1 /* 2 * i.MX Fast Ethernet Controller emulation. 3 * 4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net> 5 * 6 * Based on Coldfire Fast Ethernet Controller emulation. 7 * 8 * Copyright (c) 2007 CodeSourcery. 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "hw/irq.h" 26 #include "hw/net/imx_fec.h" 27 #include "hw/qdev-properties.h" 28 #include "migration/vmstate.h" 29 #include "sysemu/dma.h" 30 #include "qemu/log.h" 31 #include "qemu/module.h" 32 #include "net/checksum.h" 33 #include "net/eth.h" 34 #include "trace.h" 35 36 /* For crc32 */ 37 #include <zlib.h> 38 39 #define IMX_MAX_DESC 1024 40 41 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index) 42 { 43 static char tmp[20]; 44 sprintf(tmp, "index %d", index); 45 return tmp; 46 } 47 48 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index) 49 { 50 switch (index) { 51 case ENET_FRBR: 52 return "FRBR"; 53 case ENET_FRSR: 54 return "FRSR"; 55 case ENET_MIIGSK_CFGR: 56 return "MIIGSK_CFGR"; 57 case ENET_MIIGSK_ENR: 58 return "MIIGSK_ENR"; 59 default: 60 return imx_default_reg_name(s, index); 61 } 62 } 63 64 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index) 65 { 66 switch (index) { 67 case ENET_RSFL: 68 return "RSFL"; 69 case ENET_RSEM: 70 return "RSEM"; 71 case ENET_RAEM: 72 return "RAEM"; 73 case ENET_RAFL: 74 return "RAFL"; 75 case ENET_TSEM: 76 return "TSEM"; 77 case ENET_TAEM: 78 return "TAEM"; 79 case ENET_TAFL: 80 return "TAFL"; 81 case ENET_TIPG: 82 return "TIPG"; 83 case ENET_FTRL: 84 return "FTRL"; 85 case ENET_TACC: 86 return "TACC"; 87 case ENET_RACC: 88 return "RACC"; 89 case ENET_ATCR: 90 return "ATCR"; 91 case ENET_ATVR: 92 return "ATVR"; 93 case ENET_ATOFF: 94 return "ATOFF"; 95 case ENET_ATPER: 96 return "ATPER"; 97 case ENET_ATCOR: 98 return "ATCOR"; 99 case ENET_ATINC: 100 return "ATINC"; 101 case ENET_ATSTMP: 102 return "ATSTMP"; 103 case ENET_TGSR: 104 return "TGSR"; 105 case ENET_TCSR0: 106 return "TCSR0"; 107 case ENET_TCCR0: 108 return "TCCR0"; 109 case ENET_TCSR1: 110 return "TCSR1"; 111 case ENET_TCCR1: 112 return "TCCR1"; 113 case ENET_TCSR2: 114 return "TCSR2"; 115 case ENET_TCCR2: 116 return "TCCR2"; 117 case ENET_TCSR3: 118 return "TCSR3"; 119 case ENET_TCCR3: 120 return "TCCR3"; 121 default: 122 return imx_default_reg_name(s, index); 123 } 124 } 125 126 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index) 127 { 128 switch (index) { 129 case ENET_EIR: 130 return "EIR"; 131 case ENET_EIMR: 132 return "EIMR"; 133 case ENET_RDAR: 134 return "RDAR"; 135 case ENET_TDAR: 136 return "TDAR"; 137 case ENET_ECR: 138 return "ECR"; 139 case ENET_MMFR: 140 return "MMFR"; 141 case ENET_MSCR: 142 return "MSCR"; 143 case ENET_MIBC: 144 return "MIBC"; 145 case ENET_RCR: 146 return "RCR"; 147 case ENET_TCR: 148 return "TCR"; 149 case ENET_PALR: 150 return "PALR"; 151 case ENET_PAUR: 152 return "PAUR"; 153 case ENET_OPD: 154 return "OPD"; 155 case ENET_IAUR: 156 return "IAUR"; 157 case ENET_IALR: 158 return "IALR"; 159 case ENET_GAUR: 160 return "GAUR"; 161 case ENET_GALR: 162 return "GALR"; 163 case ENET_TFWR: 164 return "TFWR"; 165 case ENET_RDSR: 166 return "RDSR"; 167 case ENET_TDSR: 168 return "TDSR"; 169 case ENET_MRBR: 170 return "MRBR"; 171 default: 172 if (s->is_fec) { 173 return imx_fec_reg_name(s, index); 174 } else { 175 return imx_enet_reg_name(s, index); 176 } 177 } 178 } 179 180 /* 181 * Versions of this device with more than one TX descriptor save the 182 * 2nd and 3rd descriptors in a subsection, to maintain migration 183 * compatibility with previous versions of the device that only 184 * supported a single descriptor. 185 */ 186 static bool imx_eth_is_multi_tx_ring(void *opaque) 187 { 188 IMXFECState *s = IMX_FEC(opaque); 189 190 return s->tx_ring_num > 1; 191 } 192 193 static const VMStateDescription vmstate_imx_eth_txdescs = { 194 .name = "imx.fec/txdescs", 195 .version_id = 1, 196 .minimum_version_id = 1, 197 .needed = imx_eth_is_multi_tx_ring, 198 .fields = (VMStateField[]) { 199 VMSTATE_UINT32(tx_descriptor[1], IMXFECState), 200 VMSTATE_UINT32(tx_descriptor[2], IMXFECState), 201 VMSTATE_END_OF_LIST() 202 } 203 }; 204 205 static const VMStateDescription vmstate_imx_eth = { 206 .name = TYPE_IMX_FEC, 207 .version_id = 2, 208 .minimum_version_id = 2, 209 .fields = (VMStateField[]) { 210 VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX), 211 