364         qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
365                       TYPE_IMX_FEC, __func__, reg);
366         break;
367     }
368 }
369 
370 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
371 {
372     dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
373 }
374 
375 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
376 {
377     dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
378 }
379 
380 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
381 {
382     dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
383 }
384 
385 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
386 {
387     dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
388 }
389 
390 static void imx_eth_update(IMXFECState *s)
391 {
392     if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_TS_TIMER) {
393         qemu_set_irq(s->irq[1], 1);
394     } else {
395         qemu_set_irq(s->irq[1], 0);
396     }
397 
398     if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
399         qemu_set_irq(s->irq[0], 1);
400     } else {
401         qemu_set_irq(s->irq[0], 0);
402     }
403 }
404 
405 static void imx_fec_do_tx(IMXFECState *s)
406 {
407     int frame_size = 0, descnt = 0;
408     uint8_t frame[ENET_MAX_FRAME_SIZE];
409     uint8_t *ptr = frame;
410     uint32_t addr = s->tx_descriptor;
411 
412     while (descnt++ < IMX_MAX_DESC) {
413         IMXFECBufDesc bd;
414         int len;
415 
416         imx_fec_read_bd(&bd, addr);
417         FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n",
418                    addr, bd.flags, bd.length, bd.data);
419         if ((bd.flags & ENET_BD_R) == 0) {
420             /* Run out of descriptors to transmit.  */
421             FEC_PRINTF("tx_bd ran out of descriptors to transmit\n");
422             break;
423         }
424         len = bd.length;
425         if (frame_size + len > ENET_MAX_FRAME_SIZE) {
426             len = ENET_MAX_FRAME_SIZE - frame_size;
427             s->regs[ENET_EIR] |= ENET_INT_BABT;
428         }
429         dma_memory_read(&address_space_memory, bd.data, ptr, len);
430         ptr += len;
431         frame_size += len;
432         if (bd.flags & ENET_BD_L) {
433             /* Last buffer in frame.  */
434             qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
435             ptr = frame;
436             frame_size = 0;
437             s->regs[ENET_EIR] |= ENET_INT_TXF;
438         }
439         s->regs[ENET_EIR] |= ENET_INT_TXB;
440         bd.flags &= ~ENET_BD_R;
441         /* Write back the modified descriptor.  */
442         imx_fec_write_bd(&bd, addr);
443         /* Advance to the next descriptor.  */
444         if ((bd.flags & ENET_BD_W) != 0) {
445             addr = s->regs[ENET_TDSR];
446         } else {
447             addr += sizeof(bd);
448         }
449     }
450 
451     s->tx_descriptor = addr;
452 
453     imx_eth_update(s);
454 }
455 
456 static void imx_enet_do_tx(IMXFECState *s)
457 {
458     int frame_size = 0, descnt = 0;
459     uint8_t frame[ENET_MAX_FRAME_SIZE];
460     uint8_t *ptr = frame;
461     uint32_t addr = s->tx_descriptor;
462 
463     while (descnt++ < IMX_MAX_DESC) {
464         IMXENETBufDesc bd;
465         int len;
466 
467         imx_enet_read_bd(&bd, addr);
468         FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x "
469                    "status %04x\n", addr, bd.flags, bd.length, bd.data,
470                    bd.option, bd.status);
471         if ((bd.flags & ENET_BD_R) == 0) {
472             /* Run out of descriptors to transmit.  */
473             break;
474         }
475         len = bd.length;
476         if (frame_size + len > ENET_MAX_FRAME_SIZE) {
477             len = ENET_MAX_FRAME_SIZE - frame_size;
478             s->regs[ENET_EIR] |= ENET_INT_BABT;
479         }
480         dma_memory_read(&address_space_memory, bd.data, ptr, len);
