1 /* 2 * i.MX Fast Ethernet Controller emulation. 3 * 4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net> 5 * 6 * Based on Coldfire Fast Ethernet Controller emulation. 7 * 8 * Copyright (c) 2007 CodeSourcery. 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "hw/irq.h" 26 #include "hw/net/imx_fec.h" 27 #include "hw/qdev-properties.h" 28 #include "migration/vmstate.h" 29 #include "sysemu/dma.h" 30 #include "qemu/log.h" 31 #include "qemu/module.h" 32 #include "net/checksum.h" 33 #include "net/eth.h" 34 35 /* For crc32 */ 36 #include <zlib.h> 37 38 #ifndef DEBUG_IMX_FEC 39 #define DEBUG_IMX_FEC 0 40 #endif 41 42 #define FEC_PRINTF(fmt, args...) \ 43 do { \ 44 if (DEBUG_IMX_FEC) { \ 45 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \ 46 __func__, ##args); \ 47 } \ 48 } while (0) 49 50 #ifndef DEBUG_IMX_PHY 51 #define DEBUG_IMX_PHY 0 52 #endif 53 54 #define PHY_PRINTF(fmt, args...) \ 55 do { \ 56 if (DEBUG_IMX_PHY) { \ 57 fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \ 58 __func__, ##args); \ 59 } \ 60 } while (0) 61 62 #define IMX_MAX_DESC 1024 63 64 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index) 65 { 66 static char tmp[20]; 67 sprintf(tmp, "index %d", index); 68 return tmp; 69 } 70 71 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index) 72 { 73 switch (index) { 74 case ENET_FRBR: 75 return "FRBR"; 76 case ENET_FRSR: 77 return "FRSR"; 78 case ENET_MIIGSK_CFGR: 79 return "MIIGSK_CFGR"; 80 case ENET_MIIGSK_ENR: 81 return "MIIGSK_ENR"; 82 default: 83 return imx_default_reg_name(s, index); 84 } 85 } 86 87 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index) 88 { 89 switch (index) { 90 case ENET_RSFL: 91 return "RSFL"; 92 case ENET_RSEM: 93 return "RSEM"; 94 case ENET_RAEM: 95 return "RAEM"; 96 case ENET_RAFL: 97 return "RAFL"; 98 case ENET_TSEM: 99 return "TSEM"; 100 case ENET_TAEM: 101 return "TAEM"; 102 case ENET_TAFL: 103 return "TAFL"; 104 case ENET_TIPG: 105 return "TIPG"; 106 case ENET_FTRL: 107 return "FTRL"; 108 case ENET_TACC: 109 return "TACC"; 110 case ENET_RACC: 111 return "RACC"; 112 case ENET_ATCR: 113 return "ATCR"; 114 case ENET_ATVR: 115 return "ATVR"; 116 case ENET_ATOFF: 117 return "ATOFF"; 118 case ENET_ATPER: 119 return "ATPER"; 120 case ENET_ATCOR: 121 return "ATCOR"; 122 case ENET_ATINC: 123 return "ATINC"; 124 case ENET_ATSTMP: 125 return "ATSTMP"; 126 case ENET_TGSR: 127 return "TGSR"; 128 case ENET_TCSR0: 129 return "TCSR0"; 130 case ENET_TCCR0: 131 return "TCCR0"; 132 case ENET_TCSR1: 133 return "TCSR1"; 134 case ENET_TCCR1: 135 return "TCCR1"; 136 case ENET_TCSR2: 137 return "TCSR2"; 138 case ENET_TCCR2: 139 return "TCCR2"; 140 case ENET_TCSR3: 141 return "TCSR3"; 142 case ENET_TCCR3: 143 return "TCCR3"; 144 default: 145 return imx_default_reg_name(s, index); 146 } 147 } 148 149 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index) 150 { 151 switch (index) { 152 case ENET_EIR: 153 return "EIR"; 154 case ENET_EIMR: 155 return "EIMR"; 156 case ENET_RDAR: 157 return "RDAR"; 158 case ENET_TDAR: 159 return "TDAR"; 160 case ENET_ECR: 161 return "ECR"; 162 case ENET_MMFR: 163 return "MMFR"; 164 case ENET_MSCR: 165 return "MSCR"; 166 case ENET_MIBC: 167 return "MIBC"; 168 case ENET_RCR: 169 return "RCR"; 170 case ENET_TCR: 171 return "TCR"; 172 case ENET_PALR: 173 return "PALR"; 174 case ENET_PAUR: 175 return "PAUR"; 176 case ENET_OPD: 177 return "OPD"; 178 case ENET_IAUR: 179 return "IAUR"; 180 case ENET_IALR: 181 return "IALR"; 182 case ENET_GAUR: 183 return "GAUR"; 184 case ENET_GALR: 185 return "GALR"; 186 case ENET_TFWR: 187 return "TFWR"; 188 case ENET_RDSR: 189 return "RDSR"; 190 case ENET_TDSR: 191 return "TDSR"; 192 case ENET_MRBR: 193 return "MRBR"; 194 default: 195 if (s->is_fec) { 196 return imx_fec_reg_name(s, index); 197 } else { 198 return imx_enet_reg_name(s, index); 199 } 200 } 201 } 202 203 /* 204 * Versions of this device with more than one TX descriptor save the 205 * 2nd and 3rd descriptors in a subsection, to maintain migration 206 * compatibility with previous versions of the device that only 207 * supported a single descriptor. 