xref: /openbmc/qemu/hw/net/igb_core.c (revision f0b1df5c4502b5ec89f83417924935ab201511d0)
1 /*
2  * Core code for QEMU igb emulation
3  *
4  * Datasheet:
5  * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
6  *
7  * Copyright (c) 2020-2023 Red Hat, Inc.
8  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
9  * Developed by Daynix Computing LTD (http://www.daynix.com)
10  *
11  * Authors:
12  * Akihiko Odaki <akihiko.odaki@daynix.com>
13  * Gal Hammmer <gal.hammer@sap.com>
14  * Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
15  * Dmitry Fleytman <dmitry@daynix.com>
16  * Leonid Bloch <leonid@daynix.com>
17  * Yan Vugenfirer <yan@daynix.com>
18  *
19  * Based on work done by:
20  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
21  * Copyright (c) 2008 Qumranet
22  * Based on work done by:
23  * Copyright (c) 2007 Dan Aloni
24  * Copyright (c) 2004 Antony T Curtis
25  *
26  * This library is free software; you can redistribute it and/or
27  * modify it under the terms of the GNU Lesser General Public
28  * License as published by the Free Software Foundation; either
29  * version 2.1 of the License, or (at your option) any later version.
30  *
31  * This library is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34  * Lesser General Public License for more details.
35  *
36  * You should have received a copy of the GNU Lesser General Public
37  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/log.h"
42 #include "net/net.h"
43 #include "net/tap.h"
44 #include "hw/net/mii.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "sysemu/runstate.h"
48 
49 #include "net_tx_pkt.h"
50 #include "net_rx_pkt.h"
51 
52 #include "igb_common.h"
53 #include "e1000x_common.h"
54 #include "igb_core.h"
55 
56 #include "trace.h"
57 
58 #define E1000E_MAX_TX_FRAGS (64)
59 
60 union e1000_rx_desc_union {
61     struct e1000_rx_desc legacy;
62     union e1000_adv_rx_desc adv;
63 };
64 
65 typedef struct IGBTxPktVmdqCallbackContext {
66     IGBCore *core;
67     NetClientState *nc;
68 } IGBTxPktVmdqCallbackContext;
69 
70 static ssize_t
71 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
72                      bool has_vnet, bool *external_tx);
73 
74 static inline void
75 igb_set_interrupt_cause(IGBCore *core, uint32_t val);
76 
77 static void igb_update_interrupt_state(IGBCore *core);
78 static void igb_reset(IGBCore *core, bool sw);
79 
80 static inline void
81 igb_raise_legacy_irq(IGBCore *core)
82 {
83     trace_e1000e_irq_legacy_notify(true);
84     e1000x_inc_reg_if_not_full(core->mac, IAC);
85     pci_set_irq(core->owner, 1);
86 }
87 
88 static inline void
89 igb_lower_legacy_irq(IGBCore *core)
90 {
91     trace_e1000e_irq_legacy_notify(false);
92     pci_set_irq(core->owner, 0);
93 }
94 
95 static void igb_msix_notify(IGBCore *core, unsigned int vector)
96 {
97     PCIDevice *dev = core->owner;
98     uint16_t vfn;
99 
100     vfn = 8 - (vector + 2) / IGBVF_MSIX_VEC_NUM;
101     if (vfn < pcie_sriov_num_vfs(core->owner)) {
102         dev = pcie_sriov_get_vf_at_index(core->owner, vfn);
103         assert(dev);
104         vector = (vector + 2) % IGBVF_MSIX_VEC_NUM;
105     } else if (vector >= IGB_MSIX_VEC_NUM) {
106         qemu_log_mask(LOG_GUEST_ERROR,
107                       "igb: Tried to use vector unavailable for PF");
108         return;
109     }
110 
111     msix_notify(dev, vector);
112 }
113 
114 static inline void
115 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer)
116 {
117     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
118                                  timer->delay_resolution_ns;
119 
120     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
121 
122     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
123 
124     timer->running = true;
125 }
126 
127 static void
128 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer)
129 {
130     if (timer->running) {
131         igb_intrmgr_rearm_timer(timer);
132     }
133 }
134 
135 static void
136 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer)
137 {
138     if (timer->running) {
139         timer_del(timer->timer);
140     }
141 }
142 
143 static void
144 igb_intrmgr_on_msix_throttling_timer(void *opaque)
145 {
146     IGBIntrDelayTimer *timer = opaque;
147     int idx = timer - &timer->core->eitr[0];
148 
149     timer->running = false;
150 
151     trace_e1000e_irq_msix_notify_postponed_vec(idx);
152     igb_msix_notify(timer->core, idx);
153 }
154 
155 static void
156 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create)
157 {
158     int i;
159 
160     for (i = 0; i < IGB_INTR_NUM; i++) {
161         core->eitr[i].core = core;
162         core->eitr[i].delay_reg = EITR0 + i;
163         core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
164     }
165 
166     if (!create) {
167         return;
168     }
169 
170     for (i = 0; i < IGB_INTR_NUM; i++) {
171         core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
172                                            igb_intrmgr_on_msix_throttling_timer,
173                                            &core->eitr[i]);
174     }
175 }
176 
177 static void
178 igb_intrmgr_resume(IGBCore *core)
179 {
180     int i;
181 
182     for (i = 0; i < IGB_INTR_NUM; i++) {
183         igb_intmgr_timer_resume(&core->eitr[i]);
184     }
185 }
186 
187 static void
188 igb_intrmgr_pause(IGBCore *core)
189 {
190     int i;
191 
192     for (i = 0; i < IGB_INTR_NUM; i++) {
193         igb_intmgr_timer_pause(&core->eitr[i]);
194     }
195 }
196 
197 static void
198 igb_intrmgr_reset(IGBCore *core)
199 {
200     int i;
201 
202     for (i = 0; i < IGB_INTR_NUM; i++) {
203         if (core->eitr[i].running) {
204             timer_del(core->eitr[i].timer);
205             igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
206         }
207     }
208 }
209 
210 static void
211 igb_intrmgr_pci_unint(IGBCore *core)
212 {
213     int i;
214 
215     for (i = 0; i < IGB_INTR_NUM; i++) {
216         timer_free(core->eitr[i].timer);
217     }
218 }
219 
220 static void
221 igb_intrmgr_pci_realize(IGBCore *core)
222 {
223     igb_intrmgr_initialize_all_timers(core, true);
224 }
225 
226 static inline bool
227 igb_rx_csum_enabled(IGBCore *core)
228 {
229     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
230 }
231 
232 static inline bool
233 igb_rx_use_legacy_descriptor(IGBCore *core)
234 {
235     /*
236      * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx
237      * descriptor.
238      */
239     return false;
240 }
241 
242 static inline bool
243 igb_rss_enabled(IGBCore *core)
244 {
245     return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ &&
246            !igb_rx_csum_enabled(core) &&
247            !igb_rx_use_legacy_descriptor(core);
248 }
249 
250 typedef struct E1000E_RSSInfo_st {
251     bool enabled;
252     uint32_t hash;
253     uint32_t queue;
254     uint32_t type;
255 } E1000E_RSSInfo;
256 
257 static uint32_t
258 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt)
259 {
260     bool hasip4, hasip6;
261     EthL4HdrProto l4hdr_proto;
262 
263     assert(igb_rss_enabled(core));
264 
265     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
266 
267     if (hasip4) {
268         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
269                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
270                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
271 
272         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
273             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
274             return E1000_MRQ_RSS_TYPE_IPV4TCP;
275         }
276 
277         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
278             return E1000_MRQ_RSS_TYPE_IPV4;
279         }
280     } else if (hasip6) {
281         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
282 
283         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
284         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
285 
286         /*
287          * Following two traces must not be combined because resulting
288          * event will have 11 arguments totally and some trace backends
289          * (at least "ust") have limitation of maximum 10 arguments per
290          * event. Events with more arguments fail to compile for
291          * backends like these.
292          */
293         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
294         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
295                                 ip6info->has_ext_hdrs,
296                                 ip6info->rss_ex_dst_valid,
297                                 ip6info->rss_ex_src_valid,
298                                 core->mac[MRQC],
299                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
300                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
301                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
302 
303         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
304             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
305                               ip6info->rss_ex_src_valid))) {
306 
307             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
308                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
309                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
310             }
311 
312             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
313                 return E1000_MRQ_RSS_TYPE_IPV6EX;
314             }
315 
316         }
317 
318         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
319             return E1000_MRQ_RSS_TYPE_IPV6;
320         }
321 
322     }
323 
324     return E1000_MRQ_RSS_TYPE_NONE;
325 }
326 
327 static uint32_t
328 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info)
329 {
330     NetRxPktRssType type;
331 
332     assert(igb_rss_enabled(core));
333 
334     switch (info->type) {
335     case E1000_MRQ_RSS_TYPE_IPV4:
336         type = NetPktRssIpV4;
337         break;
338     case E1000_MRQ_RSS_TYPE_IPV4TCP:
339         type = NetPktRssIpV4Tcp;
340         break;
341     case E1000_MRQ_RSS_TYPE_IPV6TCP:
342         type = NetPktRssIpV6TcpEx;
343         break;
344     case E1000_MRQ_RSS_TYPE_IPV6:
345         type = NetPktRssIpV6;
346         break;
347     case E1000_MRQ_RSS_TYPE_IPV6EX:
348         type = NetPktRssIpV6Ex;
349         break;
350     default:
351         assert(false);
352         return 0;
353     }
354 
355     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
356 }
357 
358 static void
359 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx,
360                      E1000E_RSSInfo *info)
361 {
362     trace_e1000e_rx_rss_started();
363 
364     if (tx || !igb_rss_enabled(core)) {
365         info->enabled = false;
366         info->hash = 0;
367         info->queue = 0;
368         info->type = 0;
369         trace_e1000e_rx_rss_disabled();
370         return;
371     }
372 
373     info->enabled = true;
374 
375     info->type = igb_rss_get_hash_type(core, pkt);
376 
377     trace_e1000e_rx_rss_type(info->type);
378 
379     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
380         info->hash = 0;
381         info->queue = 0;
382         return;
383     }
384 
385     info->hash = igb_rss_calc_hash(core, pkt, info);
386     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
387 }
388 
389 static void
390 igb_tx_insert_vlan(IGBCore *core, uint16_t qn, struct igb_tx *tx,
391     uint16_t vlan, bool insert_vlan)
392 {
393     if (core->mac[MRQC] & 1) {
394         uint16_t pool = qn % IGB_NUM_VM_POOLS;
395 
396         if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_DEFAULT) {
397             /* always insert default VLAN */
398             insert_vlan = true;
399             vlan = core->mac[VMVIR0 + pool] & 0xffff;
400         } else if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_NEVER) {
401             insert_vlan = false;
402         }
403     }
404 
405     if (insert_vlan) {
406         net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan,
407             core->mac[VET] & 0xffff);
408     }
409 }
410 
411 static bool
412 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx)
413 {
414     if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) {
415         uint32_t idx = (tx->first_olinfo_status >> 4) & 1;
416         uint32_t mss = tx->ctx[idx].mss_l4len_idx >> 16;
417         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) {
418             return false;
419         }
420 
421         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
422         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
423         return true;
424     }
425 
426     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) {
427         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
428             return false;
429         }
430     }
431 
432     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) {
433         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
434     }
435 
436     return true;
437 }
438 
439 static void igb_tx_pkt_mac_callback(void *core,
440                                     const struct iovec *iov,
441                                     int iovcnt,