481         ptr += len;
482         frame_size += len;
483         if (bd.flags & ENET_BD_L) {
484             if (bd.option & ENET_BD_PINS) {
485                 struct ip_header *ip_hd = PKT_GET_IP_HDR(frame);
486                 if (IP_HEADER_VERSION(ip_hd) == 4) {
487                     net_checksum_calculate(frame, frame_size);
488                 }
489             }
490             if (bd.option & ENET_BD_IINS) {
491                 struct ip_header *ip_hd = PKT_GET_IP_HDR(frame);
492                 /* We compute checksum only for IPv4 frames */
493                 if (IP_HEADER_VERSION(ip_hd) == 4) {
494                     uint16_t csum;
495                     ip_hd->ip_sum = 0;
496                     csum = net_raw_checksum((uint8_t *)ip_hd, sizeof(*ip_hd));
497                     ip_hd->ip_sum = cpu_to_be16(csum);
498                 }
499             }
500             /* Last buffer in frame.  */
501             qemu_send_packet(qemu_get_queue(s->nic), frame, len);
502             ptr = frame;
503             frame_size = 0;
504             if (bd.option & ENET_BD_TX_INT) {
505                 s->regs[ENET_EIR] |= ENET_INT_TXF;
506             }
507         }
508         if (bd.option & ENET_BD_TX_INT) {
509             s->regs[ENET_EIR] |= ENET_INT_TXB;
510         }
511         bd.flags &= ~ENET_BD_R;
512         /* Write back the modified descriptor.  */
513         imx_enet_write_bd(&bd, addr);
514         /* Advance to the next descriptor.  */
515         if ((bd.flags & ENET_BD_W) != 0) {
516             addr = s->regs[ENET_TDSR];
517         } else {
518             addr += sizeof(bd);
519         }
520     }
521 
522     s->tx_descriptor = addr;
523 
524     imx_eth_update(s);
525 }
526 
527 static void imx_eth_do_tx(IMXFECState *s)
528 {
529     if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
530         imx_enet_do_tx(s);
531     } else {
532         imx_fec_do_tx(s);
533     }
534 }
535 
536 static void imx_eth_enable_rx(IMXFECState *s)
537 {
538     IMXFECBufDesc bd;
539     bool tmp;
540 
541     imx_fec_read_bd(&bd, s->rx_descriptor);
542 
543     tmp = ((bd.flags & ENET_BD_E) != 0);
544 
545     if (!tmp) {
546         FEC_PRINTF("RX buffer full\n");
547     } else if (!s->regs[ENET_RDAR]) {
548         qemu_flush_queued_packets(qemu_get_queue(s->nic));
549     }
550 
551     s->regs[ENET_RDAR] = tmp ? ENET_RDAR_RDAR : 0;
552 }
553 
554 static void imx_eth_reset(DeviceState *d)
555 {
556     IMXFECState *s = IMX_FEC(d);
557 
558     /* Reset the Device */
559     memset(s->regs, 0, sizeof(s->regs));
560     s->regs[ENET_ECR]   = 0xf0000000;
561     s->regs[ENET_MIBC]  = 0xc0000000;
562     s->regs[ENET_RCR]   = 0x05ee0001;
563     s->regs[ENET_OPD]   = 0x00010000;
564 
565     s->regs[ENET_PALR]  = (s->conf.macaddr.a[0] << 24)
566                           | (s->conf.macaddr.a[1] << 16)
567                           | (s->conf.macaddr.a[2] << 8)
568                           | s->conf.macaddr.a[3];
569     s->regs[ENET_PAUR]  = (s->conf.macaddr.a[4] << 24)
570                           | (s->conf.macaddr.a[5] << 16)
571                           | 0x8808;
572 
573     if (s->is_fec) {
574         s->regs[ENET_FRBR]  = 0x00000600;
575         s->regs[ENET_FRSR]  = 0x00000500;
576         s->regs[ENET_MIIGSK_ENR]  = 0x00000006;
577     } else {
578         s->regs[ENET_RAEM]  = 0x00000004;
579         s->regs[ENET_RAFL]  = 0x00000004;
580         s->regs[ENET_TAEM]  = 0x00000004;
581         s->regs[ENET_TAFL]  = 0x00000008;
582         s->regs[ENET_TIPG]  = 0x0000000c;
583         s->regs[ENET_FTRL]  = 0x000007ff;
584         s->regs[ENET_ATPER] = 0x3b9aca00;
585     }
586 
587     s->rx_descriptor = 0;
588     s->tx_descriptor = 0;
589 
590     /* We also reset the PHY */
591     phy_reset(s);
592 }
593 
594 static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