208 */ 209 static bool imx_eth_is_multi_tx_ring(void *opaque) 210 { 211 IMXFECState *s = IMX_FEC(opaque); 212 213 return s->tx_ring_num > 1; 214 } 215 216 static const VMStateDescription vmstate_imx_eth_txdescs = { 217 .name = "imx.fec/txdescs", 218 .version_id = 1, 219 .minimum_version_id = 1, 220 .needed = imx_eth_is_multi_tx_ring, 221 .fields = (VMStateField[]) { 222 VMSTATE_UINT32(tx_descriptor[1], IMXFECState), 223 VMSTATE_UINT32(tx_descriptor[2], IMXFECState), 224 VMSTATE_END_OF_LIST() 225 } 226 }; 227 228 static const VMStateDescription vmstate_imx_eth = { 229 .name = TYPE_IMX_FEC, 230 .version_id = 2, 231 .minimum_version_id = 2, 232 .fields = (VMStateField[]) { 233 VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX), 234 VMSTATE_UINT32(rx_descriptor, IMXFECState), 235 VMSTATE_UINT32(tx_descriptor[0], IMXFECState), 236 VMSTATE_UINT32(phy_status, IMXFECState), 237 VMSTATE_UINT32(phy_control, IMXFECState), 238 VMSTATE_UINT32(phy_advertise, IMXFECState), 239 VMSTATE_UINT32(phy_int, IMXFECState), 240 VMSTATE_UINT32(phy_int_mask, IMXFECState), 241 VMSTATE_END_OF_LIST() 242 }, 243 .subsections = (const VMStateDescription * []) { 244 &vmstate_imx_eth_txdescs, 245 NULL 246 }, 247 }; 248 249 #define PHY_INT_ENERGYON (1 << 7) 250 #define PHY_INT_AUTONEG_COMPLETE (1 << 6) 251 #define PHY_INT_FAULT (1 << 5) 252 #define PHY_INT_DOWN (1 << 4) 253 #define PHY_INT_AUTONEG_LP (1 << 3) 254 #define PHY_INT_PARFAULT (1 << 2) 255 #define PHY_INT_AUTONEG_PAGE (1 << 1) 256 257 static void imx_eth_update(IMXFECState *s); 258 259 /* 260 * The MII phy could raise a GPIO to the processor which in turn 261 * could be handled as an interrpt by the OS. 262 * For now we don't handle any GPIO/interrupt line, so the OS will 263 * have to poll for the PHY status. 264 */ 265 static void phy_update_irq(IMXFECState *s) 266 { 267 imx_eth_update(s); 268 } 269 270 static void phy_update_link(IMXFECState *s) 271 { 272 /* Autonegotiation status mirrors link status. */ 273 if (qemu_get_queue(s->nic)->link_down) { 274 PHY_PRINTF("link is down\n"); 275 s->phy_status &= ~0x0024; 276 s->phy_int |= PHY_INT_DOWN; 277 } else { 278 PHY_PRINTF("link is up\n"); 279 s->phy_status |= 0x0024; 280 s->phy_int |= PHY_INT_ENERGYON; 281 s->phy_int |= PHY_INT_AUTONEG_COMPLETE; 282 } 283 phy_update_irq(s); 284 } 285 286 static void imx_eth_set_link(NetClientState *nc) 287 { 288 phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc))); 289 } 290 291 static void phy_reset(IMXFECState *s) 292 { 293 s->phy_status = 0x7809; 294 s->phy_control = 0x3000; 295 s->phy_advertise = 0x01e1; 296 s->phy_int_mask = 0; 297 s->phy_int = 0; 298 phy_update_link(s); 299 } 300 301 static uint32_t do_phy_read(IMXFECState *s, int reg) 302 { 303 uint32_t val; 304 305 if (reg > 31) { 306 /* we only advertise one phy */ 307 return 0; 308 } 309 310 switch (reg) { 311 case 0: /* Basic Control */ 312 val = s->phy_control; 313 break; 314 case 1: /* Basic Status */ 315 val = s->phy_status; 316 break; 317 case 2: /* ID1 */ 318 val = 0x0007; 319 break; 320 case 3: /* ID2 */ 321 val = 0xc0d1; 322 break; 323 case 4: /* Auto-neg advertisement */ 324 val = s->phy_advertise; 325 break; 326 case 5: /* Auto-neg Link Partner Ability */ 327 val = 0x0f71; 328 break; 329 case 6: /* Auto-neg Expansion */ 330 val = 1; 331 break; 332 case 29: /* Interrupt source. */ 333 val = s->phy_int; 334 s->phy_int = 0; 335 phy_update_irq(s); 336 break; 337 case 30: /* Interrupt mask */ 338 val = s->phy_int_mask; 339 break; 340 case 17: 341 case 18: 342 case 27: 343 case 31: 344 qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n", 345 TYPE_IMX_FEC, __func__, reg); 346 val = 0; 347 break; 348 default: 349 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", 350 TYPE_IMX_FEC, __func__, reg); 351 val = 0; 352 break; 353 } 354 355 PHY_PRINTF("read 0x%04x @ %d\n", val, reg); 356 357 return val; 358 } 359 360 static void do_phy_write(IMXFECState *s, int reg, uint32_t val) 361 { 362 PHY_PRINTF("write 0x%04x @ %d\n", val, reg); 363 364 if (reg > 31) { 365 /* we only advertise one phy */ 366 return; 367 } 368 369 switch (reg) { 370 case 0: /* Basic Control */ 371 if (val & 0x8000) { 372 phy_reset(s); 373 } else { 374 s->phy_control = val & 0x7980; 375 /* Complete autonegotiation immediately. */ 376 if (val & 0x1000) { 377 s->phy_status |= 0x0020; 378 } 379 } 380 break; 381 case 4: /* Auto-neg advertisement */ 382 s->phy_advertise = (val & 0x2d7f) | 0x80; 383 break; 384 case 30: /* Interrupt mask */ 385 s->phy_int_mask = val & 0xff; 386 phy_update_irq(s); 387 break; 388 case 17: 389 case 18: 390 case 27: 391 case 31: 392 qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n", 393 TYPE_IMX_FEC, __func__, reg); 