VMSTATE_UINT32(rx_descriptor, IMXFECState), 212 VMSTATE_UINT32(tx_descriptor[0], IMXFECState), 213 VMSTATE_UINT32(phy_status, IMXFECState), 214 VMSTATE_UINT32(phy_control, IMXFECState), 215 VMSTATE_UINT32(phy_advertise, IMXFECState), 216 VMSTATE_UINT32(phy_int, IMXFECState), 217 VMSTATE_UINT32(phy_int_mask, IMXFECState), 218 VMSTATE_END_OF_LIST() 219 }, 220 .subsections = (const VMStateDescription * []) { 221 &vmstate_imx_eth_txdescs, 222 NULL 223 }, 224 }; 225 226 #define PHY_INT_ENERGYON (1 << 7) 227 #define PHY_INT_AUTONEG_COMPLETE (1 << 6) 228 #define PHY_INT_FAULT (1 << 5) 229 #define PHY_INT_DOWN (1 << 4) 230 #define PHY_INT_AUTONEG_LP (1 << 3) 231 #define PHY_INT_PARFAULT (1 << 2) 232 #define PHY_INT_AUTONEG_PAGE (1 << 1) 233 234 static void imx_eth_update(IMXFECState *s); 235 236 /* 237 * The MII phy could raise a GPIO to the processor which in turn 238 * could be handled as an interrpt by the OS. 239 * For now we don't handle any GPIO/interrupt line, so the OS will 240 * have to poll for the PHY status. 241 */ 242 static void imx_phy_update_irq(IMXFECState *s) 243 { 244 imx_eth_update(s); 245 } 246 247 static void imx_phy_update_link(IMXFECState *s) 248 { 249 /* Autonegotiation status mirrors link status. */ 250 if (qemu_get_queue(s->nic)->link_down) { 251 trace_imx_phy_update_link("down"); 252 s->phy_status &= ~0x0024; 253 s->phy_int |= PHY_INT_DOWN; 254 } else { 255 trace_imx_phy_update_link("up"); 256 s->phy_status |= 0x0024; 257 s->phy_int |= PHY_INT_ENERGYON; 258 s->phy_int |= PHY_INT_AUTONEG_COMPLETE; 259 } 260 imx_phy_update_irq(s); 261 } 262 263 static void imx_eth_set_link(NetClientState *nc) 264 { 265 imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc))); 266 } 267 268 static void imx_phy_reset(IMXFECState *s) 269 { 270 trace_imx_phy_reset(); 271 272 s->phy_status = 0x7809; 273 s->phy_control = 0x3000; 274 s->phy_advertise = 0x01e1; 275 s->phy_int_mask = 0; 276 s->phy_int = 0; 277 imx_phy_update_link(s); 278 } 279 280 static uint32_t imx_phy_read(IMXFECState *s, int reg) 281 { 282 uint32_t val; 283 uint32_t phy = reg / 32; 284 285 if (phy != s->phy_num) { 286 trace_imx_phy_read_num(phy, s->phy_num); 287 return 0xffff; 288 } 289 290 reg %= 32; 291 292 switch (reg) { 293 case 0: /* Basic Control */ 294 val = s->phy_control; 295 break; 296 case 1: /* Basic Status */ 297 val = s->phy_status; 298 break; 299 case 2: /* ID1 */ 300 val = 0x0007; 301 break; 302 case 3: /* ID2 */ 303 val = 0xc0d1; 304 break; 305 case 4: /* Auto-neg advertisement */ 306 val = s->phy_advertise; 307 break; 308 case 5: /* Auto-neg Link Partner Ability */ 309 val = 0x0f71; 310 break; 311 case 6: /* Auto-neg Expansion */ 312 val = 1; 313 break; 314 case 29: /* Interrupt source. */ 315 val = s->phy_int; 316 s->phy_int = 0; 317 imx_phy_update_irq(s); 318 break; 319 case 30: /* Interrupt mask */ 320 val = s->phy_int_mask; 321 break; 322 case 17: 323 case 18: 324 case 27: 325 case 31: 326 qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n", 327 TYPE_IMX_FEC, __func__, reg); 328 val = 0; 329 break; 330 default: 331 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", 332 TYPE_IMX_FEC, __func__, reg); 333 val = 0; 334 break; 335 } 336 337 trace_imx_phy_read(val, phy, reg); 338 339 return val; 340 } 341 342 static void imx_phy_write(IMXFECState *s, int reg, uint32_t val) 343 { 344 uint32_t phy = reg / 32; 345 346 if (phy != s->phy_num) { 347 trace_imx_phy_write_num(phy, s->phy_num); 348 return; 349 } 350 351 reg %= 32; 352 353 trace_imx_phy_write(val, phy, reg); 354 355 switch (reg) { 356 case 0: /* Basic Control */ 357 if (val & 0x8000) { 358 imx_phy_reset(s); 359 } else { 360 s->phy_control = val & 0x7980; 361 /* Complete autonegotiation immediately. */ 362 if (val & 0x1000) { 363 s->phy_status |= 0x0020; 364 } 365 } 366 break; 367 case 4: /* Auto-neg advertisement */ 368 s->phy_advertise = (val & 0x2d7f) | 0x80; 369 break; 370 case 30: /* Interrupt mask */ 371 s->phy_int_mask = val & 0xff; 372 imx_phy_update_irq(s); 373 break; 374 case 17: 375 case 18: 376 case 27: 377 case 31: 378 qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n", 379 TYPE_IMX_FEC, __func__, reg); 380 break; 381 default: 382 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n", 383 TYPE_IMX_FEC, __func__, reg); 384 break; 385 } 386 } 387 388 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr) 389 { 390 