595 {
596     qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
597                   PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
598     return 0;
599 }
600 
601 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
602 {
603     switch (index) {
604     case ENET_FRBR:
605     case ENET_FRSR:
606     case ENET_MIIGSK_CFGR:
607     case ENET_MIIGSK_ENR:
608         return s->regs[index];
609     default:
610         return imx_default_read(s, index);
611     }
612 }
613 
614 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
615 {
616     switch (index) {
617     case ENET_RSFL:
618     case ENET_RSEM:
619     case ENET_RAEM:
620     case ENET_RAFL:
621     case ENET_TSEM:
622     case ENET_TAEM:
623     case ENET_TAFL:
624     case ENET_TIPG:
625     case ENET_FTRL:
626     case ENET_TACC:
627     case ENET_RACC:
628     case ENET_ATCR:
629     case ENET_ATVR:
630     case ENET_ATOFF:
631     case ENET_ATPER:
632     case ENET_ATCOR:
633     case ENET_ATINC:
634     case ENET_ATSTMP:
635     case ENET_TGSR:
636     case ENET_TCSR0:
637     case ENET_TCCR0:
638     case ENET_TCSR1:
639     case ENET_TCCR1:
640     case ENET_TCSR2:
641     case ENET_TCCR2:
642     case ENET_TCSR3:
643     case ENET_TCCR3:
644         return s->regs[index];
645     default:
646         return imx_default_read(s, index);
647     }
648 }
649 
650 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
651 {
652     uint32_t value = 0;
653     IMXFECState *s = IMX_FEC(opaque);
654     uint32_t index = offset >> 2;
655 
656     switch (index) {
657     case ENET_EIR:
658     case ENET_EIMR:
659     case ENET_RDAR:
660     case ENET_TDAR:
661     case ENET_ECR:
662     case ENET_MMFR:
663     case ENET_MSCR:
664     case ENET_MIBC:
665     case ENET_RCR:
666     case ENET_TCR:
667     case ENET_PALR:
668     case ENET_PAUR:
669     case ENET_OPD:
670     case ENET_IAUR:
671     case ENET_IALR:
672     case ENET_GAUR:
673     case ENET_GALR:
674     case ENET_TFWR:
675     case ENET_RDSR:
676     case ENET_TDSR:
677     case ENET_MRBR:
678         value = s->regs[index];
679         break;
680     default:
681         if (s->is_fec) {
682             value = imx_fec_read(s, index);
683         } else {
684             value = imx_enet_read(s, index);
685         }
686         break;
687     }
688 
689     FEC_PRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
690                                               value);
691 
692     return value;
693 }
694 
695 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
696 {
697     qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
698                   PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
699     return;
700 }
701 
702 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
703 {
704     switch (index) {
705     case ENET_FRBR:
706         /* FRBR is read only */
707         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
708                       TYPE_IMX_FEC, __func__);
709         break;
710     case ENET_FRSR:
711         s->regs[index] = (value & 0x000003fc) | 0x00000400;
712         break;
713     case ENET_MIIGSK_CFGR:
714         s->regs[index] = value & 0x00000053;
715         break;
716     case ENET_MIIGSK_ENR:
717         s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
718         break;
719     default:
720         imx_default_write(s, index, value);
721         break;
722     }
723 }
724 
725 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
726 {
727     switch (index) {
728     case ENET_RSFL:
729     case ENET_RSEM:
730     case ENET_RAEM:
731     case ENET_RAFL:
732     case ENET_TSEM:
733     case ENET_TAEM:
734     case ENET_TAFL:
735         s->regs[index] = value & 0x000001ff;
736         break;
737     case ENET_TIPG:
738         s->regs[index] = value & 0x0000001f;
739         break;
740     case ENET_FTRL:
741         s->regs[index] = value & 0x00003fff;
742         break;
743     case ENET_TACC:
744         s->regs[index] = value & 0x00000019;
745         break;
746     case ENET_RACC:
747         s->regs[index] = value & 0x000000C7;
748         break;
749     case ENET_ATCR:
750         s->regs[index] = value & 0x00002a9d;
751         break;
752     case ENET_ATVR:
753     case ENET_ATOFF:
754     case ENET_ATPER:
755         s->regs[index] = value;
756         break;
757     case ENET_ATSTMP:
758         /* ATSTMP is read only */
759         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
760                       TYPE_IMX_FEC, __func__);
761         break;
762     case ENET_ATCOR:
763         s->regs[index] = value & 0x7fffffff;
764         break;
765     case ENET_ATINC:
766         s->regs[index] = value & 0x00007f7f;
767         break;
768     case ENET_TGSR:
769         /* implement clear timer flag */
770         value = value & 0x0000000f;
771         break;
772     case ENET_TCSR0:
773     case ENET_TCSR1:
774     case ENET_TCSR2:
775     case ENET_TCSR3:
776         value = value & 0x000000fd;
777         break;
778     case ENET_TCCR0:
779     case ENET_TCCR1:
780     case ENET_TCCR2:
781     case ENET_TCCR3:
782         s->regs[index] = value;
783         break;
784     default:
785         imx_default_write(s, index, value);
786         break;
787     }
788 }
789 
790 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
791                            unsigned size)
792 {
793     IMXFECState *s = IMX_FEC(opaque);
794     uint32_t index = offset >> 2;
795 
796     FEC_PRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
797                 (uint32_t)value);
798 
799     switch (index) {
800     case ENET_EIR:
801         s->regs[index] &= ~value;
802         break;
803     case ENET_EIMR:
804         s->regs[index] = value;
805         break;
806     case ENET_RDAR:
807         if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
808             if (!s->regs[index]) {
809                 s->regs[index] = ENET_RDAR_RDAR;
810                 imx_eth_enable_rx(s);
811             }
812         } else {
813             s->regs[index] = 0;
814         }
815         break;
816     case ENET_TDAR:
817         if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
818             s->regs[index] = ENET_TDAR_TDAR;
819             imx_eth_do_tx(s);
820         }
821         s->regs[index] = 0;
822         break;
823     case ENET_ECR:
824         if (value & ENET_ECR_RESET) {
825             return imx_eth_reset(DEVICE(s));
826         }
827         s->regs[index] = value;
828         if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
829             s->regs[ENET_RDAR] = 0;
830             s->rx_descriptor = s->regs[ENET_RDSR];
831             s->regs[ENET_TDAR] = 0;
832             s->tx_descriptor = s->regs[ENET_TDSR];
833         }
834         break;
835     case ENET_MMFR:
836         s->regs[index] = value;
837         if (extract32(value, 29, 1)) {
838             /* This is a read operation */
839             s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
840                                            do_phy_read(s,
841                                                        extract32(value,
842                                                                  18, 10)));
843         } else {
844             /* This a write operation */
845             do_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
846         }
847         /* raise the interrupt as the PHY operation is done */
848         s->regs[ENET_EIR] |= ENET_INT_MII;
849         break;
850     case ENET_MSCR:
851         s->regs[index] = value & 0xfe;
852         break;
853     case ENET_MIBC:
854         /* TODO: Implement MIB.  */
855         s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
856         break;