394 break; 395 default: 396 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", 397 TYPE_IMX_FEC, __func__, reg); 398 break; 399 } 400 } 401 402 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr) 403 { 404 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd)); 405 } 406 407 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr) 408 { 409 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd)); 410 } 411 412 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr) 413 { 414 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd)); 415 } 416 417 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr) 418 { 419 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd)); 420 } 421 422 static void imx_eth_update(IMXFECState *s) 423 { 424 /* 425 * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER 426 * interrupts swapped. This worked with older versions of Linux (4.14 427 * and older) since Linux associated both interrupt lines with Ethernet 428 * MAC interrupts. Specifically, 429 * - Linux 4.15 and later have separate interrupt handlers for the MAC and 430 * timer interrupts. Those versions of Linux fail with versions of QEMU 431 * with swapped interrupt assignments. 432 * - In linux 4.14, both interrupt lines were registered with the Ethernet 433 * MAC interrupt handler. As a result, all versions of qemu happen to 434 * work, though that is accidental. 435 * - In Linux 4.9 and older, the timer interrupt was registered directly 436 * with the Ethernet MAC interrupt handler. The MAC interrupt was 437 * redirected to a GPIO interrupt to work around erratum ERR006687. 438 * This was implemented using the SOC's IOMUX block. In qemu, this GPIO 439 * interrupt never fired since IOMUX is currently not supported in qemu. 440 * Linux instead received MAC interrupts on the timer interrupt. 441 * As a result, qemu versions with the swapped interrupt assignment work, 442 * albeit accidentally, but qemu versions with the correct interrupt 443 * assignment fail. 444 * 445 * To ensure that all versions of Linux work, generate ENET_INT_MAC 446 * interrrupts on both interrupt lines. This should be changed if and when 447 * qemu supports IOMUX. 448 */ 449 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & 450 (ENET_INT_MAC | ENET_INT_TS_TIMER)) { 451 qemu_set_irq(s->irq[1], 1); 452 } else { 453 qemu_set_irq(s->irq[1], 0); 454 } 455 456 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) { 457 qemu_set_irq(s->irq[0], 1); 458 } else { 459 qemu_set_irq(s->irq[0], 0); 460 } 461 } 462 463 static void imx_fec_do_tx(IMXFECState *s) 464 { 465 int frame_size = 0, descnt = 0; 466 uint8_t *ptr = s->frame; 467 uint32_t addr = s->tx_descriptor[0]; 468 469 while (descnt++ < IMX_MAX_DESC) { 470 IMXFECBufDesc bd; 471 int len; 472 473 imx_fec_read_bd(&bd, addr); 474 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n", 475 addr, bd.flags, bd.length, bd.data); 476 if ((bd.flags & ENET_BD_R) == 0) { 477 /* Run out of descriptors to transmit. */ 478 FEC_PRINTF("tx_bd ran out of descriptors to transmit\n"); 479 break; 480 } 481 len = bd.length; 482 if (frame_size + len > ENET_MAX_FRAME_SIZE) { 483 len = ENET_MAX_FRAME_SIZE - frame_size; 484 s->regs[ENET_EIR] |= ENET_INT_BABT; 485 } 486 dma_memory_read(&address_space_memory, bd.data, ptr, len); 487 ptr += len; 488 frame_size += len; 489 if (bd.flags & ENET_BD_L) { 490 /* Last buffer in frame. */ 491 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); 492 ptr = s->frame; 493 frame_size = 0; 494 s->regs[ENET_EIR] |= ENET_INT_TXF; 495 } 496 s->regs[ENET_EIR] |= ENET_INT_TXB; 497 bd.flags &= ~ENET_BD_R; 498 /* Write back the modified descriptor. */ 499 imx_fec_write_bd(&bd, addr); 500 /* Advance to the next descriptor. */ 501 if ((bd.flags & ENET_BD_W) != 0) { 502 addr = s->regs[ENET_TDSR]; 503 } else { 504 addr += sizeof(bd); 505 } 506 } 507 508 s->tx_descriptor[0] = addr; 509 510 imx_eth_update(s); 511 } 512 513 static void imx_enet_do_tx(IMXFECState *s, uint32_t index) 514 { 515 int frame_size = 0, descnt = 0; 516 517 uint8_t *ptr = s->frame; 518 uint32_t addr, int_txb, int_txf, tdsr; 519 size_t ring; 520 521 switch (index) { 522 case ENET_TDAR: 523 ring = 0; 524 int_txb = ENET_INT_TXB; 525 int_txf = ENET_INT_TXF; 526 tdsr = ENET_TDSR; 527 break; 528 case ENET_TDAR1: 529 ring = 1; 530 int_txb = ENET_INT_TXB1; 531 int_txf = ENET_INT_TXF1; 532 tdsr = ENET_TDSR1; 533 break; 534 case