442                                     const struct iovec *virt_iov,
443                                     int virt_iovcnt)
444 {
445     igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL);
446 }
447 
448 static void igb_tx_pkt_vmdq_callback(void *opaque,
449                                      const struct iovec *iov,
450                                      int iovcnt,
451                                      const struct iovec *virt_iov,
452                                      int virt_iovcnt)
453 {
454     IGBTxPktVmdqCallbackContext *context = opaque;
455     bool external_tx;
456 
457     igb_receive_internal(context->core, virt_iov, virt_iovcnt, true,
458                          &external_tx);
459 
460     if (external_tx) {
461         if (context->core->has_vnet) {
462             qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt);
463         } else {
464             qemu_sendv_packet(context->nc, iov, iovcnt);
465         }
466     }
467 }
468 
469 /* TX Packets Switching (7.10.3.6) */
470 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx,
471                               NetClientState *nc)
472 {
473     IGBTxPktVmdqCallbackContext context;
474 
475     /* TX switching is only used to serve VM to VM traffic. */
476     if (!(core->mac[MRQC] & 1)) {
477         goto send_out;
478     }
479 
480     /* TX switching requires DTXSWC.Loopback_en bit enabled. */
481     if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) {
482         goto send_out;
483     }
484 
485     context.core = core;
486     context.nc = nc;
487 
488     return net_tx_pkt_send_custom(tx->tx_pkt, false,
489                                   igb_tx_pkt_vmdq_callback, &context);
490 
491 send_out:
492     return net_tx_pkt_send(tx->tx_pkt, nc);
493 }
494 
495 static bool
496 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index)
497 {
498     int target_queue = MIN(core->max_queue_num, queue_index);
499     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
500 
501     if (!igb_setup_tx_offloads(core, tx)) {
502         return false;
503     }
504 
505     net_tx_pkt_dump(tx->tx_pkt);
506 
507     if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) ||
508         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
509         return net_tx_pkt_send_custom(tx->tx_pkt, false,
510                                       igb_tx_pkt_mac_callback, core);
511     } else {
512         return igb_tx_pkt_switch(core, tx, queue);
513     }
514 }
515 
516 static void
517 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt, int qn)
518 {
519     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
520                                     PTC1023, PTC1522 };
521 
522     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
523 
524     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
525     e1000x_inc_reg_if_not_full(core->mac, TPT);
526     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
527 
528     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
529     case ETH_PKT_BCAST:
530         e1000x_inc_reg_if_not_full(core->mac, BPTC);
531         break;
532     case ETH_PKT_MCAST:
533         e1000x_inc_reg_if_not_full(core->mac, MPTC);
534         break;
535     case ETH_PKT_UCAST:
536         break;
537     default:
538         g_assert_not_reached();
539     }
540 
541     e1000x_inc_reg_if_not_full(core->mac, GPTC);
542     e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
543 
544     if (core->mac[MRQC] & 1) {
545         uint16_t pool = qn % IGB_NUM_VM_POOLS;
546 
547         core->mac[PVFGOTC0 + (pool * 64)] += tot_len;
548         core->mac[PVFGPTC0 + (pool * 64)]++;
549     }
550 }
551 
552 static void
553 igb_process_tx_desc(IGBCore *core,
554                     PCIDevice *dev,
555                     struct igb_tx *tx,
556                     union e1000_adv_tx_desc *tx_desc,
557                     int queue_index)
558 {
559     struct e1000_adv_tx_context_desc *tx_ctx_desc;
560     uint32_t cmd_type_len;
561     uint32_t idx;
562     uint64_t buffer_addr;
563     uint16_t length;
564 
565     cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
566 
567     if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) {
568         if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) ==
569             E1000_ADVTXD_DTYP_DATA) {
570             /* advanced transmit data descriptor */
571             if (tx->first) {
572                 tx->first_cmd_type_len = cmd_type_len;
573                 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status);
574                 tx->first = false;
575             }
576         } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) ==
577                    E1000_ADVTXD_DTYP_CTXT) {
578             /* advanced transmit context descriptor */
579             tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc;
580             idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1;
581             tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens);
582             tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed);
583             tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl);
584             tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx);
585             return;
586         } else {
587             /* unknown descriptor type */
588             return;
589         }
590     } else {
591         /* legacy descriptor */
592 
593         /* TODO: Implement a support for legacy descriptors (7.2.2.1). */
594     }
595 
596     buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr);
597     length = cmd_type_len & 0xFFFF;
598 
599     if (!tx->skip_cp) {
600         if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, dev,
601                                              buffer_addr, length)) {
602             tx->skip_cp = true;
603         }
604     }
605 
606     if (cmd_type_len & E1000_TXD_CMD_EOP) {
607         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
608             idx = (tx->first_olinfo_status >> 4) & 1;
609             igb_tx_insert_vlan(core, queue_index, tx,
610                 tx->ctx[idx].vlan_macip_lens >> 16,
611                 !!(cmd_type_len & E1000_TXD_CMD_VLE));
612 
613             if (igb_tx_pkt_send(core, tx, queue_index)) {
614                 igb_on_tx_done_update_stats(core, tx->tx_pkt, queue_index);
615             }
616         }
617 
618         tx->first = true;
619         tx->skip_cp = false;
620         net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, dev);
621     }
622 }
623 
624 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx)
625 {
626     uint32_t n, ent = 0;
627 
628     n = igb_ivar_entry_tx(queue_idx);
629     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
630 
631     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
632 }
633 
634 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx)
635 {
636     uint32_t n, ent = 0;
637 
638     n = igb_ivar_entry_rx(queue_idx);
639     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
640 
641     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
642 }
643 
644 typedef struct E1000E_RingInfo_st {
645     int dbah;
646     int dbal;
647     int dlen;
648     int dh;
649     int dt;
650     int idx;
651 } E1000E_RingInfo;
652 
653 static inline bool
654 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r)
655 {
656     return core->mac[r->dh] == core->mac[r->dt] ||
657                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
658 }
659 
660 static inline uint64_t
661 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r)
662 {
663     uint64_t bah = core->mac[r->dbah];
664     uint64_t bal = core->mac[r->dbal];
665 
666     return (bah << 32) + bal;
667 }
668 
669 static inline uint64_t
670 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r)
671 {
672     return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
673 }
674 
675 static inline void
676 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count)
677 {
678     core->mac[r->dh] += count;
679 
680     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
681         core->mac[r->dh] = 0;
682     }
683 }
684 
685 static inline uint32_t
686 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r)
687 {
688     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
689                                  core->mac[r->dh],  core->mac[r->dt]);
690 
691     if (core->mac[r->dh] <= core->mac[r->dt]) {
692         return core->mac[r->dt] - core->mac[r->dh];
693     }
694 
695     if (core->mac[r->dh] > core->mac[r->dt]) {
696         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
697                core->mac[r->dt] - core->mac[r->dh];
698     }
699 
700     g_assert_not_reached();
701     return 0;
702 }
703 
704 static inline bool
705 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r)
706 {
707     return core->mac[r->dlen] > 0;
708 }
709 
710 typedef struct IGB_TxRing_st {
711     const E1000E_RingInfo *i;
712     struct igb_tx *tx;
713 } IGB_TxRing;
714 
715 static inline int
716 igb_mq_queue_idx(int base_reg_idx, int reg_idx)
717 {
718     return (reg_idx - base_reg_idx) / 16;
719 }
720 
721 static inline void
722 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx)
723 {
724     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
725         { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 },
726         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 },
727         { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 },
728         { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 },
729         { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 },
730         { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 },
731         { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 },
732         { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 },
733         { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 },
734         { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 },
735         { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 },
736         { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 },
737         { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 },
738         { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 },
739         { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 },
740         { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 }
741     };
742 
743     assert(idx < ARRAY_SIZE(i));
744 
745     txr->i     = &i[idx];
746     txr->tx    = &core->tx[idx];
747 }
748 
749 typedef struct E1000E_RxRing_st {
750     const E1000E_RingInfo *i;
751 } E1000E_RxRing;
752 
753 static inline void
754 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx)
755 {
756     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
757         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
758         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 },
759         { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 },
760         { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 },
761         { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 },
762         { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 },
763         { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 },
764         { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 },
765         { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 },
766         { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 },
767         { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 },
768         { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 },
769         { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 },
770         { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 },
771         { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 },
772         { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 }
773     };
774 
775     assert(idx < ARRAY_SIZE(i));
776 
777     rxr->i      = &i[idx];
778 }
779 
780 static uint32_t
781 igb_txdesc_writeback(IGBCore *core, dma_addr_t base,
782                      union e1000_adv_tx_desc *tx_desc,
783                      const E1000E_RingInfo *txi)
784 {
785     PCIDevice *d;
786     uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
787     uint64_t tdwba;
788 
789     tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2];
790     tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32;
791 
792     if (!(cmd_type_len & E1000_TXD_CMD_RS)) {
793         return 0;
794     }
795 
796     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
797     if (!d) {
798         d = core->owner;
799     }
800 
801     if (tdwba & 1) {
802         uint32_t buffer = cpu_to_le32(core->mac[txi->dh]);
803         pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer));
804     } else {
805         uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD;
806 
807         tx_desc->wb.status = cpu_to_le32(status);
808         pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb),
809             &tx_desc->wb, sizeof(tx_desc->wb));
810     }
811 
812     return igb_tx_wb_eic(core, txi->idx);
813 }
814 
815 static inline bool