857     case ENET_RCR:
858         s->regs[index] = value & 0x07ff003f;
859         /* TODO: Implement LOOP mode.  */
860         break;
861     case ENET_TCR:
862         /* We transmit immediately, so raise GRA immediately.  */
863         s->regs[index] = value;
864         if (value & 1) {
865             s->regs[ENET_EIR] |= ENET_INT_GRA;
866         }
867         break;
868     case ENET_PALR:
869         s->regs[index] = value;
870         s->conf.macaddr.a[0] = value >> 24;
871         s->conf.macaddr.a[1] = value >> 16;
872         s->conf.macaddr.a[2] = value >> 8;
873         s->conf.macaddr.a[3] = value;
874         break;
875     case ENET_PAUR:
876         s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
877         s->conf.macaddr.a[4] = value >> 24;
878         s->conf.macaddr.a[5] = value >> 16;
879         break;
880     case ENET_OPD:
881         s->regs[index] = (value & 0x0000ffff) | 0x00010000;
882         break;
883     case ENET_IAUR:
884     case ENET_IALR:
885     case ENET_GAUR:
886     case ENET_GALR:
887         /* TODO: implement MAC hash filtering.  */
888         break;
889     case ENET_TFWR:
890         if (s->is_fec) {
891             s->regs[index] = value & 0x3;
892         } else {
893             s->regs[index] = value & 0x13f;
894         }
895         break;
896     case ENET_RDSR:
897         if (s->is_fec) {
898             s->regs[index] = value & ~3;
899         } else {
900             s->regs[index] = value & ~7;
901         }
902         s->rx_descriptor = s->regs[index];
903         break;
904     case ENET_TDSR:
905         if (s->is_fec) {
906             s->regs[index] = value & ~3;
907         } else {
908             s->regs[index] = value & ~7;
909         }
910         s->tx_descriptor = s->regs[index];
911         break;
912     case ENET_MRBR:
913         s->regs[index] = value & 0x00003ff0;
914         break;
915     default:
916         if (s->is_fec) {
917             imx_fec_write(s, index, value);
918         } else {
919             imx_enet_write(s, index, value);
920         }
921         return;
922     }
923 
924     imx_eth_update(s);
925 }
926 
927 static int imx_eth_can_receive(NetClientState *nc)
928 {
929     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
930 
931     FEC_PRINTF("\n");
932 
933     return s->regs[ENET_RDAR] ? 1 : 0;
934 }
935 
936 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
937                                size_t len)
938 {
939     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
940     IMXFECBufDesc bd;
941     uint32_t flags = 0;
942     uint32_t addr;
943     uint32_t crc;
944     uint32_t buf_addr;
945     uint8_t *crc_ptr;
946     unsigned int buf_len;
947     size_t size = len;
948 
949     FEC_PRINTF("len %d\n", (int)size);
950 
951     if (!s->regs[ENET_RDAR]) {
952         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
953                       TYPE_IMX_FEC, __func__);
954         return 0;
955     }
956 
957     /* 4 bytes for the CRC.  */
958     size += 4;
959     crc = cpu_to_be32(crc32(~0, buf, size));
960     crc_ptr = (uint8_t *) &crc;
961 
962     /* Huge frames are truncated.  */
963     if (size > ENET_MAX_FRAME_SIZE) {
964         size = ENET_MAX_FRAME_SIZE;
965         flags |= ENET_BD_TR | ENET_BD_LG;
966     }
967 
968     /* Frames larger than the user limit just set error flags.  */
969     if (size > (s->regs[ENET_RCR] >> 16)) {
970         flags |= ENET_BD_LG;
971     }
972 
973     addr = s->rx_descriptor;
974     while (size > 0) {
975         imx_fec_read_bd(&bd, addr);
976         if ((bd.flags & ENET_BD_E) == 0) {
977             /* No descriptors available.  Bail out.  */
978             /*
979              * FIXME: This is wrong. We should probably either
980              * save the remainder for when more RX buffers are
981              * available, or flag an error.