ENET_TDAR2: 535 ring = 2; 536 int_txb = ENET_INT_TXB2; 537 int_txf = ENET_INT_TXF2; 538 tdsr = ENET_TDSR2; 539 break; 540 default: 541 qemu_log_mask(LOG_GUEST_ERROR, 542 "%s: bogus value for index %x\n", 543 __func__, index); 544 abort(); 545 break; 546 } 547 548 addr = s->tx_descriptor[ring]; 549 550 while (descnt++ < IMX_MAX_DESC) { 551 IMXENETBufDesc bd; 552 int len; 553 554 imx_enet_read_bd(&bd, addr); 555 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x " 556 "status %04x\n", addr, bd.flags, bd.length, bd.data, 557 bd.option, bd.status); 558 if ((bd.flags & ENET_BD_R) == 0) { 559 /* Run out of descriptors to transmit. */ 560 break; 561 } 562 len = bd.length; 563 if (frame_size + len > ENET_MAX_FRAME_SIZE) { 564 len = ENET_MAX_FRAME_SIZE - frame_size; 565 s->regs[ENET_EIR] |= ENET_INT_BABT; 566 } 567 dma_memory_read(&address_space_memory, bd.data, ptr, len); 568 ptr += len; 569 frame_size += len; 570 if (bd.flags & ENET_BD_L) { 571 if (bd.option & ENET_BD_PINS) { 572 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame); 573 if (IP_HEADER_VERSION(ip_hd) == 4) { 574 net_checksum_calculate(s->frame, frame_size); 575 } 576 } 577 if (bd.option & ENET_BD_IINS) { 578 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame); 579 /* We compute checksum only for IPv4 frames */ 580 if (IP_HEADER_VERSION(ip_hd) == 4) { 581 uint16_t csum; 582 ip_hd->ip_sum = 0; 583 csum = net_raw_checksum((uint8_t *)ip_hd, sizeof(*ip_hd)); 584 ip_hd->ip_sum = cpu_to_be16(csum); 585 } 586 } 587 /* Last buffer in frame. */ 588 589 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); 590 ptr = s->frame; 591 592 frame_size = 0; 593 if (bd.option & ENET_BD_TX_INT) { 594 s->regs[ENET_EIR] |= int_txf; 595 } 596 /* Indicate that we've updated the last buffer descriptor. */ 597 bd.last_buffer = ENET_BD_BDU; 598 } 599 if (bd.option & ENET_BD_TX_INT) { 600 s->regs[ENET_EIR] |= int_txb; 601 } 602 bd.flags &= ~ENET_BD_R; 603 /* Write back the modified descriptor. */ 604 imx_enet_write_bd(&bd, addr); 605 /* Advance to the next descriptor. */ 606 if ((bd.flags & ENET_BD_W) != 0) { 607 addr = s->regs[tdsr]; 608 } else { 609 addr += sizeof(bd); 610 } 611 } 612 613 s->tx_descriptor[ring] = addr; 614 615 imx_eth_update(s); 616 } 617 618 static void imx_eth_do_tx(IMXFECState *s, uint32_t index) 619 { 620 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) { 621 imx_enet_do_tx(s, index); 622 } else { 623 imx_fec_do_tx(s); 624 } 625 } 626 627 static void imx_eth_enable_rx(IMXFECState *s, bool flush) 628 { 629 IMXFECBufDesc bd; 630 631 imx_fec_read_bd(&bd, s->rx_descriptor); 632 633 s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0; 634 635 if (!s->regs[ENET_RDAR]) { 636 FEC_PRINTF("RX buffer full\n"); 637 } else if (flush) { 638 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 639 } 640 } 641 642 static void imx_eth_reset(DeviceState *d) 643 { 644 IMXFECState *s = IMX_FEC(d); 645 646 /* Reset the Device */ 647 memset(s->regs, 0, sizeof(s->regs)); 648 s->regs[ENET_ECR] = 0xf0000000; 649 s->regs[ENET_MIBC] = 0xc0000000; 650 s->regs[ENET_RCR] = 0x05ee0001; 651 s->regs[ENET_OPD] = 0x00010000; 652 653 s->regs[ENET_PALR] = (s->conf.macaddr.a[0] << 24) 654 | (s->conf.macaddr.a[1] << 16) 655 | (s->conf.macaddr.a[2] << 8) 656 | s->conf.macaddr.a[3]; 657 s->regs[ENET_PAUR] = (s->conf.macaddr.a[4] << 24) 658 | (s->conf.macaddr.a[5] << 16) 659 | 0x8808; 660 661 if (s->is_fec) { 662 s->regs[ENET_FRBR] = 0x00000600; 663 s->regs[ENET_FRSR] = 0x00000500; 664 s->regs[ENET_MIIGSK_ENR] = 0x00000006; 665 } else { 666 s->regs[ENET_RAEM] = 0x00000004; 667 s->regs[ENET_RAFL] = 0x00000004; 668 s->regs[ENET_TAEM] = 0x00000004; 669 s->regs[ENET_TAFL] = 0x00000008; 670 s->regs[ENET_TIPG] = 0x0000000c; 671 s->regs[ENET_FTRL] = 0x000007ff; 672 s->regs[ENET_ATPER] = 0x3b9aca00; 673 } 674 675 s->rx_descriptor = 0; 676 memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor)); 677 678 /* We also reset the PHY */ 679 phy_reset(s); 680 } 681 682 static uint32_t imx_default_read(IMXFECState *s, uint32_t index) 683 { 684 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" 685 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4); 686 return 0; 687 } 688 689 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index) 690 { 691 switch (index) { 692 case ENET_FRBR: 693 case ENET_FRSR: 694 case ENET_MIIGSK_CFGR: 695 case ENET_MIIGSK_ENR: 696 return s->regs[index]; 