816 igb_tx_enabled(IGBCore *core, const E1000E_RingInfo *txi)
817 {
818     bool vmdq = core->mac[MRQC] & 1;
819     uint16_t qn = txi->idx;
820     uint16_t pool = qn % IGB_NUM_VM_POOLS;
821 
822     return (core->mac[TCTL] & E1000_TCTL_EN) &&
823         (!vmdq || core->mac[VFTE] & BIT(pool)) &&
824         (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE);
825 }
826 
827 static void
828 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr)
829 {
830     PCIDevice *d;
831     dma_addr_t base;
832     union e1000_adv_tx_desc desc;
833     const E1000E_RingInfo *txi = txr->i;
834     uint32_t eic = 0;
835 
836     if (!igb_tx_enabled(core, txi)) {
837         trace_e1000e_tx_disabled();
838         return;
839     }
840 
841     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
842     if (!d) {
843         d = core->owner;
844     }
845 
846     while (!igb_ring_empty(core, txi)) {
847         base = igb_ring_head_descr(core, txi);
848 
849         pci_dma_read(d, base, &desc, sizeof(desc));
850 
851         trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr,
852                               desc.read.cmd_type_len, desc.wb.status);
853 
854         igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx);
855         igb_ring_advance(core, txi, 1);
856         eic |= igb_txdesc_writeback(core, base, &desc, txi);
857     }
858 
859     if (eic) {
860         core->mac[EICR] |= eic;
861         igb_set_interrupt_cause(core, E1000_ICR_TXDW);
862     }
863 
864     net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, d);
865 }
866 
867 static uint32_t
868 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r)
869 {
870     uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2];
871     uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK;
872     if (bsizepkt) {
873         return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT;
874     }
875 
876     return e1000x_rxbufsize(core->mac[RCTL]);
877 }
878 
879 static bool
880 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size)
881 {
882     uint32_t bufs = igb_ring_free_descr_num(core, r);
883     uint32_t bufsize = igb_rxbufsize(core, r);
884 
885     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize);
886 
887     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
888                          bufsize;
889 }
890 
891 void
892 igb_start_recv(IGBCore *core)
893 {
894     int i;
895 
896     trace_e1000e_rx_start_recv();
897 
898     for (i = 0; i <= core->max_queue_num; i++) {
899         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
900     }
901 }
902 
903 bool
904 igb_can_receive(IGBCore *core)
905 {
906     int i;
907 
908     if (!e1000x_rx_ready(core->owner, core->mac)) {
909         return false;
910     }
911 
912     for (i = 0; i < IGB_NUM_QUEUES; i++) {
913         E1000E_RxRing rxr;
914         if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
915             continue;
916         }
917 
918         igb_rx_ring_init(core, &rxr, i);
919         if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) {
920             trace_e1000e_rx_can_recv();
921             return true;
922         }
923     }
924 
925     trace_e1000e_rx_can_recv_rings_full();
926     return false;
927 }
928 
929 ssize_t
930 igb_receive(IGBCore *core, const uint8_t *buf, size_t size)
931 {
932     const struct iovec iov = {
933         .iov_base = (uint8_t *)buf,
934         .iov_len = size
935     };
936 
937     return igb_receive_iov(core, &iov, 1);
938 }
939 
940 static inline bool
941 igb_rx_l3_cso_enabled(IGBCore *core)
942 {
943     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
944 }
945 
946 static inline bool
947 igb_rx_l4_cso_enabled(IGBCore *core)
948 {
949     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
950 }
951 
952 static bool
953 igb_rx_is_oversized(IGBCore *core, uint16_t qn, size_t size)
954 {
955     uint16_t pool = qn % IGB_NUM_VM_POOLS;
956     bool lpe = !!(core->mac[VMOLR0 + pool] & E1000_VMOLR_LPE);
957     int max_ethernet_lpe_size =
958         core->mac[VMOLR0 + pool] & E1000_VMOLR_RLPML_MASK;
959     int max_ethernet_vlan_size = 1522;
960 
961     return size > (lpe ? max_ethernet_lpe_size : max_ethernet_vlan_size);
962 }
963 
964 static uint16_t igb_receive_assign(IGBCore *core, const struct eth_header *ehdr,
965                                    size_t size, E1000E_RSSInfo *rss_info,
966                                    bool *external_tx)
967 {
968     static const int ta_shift[] = { 4, 3, 2, 0 };
969     uint32_t f, ra[2], *macp, rctl = core->mac[RCTL];
970     uint16_t queues = 0;
971     uint16_t oversized = 0;
972     uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(ehdr)->h_tci) & VLAN_VID_MASK;
973     bool accepted = false;
974     int i;
975 
976     memset(rss_info, 0, sizeof(E1000E_RSSInfo));
977 
978     if (external_tx) {
979         *external_tx = true;
980     }
981 
982     if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff) &&
983         e1000x_vlan_rx_filter_enabled(core->mac)) {
984         uint32_t vfta =
985             ldl_le_p((uint32_t *)(core->mac + VFTA) +
986                      ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
987         if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
988             trace_e1000e_rx_flt_vlan_mismatch(vid);
989             return queues;
990         } else {
991             trace_e1000e_rx_flt_vlan_match(vid);
992         }
993     }
994 
995     if (core->mac[MRQC] & 1) {
996         if (is_broadcast_ether_addr(ehdr->h_dest)) {
997             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
998                 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) {
999                     queues |= BIT(i);
1000                 }
1001             }
1002         } else {
1003             for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) {
1004                 if (!(macp[1] & E1000_RAH_AV)) {
1005                     continue;
1006                 }
1007                 ra[0] = cpu_to_le32(macp[0]);
1008                 ra[1] = cpu_to_le32(macp[1]);
1009                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1010                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
1011                 }
1012             }
1013 
1014             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1015                 if (!(macp[1] & E1000_RAH_AV)) {
1016                     continue;
1017                 }
1018                 ra[0] = cpu_to_le32(macp[0]);
1019                 ra[1] = cpu_to_le32(macp[1]);
1020                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1021                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
1022                 }
1023             }
1024 
1025             if (!queues) {
1026                 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA);
1027 
1028                 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
1029                 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
1030                 if (macp[f >> 5] & (1 << (f & 0x1f))) {
1031                     for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1032                         if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) {
1033                             queues |= BIT(i);
1034                         }
1035                     }
1036                 }
1037             } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) {
1038                 *external_tx = false;
1039             }
1040         }
1041 
1042         if (e1000x_vlan_rx_filter_enabled(core->mac)) {
1043             uint16_t mask = 0;
1044 
1045             if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff)) {
1046                 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
1047                     if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid &&
1048                         (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) {
1049                         uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK;
1050                         mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT;
1051                     }
1052                 }
1053             } else {
1054                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1055                     if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) {
1056                         mask |= BIT(i);
1057                     }
1058                 }
1059             }
1060 
1061             queues &= mask;
1062         }
1063 
1064         if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx &&
1065             !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) {
1066             uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK;
1067             queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1068         }
1069 
1070         queues &= core->mac[VFRE];
1071         if (queues) {
1072             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1073                 if ((queues & BIT(i)) && igb_rx_is_oversized(core, i, size)) {
1074                     oversized |= BIT(i);
1075                 }
1076             }
1077             /* 8.19.37 increment ROC if packet is oversized for all queues */
1078             if (oversized == queues) {
1079                 trace_e1000x_rx_oversized(size);
1080                 e1000x_inc_reg_if_not_full(core->mac, ROC);
1081             }
1082             queues &= ~oversized;
1083         }
1084 
1085         if (queues) {
1086             igb_rss_parse_packet(core, core->rx_pkt,
1087                                  external_tx != NULL, rss_info);
1088             /* Sec 8.26.1: PQn = VFn + VQn*8 */
1089             if (rss_info->queue & 1) {
1090                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1091                     if ((queues & BIT(i)) &&
1092                         (core->mac[VMOLR0 + i] & E1000_VMOLR_RSSE)) {
1093                         queues |= BIT(i + IGB_NUM_VM_POOLS);
1094                         queues &= ~BIT(i);
1095                     }
1096                 }
1097             }
1098         }
1099     } else {
1100         switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1101         case ETH_PKT_UCAST:
1102             if (rctl & E1000_RCTL_UPE) {
1103                 accepted = true; /* promiscuous ucast */
1104             }
1105             break;
1106 
1107         case ETH_PKT_BCAST:
1108             if (rctl & E1000_RCTL_BAM) {
1109                 accepted = true; /* broadcast enabled */
1110             }
1111             break;
1112 
1113         case ETH_PKT_MCAST:
1114             if (rctl & E1000_RCTL_MPE) {
1115                 accepted = true; /* promiscuous mcast */
1116             }
1117             break;
1118 
1119         default:
1120             g_assert_not_reached();
1121         }
1122 
1123         if (!accepted) {
1124             accepted = e1000x_rx_group_filter(core->mac, ehdr->h_dest);
1125         }
1126 
1127         if (!accepted) {
1128             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1129                 if (!(macp[1] & E1000_RAH_AV)) {
1130                     continue;
1131                 }
1132                 ra[0] = cpu_to_le32(macp[0]);
1133                 ra[1] = cpu_to_le32(macp[1]);
1134                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1135                     trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2,
1136                                                     MAC_ARG(ehdr->h_dest));
1137 
1138                     accepted = true;
1139                     break;
1140                 }
1141             }
1142         }
1143 
1144         if (accepted) {
1145             igb_rss_parse_packet(core, core->rx_pkt, false, rss_info);
1146             queues = BIT(rss_info->queue);
1147         }
1148     }
1149 
1150     return queues;
1151 }
1152 
1153 static inline void
1154 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1155                        hwaddr *buff_addr)
1156 {
1157     *buff_addr = le64_to_cpu(desc->buffer_addr);
1158 }
1159 
1160 static inline void
1161 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1162                       hwaddr *buff_addr)
1163 {
1164     *buff_addr = le64_to_cpu(desc->read.pkt_addr);
1165 }
1166 
1167 static inline void
1168 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1169                   hwaddr *buff_addr)
1170 {
1171     if (igb_rx_use_legacy_descriptor(core)) {
1172         igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr);
1173     } else {
1174         igb_read_adv_rx_descr(core, &desc->adv, buff_addr);
1175     }
1176 }
1177 
1178 static void
1179 igb_verify_csum_in_sw(IGBCore *core,
1180                       struct NetRxPkt *pkt,
1181                       uint32_t *status_flags,
1182                       EthL4HdrProto l4hdr_proto)
1183 {
1184     bool csum_valid;
1185     uint32_t csum_error;
1186 
1187     if (igb_rx_l3_cso_enabled(core)) {
1188         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1189             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1190         } else {