982              */
983             qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
984                           TYPE_IMX_FEC, __func__);
985             break;
986         }
987         buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
988         bd.length = buf_len;
989         size -= buf_len;
990 
991         FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
992 
993         /* The last 4 bytes are the CRC.  */
994         if (size < 4) {
995             buf_len += size - 4;
996         }
997         buf_addr = bd.data;
998         dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
999         buf += buf_len;
1000         if (size < 4) {
1001             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1002                              crc_ptr, 4 - size);
1003             crc_ptr += 4 - size;
1004         }
1005         bd.flags &= ~ENET_BD_E;
1006         if (size == 0) {
1007             /* Last buffer in frame.  */
1008             bd.flags |= flags | ENET_BD_L;
1009             FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1010             s->regs[ENET_EIR] |= ENET_INT_RXF;
1011         } else {
1012             s->regs[ENET_EIR] |= ENET_INT_RXB;
1013         }
1014         imx_fec_write_bd(&bd, addr);
1015         /* Advance to the next descriptor.  */
1016         if ((bd.flags & ENET_BD_W) != 0) {
1017             addr = s->regs[ENET_RDSR];
1018         } else {
1019             addr += sizeof(bd);
1020         }
1021     }
1022     s->rx_descriptor = addr;
1023     imx_eth_enable_rx(s);
1024     imx_eth_update(s);
1025     return len;
1026 }
1027 
1028 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1029                                 size_t len)
1030 {
1031     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1032     IMXENETBufDesc bd;
1033     uint32_t flags = 0;
1034     uint32_t addr;
1035     uint32_t crc;
1036     uint32_t buf_addr;
1037     uint8_t *crc_ptr;
1038     unsigned int buf_len;
1039     size_t size = len;
1040 
1041     FEC_PRINTF("len %d\n", (int)size);
1042 
1043     if (!s->regs[ENET_RDAR]) {
1044         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1045                       TYPE_IMX_FEC, __func__);
1046         return 0;
1047     }
1048 
1049     /* 4 bytes for the CRC.  */
1050     size += 4;
1051     crc = cpu_to_be32(crc32(~0, buf, size));
1052     crc_ptr = (uint8_t *) &crc;
1053 
1054     /* Huge frames are truncted.  */
1055     if (size > ENET_MAX_FRAME_SIZE) {
1056         size = ENET_MAX_FRAME_SIZE;
1057         flags |= ENET_BD_TR | ENET_BD_LG;
1058     }
1059 
1060     /* Frames larger than the user limit just set error flags.  */
1061     if (size > (s->regs[ENET_RCR] >> 16)) {
1062         flags |= ENET_BD_LG;
1063     }
1064 
1065     addr = s->rx_descriptor;
1066     while (size > 0) {
1067         imx_enet_read_bd(&bd, addr);
1068         if ((bd.flags & ENET_BD_E) == 0) {
1069             /* No descriptors available.  Bail out.  */
1070             /*
1071              * FIXME: This is wrong. We should probably either
1072              * save the remainder for when more RX buffers are
1073              * available, or flag an error.
1074              */
1075             qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1076                           TYPE_IMX_FEC, __func__);
1077             break;
1078         }
1079         buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1080         bd.length = buf_len;
1081         size -= buf_len;
1082 
1083         FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
1084 
1085         /* The last 4 bytes are the CRC.  */
1086         if (size < 4) {
1087             buf_len += size - 4;
1088         }
1089         buf_addr = bd.data;
1090         dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1091         buf += buf_len;
1092         if (size < 4) {
1093             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1094                              crc_ptr, 4 - size);
1095             crc_ptr += 4 - size;
1096         }
1097         bd.flags &= ~ENET_BD_E;
1098         if (size == 0) {
1099             /* Last buffer in frame.  */
1100             bd.flags |= flags | ENET_BD_L;