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd), 391 MEMTXATTRS_UNSPECIFIED); 392 393 trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data); 394 } 395 396 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr) 397 { 398 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd), 399 MEMTXATTRS_UNSPECIFIED); 400 } 401 402 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr) 403 { 404 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd), 405 MEMTXATTRS_UNSPECIFIED); 406 407 trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data, 408 bd->option, bd->status); 409 } 410 411 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr) 412 { 413 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd), 414 MEMTXATTRS_UNSPECIFIED); 415 } 416 417 static void imx_eth_update(IMXFECState *s) 418 { 419 /* 420 * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER 421 * interrupts swapped. This worked with older versions of Linux (4.14 422 * and older) since Linux associated both interrupt lines with Ethernet 423 * MAC interrupts. Specifically, 424 * - Linux 4.15 and later have separate interrupt handlers for the MAC and 425 * timer interrupts. Those versions of Linux fail with versions of QEMU 426 * with swapped interrupt assignments. 427 * - In linux 4.14, both interrupt lines were registered with the Ethernet 428 * MAC interrupt handler. As a result, all versions of qemu happen to 429 * work, though that is accidental. 430 * - In Linux 4.9 and older, the timer interrupt was registered directly 431 * with the Ethernet MAC interrupt handler. The MAC interrupt was 432 * redirected to a GPIO interrupt to work around erratum ERR006687. 433 * This was implemented using the SOC's IOMUX block. In qemu, this GPIO 434 * interrupt never fired since IOMUX is currently not supported in qemu. 435 * Linux instead received MAC interrupts on the timer interrupt. 436 * As a result, qemu versions with the swapped interrupt assignment work, 437 * albeit accidentally, but qemu versions with the correct interrupt 438 * assignment fail. 439 * 440 * To ensure that all versions of Linux work, generate ENET_INT_MAC 441 * interrrupts on both interrupt lines. This should be changed if and when 442 * qemu supports IOMUX. 443 */ 444 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & 445 (ENET_INT_MAC | ENET_INT_TS_TIMER)) { 446 qemu_set_irq(s->irq[1], 1); 447 } else { 448 qemu_set_irq(s->irq[1], 0); 449 } 450 451 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) { 452 qemu_set_irq(s->irq[0], 1); 453 } else { 454 qemu_set_irq(s->irq[0], 0); 455 } 456 } 457 458 static void imx_fec_do_tx(IMXFECState *s) 459 { 460 int frame_size = 0, descnt = 0; 461 uint8_t *ptr = s->frame; 462 uint32_t addr = s->tx_descriptor[0]; 463 464 while (descnt++ < IMX_MAX_DESC) { 465 IMXFECBufDesc bd; 466 int len; 467 468 imx_fec_read_bd(&bd, addr); 469 if ((bd.flags & ENET_BD_R) == 0) { 470 471 /* Run out of descriptors to transmit. */ 472 trace_imx_eth_tx_bd_busy(); 473 474 break; 475 } 476 len = bd.length; 477 if (frame_size + len > ENET_MAX_FRAME_SIZE) { 478 len = ENET_MAX_FRAME_SIZE - frame_size; 479 s->regs[ENET_EIR] |= ENET_INT_BABT; 480 } 481 dma_memory_read(&address_space_memory, bd.data, ptr, len, 482 MEMTXATTRS_UNSPECIFIED); 483 ptr += len; 484 frame_size += len; 485 if (bd.flags & ENET_BD_L) { 486 /* Last buffer in frame. */ 487 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); 488 ptr = s->frame; 489 frame_size = 0; 490 s->regs[ENET_EIR] |= ENET_INT_TXF; 491 } 492 s->regs[ENET_EIR] |= ENET_INT_TXB; 493 bd.flags &= ~ENET_BD_R; 494 /* Write back the modified descriptor. */ 495 imx_fec_write_bd(&bd, addr); 496 /* Advance to the next descriptor. */ 497 if ((bd.flags & ENET_BD_W) != 0) { 498 addr = s->regs[ENET_TDSR]; 499 } else { 500 addr += sizeof(bd); 501 } 502 } 503 504 s->tx_descriptor[0] = addr; 505 506 imx_eth_update(s); 507 } 508 509 static void imx_enet_do_tx(IMXFECState *s, uint32_t index) 510 { 511 int frame_size = 0, descnt = 0; 512 513 uint8_t *ptr = s->frame; 514 uint32_t addr, int_txb, int_txf, tdsr; 515 size_t ring; 516 517 switch (index) { 518 case ENET_TDAR: 519 ring = 0; 520 int_txb = ENET_INT_TXB; 521 int_txf = ENET_INT_TXF; 522 tdsr = ENET_TDSR; 523 break; 524 case ENET_TDAR1: 525 ring = 1; 526 int_txb = ENET_INT_TXB1; 527 int_txf = ENET_INT_TXF1; 528 tdsr = ENET_TDSR1; 529 break; 530 case ENET_TDAR2: 