1191             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1192             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1193         }
1194     } else {
1195         trace_e1000e_rx_metadata_l3_cso_disabled();
1196     }
1197 
1198     if (!igb_rx_l4_cso_enabled(core)) {
1199         trace_e1000e_rx_metadata_l4_cso_disabled();
1200         return;
1201     }
1202 
1203     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1204         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1205         return;
1206     }
1207 
1208     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1209     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1210 
1211     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1212         *status_flags |= E1000_RXD_STAT_UDPCS;
1213     }
1214 }
1215 
1216 static void
1217 igb_build_rx_metadata(IGBCore *core,
1218                       struct NetRxPkt *pkt,
1219                       bool is_eop,
1220                       const E1000E_RSSInfo *rss_info,
1221                       uint16_t *pkt_info, uint16_t *hdr_info,
1222                       uint32_t *rss,
1223                       uint32_t *status_flags,
1224                       uint16_t *ip_id,
1225                       uint16_t *vlan_tag)
1226 {
1227     struct virtio_net_hdr *vhdr;
1228     bool hasip4, hasip6;
1229     EthL4HdrProto l4hdr_proto;
1230 
1231     *status_flags = E1000_RXD_STAT_DD;
1232 
1233     /* No additional metadata needed for non-EOP descriptors */
1234     /* TODO: EOP apply only to status so don't skip whole function. */
1235     if (!is_eop) {
1236         goto func_exit;
1237     }
1238 
1239     *status_flags |= E1000_RXD_STAT_EOP;
1240 
1241     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1242     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1243 
1244     /* VLAN state */
1245     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1246         *status_flags |= E1000_RXD_STAT_VP;
1247         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1248         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1249     }
1250 
1251     /* Packet parsing results */
1252     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1253         if (rss_info->enabled) {
1254             *rss = cpu_to_le32(rss_info->hash);
1255             trace_igb_rx_metadata_rss(*rss);
1256         }
1257     } else if (hasip4) {
1258             *status_flags |= E1000_RXD_STAT_IPIDV;
1259             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1260             trace_e1000e_rx_metadata_ip_id(*ip_id);
1261     }
1262 
1263     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) {
1264         *status_flags |= E1000_RXD_STAT_ACK;
1265         trace_e1000e_rx_metadata_ack();
1266     }
1267 
1268     if (pkt_info) {
1269         *pkt_info = rss_info->enabled ? rss_info->type : 0;
1270 
1271         if (hasip4) {
1272             *pkt_info |= E1000_ADVRXD_PKT_IP4;
1273         }
1274 
1275         if (hasip6) {
1276             *pkt_info |= E1000_ADVRXD_PKT_IP6;
1277         }
1278 
1279         switch (l4hdr_proto) {
1280         case ETH_L4_HDR_PROTO_TCP:
1281             *pkt_info |= E1000_ADVRXD_PKT_TCP;
1282             break;
1283 
1284         case ETH_L4_HDR_PROTO_UDP:
1285             *pkt_info |= E1000_ADVRXD_PKT_UDP;
1286             break;
1287 
1288         default:
1289             break;
1290         }
1291     }
1292 
1293     if (hdr_info) {
1294         *hdr_info = 0;
1295     }
1296 
1297     /* RX CSO information */
1298     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1299         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1300         goto func_exit;
1301     }
1302 
1303     vhdr = net_rx_pkt_get_vhdr(pkt);
1304 
1305     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1306         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1307         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1308         igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1309         goto func_exit;
1310     }
1311 
1312     if (igb_rx_l3_cso_enabled(core)) {
1313         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1314     } else {
1315         trace_e1000e_rx_metadata_l3_cso_disabled();
1316     }
1317 
1318     if (igb_rx_l4_cso_enabled(core)) {
1319         switch (l4hdr_proto) {
1320         case ETH_L4_HDR_PROTO_TCP:
1321             *status_flags |= E1000_RXD_STAT_TCPCS;
1322             break;
1323 
1324         case ETH_L4_HDR_PROTO_UDP:
1325             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1326             break;
1327 
1328         default:
1329             goto func_exit;
1330         }
1331     } else {
1332         trace_e1000e_rx_metadata_l4_cso_disabled();
1333     }
1334 
1335     trace_e1000e_rx_metadata_status_flags(*status_flags);
1336 
1337 func_exit:
1338     *status_flags = cpu_to_le32(*status_flags);
1339 }
1340 
1341 static inline void
1342 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1343                         struct NetRxPkt *pkt,
1344                         const E1000E_RSSInfo *rss_info,
1345                         uint16_t length)
1346 {
1347     uint32_t status_flags, rss;
1348     uint16_t ip_id;
1349 
1350     assert(!rss_info->enabled);
1351     desc->length = cpu_to_le16(length);
1352     desc->csum = 0;
1353 
1354     igb_build_rx_metadata(core, pkt, pkt != NULL,
1355                           rss_info,
1356                           NULL, NULL, &rss,
1357                           &status_flags, &ip_id,
1358                           &desc->special);
1359     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1360     desc->status = (uint8_t) le32_to_cpu(status_flags);
1361 }
1362 
1363 static inline void
1364 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1365                        struct NetRxPkt *pkt,
1366                        const E1000E_RSSInfo *rss_info,
1367                        uint16_t length)
1368 {
1369     memset(&desc->wb, 0, sizeof(desc->wb));
1370 
1371     desc->wb.upper.length = cpu_to_le16(length);
1372 
1373     igb_build_rx_metadata(core, pkt, pkt != NULL,
1374                           rss_info,
1375                           &desc->wb.lower.lo_dword.pkt_info,
1376                           &desc->wb.lower.lo_dword.hdr_info,
1377                           &desc->wb.lower.hi_dword.rss,
1378                           &desc->wb.upper.status_error,
1379                           &desc->wb.lower.hi_dword.csum_ip.ip_id,
1380                           &desc->wb.upper.vlan);
1381 }
1382 
1383 static inline void
1384 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1385 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length)
1386 {
1387     if (igb_rx_use_legacy_descriptor(core)) {
1388         igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, length);
1389     } else {
1390         igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, length);
1391     }
1392 }
1393 
1394 static inline void
1395 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr,
1396                           union e1000_rx_desc_union *desc, dma_addr_t len)
1397 {
1398     if (igb_rx_use_legacy_descriptor(core)) {
1399         struct e1000_rx_desc *d = &desc->legacy;
1400         size_t offset = offsetof(struct e1000_rx_desc, status);
1401         uint8_t status = d->status;
1402 
1403         d->status &= ~E1000_RXD_STAT_DD;
1404         pci_dma_write(dev, addr, desc, len);
1405 
1406         if (status & E1000_RXD_STAT_DD) {
1407             d->status = status;
1408             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1409         }
1410     } else {
1411         union e1000_adv_rx_desc *d = &desc->adv;
1412         size_t offset =
1413             offsetof(union e1000_adv_rx_desc, wb.upper.status_error);
1414         uint32_t status = d->wb.upper.status_error;
1415 
1416         d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1417         pci_dma_write(dev, addr, desc, len);
1418 
1419         if (status & E1000_RXD_STAT_DD) {
1420             d->wb.upper.status_error = status;
1421             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1422         }
1423     }
1424 }
1425 
1426 static void
1427 igb_write_to_rx_buffers(IGBCore *core,
1428                         PCIDevice *d,
1429                         hwaddr ba,
1430                         uint16_t *written,
1431                         const char *data,
1432                         dma_addr_t data_len)
1433 {
1434     trace_igb_rx_desc_buff_write(ba, *written, data, data_len);
1435     pci_dma_write(d, ba + *written, data, data_len);
1436     *written += data_len;
1437 }
1438 
1439 static void
1440 igb_update_rx_stats(IGBCore *core, const E1000E_RingInfo *rxi,
1441                     size_t pkt_size, size_t pkt_fcs_size)
1442 {
1443     eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1444     e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1445 
1446     if (core->mac[MRQC] & 1) {
1447         uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS;
1448 
1449         core->mac[PVFGORC0 + (pool * 64)] += pkt_size + 4;
1450         core->mac[PVFGPRC0 + (pool * 64)]++;
1451         if (pkt_type == ETH_PKT_MCAST) {
1452             core->mac[PVFMPRC0 + (pool * 64)]++;
1453         }
1454     }
1455 }
1456 
1457 static inline bool
1458 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi)
1459 {
1460     return igb_ring_free_descr_num(core, rxi) ==
1461            ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16;
1462 }
1463 
1464 static void
1465 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt,
1466                           const E1000E_RxRing *rxr,
1467                           const E1000E_RSSInfo *rss_info)
1468 {
1469     PCIDevice *d;
1470     dma_addr_t base;
1471     union e1000_rx_desc_union desc;
1472     size_t desc_size;
1473     size_t desc_offset = 0;
1474     size_t iov_ofs = 0;
1475 
1476     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1477     size_t size = net_rx_pkt_get_total_len(pkt);
1478     size_t total_size = size + e1000x_fcs_len(core->mac);
1479     const E1000E_RingInfo *rxi = rxr->i;
1480     size_t bufsize = igb_rxbufsize(core, rxi);
1481 
1482     d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8);
1483     if (!d) {
1484         d = core->owner;
1485     }
1486 
1487     do {
1488         hwaddr ba;
1489         uint16_t written = 0;
1490         bool is_last = false;
1491 
1492         desc_size = total_size - desc_offset;
1493 
1494         if (desc_size > bufsize) {
1495             desc_size = bufsize;
1496         }
1497 
1498         if (igb_ring_empty(core, rxi)) {
1499             return;
1500         }
1501 
1502         base = igb_ring_head_descr(core, rxi);
1503 
1504         pci_dma_read(d, base, &desc, core->rx_desc_len);
1505 
1506         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1507 
1508         igb_read_rx_descr(core, &desc, &ba);
1509 
1510         if (ba) {
1511             if (desc_offset < size) {
1512                 static const uint32_t fcs_pad;
1513                 size_t iov_copy;
1514                 size_t copy_size = size - desc_offset;
1515                 if (copy_size > bufsize) {
1516                     copy_size = bufsize;
1517                 }
1518 
1519                 /* Copy packet payload */
1520                 while (copy_size) {
1521                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1522 
1523                     igb_write_to_rx_buffers(core, d, ba, &written,
1524                                             iov->iov_base + iov_ofs, iov_copy);
1525 
1526                     copy_size -= iov_copy;
1527                     iov_ofs += iov_copy;
1528                     if (iov_ofs == iov->iov_len) {
1529                         iov++;
1530                         iov_ofs = 0;
1531                     }
1532                 }
1533 
1534                 if (desc_offset + desc_size >= total_size) {
1535                     /* Simulate FCS checksum presence in the last descriptor */
1536                     igb_write_to_rx_buffers(core, d, ba, &written,
1537                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1538                 }
1539             }
1540         } else { /* as per intel docs; skip descriptors with null buf addr */
1541             trace_e1000e_rx_null_descriptor();
1542         }
1543         desc_offset += desc_size;
1544         if (desc_offset >= total_size) {
1545             is_last = true;
1546         }
1547 
1548         igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1549                            rss_info, written);
1550         igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len);
1551 
1552         igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1553 
1554     } while (desc_offset < total_size);
1555 
1556     igb_update_rx_stats(core, rxi, size, total_size);
1557 }
1558 
1559 static bool
1560 igb_rx_strip_vlan(IGBCore *core, const E1000E_RingInfo *rxi)
1561 {
1562     if (core->mac[MRQC] & 1) {
1563         uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS;
1564         /* Sec 7.10.3.8: CTRL.VME is ignored, only VMOLR/RPLOLR is used */
1565         return (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) ?