1101             FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1102             if (bd.option & ENET_BD_RX_INT) {
1103                 s->regs[ENET_EIR] |= ENET_INT_RXF;
1104             }
1105         } else {
1106             if (bd.option & ENET_BD_RX_INT) {
1107                 s->regs[ENET_EIR] |= ENET_INT_RXB;
1108             }
1109         }
1110         imx_enet_write_bd(&bd, addr);
1111         /* Advance to the next descriptor.  */
1112         if ((bd.flags & ENET_BD_W) != 0) {
1113             addr = s->regs[ENET_RDSR];
1114         } else {
1115             addr += sizeof(bd);
1116         }
1117     }
1118     s->rx_descriptor = addr;
1119     imx_eth_enable_rx(s);
1120     imx_eth_update(s);
1121     return len;
1122 }
1123 
1124 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1125                                 size_t len)
1126 {
1127     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1128 
1129     if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1130         return imx_enet_receive(nc, buf, len);
1131     } else {
1132         return imx_fec_receive(nc, buf, len);
1133     }
1134 }
1135 
1136 static const MemoryRegionOps imx_eth_ops = {
1137     .read                  = imx_eth_read,
1138     .write                 = imx_eth_write,
1139     .valid.min_access_size = 4,
1140     .valid.max_access_size = 4,
1141     .endianness            = DEVICE_NATIVE_ENDIAN,
1142 };
1143 
1144 static void imx_eth_cleanup(NetClientState *nc)
1145 {
1146     IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1147 
1148     s->nic = NULL;
1149 }
1150 
1151 static NetClientInfo imx_eth_net_info = {
1152     .type                = NET_CLIENT_DRIVER_NIC,
1153     .size                = sizeof(NICState),
1154     .can_receive         = imx_eth_can_receive,
1155     .receive             = imx_eth_receive,
1156     .cleanup             = imx_eth_cleanup,
1157     .link_status_changed = imx_eth_set_link,
1158 };
1159 
1160 
1161 static void imx_eth_realize(DeviceState *dev, Error **errp)
1162 {
1163     IMXFECState *s = IMX_FEC(dev);
1164     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1165 
1166     memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1167                           TYPE_IMX_FEC, 0x400);
1168     sysbus_init_mmio(sbd, &s->iomem);
1169     sysbus_init_irq(sbd, &s->irq[0]);
1170     sysbus_init_irq(sbd, &s->irq[1]);
1171 
1172     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1173 
1174     s->conf.peers.ncs[0] = nd_table[0].netdev;
1175 
1176     s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1177                           object_get_typename(OBJECT(dev)),
1178                           DEVICE(dev)->id, s);
1179 
1180     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1181 }
1182 
1183 static Property imx_eth_properties[] = {
1184     DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1185     DEFINE_PROP_END_OF_LIST(),
1186 };
1187 
1188 static void imx_eth_class_init(ObjectClass *klass, void *data)
1189 {
1190     DeviceClass *dc = DEVICE_CLASS(klass);
1191 
1192     dc->vmsd    = &vmstate_imx_eth;
1193     dc->reset   = imx_eth_reset;
1194     dc->props   = imx_eth_properties;
1195     dc->realize = imx_eth_realize;
1196     dc->desc    = "i.MX FEC/ENET Ethernet Controller";
1197 }
1198 
1199 static void imx_fec_init(Object *obj)
1200 {
1201     IMXFECState *s = IMX_FEC(obj);
1202 
1203     s->is_fec = true;
1204 }
1205 
1206 static void imx_enet_init(Object *obj)
1207 {
1208     IMXFECState *s = IMX_FEC(obj);
1209 
1210     s->is_fec = false;
1211 }
1212 
1213 static const TypeInfo imx_fec_info = {
1214     .name          = TYPE_IMX_FEC,
1215     .parent        = TYPE_SYS_BUS_DEVICE,
1216     .instance_size = sizeof(IMXFECState),
1217     .instance_init = imx_fec_init,
1218     .class_init    = imx_eth_class_init,
1219 };
1220 
1221 static const TypeInfo imx_enet_info = {
1222     .name          = TYPE_IMX_ENET,
1223     .parent        = TYPE_IMX_FEC,
1224     .instance_init = imx_enet_init,
1225 };
1226 
1227 static void imx_eth_register_types(void)
1228 {
1229     type_register_static(&imx_fec_info);
1230     type_register_static(&imx_enet_info);
1231 }
1232 
1233 type_init(imx_eth_register_types)
1234