531 ring = 2; 532 int_txb = ENET_INT_TXB2; 533 int_txf = ENET_INT_TXF2; 534 tdsr = ENET_TDSR2; 535 break; 536 default: 537 qemu_log_mask(LOG_GUEST_ERROR, 538 "%s: bogus value for index %x\n", 539 __func__, index); 540 abort(); 541 break; 542 } 543 544 addr = s->tx_descriptor[ring]; 545 546 while (descnt++ < IMX_MAX_DESC) { 547 IMXENETBufDesc bd; 548 int len; 549 550 imx_enet_read_bd(&bd, addr); 551 if ((bd.flags & ENET_BD_R) == 0) { 552 /* Run out of descriptors to transmit. */ 553 554 trace_imx_eth_tx_bd_busy(); 555 556 break; 557 } 558 len = bd.length; 559 if (frame_size + len > ENET_MAX_FRAME_SIZE) { 560 len = ENET_MAX_FRAME_SIZE - frame_size; 561 s->regs[ENET_EIR] |= ENET_INT_BABT; 562 } 563 dma_memory_read(&address_space_memory, bd.data, ptr, len, 564 MEMTXATTRS_UNSPECIFIED); 565 ptr += len; 566 frame_size += len; 567 if (bd.flags & ENET_BD_L) { 568 int csum = 0; 569 570 if (bd.option & ENET_BD_PINS) { 571 csum |= (CSUM_TCP | CSUM_UDP); 572 } 573 if (bd.option & ENET_BD_IINS) { 574 csum |= CSUM_IP; 575 } 576 if (csum) { 577 net_checksum_calculate(s->frame, frame_size, csum); 578 } 579 580 /* Last buffer in frame. */ 581 582 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); 583 ptr = s->frame; 584 585 frame_size = 0; 586 if (bd.option & ENET_BD_TX_INT) { 587 s->regs[ENET_EIR] |= int_txf; 588 } 589 /* Indicate that we've updated the last buffer descriptor. */ 590 bd.last_buffer = ENET_BD_BDU; 591 } 592 if (bd.option & ENET_BD_TX_INT) { 593 s->regs[ENET_EIR] |= int_txb; 594 } 595 bd.flags &= ~ENET_BD_R; 596 /* Write back the modified descriptor. */ 597 imx_enet_write_bd(&bd, addr); 598 /* Advance to the next descriptor. */ 599 if ((bd.flags & ENET_BD_W) != 0) { 600 addr = s->regs[tdsr]; 601 } else { 602 addr += sizeof(bd); 603 } 604 } 605 606 s->tx_descriptor[ring] = addr; 607 608 imx_eth_update(s); 609 } 610 611 static void imx_eth_do_tx(IMXFECState *s, uint32_t index) 612 { 613 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) { 614 imx_enet_do_tx(s, index); 615 } else { 616 imx_fec_do_tx(s); 617 } 618 } 619 620 static void imx_eth_enable_rx(IMXFECState *s, bool flush) 621 { 622 IMXFECBufDesc bd; 623 624 imx_fec_read_bd(&bd, s->rx_descriptor); 625 626 s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0; 627 628 if (!s->regs[ENET_RDAR]) { 629 trace_imx_eth_rx_bd_full(); 630 } else if (flush) { 631 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 632 } 633 } 634 635 static void imx_eth_reset(DeviceState *d) 636 { 637 IMXFECState *s = IMX_FEC(d); 638 639 /* Reset the Device */ 640 memset(s->regs, 0, sizeof(s->regs)); 641 s->regs[ENET_ECR] = 0xf0000000; 642 s->regs[ENET_MIBC] = 0xc0000000; 643 s->regs[ENET_RCR] = 0x05ee0001; 644 s->regs[ENET_OPD] = 0x00010000; 645 646 s->regs[ENET_PALR] = (s->conf.macaddr.a[0] << 24) 647 | (s->conf.macaddr.a[1] << 16) 648 | (s->conf.macaddr.a[2] << 8) 649 | s->conf.macaddr.a[3]; 650 s->regs[ENET_PAUR] = (s->conf.macaddr.a[4] << 24) 651 | (s->conf.macaddr.a[5] << 16) 652 | 0x8808; 653 654 if (s->is_fec) { 655 s->regs[ENET_FRBR] = 0x00000600; 656 s->regs[ENET_FRSR] = 0x00000500; 657 s->regs[ENET_MIIGSK_ENR] = 0x00000006; 658 } else { 659 s->regs[ENET_RAEM] = 0x00000004; 660 s->regs[ENET_RAFL] = 0x00000004; 661 s->regs[ENET_TAEM] = 0x00000004; 662 s->regs[ENET_TAFL] = 0x00000008; 663 s->regs[ENET_TIPG] = 0x0000000c; 664 s->regs[ENET_FTRL] = 0x000007ff; 665 s->regs[ENET_ATPER] = 0x3b9aca00; 666 } 667 668 s->rx_descriptor = 0; 669 memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor)); 670 671 /* We also reset the PHY */ 672 imx_phy_reset(s); 673 } 674 675 static uint32_t imx_default_read(IMXFECState *s, uint32_t index) 676 { 677 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" 678 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4); 679 return 0; 680 } 681 682 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index) 683 { 684 switch (index) { 685 case ENET_FRBR: 686 case ENET_FRSR: 687 case ENET_MIIGSK_CFGR: 688 case ENET_MIIGSK_ENR: 689 return s->regs[index]; 690 default: 691 return imx_default_read(s, index); 692 } 693 } 694 695 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index) 696 { 697 switch (index) { 698 case ENET_RSFL: 699 case ENET_RSEM: 700 case ENET_RAEM: 701 case ENET_RAFL: 702 case ENET_TSEM: 703 case ENET_TAEM: 704 case ENET_TAFL: 705 case ENET_TIPG: 706 case ENET_FTRL: 707 case ENET_TACC: 