1566                 core->mac[RPLOLR] & E1000_RPLOLR_STRVLAN :
1567                 core->mac[VMOLR0 + pool] & E1000_VMOLR_STRVLAN;
1568     }
1569 
1570     return e1000x_vlan_enabled(core->mac);
1571 }
1572 
1573 static inline void
1574 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt)
1575 {
1576     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1577 
1578     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1579         net_rx_pkt_fix_l4_csum(pkt);
1580     }
1581 }
1582 
1583 ssize_t
1584 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt)
1585 {
1586     return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL);
1587 }
1588 
1589 static ssize_t
1590 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
1591                      bool has_vnet, bool *external_tx)
1592 {
1593     static const int maximum_ethernet_hdr_len = (ETH_HLEN + 4);
1594 
1595     uint16_t queues = 0;
1596     uint32_t n = 0;
1597     uint8_t min_buf[ETH_ZLEN];
1598     struct iovec min_iov;
1599     struct eth_header *ehdr;
1600     uint8_t *filter_buf;
1601     size_t size, orig_size;
1602     size_t iov_ofs = 0;
1603     E1000E_RxRing rxr;
1604     E1000E_RSSInfo rss_info;
1605     size_t total_size;
1606     int i;
1607 
1608     trace_e1000e_rx_receive_iov(iovcnt);
1609 
1610     if (external_tx) {
1611         *external_tx = true;
1612     }
1613 
1614     if (!e1000x_hw_rx_enabled(core->mac)) {
1615         return -1;
1616     }
1617 
1618     /* Pull virtio header in */
1619     if (has_vnet) {
1620         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1621         iov_ofs = sizeof(struct virtio_net_hdr);
1622     } else {
1623         net_rx_pkt_unset_vhdr(core->rx_pkt);
1624     }
1625 
1626     filter_buf = iov->iov_base + iov_ofs;
1627     orig_size = iov_size(iov, iovcnt);
1628     size = orig_size - iov_ofs;
1629 
1630     /* Pad to minimum Ethernet frame length */
1631     if (size < sizeof(min_buf)) {
1632         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1633         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1634         e1000x_inc_reg_if_not_full(core->mac, RUC);
1635         min_iov.iov_base = filter_buf = min_buf;
1636         min_iov.iov_len = size = sizeof(min_buf);
1637         iovcnt = 1;
1638         iov = &min_iov;
1639         iov_ofs = 0;
1640     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1641         /* This is very unlikely, but may happen. */
1642         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1643         filter_buf = min_buf;
1644     }
1645 
1646     /* Discard oversized packets if !LPE and !SBP. */
1647     if (e1000x_is_oversized(core->mac, size)) {
1648         return orig_size;
1649     }
1650 
1651     ehdr = PKT_GET_ETH_HDR(filter_buf);
1652     net_rx_pkt_set_packet_type(core->rx_pkt, get_eth_packet_type(ehdr));
1653     net_rx_pkt_set_protocols(core->rx_pkt, filter_buf, size);
1654 
1655     queues = igb_receive_assign(core, ehdr, size, &rss_info, external_tx);
1656     if (!queues) {
1657         trace_e1000e_rx_flt_dropped();
1658         return orig_size;
1659     }
1660 
1661     for (i = 0; i < IGB_NUM_QUEUES; i++) {
1662         if (!(queues & BIT(i)) ||
1663             !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
1664             continue;
1665         }
1666 
1667         igb_rx_ring_init(core, &rxr, i);
1668 
1669         net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1670                                    igb_rx_strip_vlan(core, rxr.i),
1671                                    core->mac[VET] & 0xffff);
1672 
1673         total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1674             e1000x_fcs_len(core->mac);
1675 
1676         if (!igb_has_rxbufs(core, rxr.i, total_size)) {
1677             n |= E1000_ICS_RXO;
1678             trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1679             continue;
1680         }
1681 
1682         n |= E1000_ICR_RXDW;
1683 
1684         igb_rx_fix_l4_csum(core, core->rx_pkt);
1685         igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1686 
1687         /* Check if receive descriptor minimum threshold hit */
1688         if (igb_rx_descr_threshold_hit(core, rxr.i)) {
1689             n |= E1000_ICS_RXDMT0;
1690         }
1691 
1692         core->mac[EICR] |= igb_rx_wb_eic(core, rxr.i->idx);
1693 
1694         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1695     }
1696 
1697     trace_e1000e_rx_interrupt_set(n);
1698     igb_set_interrupt_cause(core, n);
1699 
1700     return orig_size;
1701 }
1702 
1703 static inline bool
1704 igb_have_autoneg(IGBCore *core)
1705 {
1706     return core->phy[MII_BMCR] & MII_BMCR_AUTOEN;
1707 }
1708 
1709 static void igb_update_flowctl_status(IGBCore *core)
1710 {
1711     if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) {
1712         trace_e1000e_link_autoneg_flowctl(true);
1713         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1714     } else {
1715         trace_e1000e_link_autoneg_flowctl(false);
1716     }
1717 }
1718 
1719 static inline void
1720 igb_link_down(IGBCore *core)
1721 {
1722     e1000x_update_regs_on_link_down(core->mac, core->phy);
1723     igb_update_flowctl_status(core);
1724 }
1725 
1726 static inline void
1727 igb_set_phy_ctrl(IGBCore *core, uint16_t val)
1728 {
1729     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1730     core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART);
1731 
1732     if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) {
1733         e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer);
1734     }
1735 }
1736 
1737 void igb_core_set_link_status(IGBCore *core)
1738 {
1739     NetClientState *nc = qemu_get_queue(core->owner_nic);
1740     uint32_t old_status = core->mac[STATUS];
1741 
1742     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1743 
1744     if (nc->link_down) {
1745         e1000x_update_regs_on_link_down(core->mac, core->phy);
1746     } else {
1747         if (igb_have_autoneg(core) &&
1748             !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
1749             e1000x_restart_autoneg(core->mac, core->phy,
1750                                    core->autoneg_timer);
1751         } else {
1752             e1000x_update_regs_on_link_up(core->mac, core->phy);
1753             igb_start_recv(core);
1754         }
1755     }
1756 
1757     if (core->mac[STATUS] != old_status) {
1758         igb_set_interrupt_cause(core, E1000_ICR_LSC);
1759     }
1760 }
1761 
1762 static void
1763 igb_set_ctrl(IGBCore *core, int index, uint32_t val)
1764 {
1765     trace_e1000e_core_ctrl_write(index, val);
1766 
1767     /* RST is self clearing */
1768     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1769     core->mac[CTRL_DUP] = core->mac[CTRL];
1770 
1771     trace_e1000e_link_set_params(
1772         !!(val & E1000_CTRL_ASDE),
1773         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1774         !!(val & E1000_CTRL_FRCSPD),
1775         !!(val & E1000_CTRL_FRCDPX),
1776         !!(val & E1000_CTRL_RFCE),
1777         !!(val & E1000_CTRL_TFCE));
1778 
1779     if (val & E1000_CTRL_RST) {
1780         trace_e1000e_core_ctrl_sw_reset();
1781         igb_reset(core, true);
1782     }
1783 
1784     if (val & E1000_CTRL_PHY_RST) {
1785         trace_e1000e_core_ctrl_phy_reset();
1786         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1787     }
1788 }
1789 
1790 static void
1791 igb_set_rfctl(IGBCore *core, int index, uint32_t val)
1792 {
1793     trace_e1000e_rx_set_rfctl(val);
1794 
1795     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1796         trace_e1000e_wrn_iscsi_filtering_not_supported();
1797     }
1798 
1799     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1800         trace_e1000e_wrn_nfsw_filtering_not_supported();
1801     }
1802 
1803     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1804         trace_e1000e_wrn_nfsr_filtering_not_supported();
1805     }
1806 
1807     core->mac[RFCTL] = val;
1808 }
1809 
1810 static void
1811 igb_calc_rxdesclen(IGBCore *core)
1812 {
1813     if (igb_rx_use_legacy_descriptor(core)) {
1814         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1815     } else {
1816         core->rx_desc_len = sizeof(union e1000_adv_rx_desc);
1817     }
1818     trace_e1000e_rx_desc_len(core->rx_desc_len);
1819 }
1820 
1821 static void
1822 igb_set_rx_control(IGBCore *core, int index, uint32_t val)
1823 {
1824     core->mac[RCTL] = val;
1825     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1826 
1827     if (val & E1000_RCTL_DTYP_MASK) {
1828         qemu_log_mask(LOG_GUEST_ERROR,
1829                       "igb: RCTL.DTYP must be zero for compatibility");
1830     }
1831 
1832     if (val & E1000_RCTL_EN) {
1833         igb_calc_rxdesclen(core);
1834         igb_start_recv(core);
1835     }
1836 }
1837 
1838 static inline void
1839 igb_clear_ims_bits(IGBCore *core, uint32_t bits)
1840 {
1841     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1842     core->mac[IMS] &= ~bits;
1843 }
1844 
1845 static inline bool
1846 igb_postpone_interrupt(IGBIntrDelayTimer *timer)
1847 {
1848     if (timer->running) {
1849         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1850 
1851         return true;
1852     }
1853 
1854     if (timer->core->mac[timer->delay_reg] != 0) {
1855         igb_intrmgr_rearm_timer(timer);
1856     }
1857 
1858     return false;
1859 }
1860 
1861 static inline bool
1862 igb_eitr_should_postpone(IGBCore *core, int idx)
1863 {
1864     return igb_postpone_interrupt(&core->eitr[idx]);
1865 }
1866 
1867 static void igb_send_msix(IGBCore *core)
1868 {
1869     uint32_t causes = core->mac[EICR] & core->mac[EIMS];
1870     uint32_t effective_eiac;
1871     int vector;
1872 
1873     for (vector = 0; vector < IGB_INTR_NUM; ++vector) {
1874         if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) {
1875 
1876             trace_e1000e_irq_msix_notify_vec(vector);
1877             igb_msix_notify(core, vector);
1878 
1879             trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]);
1880             effective_eiac = core->mac[EIAC] & BIT(vector);
1881             core->mac[EICR] &= ~effective_eiac;
1882         }
1883     }
1884 }
1885 
1886 static inline void
1887 igb_fix_icr_asserted(IGBCore *core)
1888 {
1889     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
1890     if (core->mac[ICR]) {
1891         core->mac[ICR] |= E1000_ICR_ASSERTED;
1892     }
1893 
1894     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
1895 }
1896 
1897 static void
1898 igb_update_interrupt_state(IGBCore *core)
1899 {
1900     uint32_t icr;
1901     uint32_t causes;
1902     uint32_t int_alloc;
1903 
1904     icr = core->mac[ICR] & core->mac[IMS];
1905 
1906     if (msix_enabled(core->owner)) {
1907         if (icr) {
1908             causes = 0;
1909             if (icr & E1000_ICR_DRSTA) {
1910                 int_alloc = core->mac[IVAR_MISC] & 0xff;
1911                 if (int_alloc & E1000_IVAR_VALID) {
1912                     causes |= BIT(int_alloc & 0x1f);
1913                 }
1914             }
1915             /* Check if other bits (excluding the TCP Timer) are enabled. */
1916             if (icr & ~E1000_ICR_DRSTA) {
1917                 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff;
1918                 if (int_alloc & E1000_IVAR_VALID) {
1919                     causes |= BIT(int_alloc & 0x1f);
1920                 }
1921                 trace_e1000e_irq_add_msi_other(core->mac[EICR]);
1922             }
1923             core->mac[EICR] |= causes;
1924         }
1925 
1926         if ((core->mac[EICR] & core->mac[EIMS])) {
1927             igb_send_msix(core);
1928         }
1929     } else {
1930         igb_fix_icr_asserted(core);
1931 
1932         if (icr) {
1933             core->mac[EICR] |= (icr & E1000_ICR_DRSTA) | E1000_EICR_OTHER;
1934         } else {
1935             core->mac[EICR] &= ~E1000_EICR_OTHER;
1936         }
1937 
1938         trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
1939                                             core->mac[ICR], core->mac[IMS]);
1940 
1941         if (msi_enabled(core->owner)) {
1942             if (icr) {
1943                 msi_notify(core->owner, 0);
1944             }
1945         } else {
1946             if (icr) {
1947                 igb_raise_legacy_irq(core);
1948             } else {
1949                 igb_lower_legacy_irq(core);
1950             }
1951         }
1952     }
1953 }
1954 
1955 static void
1956 igb_set_interrupt_cause(IGBCore *core, uint32_t val)
1957 {
1958     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
1959 
1960     core->mac[ICR] |= val;
1961 
1962     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
1963 
1964     igb_update_interrupt_state(core);
1965 }
1966 
1967 static void igb_set_eics(IGBCore *core, int index, uint32_t val)
1968 {
1969     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1970 
1971     trace_igb_irq_write_eics(val, msix);
1972 
1973     core->mac[EICS] |=
1974         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1975 
1976     /*
1977      * TODO: Move to igb_update_interrupt_state if EICS is modified in other
1978      * places.