697 default: 698 return imx_default_read(s, index); 699 } 700 } 701 702 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index) 703 { 704 switch (index) { 705 case ENET_RSFL: 706 case ENET_RSEM: 707 case ENET_RAEM: 708 case ENET_RAFL: 709 case ENET_TSEM: 710 case ENET_TAEM: 711 case ENET_TAFL: 712 case ENET_TIPG: 713 case ENET_FTRL: 714 case ENET_TACC: 715 case ENET_RACC: 716 case ENET_ATCR: 717 case ENET_ATVR: 718 case ENET_ATOFF: 719 case ENET_ATPER: 720 case ENET_ATCOR: 721 case ENET_ATINC: 722 case ENET_ATSTMP: 723 case ENET_TGSR: 724 case ENET_TCSR0: 725 case ENET_TCCR0: 726 case ENET_TCSR1: 727 case ENET_TCCR1: 728 case ENET_TCSR2: 729 case ENET_TCCR2: 730 case ENET_TCSR3: 731 case ENET_TCCR3: 732 return s->regs[index]; 733 default: 734 return imx_default_read(s, index); 735 } 736 } 737 738 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size) 739 { 740 uint32_t value = 0; 741 IMXFECState *s = IMX_FEC(opaque); 742 uint32_t index = offset >> 2; 743 744 switch (index) { 745 case ENET_EIR: 746 case ENET_EIMR: 747 case ENET_RDAR: 748 case ENET_TDAR: 749 case ENET_ECR: 750 case ENET_MMFR: 751 case ENET_MSCR: 752 case ENET_MIBC: 753 case ENET_RCR: 754 case ENET_TCR: 755 case ENET_PALR: 756 case ENET_PAUR: 757 case ENET_OPD: 758 case ENET_IAUR: 759 case ENET_IALR: 760 case ENET_GAUR: 761 case ENET_GALR: 762 case ENET_TFWR: 763 case ENET_RDSR: 764 case ENET_TDSR: 765 case ENET_MRBR: 766 value = s->regs[index]; 767 break; 768 default: 769 if (s->is_fec) { 770 value = imx_fec_read(s, index); 771 } else { 772 value = imx_enet_read(s, index); 773 } 774 break; 775 } 776 777 FEC_PRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_eth_reg_name(s, index), 778 value); 779 780 return value; 781 } 782 783 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value) 784 { 785 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%" 786 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4); 787 return; 788 } 789 790 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value) 791 { 792 switch (index) { 793 case ENET_FRBR: 794 /* FRBR is read only */ 795 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n", 796 TYPE_IMX_FEC, __func__); 797 break; 798 case ENET_FRSR: 799 s->regs[index] = (value & 0x000003fc) | 0x00000400; 800 break; 801 case ENET_MIIGSK_CFGR: 802 s->regs[index] = value & 0x00000053; 803 break; 804 case ENET_MIIGSK_ENR: 805 s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0; 806 break; 807 default: 808 imx_default_write(s, index, value); 809 break; 810 } 811 } 812 813 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value) 814 { 815 switch (index) { 816 case ENET_RSFL: 817 case ENET_RSEM: 818 case ENET_RAEM: 819 case ENET_RAFL: 820 case ENET_TSEM: 821 case ENET_TAEM: 822 case ENET_TAFL: 823 s->regs[index] = value & 0x000001ff; 824 break; 825 case ENET_TIPG: 826 s->regs[index] = value & 0x0000001f; 827 break; 828 case ENET_FTRL: 829 s->regs[index] = value & 0x00003fff; 830 break; 831 case ENET_TACC: 832 s->regs[index] = value & 0x00000019; 833 break; 834 case ENET_RACC: 835 s->regs[index] = value & 0x000000C7; 836 break; 837 case ENET_ATCR: 838 s->regs[index] = value & 0x00002a9d; 839 break; 840 case ENET_ATVR: 841 case ENET_ATOFF: 842 case ENET_ATPER: 843 s->regs[index] = value; 844 break; 845 case ENET_ATSTMP: 846 /* ATSTMP is read only */ 847 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n", 848 TYPE_IMX_FEC, __func__); 849 break; 850 case ENET_ATCOR: 851 s->regs[index] = value & 0x7fffffff; 852 break; 853 case ENET_ATINC: 854 s->regs[index] = value & 0x00007f7f; 855 break; 856 case ENET_TGSR: 857 /* implement clear timer flag */ 858 value = value & 0x0000000f; 859 break; 860 case ENET_TCSR0: 861 case ENET_TCSR1: 862 case ENET_TCSR2: 863 case ENET_TCSR3: 864 value = value & 0x000000fd; 865 break; 866 case ENET_TCCR0: 867 case ENET_TCCR1: 868 case ENET_TCCR2: 869 case ENET_TCCR3: 870 s->regs[index] = value; 871 break; 872 default: 873 imx_default_write(s, index, value); 874 break; 875 } 876 } 877 878 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value, 879 unsigned size) 880 { 881 IMXFECState *s = IMX_FEC(opaque); 882 const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s); 883 uint32_t index = offset >> 2; 884 885 FEC_PRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_eth_reg_name(s, index), 886 (uint32_t)value); 887 888 switch (index) { 889 case ENET_EIR: 890 