708 case ENET_RACC: 709 case ENET_ATCR: 710 case ENET_ATVR: 711 case ENET_ATOFF: 712 case ENET_ATPER: 713 case ENET_ATCOR: 714 case ENET_ATINC: 715 case ENET_ATSTMP: 716 case ENET_TGSR: 717 case ENET_TCSR0: 718 case ENET_TCCR0: 719 case ENET_TCSR1: 720 case ENET_TCCR1: 721 case ENET_TCSR2: 722 case ENET_TCCR2: 723 case ENET_TCSR3: 724 case ENET_TCCR3: 725 return s->regs[index]; 726 default: 727 return imx_default_read(s, index); 728 } 729 } 730 731 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size) 732 { 733 uint32_t value = 0; 734 IMXFECState *s = IMX_FEC(opaque); 735 uint32_t index = offset >> 2; 736 737 switch (index) { 738 case ENET_EIR: 739 case ENET_EIMR: 740 case ENET_RDAR: 741 case ENET_TDAR: 742 case ENET_ECR: 743 case ENET_MMFR: 744 case ENET_MSCR: 745 case ENET_MIBC: 746 case ENET_RCR: 747 case ENET_TCR: 748 case ENET_PALR: 749 case ENET_PAUR: 750 case ENET_OPD: 751 case ENET_IAUR: 752 case ENET_IALR: 753 case ENET_GAUR: 754 case ENET_GALR: 755 case ENET_TFWR: 756 case ENET_RDSR: 757 case ENET_TDSR: 758 case ENET_MRBR: 759 value = s->regs[index]; 760 break; 761 default: 762 if (s->is_fec) { 763 value = imx_fec_read(s, index); 764 } else { 765 value = imx_enet_read(s, index); 766 } 767 break; 768 } 769 770 trace_imx_eth_read(index, imx_eth_reg_name(s, index), value); 771 772 return value; 773 } 774 775 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value) 776 { 777 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%" 778 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4); 779 return; 780 } 781 782 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value) 783 { 784 switch (index) { 785 case ENET_FRBR: 786 /* FRBR is read only */ 787 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n", 788 TYPE_IMX_FEC, __func__); 789 break; 790 case ENET_FRSR: 791 s->regs[index] = (value & 0x000003fc) | 0x00000400; 792 break; 793 case ENET_MIIGSK_CFGR: 794 s->regs[index] = value & 0x00000053; 795 break; 796 case ENET_MIIGSK_ENR: 797 s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0; 798 break; 799 default: 800 imx_default_write(s, index, value); 801 break; 802 } 803 } 804 805 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value) 806 { 807 switch (index) { 808 case ENET_RSFL: 809 case ENET_RSEM: 810 case ENET_RAEM: 811 case ENET_RAFL: 812 case ENET_TSEM: 813 case ENET_TAEM: 814 case ENET_TAFL: 815 s->regs[index] = value & 0x000001ff; 816 break; 817 case ENET_TIPG: 818 s->regs[index] = value & 0x0000001f; 819 break; 820 case ENET_FTRL: 821 s->regs[index] = value & 0x00003fff; 822 break; 823 case ENET_TACC: 824 s->regs[index] = value & 0x00000019; 825 break; 826 case ENET_RACC: 827 s->regs[index] = value & 0x000000C7; 828 break; 829 case ENET_ATCR: 830 s->regs[index] = value & 0x00002a9d; 831 break; 832 case ENET_ATVR: 833 case ENET_ATOFF: 834 case ENET_ATPER: 835 s->regs[index] = value; 836 break; 837 case ENET_ATSTMP: 838 /* ATSTMP is read only */ 839 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n", 840 TYPE_IMX_FEC, __func__); 841 break; 842 case ENET_ATCOR: 843 s->regs[index] = value & 0x7fffffff; 844 break; 845 case ENET_ATINC: 846 s->regs[index] = value & 0x00007f7f; 847 break; 848 case ENET_TGSR: 849 /* implement clear timer flag */ 850 s->regs[index] &= ~(value & 0x0000000f); /* all bits W1C */ 851 break; 852 case ENET_TCSR0: 853 case ENET_TCSR1: 854 case ENET_TCSR2: 855 case ENET_TCSR3: 856 s->regs[index] &= ~(value & 0x00000080); /* W1C bits */ 857 s->regs[index] &= ~0x0000007d; /* writable fields */ 858 s->regs[index] |= (value & 0x0000007d); 859 break; 860 case ENET_TCCR0: 861 case ENET_TCCR1: 862 case ENET_TCCR2: 863 case ENET_TCCR3: 864 s->regs[index] = value; 865 break; 866 default: 867 imx_default_write(s, index, value); 868 break; 869 } 870 } 871 872 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value, 873 unsigned size) 874 { 875 IMXFECState *s = IMX_FEC(opaque); 876 const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s); 877 uint32_t index = offset >> 2; 878 879 trace_imx_eth_write(index, imx_eth_reg_name(s, index), value); 880 881 switch (index) { 882 case ENET_EIR: 883 s->regs[index] &= ~value; 884 break; 885 case ENET_EIMR: 886 s->regs[index] = value; 887 break; 888 case ENET_RDAR: 889 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) { 890 if (!s->regs[index]) { 891 imx_eth_enable_rx(s, true); 892 } 