1979      */
1980     core->mac[EICR] = core->mac[EICS];
1981 
1982     igb_update_interrupt_state(core);
1983 }
1984 
1985 static void igb_set_eims(IGBCore *core, int index, uint32_t val)
1986 {
1987     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1988 
1989     trace_igb_irq_write_eims(val, msix);
1990 
1991     core->mac[EIMS] |=
1992         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1993 
1994     igb_update_interrupt_state(core);
1995 }
1996 
1997 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn)
1998 {
1999     uint32_t ent = core->mac[VTIVAR_MISC + vfn];
2000 
2001     if ((ent & E1000_IVAR_VALID)) {
2002         core->mac[EICR] |= (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM);
2003         igb_update_interrupt_state(core);
2004     }
2005 }
2006 
2007 static void mailbox_interrupt_to_pf(IGBCore *core)
2008 {
2009     igb_set_interrupt_cause(core, E1000_ICR_VMMB);
2010 }
2011 
2012 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val)
2013 {
2014     uint16_t vfn = index - P2VMAILBOX0;
2015 
2016     trace_igb_set_pfmailbox(vfn, val);
2017 
2018     if (val & E1000_P2VMAILBOX_STS) {
2019         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS;
2020         mailbox_interrupt_to_vf(core, vfn);
2021     }
2022 
2023     if (val & E1000_P2VMAILBOX_ACK) {
2024         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK;
2025         mailbox_interrupt_to_vf(core, vfn);
2026     }
2027 
2028     /* Buffer Taken by PF (can be set only if the VFU is cleared). */
2029     if (val & E1000_P2VMAILBOX_PFU) {
2030         if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) {
2031             core->mac[index] |= E1000_P2VMAILBOX_PFU;
2032             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU;
2033         }
2034     } else {
2035         core->mac[index] &= ~E1000_P2VMAILBOX_PFU;
2036         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU;
2037     }
2038 
2039     if (val & E1000_P2VMAILBOX_RVFU) {
2040         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU;
2041         core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) |
2042                                 (E1000_MBVFICR_VFREQ_VF1 << vfn));
2043     }
2044 }
2045 
2046 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val)
2047 {
2048     uint16_t vfn = index - V2PMAILBOX0;
2049 
2050     trace_igb_set_vfmailbox(vfn, val);
2051 
2052     if (val & E1000_V2PMAILBOX_REQ) {
2053         core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn;
2054         mailbox_interrupt_to_pf(core);
2055     }
2056 
2057     if (val & E1000_V2PMAILBOX_ACK) {
2058         core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn;
2059         mailbox_interrupt_to_pf(core);
2060     }
2061 
2062     /* Buffer Taken by VF (can be set only if the PFU is cleared). */
2063     if (val & E1000_V2PMAILBOX_VFU) {
2064         if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) {
2065             core->mac[index] |= E1000_V2PMAILBOX_VFU;
2066             core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU;
2067         }
2068     } else {
2069         core->mac[index] &= ~E1000_V2PMAILBOX_VFU;
2070         core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU;
2071     }
2072 }
2073 
2074 static void igb_vf_reset(IGBCore *core, uint16_t vfn)
2075 {
2076     uint16_t qn0 = vfn;
2077     uint16_t qn1 = vfn + IGB_NUM_VM_POOLS;
2078 
2079     /* disable Rx and Tx for the VF*/
2080     core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2081     core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2082     core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2083     core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2084     core->mac[VFRE] &= ~BIT(vfn);
2085     core->mac[VFTE] &= ~BIT(vfn);
2086     /* indicate VF reset to PF */
2087     core->mac[VFLRE] |= BIT(vfn);
2088     /* VFLRE and mailbox use the same interrupt cause */
2089     mailbox_interrupt_to_pf(core);
2090 }
2091 
2092 static void igb_w1c(IGBCore *core, int index, uint32_t val)
2093 {
2094     core->mac[index] &= ~val;
2095 }
2096 
2097 static void igb_set_eimc(IGBCore *core, int index, uint32_t val)
2098 {
2099     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2100 
2101     /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */
2102     core->mac[EIMS] &=
2103         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2104 
2105     trace_igb_irq_write_eimc(val, core->mac[EIMS], msix);
2106     igb_update_interrupt_state(core);
2107 }
2108 
2109 static void igb_set_eiac(IGBCore *core, int index, uint32_t val)
2110 {
2111     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2112 
2113     if (msix) {
2114         trace_igb_irq_write_eiac(val);
2115 
2116         /*
2117          * TODO: When using IOV, the bits that correspond to MSI-X vectors
2118          * that are assigned to a VF are read-only.
2119          */
2120         core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK);
2121     }
2122 }
2123 
2124 static void igb_set_eiam(IGBCore *core, int index, uint32_t val)
2125 {
2126     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2127 
2128     /*
2129      * TODO: When using IOV, the bits that correspond to MSI-X vectors that
2130      * are assigned to a VF are read-only.
2131      */
2132     core->mac[EIAM] |=
2133         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2134 
2135     trace_igb_irq_write_eiam(val, msix);
2136 }
2137 
2138 static void igb_set_eicr(IGBCore *core, int index, uint32_t val)
2139 {
2140     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2141 
2142     /*
2143      * TODO: In IOV mode, only bit zero of this vector is available for the PF
2144      * function.
2145      */
2146     core->mac[EICR] &=
2147         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2148 
2149     trace_igb_irq_write_eicr(val, msix);
2150     igb_update_interrupt_state(core);
2151 }
2152 
2153 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val)
2154 {
2155     uint16_t vfn;
2156 
2157     if (val & E1000_CTRL_RST) {
2158         vfn = (index - PVTCTRL0) / 0x40;
2159         igb_vf_reset(core, vfn);
2160     }
2161 }
2162 
2163 static void igb_set_vteics(IGBCore *core, int index, uint32_t val)
2164 {
2165     uint16_t vfn = (index - PVTEICS0) / 0x40;
2166 
2167     core->mac[index] = val;
2168     igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2169 }
2170 
2171 static void igb_set_vteims(IGBCore *core, int index, uint32_t val)
2172 {
2173     uint16_t vfn = (index - PVTEIMS0) / 0x40;
2174 
2175     core->mac[index] = val;
2176     igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2177 }
2178 
2179 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val)
2180 {
2181     uint16_t vfn = (index - PVTEIMC0) / 0x40;
2182 
2183     core->mac[index] = val;
2184     igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2185 }
2186 
2187 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val)
2188 {
2189     uint16_t vfn = (index - PVTEIAC0) / 0x40;
2190 
2191     core->mac[index] = val;
2192     igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2193 }
2194 
2195 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val)
2196 {
2197     uint16_t vfn = (index - PVTEIAM0) / 0x40;
2198 
2199     core->mac[index] = val;
2200     igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2201 }
2202 
2203 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val)
2204 {
2205     uint16_t vfn = (index - PVTEICR0) / 0x40;
2206 
2207     core->mac[index] = val;
2208     igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2209 }
2210 
2211 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val)
2212 {
2213     uint16_t vfn = (index - VTIVAR);
2214     uint16_t qn = vfn;
2215     uint8_t ent;
2216     int n;
2217 
2218     core->mac[index] = val;
2219 
2220     /* Get assigned vector associated with queue Rx#0. */
2221     if ((val & E1000_IVAR_VALID)) {
2222         n = igb_ivar_entry_rx(qn);
2223         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7)));
2224         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2225     }
2226 
2227     /* Get assigned vector associated with queue Tx#0 */
2228     ent = val >> 8;
2229     if ((ent & E1000_IVAR_VALID)) {
2230         n = igb_ivar_entry_tx(qn);
2231         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7)));
2232         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2233     }
2234 
2235     /*
2236      * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now.
2237      */
2238 }
2239 
2240 static inline void
2241 igb_autoneg_timer(void *opaque)
2242 {
2243     IGBCore *core = opaque;
2244     if (!qemu_get_queue(core->owner_nic)->link_down) {
2245         e1000x_update_regs_on_autoneg_done(core->mac, core->phy);
2246         igb_start_recv(core);
2247 
2248         igb_update_flowctl_status(core);
2249         /* signal link status change to the guest */
2250         igb_set_interrupt_cause(core, E1000_ICR_LSC);
2251     }
2252 }
2253 
2254 static inline uint16_t
2255 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2256 {
2257     uint16_t index = (addr & 0x1ffff) >> 2;
2258     return index + (mac_reg_access[index] & 0xfffe);
2259 }
2260 
2261 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = {
2262     [MII_BMCR]                   = PHY_RW,
2263     [MII_BMSR]                   = PHY_R,
2264     [MII_PHYID1]                 = PHY_R,
2265     [MII_PHYID2]                 = PHY_R,
2266     [MII_ANAR]                   = PHY_RW,
2267     [MII_ANLPAR]                 = PHY_R,
2268     [MII_ANER]                   = PHY_R,
2269     [MII_ANNP]                   = PHY_RW,
2270     [MII_ANLPRNP]                = PHY_R,
2271     [MII_CTRL1000]               = PHY_RW,
2272     [MII_STAT1000]               = PHY_R,
2273     [MII_EXTSTAT]                = PHY_R,
2274 
2275     [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW,
2276     [IGP01E1000_PHY_PORT_STATUS] = PHY_R,
2277     [IGP01E1000_PHY_PORT_CTRL]   = PHY_RW,
2278     [IGP01E1000_PHY_LINK_HEALTH] = PHY_R,