s->regs[index] &= ~value; 891 break; 892 case ENET_EIMR: 893 s->regs[index] = value; 894 break; 895 case ENET_RDAR: 896 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) { 897 if (!s->regs[index]) { 898 imx_eth_enable_rx(s, true); 899 } 900 } else { 901 s->regs[index] = 0; 902 } 903 break; 904 case ENET_TDAR1: 905 case ENET_TDAR2: 906 if (unlikely(single_tx_ring)) { 907 qemu_log_mask(LOG_GUEST_ERROR, 908 "[%s]%s: trying to access TDAR2 or TDAR1\n", 909 TYPE_IMX_FEC, __func__); 910 return; 911 } 912 /* fall through */ 913 case ENET_TDAR: 914 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) { 915 s->regs[index] = ENET_TDAR_TDAR; 916 imx_eth_do_tx(s, index); 917 } 918 s->regs[index] = 0; 919 break; 920 case ENET_ECR: 921 if (value & ENET_ECR_RESET) { 922 return imx_eth_reset(DEVICE(s)); 923 } 924 s->regs[index] = value; 925 if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) { 926 s->regs[ENET_RDAR] = 0; 927 s->rx_descriptor = s->regs[ENET_RDSR]; 928 s->regs[ENET_TDAR] = 0; 929 s->regs[ENET_TDAR1] = 0; 930 s->regs[ENET_TDAR2] = 0; 931 s->tx_descriptor[0] = s->regs[ENET_TDSR]; 932 s->tx_descriptor[1] = s->regs[ENET_TDSR1]; 933 s->tx_descriptor[2] = s->regs[ENET_TDSR2]; 934 } 935 break; 936 case ENET_MMFR: 937 s->regs[index] = value; 938 if (extract32(value, 29, 1)) { 939 /* This is a read operation */ 940 s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16, 941 do_phy_read(s, 942 extract32(value, 943 18, 10))); 944 } else { 945 /* This a write operation */ 946 do_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16)); 947 } 948 /* raise the interrupt as the PHY operation is done */ 949 s->regs[ENET_EIR] |= ENET_INT_MII; 950 break; 951 case ENET_MSCR: 952 s->regs[index] = value & 0xfe; 953 break; 954 case ENET_MIBC: 955 /* TODO: Implement MIB. */ 956 s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0; 957 break; 958 case ENET_RCR: 959 s->regs[index] = value & 0x07ff003f; 960 /* TODO: Implement LOOP mode. */ 961 break; 962 case ENET_TCR: 963 /* We transmit immediately, so raise GRA immediately. */ 964 s->regs[index] = value; 965 if (value & 1) { 966 s->regs[ENET_EIR] |= ENET_INT_GRA; 967 } 968 break; 969 case ENET_PALR: 970 s->regs[index] = value; 971 s->conf.macaddr.a[0] = value >> 24; 972 s->conf.macaddr.a[1] = value >> 16; 973 s->conf.macaddr.a[2] = value >> 8; 974 s->conf.macaddr.a[3] = value; 975 break; 976 case ENET_PAUR: 977 s->regs[index] = (value | 0x0000ffff) & 0xffff8808; 978 s->conf.macaddr.a[4] = value >> 24; 979 s->conf.macaddr.a[5] = value >> 16; 980 break; 981 case ENET_OPD: 982 s->regs[index] = (value & 0x0000ffff) | 0x00010000; 983 break; 984 case ENET_IAUR: 985 case ENET_IALR: 986 case ENET_GAUR: 987 case ENET_GALR: 988 /* TODO: implement MAC hash filtering. */ 989 break; 990 case ENET_TFWR: 991 if (s->is_fec) { 992 s->regs[index] = value & 0x3; 993 } else { 994 s->regs[index] = value & 0x13f; 995 } 996 break; 997 case ENET_RDSR: 998 if (s->is_fec) { 999 s->regs[index] = value & ~3; 1000 } else { 1001 s->regs[index] = value & ~7; 1002 } 1003 s->rx_descriptor = s->regs[index]; 1004 break; 1005 case ENET_TDSR: 1006 if (s->is_fec) { 1007 s->regs[index] = value & ~3; 1008 } else { 1009 s->regs[index] = value & ~7; 1010 } 1011 s->tx_descriptor[0] = s->regs[index]; 1012 break; 1013 case ENET_TDSR1: 1014 if (unlikely(single_tx_ring)) { 1015 qemu_log_mask(LOG_GUEST_ERROR, 1016 "[%s]%s: trying to access TDSR1\n", 1017 TYPE_IMX_FEC, __func__); 1018 return; 1019 } 1020 1021 s->regs[index] = value & ~7; 1022 s->tx_descriptor[1] = s->regs[index]; 1023 break; 1024 case ENET_TDSR2: 1025 if (unlikely(single_tx_ring)) { 1026 qemu_log_mask(LOG_GUEST_ERROR, 1027 "[%s]%s: trying to access TDSR2\n", 1028 TYPE_IMX_FEC, __func__); 1029 return; 1030 } 1031 1032 s->regs[index] = value & ~7; 1033 s->tx_descriptor[2] = s->regs[index]; 1034 break; 1035 case ENET_MRBR: 1036 s->regs[index] = value & 0x00003ff0; 1037 break; 1038 default: 1039 if (s->is_fec) { 1040 imx_fec_write(s, index, value); 1041 } else { 1042 imx_enet_write(s, index, value); 1043 } 1044 return; 1045 } 1046 1047 imx_eth_update(s); 1048 } 1049 1050 static int imx_eth_can_receive(NetClientState *nc) 1051 { 1052 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1053 1054 FEC_PRINTF("\n"); 1055 1056 return !!s->regs[ENET_RDAR]; 1057 } 1058 1059 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf, 1060 size_t len) 1061 { 1062 