893 } else { 894 s->regs[index] = 0; 895 } 896 break; 897 case ENET_TDAR1: 898 case ENET_TDAR2: 899 if (unlikely(single_tx_ring)) { 900 qemu_log_mask(LOG_GUEST_ERROR, 901 "[%s]%s: trying to access TDAR2 or TDAR1\n", 902 TYPE_IMX_FEC, __func__); 903 return; 904 } 905 /* fall through */ 906 case ENET_TDAR: 907 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) { 908 s->regs[index] = ENET_TDAR_TDAR; 909 imx_eth_do_tx(s, index); 910 } 911 s->regs[index] = 0; 912 break; 913 case ENET_ECR: 914 if (value & ENET_ECR_RESET) { 915 return imx_eth_reset(DEVICE(s)); 916 } 917 s->regs[index] = value; 918 if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) { 919 s->regs[ENET_RDAR] = 0; 920 s->rx_descriptor = s->regs[ENET_RDSR]; 921 s->regs[ENET_TDAR] = 0; 922 s->regs[ENET_TDAR1] = 0; 923 s->regs[ENET_TDAR2] = 0; 924 s->tx_descriptor[0] = s->regs[ENET_TDSR]; 925 s->tx_descriptor[1] = s->regs[ENET_TDSR1]; 926 s->tx_descriptor[2] = s->regs[ENET_TDSR2]; 927 } 928 break; 929 case ENET_MMFR: 930 s->regs[index] = value; 931 if (extract32(value, 29, 1)) { 932 /* This is a read operation */ 933 s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16, 934 imx_phy_read(s, 935 extract32(value, 936 18, 10))); 937 } else { 938 /* This is a write operation */ 939 imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16)); 940 } 941 /* raise the interrupt as the PHY operation is done */ 942 s->regs[ENET_EIR] |= ENET_INT_MII; 943 break; 944 case ENET_MSCR: 945 s->regs[index] = value & 0xfe; 946 break; 947 case ENET_MIBC: 948 /* TODO: Implement MIB. */ 949 s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0; 950 break; 951 case ENET_RCR: 952 s->regs[index] = value & 0x07ff003f; 953 /* TODO: Implement LOOP mode. */ 954 break; 955 case ENET_TCR: 956 /* We transmit immediately, so raise GRA immediately. */ 957 s->regs[index] = value; 958 if (value & 1) { 959 s->regs[ENET_EIR] |= ENET_INT_GRA; 960 } 961 break; 962 case ENET_PALR: 963 s->regs[index] = value; 964 s->conf.macaddr.a[0] = value >> 24; 965 s->conf.macaddr.a[1] = value >> 16; 966 s->conf.macaddr.a[2] = value >> 8; 967 s->conf.macaddr.a[3] = value; 968 break; 969 case ENET_PAUR: 970 s->regs[index] = (value | 0x0000ffff) & 0xffff8808; 971 s->conf.macaddr.a[4] = value >> 24; 972 s->conf.macaddr.a[5] = value >> 16; 973 break; 974 case ENET_OPD: 975 s->regs[index] = (value & 0x0000ffff) | 0x00010000; 976 break; 977 case ENET_IAUR: 978 case ENET_IALR: 979 case ENET_GAUR: 980 case ENET_GALR: 981 /* TODO: implement MAC hash filtering. */ 982 break; 983 case ENET_TFWR: 984 if (s->is_fec) { 985 s->regs[index] = value & 0x3; 986 } else { 987 s->regs[index] = value & 0x13f; 988 } 989 break; 990 case ENET_RDSR: 991 if (s->is_fec) { 992 s->regs[index] = value & ~3; 993 } else { 994 s->regs[index] = value & ~7; 995 } 996 s->rx_descriptor = s->regs[index]; 997 break; 998 case ENET_TDSR: 999 if (s->is_fec) { 1000 s->regs[index] = value & ~3; 1001 } else { 1002 s->regs[index] = value & ~7; 1003 } 1004 s->tx_descriptor[0] = s->regs[index]; 1005 break; 1006 case ENET_TDSR1: 1007 if (unlikely(single_tx_ring)) { 1008 qemu_log_mask(LOG_GUEST_ERROR, 1009 "[%s]%s: trying to access TDSR1\n", 1010 TYPE_IMX_FEC, __func__); 1011 return; 1012 } 1013 1014 s->regs[index] = value & ~7; 1015 s->tx_descriptor[1] = s->regs[index]; 1016 break; 1017 case ENET_TDSR2: 1018 if (unlikely(single_tx_ring)) { 1019 qemu_log_mask(LOG_GUEST_ERROR, 1020 "[%s]%s: trying to access TDSR2\n", 1021 TYPE_IMX_FEC, __func__); 1022 return; 1023 } 1024 1025 s->regs[index] = value & ~7; 1026 s->tx_descriptor[2] = s->regs[index]; 1027 break; 1028 case ENET_MRBR: 1029 s->regs[index] = value & 0x00003ff0; 1030 break; 1031 default: 1032 if (s->is_fec) { 1033 imx_fec_write(s, index, value); 1034 } else { 1035 imx_enet_write(s, index, value); 1036 } 1037 return; 1038 } 1039 1040 imx_eth_update(s); 1041 } 1042 1043 static bool imx_eth_can_receive(NetClientState *nc) 1044 { 1045 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1046 1047 return !!s->regs[ENET_RDAR]; 1048 } 1049 1050 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf, 1051 size_t len) 1052 { 1053 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1054 IMXFECBufDesc bd; 1055 uint32_t flags = 0; 1056 uint32_t addr; 1057 uint32_t crc; 1058 uint32_t buf_addr; 1059 uint8_t *crc_ptr; 1060 unsigned int buf_len; 1061 size_t size = len; 1062 