2279     [IGP02E1000_PHY_POWER_MGMT]  = PHY_RW,
2280     [IGP01E1000_PHY_PAGE_SELECT] = PHY_W
2281 };
2282 
2283 static void
2284 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data)
2285 {
2286     assert(addr <= MAX_PHY_REG_ADDRESS);
2287 
2288     if (addr == MII_BMCR) {
2289         igb_set_phy_ctrl(core, data);
2290     } else {
2291         core->phy[addr] = data;
2292     }
2293 }
2294 
2295 static void
2296 igb_set_mdic(IGBCore *core, int index, uint32_t val)
2297 {
2298     uint32_t data = val & E1000_MDIC_DATA_MASK;
2299     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2300 
2301     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2302         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2303     } else if (val & E1000_MDIC_OP_READ) {
2304         if (!(igb_phy_regcap[addr] & PHY_R)) {
2305             trace_igb_core_mdic_read_unhandled(addr);
2306             val |= E1000_MDIC_ERROR;
2307         } else {
2308             val = (val ^ data) | core->phy[addr];
2309             trace_igb_core_mdic_read(addr, val);
2310         }
2311     } else if (val & E1000_MDIC_OP_WRITE) {
2312         if (!(igb_phy_regcap[addr] & PHY_W)) {
2313             trace_igb_core_mdic_write_unhandled(addr);
2314             val |= E1000_MDIC_ERROR;
2315         } else {
2316             trace_igb_core_mdic_write(addr, data);
2317             igb_phy_reg_write(core, addr, data);
2318         }
2319     }
2320     core->mac[MDIC] = val | E1000_MDIC_READY;
2321 
2322     if (val & E1000_MDIC_INT_EN) {
2323         igb_set_interrupt_cause(core, E1000_ICR_MDAC);
2324     }
2325 }
2326 
2327 static void
2328 igb_set_rdt(IGBCore *core, int index, uint32_t val)
2329 {
2330     core->mac[index] = val & 0xffff;
2331     trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val);
2332     igb_start_recv(core);
2333 }
2334 
2335 static void
2336 igb_set_status(IGBCore *core, int index, uint32_t val)
2337 {
2338     if ((val & E1000_STATUS_PHYRA) == 0) {
2339         core->mac[index] &= ~E1000_STATUS_PHYRA;
2340     }
2341 }
2342 
2343 static void
2344 igb_set_ctrlext(IGBCore *core, int index, uint32_t val)
2345 {
2346     trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2347                                   !!(val & E1000_CTRL_EXT_SPD_BYPS),
2348                                   !!(val & E1000_CTRL_EXT_PFRSTD));
2349 
2350     /* Zero self-clearing bits */
2351     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2352     core->mac[CTRL_EXT] = val;
2353 
2354     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) {
2355         for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
2356             core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI;
2357             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD;
2358         }
2359     }
2360 }
2361 
2362 static void
2363 igb_set_pbaclr(IGBCore *core, int index, uint32_t val)
2364 {
2365     int i;
2366 
2367     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2368 
2369     if (!msix_enabled(core->owner)) {
2370         return;
2371     }
2372 
2373     for (i = 0; i < IGB_INTR_NUM; i++) {
2374         if (core->mac[PBACLR] & BIT(i)) {
2375             msix_clr_pending(core->owner, i);
2376         }
2377     }
2378 }
2379 
2380 static void
2381 igb_set_fcrth(IGBCore *core, int index, uint32_t val)
2382 {
2383     core->mac[FCRTH] = val & 0xFFF8;
2384 }
2385 
2386 static void
2387 igb_set_fcrtl(IGBCore *core, int index, uint32_t val)
2388 {
2389     core->mac[FCRTL] = val & 0x8000FFF8;
2390 }
2391 
2392 #define IGB_LOW_BITS_SET_FUNC(num)                             \
2393     static void                                                \
2394     igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \
2395     {                                                          \
2396         core->mac[index] = val & (BIT(num) - 1);               \
2397     }
2398 
2399 IGB_LOW_BITS_SET_FUNC(4)
2400 IGB_LOW_BITS_SET_FUNC(13)
2401 IGB_LOW_BITS_SET_FUNC(16)
2402 
2403 static void
2404 igb_set_dlen(IGBCore *core, int index, uint32_t val)
2405 {
2406     core->mac[index] = val & 0xffff0;
2407 }
2408 
2409 static void
2410 igb_set_dbal(IGBCore *core, int index, uint32_t val)
2411 {
2412     core->mac[index] = val & E1000_XDBAL_MASK;
2413 }
2414 
2415 static void
2416 igb_set_tdt(IGBCore *core, int index, uint32_t val)
2417 {
2418     IGB_TxRing txr;
2419     int qn = igb_mq_queue_idx(TDT0, index);
2420 
2421     core->mac[index] = val & 0xffff;
2422 
2423     igb_tx_ring_init(core, &txr, qn);
2424     igb_start_xmit(core, &txr);
2425 }
2426 
2427 static void
2428 igb_set_ics(IGBCore *core, int index, uint32_t val)
2429 {
2430     trace_e1000e_irq_write_ics(val);
2431     igb_set_interrupt_cause(core, val);
2432 }
2433 
2434 static void
2435 igb_set_imc(IGBCore *core, int index, uint32_t val)
2436 {
2437     trace_e1000e_irq_ims_clear_set_imc(val);
2438     igb_clear_ims_bits(core, val);
2439     igb_update_interrupt_state(core);
2440 }
2441 
2442 static void
2443 igb_set_ims(IGBCore *core, int index, uint32_t val)
2444 {
2445     uint32_t valid_val = val & 0x77D4FBFD;
2446 
2447     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2448     core->mac[IMS] |= valid_val;
2449     igb_update_interrupt_state(core);
2450 }
2451 
2452 static void igb_commit_icr(IGBCore *core)
2453 {
2454     /*
2455      * If GPIE.NSICR = 0, then the clear of IMS will occur only if at
2456      * least one bit is set in the IMS and there is a true interrupt as
2457      * reflected in ICR.INTA.
2458      */
2459     if ((core->mac[GPIE] & E1000_GPIE_NSICR) ||
2460         (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) {
2461         igb_clear_ims_bits(core, core->mac[IAM]);
2462     }
2463 
2464     igb_update_interrupt_state(core);
2465 }
2466 
2467 static void igb_set_icr(IGBCore *core, int index, uint32_t val)
2468 {
2469     uint32_t icr = core->mac[ICR] & ~val;
2470 
2471     trace_igb_irq_icr_write(val, core->mac[ICR], icr);
2472     core->mac[ICR] = icr;
2473     igb_commit_icr(core);
2474 }
2475 
2476 static uint32_t
2477 igb_mac_readreg(IGBCore *core, int index)
2478 {
2479     return core->mac[index];
2480 }
2481 
2482 static uint32_t
2483 igb_mac_ics_read(IGBCore *core, int index)
2484 {
2485     trace_e1000e_irq_read_ics(core->mac[ICS]);
2486     return core->mac[ICS];
2487 }
2488 
2489 static uint32_t
2490 igb_mac_ims_read(IGBCore *core, int index)
2491 {
2492     trace_e1000e_irq_read_ims(core->mac[IMS]);
2493     return core->mac[IMS];
2494 }
2495 
2496 static uint32_t
2497 igb_mac_swsm_read(IGBCore *core, int index)
2498 {
2499     uint32_t val = core->mac[SWSM];
2500     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2501     return val;
2502 }
2503 
2504 static uint32_t
2505 igb_mac_eitr_read(IGBCore *core, int index)
2506 {
2507     return core->eitr_guest_value[index - EITR0];
2508 }
2509 
2510 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index)
2511 {
2512     uint32_t val = core->mac[index];
2513 
2514     core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK |
2515                           E1000_V2PMAILBOX_RSTD);
2516 
2517     return val;
2518 }
2519 
2520 static uint32_t
2521 igb_mac_icr_read(IGBCore *core, int index)
2522 {
2523     uint32_t ret = core->mac[ICR];
2524     trace_e1000e_irq_icr_read_entry(ret);
2525 
2526     if (core->mac[GPIE] & E1000_GPIE_NSICR) {
2527         trace_igb_irq_icr_clear_gpie_nsicr();
2528         core->mac[ICR] = 0;
2529     } else if (core->mac[IMS] == 0) {
2530         trace_e1000e_irq_icr_clear_zero_ims();
2531         core->mac[ICR] = 0;
2532     } else if (!msix_enabled(core->owner)) {
2533         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2534         core->mac[ICR] = 0;
2535     }
2536 
2537     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2538     igb_commit_icr(core);
2539     return ret;
2540 }
2541 
2542 static uint32_t
2543 igb_mac_read_clr4(IGBCore *core, int index)
2544 {
2545     uint32_t ret = core->mac[index];
2546 
2547     core->mac[index] = 0;
2548     return ret;
2549 }
2550 
2551 static uint32_t
2552 igb_mac_read_clr8(IGBCore *core, int index)
2553 {
2554     uint32_t ret = core->mac[index];
2555 
2556     core->mac[index] = 0;
2557     core->mac[index - 1] = 0;
2558     return ret;
2559 }
2560 
2561 static uint32_t
2562 igb_get_ctrl(IGBCore *core, int index)
2563 {
2564     uint32_t val = core->mac[CTRL];
2565 
2566     trace_e1000e_link_read_params(
2567         !!(val & E1000_CTRL_ASDE),
2568         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2569         !!(val & E1000_CTRL_FRCSPD),
2570         !!(val & E1000_CTRL_FRCDPX),
2571         !!(val & E1000_CTRL_RFCE),
2572         !!(val & E1000_CTRL_TFCE));
2573 
2574     return val;
2575 }
2576 
2577 static uint32_t igb_get_status(IGBCore *core, int index)
2578 {
2579     uint32_t res = core->mac[STATUS];
2580     uint16_t num_vfs = pcie_sriov_num_vfs(core->owner);
2581 
2582     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2583         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2584     } else {
2585         res |= E1000_STATUS_FD;
2586     }
2587 
2588     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2589         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2590         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2591         case E1000_CTRL_SPD_10:
2592             res |= E1000_STATUS_SPEED_10;
2593             break;
2594         case E1000_CTRL_SPD_100:
2595             res |= E1000_STATUS_SPEED_100;
2596             break;
2597         case E1000_CTRL_SPD_1000:
2598         default:
2599             res |= E1000_STATUS_SPEED_1000;
2600             break;
2601         }
2602     } else {
2603         res |= E1000_STATUS_SPEED_1000;
2604     }
2605 
2606     if (num_vfs) {
2607         res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT;
2608         res |= E1000_STATUS_IOV_MODE;
2609     }
2610 
2611     /*
2612      * Windows driver 12.18.9.23 resets if E1000_STATUS_GIO_MASTER_ENABLE is
2613      * left set after E1000_CTRL_LRST is set.