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1063 IMXFECBufDesc bd; 1064 uint32_t flags = 0; 1065 uint32_t addr; 1066 uint32_t crc; 1067 uint32_t buf_addr; 1068 uint8_t *crc_ptr; 1069 unsigned int buf_len; 1070 size_t size = len; 1071 1072 FEC_PRINTF("len %d\n", (int)size); 1073 1074 if (!s->regs[ENET_RDAR]) { 1075 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n", 1076 TYPE_IMX_FEC, __func__); 1077 return 0; 1078 } 1079 1080 /* 4 bytes for the CRC. */ 1081 size += 4; 1082 crc = cpu_to_be32(crc32(~0, buf, size)); 1083 crc_ptr = (uint8_t *) &crc; 1084 1085 /* Huge frames are truncated. */ 1086 if (size > ENET_MAX_FRAME_SIZE) { 1087 size = ENET_MAX_FRAME_SIZE; 1088 flags |= ENET_BD_TR | ENET_BD_LG; 1089 } 1090 1091 /* Frames larger than the user limit just set error flags. */ 1092 if (size > (s->regs[ENET_RCR] >> 16)) { 1093 flags |= ENET_BD_LG; 1094 } 1095 1096 addr = s->rx_descriptor; 1097 while (size > 0) { 1098 imx_fec_read_bd(&bd, addr); 1099 if ((bd.flags & ENET_BD_E) == 0) { 1100 /* No descriptors available. Bail out. */ 1101 /* 1102 * FIXME: This is wrong. We should probably either 1103 * save the remainder for when more RX buffers are 1104 * available, or flag an error. 1105 */ 1106 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n", 1107 TYPE_IMX_FEC, __func__); 1108 break; 1109 } 1110 buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR]; 1111 bd.length = buf_len; 1112 size -= buf_len; 1113 1114 FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length); 1115 1116 /* The last 4 bytes are the CRC. */ 1117 if (size < 4) { 1118 buf_len += size - 4; 1119 } 1120 buf_addr = bd.data; 1121 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len); 1122 buf += buf_len; 1123 if (size < 4) { 1124 dma_memory_write(&address_space_memory, buf_addr + buf_len, 1125 crc_ptr, 4 - size); 1126 crc_ptr += 4 - size; 1127 } 1128 bd.flags &= ~ENET_BD_E; 1129 if (size == 0) { 1130 /* Last buffer in frame. */ 1131 bd.flags |= flags | ENET_BD_L; 1132 FEC_PRINTF("rx frame flags %04x\n", bd.flags); 1133 s->regs[ENET_EIR] |= ENET_INT_RXF; 1134 } else { 1135 s->regs[ENET_EIR] |= ENET_INT_RXB; 1136 } 1137 imx_fec_write_bd(&bd, addr); 1138 /* Advance to the next descriptor. */ 1139 if ((bd.flags & ENET_BD_W) != 0) { 1140 addr = s->regs[ENET_RDSR]; 1141 } else { 1142 addr += sizeof(bd); 1143 } 1144 } 1145 s->rx_descriptor = addr; 1146 imx_eth_enable_rx(s, false); 1147 imx_eth_update(s); 1148 return len; 1149 } 1150 1151 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf, 1152 size_t len) 1153 { 1154 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1155 IMXENETBufDesc bd; 1156 uint32_t flags = 0; 1157 uint32_t addr; 1158 uint32_t crc; 1159 uint32_t buf_addr; 1160 uint8_t *crc_ptr; 1161 unsigned int buf_len; 1162 size_t size = len; 1163 bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16; 1164 1165 FEC_PRINTF("len %d\n", (int)size); 1166 1167 if (!s->regs[ENET_RDAR]) { 1168 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n", 1169 TYPE_IMX_FEC, __func__); 1170 return 0; 1171 } 1172 1173 /* 4 bytes for the CRC. */ 1174 size += 4; 1175 crc = cpu_to_be32(crc32(~0, buf, size)); 1176 crc_ptr = (uint8_t *) &crc; 1177 1178 if (shift16) { 1179 size += 2; 1180 } 1181 1182 /* Huge frames are truncated. */ 1183 if (size > s->regs[ENET_FTRL]) { 1184 size = s->regs[ENET_FTRL]; 1185 flags |= ENET_BD_TR | ENET_BD_LG; 1186 } 1187 1188 /* Frames larger than the user limit just set error flags. */ 1189 if (size > (s->regs[ENET_RCR] >> 16)) { 1190 flags |= ENET_BD_LG; 1191 } 1192 1193 addr = s->rx_descriptor; 1194 while (size > 0) { 1195 imx_enet_read_bd(&bd, addr); 1196 if ((bd.flags & ENET_BD_E) == 0) { 1197 /* No descriptors available. Bail out. */ 1198 /* 1199 * FIXME: This is wrong. We should probably either 1200 * save the remainder for when more RX buffers are 1201 * available, or flag an error. 1202 */ 1203 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n", 1204 TYPE_IMX_FEC, __func__); 1205 break; 1206 } 1207 buf_len = MIN(size, s->regs[ENET_MRBR]); 1208 bd.length = buf_len; 1209 size -= buf_len; 1210 1211 FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length); 1212 1213 /* The last 4 bytes are the CRC. */ 1214 if (size < 4) { 1215 buf_len += size - 4; 1216 } 1217 buf_addr = bd.data; 1218 1219 if (shift16) { 1220 /* 1221 * If SHIFT16 bit of ENETx_RACC register is set we need to 1222 * align the payload to 4-byte boundary. 