1063 trace_imx_fec_receive(size); 1064 1065 if (!s->regs[ENET_RDAR]) { 1066 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n", 1067 TYPE_IMX_FEC, __func__); 1068 return 0; 1069 } 1070 1071 /* 4 bytes for the CRC. */ 1072 size += 4; 1073 crc = cpu_to_be32(crc32(~0, buf, size)); 1074 crc_ptr = (uint8_t *) &crc; 1075 1076 /* Huge frames are truncated. */ 1077 if (size > ENET_MAX_FRAME_SIZE) { 1078 size = ENET_MAX_FRAME_SIZE; 1079 flags |= ENET_BD_TR | ENET_BD_LG; 1080 } 1081 1082 /* Frames larger than the user limit just set error flags. */ 1083 if (size > (s->regs[ENET_RCR] >> 16)) { 1084 flags |= ENET_BD_LG; 1085 } 1086 1087 addr = s->rx_descriptor; 1088 while (size > 0) { 1089 imx_fec_read_bd(&bd, addr); 1090 if ((bd.flags & ENET_BD_E) == 0) { 1091 /* No descriptors available. Bail out. */ 1092 /* 1093 * FIXME: This is wrong. We should probably either 1094 * save the remainder for when more RX buffers are 1095 * available, or flag an error. 1096 */ 1097 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n", 1098 TYPE_IMX_FEC, __func__); 1099 break; 1100 } 1101 buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR]; 1102 bd.length = buf_len; 1103 size -= buf_len; 1104 1105 trace_imx_fec_receive_len(addr, bd.length); 1106 1107 /* The last 4 bytes are the CRC. */ 1108 if (size < 4) { 1109 buf_len += size - 4; 1110 } 1111 buf_addr = bd.data; 1112 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len, 1113 MEMTXATTRS_UNSPECIFIED); 1114 buf += buf_len; 1115 if (size < 4) { 1116 dma_memory_write(&address_space_memory, buf_addr + buf_len, 1117 crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED); 1118 crc_ptr += 4 - size; 1119 } 1120 bd.flags &= ~ENET_BD_E; 1121 if (size == 0) { 1122 /* Last buffer in frame. */ 1123 bd.flags |= flags | ENET_BD_L; 1124 1125 trace_imx_fec_receive_last(bd.flags); 1126 1127 s->regs[ENET_EIR] |= ENET_INT_RXF; 1128 } else { 1129 s->regs[ENET_EIR] |= ENET_INT_RXB; 1130 } 1131 imx_fec_write_bd(&bd, addr); 1132 /* Advance to the next descriptor. */ 1133 if ((bd.flags & ENET_BD_W) != 0) { 1134 addr = s->regs[ENET_RDSR]; 1135 } else { 1136 addr += sizeof(bd); 1137 } 1138 } 1139 s->rx_descriptor = addr; 1140 imx_eth_enable_rx(s, false); 1141 imx_eth_update(s); 1142 return len; 1143 } 1144 1145 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf, 1146 size_t len) 1147 { 1148 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1149 IMXENETBufDesc bd; 1150 uint32_t flags = 0; 1151 uint32_t addr; 1152 uint32_t crc; 1153 uint32_t buf_addr; 1154 uint8_t *crc_ptr; 1155 unsigned int buf_len; 1156 size_t size = len; 1157 bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16; 1158 1159 trace_imx_enet_receive(size); 1160 1161 if (!s->regs[ENET_RDAR]) { 1162 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n", 1163 TYPE_IMX_FEC, __func__); 1164 return 0; 1165 } 1166 1167 /* 4 bytes for the CRC. */ 1168 size += 4; 1169 crc = cpu_to_be32(crc32(~0, buf, size)); 1170 crc_ptr = (uint8_t *) &crc; 1171 1172 if (shift16) { 1173 size += 2; 1174 } 1175 1176 /* Huge frames are truncated. */ 1177 if (size > s->regs[ENET_FTRL]) { 1178 size = s->regs[ENET_FTRL]; 1179 flags |= ENET_BD_TR | ENET_BD_LG; 1180 } 1181 1182 /* Frames larger than the user limit just set error flags. */ 1183 if (size > (s->regs[ENET_RCR] >> 16)) { 1184 flags |= ENET_BD_LG; 1185 } 1186 1187 addr = s->rx_descriptor; 1188 while (size > 0) { 1189 imx_enet_read_bd(&bd, addr); 1190 if ((bd.flags & ENET_BD_E) == 0) { 1191 /* No descriptors available. Bail out. */ 1192 /* 1193 * FIXME: This is wrong. We should probably either 1194 * save the remainder for when more RX buffers are 1195 * available, or flag an error. 1196 */ 1197 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n", 1198 TYPE_IMX_FEC, __func__); 1199 break; 1200 } 1201 buf_len = MIN(size, s->regs[ENET_MRBR]); 1202 bd.length = buf_len; 1203 size -= buf_len; 1204 1205 trace_imx_enet_receive_len(addr, bd.length); 1206 1207 /* The last 4 bytes are the CRC. */ 1208 if (size < 4) { 1209 buf_len += size - 4; 1210 } 1211 buf_addr = bd.data; 1212 1213 if (shift16) { 1214 /* 1215 * If SHIFT16 bit of ENETx_RACC register is set we need to 1216 * align the payload to 4-byte boundary. 1217 */ 1218 const uint8_t zeros[2] = { 0 }; 1219 1220 dma_memory_write(&address_space_memory, buf_addr, zeros, 1221 sizeof(zeros), MEMTXATTRS_UNSPECIFIED); 1222 1223 buf_addr += sizeof(zeros); 1224 buf_len -= sizeof(zeros); 1225 1226 /* We only do this once per Ethernet frame */ 1227 shift16 = false; 1228 } 1229 1230 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len, 1231 MEMTXATTRS_UNSPECIFIED); 1232 buf += buf_len; 1233 if (size < 4) { 1234 dma_memory_write(&address_space_memory, buf_addr + buf_len, 1235 crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED); 1236 crc_ptr += 4 - size; 1237 } 1238 bd.flags &= ~ENET_BD_E; 1239 if (size == 0) { 1240 /* Last buffer in frame. */ 1241 bd.flags |= flags | ENET_BD_L; 1242 1243 trace_imx_enet_receive_last(bd.flags); 1244 1245 /* Indicate that we've updated the last buffer descriptor. */ 1246 bd.last_buffer = ENET_BD_BDU; 1247 if (bd.option & ENET_BD_RX_INT) { 1248 s->regs[ENET_EIR] |= ENET_INT_RXF; 1249 } 1250 } else { 1251 if (bd.option & ENET_BD_RX_INT) { 1252 s->regs[ENET_EIR] |= ENET_INT_RXB; 1253 } 1254 } 1255 imx_enet_write_bd(&bd, addr); 1256 /* Advance to the next descriptor. */ 1257 if ((bd.flags & ENET_BD_W) != 0) { 1258 addr = s->regs[ENET_RDSR]; 1259 } else { 1260 addr += sizeof(bd); 1261 } 1262 } 1263 s->rx_descriptor = addr; 1264 imx_eth_enable_rx(s, false); 1265 imx_eth_update(s); 1266 return len; 1267 } 1268 1269 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf, 1270 size_t len) 1271 { 1272 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1273 1274 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) { 1275 return imx_enet_receive(nc, buf, len); 1276 } else { 1277 return imx_fec_receive(nc, buf, len); 1278 } 1279 } 1280 1281 static const MemoryRegionOps imx_eth_ops = { 1282 .read = imx_eth_read, 1283 .write = imx_eth_write, 1284 .valid.min_access_size = 4, 1285 .valid.max_access_size = 4, 1286 .endianness = DEVICE_NATIVE_ENDIAN, 1287 }; 1288 1289 static void imx_eth_cleanup(NetClientState *nc) 1290 { 1291 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc)); 1292 1293 s->nic = NULL; 1294 } 1295 1296 static NetClientInfo imx_eth_net_info = { 1297 .type = NET_CLIENT_DRIVER_NIC, 1298 .size = sizeof(NICState), 1299 .can_receive = imx_eth_can_receive, 1300 .receive = imx_eth_receive, 1301 .cleanup = imx_eth_cleanup, 1302 .link_status_changed = imx_eth_set_link, 1303 }; 1304 1305 1306 static void imx_eth_realize(DeviceState *dev, Error **errp) 1307 { 1308 IMXFECState *s = IMX_FEC(dev); 1309 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1310 1311 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s, 1312 TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE); 1313 sysbus_init_mmio(sbd, &s->iomem); 1314 sysbus_init_irq(sbd, &s->irq[0]); 1315 sysbus_init_irq(sbd, &s->irq[1]); 1316 1317 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1318 1319 s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf, 1320 object_get_typename(OBJECT(dev)), 1321 dev->id, s); 1322 1323 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 1324 } 1325 1326 static Property imx_eth_properties[] = { 1327 DEFINE_NIC_PROPERTIES(IMXFECState, conf), 1328 DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1), 1329 DEFINE_PROP_UINT32("phy-num", IMXFECState, phy_num, 0), 1330 DEFINE_PROP_END_OF_LIST(), 1331 }; 1332 1333 static void imx_eth_class_init(ObjectClass *klass, void *data) 1334 { 1335 DeviceClass *dc = DEVICE_CLASS(klass); 1336 1337 dc->vmsd = &vmstate_imx_eth; 1338 dc->reset = imx_eth_reset; 1339 device_class_set_props(dc, imx_eth_properties); 1340 dc->realize = imx_eth_realize; 1341 dc->desc = "i.MX FEC/ENET Ethernet Controller"; 1342 } 1343 1344 static void imx_fec_init(Object *obj) 1345 { 1346 IMXFECState *s = IMX_FEC(obj); 1347 1348 s->is_fec = true; 1349 } 1350 1351 static void imx_enet_init(Object *obj) 1352 { 1353 IMXFECState *s = IMX_FEC(obj); 1354 1355 s->is_fec = false; 1356 } 1357 1358 static const TypeInfo imx_fec_info = { 1359 .name = TYPE_IMX_FEC, 1360 .parent = TYPE_SYS_BUS_DEVICE, 1361 .instance_size = sizeof(IMXFECState), 1362 .instance_init = imx_fec_init, 1363 .class_init = imx_eth_class_init, 1364 }; 1365 1366 static const TypeInfo imx_enet_info = { 1367 .name = TYPE_IMX_ENET, 1368 .parent = TYPE_IMX_FEC, 1369 .instance_init = imx_enet_init, 1370 }; 1371 1372 static void imx_eth_register_types(void) 1373 { 1374 type_register_static(&imx_fec_info); 1375 type_register_static(&imx_enet_info); 1376 } 1377 1378 type_init(imx_eth_register_types) 1379