1223 */ 1224 const uint8_t zeros[2] = { 0 }; 1225 1226 dma_memory_write(&address_space_memory, buf_addr, 1227 zeros, sizeof(zeros)); 1228 1229 buf_addr += sizeof(zeros); 1230 buf_len -= sizeof(zeros); 1231 1232 /* We only do this once per Ethernet frame */ 1233 shift16 = false; 1234 } 1235 1236 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len); 1237 buf += buf_len; 1238 if (size < 4) { 1239 dma_memory_write(&address_space_memory, buf_addr + buf_len, 1240 crc_ptr, 4 - size); 1241 crc_ptr += 4 - size; 1242 } 1243 bd.flags &= ~ENET_BD_E; 1244 if (size == 0) { 1245 /* Last buffer in frame. */ 1246 bd.flags |= flags | ENET_BD_L; 1247 FEC_PRINTF("rx frame flags %04x\n", bd.flags); 1248 /* Indicate that we've updated the last buffer descriptor. */ 1249 bd.last_buffer = ENET_BD_BDU; 1250 if (bd.option & ENET_BD_RX_INT) { 1251 s->regs[ENET_EIR] |= ENET_INT_RXF; 1252 } 1253 } else { 1254 if (bd.option & ENET_BD_RX_INT) { 1255 s->regs[ENET_EIR] |= ENET_INT_RXB; 1256 } 1257 } 1258 imx_enet_write_bd(&bd, addr); 1259 /* Advance to the next descriptor. */ 1260 if ((bd.flags & ENET_BD_W) != 0) { 1261 addr = s->regs[ENET_RDSR]; 1262 } else { 1263 addr += sizeof(bd); 1264 } 1265 } 1266 s->rx_descriptor = addr; 1267 imx_eth_enable_rx(s, false); 1268 imx_eth_update(s); 1269 return len; 1270 } 1271 1272 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf, 1273 size_t len) 1274 { 1275 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1276 1277 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) { 1278 return imx_enet_receive(nc, buf, len); 1279 } else { 1280 return imx_fec_receive(nc, buf, len); 1281 } 1282 } 1283 1284 static const MemoryRegionOps imx_eth_ops = { 1285 .read = imx_eth_read, 1286 .write = imx_eth_write, 1287 .valid.min_access_size = 4, 1288 .valid.max_access_size = 4, 1289 .endianness = DEVICE_NATIVE_ENDIAN, 1290 }; 1291 1292 static void imx_eth_cleanup(NetClientState *nc) 1293 { 1294 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1295 1296 s->nic = NULL; 1297 } 1298 1299 static NetClientInfo imx_eth_net_info = { 1300 .type = NET_CLIENT_DRIVER_NIC, 1301 .size = sizeof(NICState), 1302 .can_receive = imx_eth_can_receive, 1303 .receive = imx_eth_receive, 1304 .cleanup = imx_eth_cleanup, 1305 .link_status_changed = imx_eth_set_link, 1306 }; 1307 1308 1309 static void imx_eth_realize(DeviceState *dev, Error **errp) 1310 { 1311 IMXFECState *s = IMX_FEC(dev); 1312 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1313 1314 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s, 1315 TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE); 1316 sysbus_init_mmio(sbd, &s->iomem); 1317 sysbus_init_irq(sbd, &s->irq[0]); 1318 sysbus_init_irq(sbd, &s->irq[1]); 1319 1320 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1321 1322 s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf, 1323 object_get_typename(OBJECT(dev)), 1324 DEVICE(dev)->id, s); 1325 1326 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 1327 } 1328 1329 static Property imx_eth_properties[] = { 1330 DEFINE_NIC_PROPERTIES(IMXFECState, conf), 1331 DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1), 1332 DEFINE_PROP_END_OF_LIST(), 1333 }; 1334 1335 static void imx_eth_class_init(ObjectClass *klass, void *data) 1336 { 1337 DeviceClass *dc = DEVICE_CLASS(klass); 1338 1339 dc->vmsd = &vmstate_imx_eth; 1340 dc->reset = imx_eth_reset; 1341 device_class_set_props(dc, imx_eth_properties); 1342 dc->realize = imx_eth_realize; 1343 dc->desc = "i.MX FEC/ENET Ethernet Controller"; 1344 } 1345 1346 static void imx_fec_init(Object *obj) 1347 { 1348 IMXFECState *s = IMX_FEC(obj); 1349 1350 s->is_fec = true; 1351 } 1352 1353 static void imx_enet_init(Object *obj) 1354 { 1355 IMXFECState *s = IMX_FEC(obj); 1356 1357 s->is_fec = false; 1358 } 1359 1360 static const TypeInfo imx_fec_info = { 1361 .name = TYPE_IMX_FEC, 1362 .parent = TYPE_SYS_BUS_DEVICE, 1363 .instance_size = sizeof(IMXFECState), 1364 .instance_init = imx_fec_init, 1365 .class_init = imx_eth_class_init, 1366 }; 1367 1368 static const TypeInfo imx_enet_info = { 1369 .name = TYPE_IMX_ENET, 1370 .parent = TYPE_IMX_FEC, 1371 .instance_init = imx_enet_init, 1372 }; 1373 1374 static void imx_eth_register_types(void) 1375 { 1376 type_register_static(&imx_fec_info); 1377 type_register_static(&imx_enet_info); 1378 } 1379 1380 type_init(imx_eth_register_types) 1381