2614      */
2615     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE) &&
2616         !(core->mac[CTRL] & E1000_CTRL_LRST)) {
2617         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2618     }
2619 
2620     return res;
2621 }
2622 
2623 static void
2624 igb_mac_writereg(IGBCore *core, int index, uint32_t val)
2625 {
2626     core->mac[index] = val;
2627 }
2628 
2629 static void
2630 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val)
2631 {
2632     uint32_t macaddr[2];
2633 
2634     core->mac[index] = val;
2635 
2636     macaddr[0] = cpu_to_le32(core->mac[RA]);
2637     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2638     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2639         (uint8_t *) macaddr);
2640 
2641     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2642 }
2643 
2644 static void
2645 igb_set_eecd(IGBCore *core, int index, uint32_t val)
2646 {
2647     static const uint32_t ro_bits = E1000_EECD_PRES          |
2648                                     E1000_EECD_AUTO_RD       |
2649                                     E1000_EECD_SIZE_EX_MASK;
2650 
2651     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2652 }
2653 
2654 static void
2655 igb_set_eerd(IGBCore *core, int index, uint32_t val)
2656 {
2657     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2658     uint32_t flags = 0;
2659     uint32_t data = 0;
2660 
2661     if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2662         data = core->eeprom[addr];
2663         flags = E1000_EERW_DONE;
2664     }
2665 
2666     core->mac[EERD] = flags                           |
2667                       (addr << E1000_EERW_ADDR_SHIFT) |
2668                       (data << E1000_EERW_DATA_SHIFT);
2669 }
2670 
2671 static void
2672 igb_set_eitr(IGBCore *core, int index, uint32_t val)
2673 {
2674     uint32_t eitr_num = index - EITR0;
2675 
2676     trace_igb_irq_eitr_set(eitr_num, val);
2677 
2678     core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR;
2679     core->mac[index] = val & 0x7FFE;
2680 }
2681 
2682 static void
2683 igb_update_rx_offloads(IGBCore *core)
2684 {
2685     int cso_state = igb_rx_l4_cso_enabled(core);
2686 
2687     trace_e1000e_rx_set_cso(cso_state);
2688 
2689     if (core->has_vnet) {
2690         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2691                          cso_state, 0, 0, 0, 0);
2692     }
2693 }
2694 
2695 static void
2696 igb_set_rxcsum(IGBCore *core, int index, uint32_t val)
2697 {
2698     core->mac[RXCSUM] = val;
2699     igb_update_rx_offloads(core);
2700 }
2701 
2702 static void
2703 igb_set_gcr(IGBCore *core, int index, uint32_t val)
2704 {
2705     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2706     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2707 }
2708 
2709 static uint32_t igb_get_systiml(IGBCore *core, int index)
2710 {
2711     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2712     return core->mac[SYSTIML];
2713 }
2714 
2715 static uint32_t igb_get_rxsatrh(IGBCore *core, int index)
2716 {
2717     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2718     return core->mac[RXSATRH];
2719 }
2720 
2721 static uint32_t igb_get_txstmph(IGBCore *core, int index)
2722 {
2723     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2724     return core->mac[TXSTMPH];
2725 }
2726 
2727 static void igb_set_timinca(IGBCore *core, int index, uint32_t val)
2728 {
2729     e1000x_set_timinca(core->mac, &core->timadj, val);
2730 }
2731 
2732 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val)
2733 {
2734     core->mac[TIMADJH] = val;
2735     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2736 }
2737 
2738 #define igb_getreg(x)    [x] = igb_mac_readreg
2739 typedef uint32_t (*readops)(IGBCore *, int);
2740 static const readops igb_macreg_readops[] = {
2741     igb_getreg(WUFC),
2742     igb_getreg(MANC),
2743     igb_getreg(TOTL),
2744     igb_getreg(RDT0),
2745     igb_getreg(RDT1),
2746     igb_getreg(RDT2),
2747     igb_getreg(RDT3),
2748     igb_getreg(RDT4),
2749     igb_getreg(RDT5),
2750     igb_getreg(RDT6),
2751     igb_getreg(RDT7),
2752     igb_getreg(RDT8),
2753     igb_getreg(RDT9),
2754     igb_getreg(RDT10),
2755     igb_getreg(RDT11),
2756     igb_getreg(RDT12),
2757     igb_getreg(RDT13),
2758     igb_getreg(RDT14),
2759     igb_getreg(RDT15),
2760     igb_getreg(RDBAH0),
2761     igb_getreg(RDBAH1),
2762     igb_getreg(RDBAH2),
2763     igb_getreg(RDBAH3),
2764     igb_getreg(RDBAH4),
2765     igb_getreg(RDBAH5),
2766     igb_getreg(RDBAH6),
2767     igb_getreg(RDBAH7),
2768     igb_getreg(RDBAH8),
2769     igb_getreg(RDBAH9),
2770     igb_getreg(RDBAH10),
2771     igb_getreg(RDBAH11),
2772     igb_getreg(RDBAH12),
2773     igb_getreg(RDBAH13),
2774     igb_getreg(RDBAH14),
2775     igb_getreg(RDBAH15),
2776     igb_getreg(TDBAL0),
2777     igb_getreg(TDBAL1),
2778     igb_getreg(TDBAL2),
2779     igb_getreg(TDBAL3),
2780     igb_getreg(TDBAL4),
2781     igb_getreg(TDBAL5),
2782     igb_getreg(TDBAL6),
2783     igb_getreg(TDBAL7),
2784     igb_getreg(TDBAL8),
2785     igb_getreg(TDBAL9),
2786     igb_getreg(TDBAL10),
2787     igb_getreg(TDBAL11),
2788     igb_getreg(TDBAL12),
2789     igb_getreg(TDBAL13),
2790     igb_getreg(TDBAL14),
2791     igb_getreg(TDBAL15),
2792     igb_getreg(RDLEN0),
2793     igb_getreg(RDLEN1),
2794     igb_getreg(RDLEN2),
2795     igb_getreg(RDLEN3),
2796     igb_getreg(RDLEN4),
2797     igb_getreg(RDLEN5),
2798     igb_getreg(RDLEN6),
2799     igb_getreg(RDLEN7),
2800     igb_getreg(RDLEN8),
2801     igb_getreg(RDLEN9),
2802     igb_getreg(RDLEN10),
2803     igb_getreg(RDLEN11),
2804     igb_getreg(RDLEN12),
2805     igb_getreg(RDLEN13),
2806     igb_getreg(RDLEN14),
2807     igb_getreg(RDLEN15),
2808     igb_getreg(SRRCTL0),
2809     igb_getreg(SRRCTL1),
2810     igb_getreg(SRRCTL2),
2811     igb_getreg(SRRCTL3),
2812     igb_getreg(SRRCTL4),
2813     igb_getreg(SRRCTL5),
2814     igb_getreg(SRRCTL6),
2815     igb_getreg(SRRCTL7),
2816     igb_getreg(SRRCTL8),
2817     igb_getreg(SRRCTL9),
2818     igb_getreg(SRRCTL10),
2819     igb_getreg(SRRCTL11),
2820     igb_getreg(SRRCTL12),
2821     igb_getreg(SRRCTL13),
2822     igb_getreg(SRRCTL14),
2823     igb_getreg(SRRCTL15),
2824     igb_getreg(LATECOL),
2825     igb_getreg(XONTXC),
2826     igb_getreg(TDFH),
2827     igb_getreg(TDFT),
2828     igb_getreg(TDFHS),
2829     igb_getreg(TDFTS),
2830     igb_getreg(TDFPC),
2831     igb_getreg(WUS),
2832     igb_getreg(RDFH),
2833     igb_getreg(RDFT),
2834     igb_getreg(RDFHS),
2835     igb_getreg(RDFTS),
2836     igb_getreg(RDFPC),
2837     igb_getreg(GORCL),
2838     igb_getreg(MGTPRC),
2839     igb_getreg(EERD),
2840     igb_getreg(EIAC),
2841     igb_getreg(MANC2H),
2842     igb_getreg(RXCSUM),
2843     igb_getreg(GSCL_3),
2844     igb_getreg(GSCN_2),
2845     igb_getreg(FCAH),
2846     igb_getreg(FCRTH),
2847     igb_getreg(FLOP),
2848     igb_getreg(RXSTMPH),
2849     igb_getreg(TXSTMPL),
2850     igb_getreg(TIMADJL),
2851     igb_getreg(RDH0),
2852     igb_getreg(RDH1),
2853     igb_getreg(RDH2),
2854     igb_getreg(RDH3),
2855     igb_getreg(RDH4),
2856     igb_getreg(RDH5),
2857     igb_getreg(RDH6),
2858     igb_getreg(RDH7),
2859     igb_getreg(RDH8),
2860     igb_getreg(RDH9),
2861     igb_getreg(RDH10),
2862     igb_getreg(RDH11),
2863     igb_getreg(RDH12),
2864     igb_getreg(RDH13),
2865     igb_getreg(RDH14),
2866     igb_getreg(RDH15),
2867     igb_getreg(TDT0),
2868     igb_getreg(TDT1),
2869     igb_getreg(TDT2),
2870     igb_getreg(TDT3),
2871     igb_getreg(TDT4),
2872     igb_getreg(TDT5),
2873     igb_getreg(TDT6),
2874     igb_getreg(TDT7),
2875     igb_getreg(TDT8),
2876     igb_getreg(TDT9),
2877     igb_getreg(TDT10),
2878     igb_getreg(TDT11),
2879     igb_getreg(TDT12),
2880     igb_getreg(TDT13),
2881     igb_getreg(TDT14),
2882     igb_getreg(TDT15),
2883     igb_getreg(TNCRS),
2884     igb_getreg(RJC),
2885     igb_getreg(IAM),
2886     igb_getreg(GSCL_2),
2887     igb_getreg(TIPG),
2888     igb_getreg(FLMNGCTL),
2889     igb_getreg(FLMNGCNT),
2890     igb_getreg(TSYNCTXCTL),
2891     igb_getreg(EEMNGDATA),
2892     igb_getreg(CTRL_EXT),
2893     igb_getreg(SYSTIMH),
2894     igb_getreg(EEMNGCTL),
2895     igb_getreg(FLMNGDATA),
2896     igb_getreg(TSYNCRXCTL),
2897     igb_getreg(LEDCTL),
2898     igb_getreg(TCTL),
2899     igb_getreg(TCTL_EXT),
2900     igb_getreg(DTXCTL),
2901     igb_getreg(RXPBS),
2902     igb_getreg(TDH0),
2903     igb_getreg(TDH1),
2904     igb_getreg(TDH2),
2905     igb_getreg(TDH3),
2906     igb_getreg(TDH4),
2907     igb_getreg(TDH5),
2908     igb_getreg(TDH6),
2909     igb_getreg(TDH7),
2910     igb_getreg(TDH8),
2911     igb_getreg(TDH9),
2912     igb_getreg(TDH10),
2913     igb_getreg(TDH11),
2914     igb_getreg(TDH12),
2915     igb_getreg(TDH13),
2916     igb_getreg(TDH14),
2917     igb_getreg(TDH15),
2918     igb_getreg(ECOL),
2919     igb_getreg(DC),
2920     igb_getreg(RLEC),
2921     igb_getreg(XOFFTXC),
2922     igb_getreg(RFC),
2923     igb_getreg(RNBC),
2924     igb_getreg(MGTPTC),
2925     igb_getreg(TIMINCA),
2926     igb_getreg(FACTPS),
2927     igb_getreg(GSCL_1),
2928     igb_getreg(GSCN_0),
2929     igb_getreg(PBACLR),
2930     igb_getreg(FCTTV),
2931     igb_getreg(RXSATRL),
2932     igb_getreg(TORL),
2933     igb_getreg(TDLEN0),
2934     igb_getreg(TDLEN1),
2935     igb_getreg(TDLEN2),
2936     igb_getreg(TDLEN3),
2937     igb_getreg(TDLEN4),
2938     igb_getreg(TDLEN5),
2939     igb_getreg(TDLEN6),
2940     igb_getreg(TDLEN7),
2941     igb_getreg(TDLEN8),
2942     igb_getreg(TDLEN9),
2943     igb_getreg(TDLEN10),
2944     igb_getreg(TDLEN11),
2945     igb_getreg(TDLEN12),
2946     igb_getreg(TDLEN13),
2947     igb_getreg(TDLEN14),
2948     igb_getreg(TDLEN15),
2949     igb_getreg(MCC),
2950     igb_getreg(WUC),
2951     igb_getreg(EECD),
2952     igb_getreg(FCRTV),
2953     igb_getreg(TXDCTL0),
2954     igb_getreg(TXDCTL1),
2955     igb_getreg(TXDCTL2),
2956     igb_getreg(TXDCTL3),
2957     igb_getreg(TXDCTL4),
2958     igb_getreg(TXDCTL5),
2959     igb_getreg(TXDCTL6),
2960     igb_getreg(TXDCTL7),
2961     igb_getreg(TXDCTL8),
2962     igb_getreg(TXDCTL9),
2963     igb_getreg(TXDCTL10),
2964     igb_getreg(TXDCTL11),
2965     igb_getreg(TXDCTL12),
2966     igb_getreg(TXDCTL13),
2967     igb_getreg(TXDCTL14),
2968     igb_getreg(TXDCTL15),
2969     igb_getreg(TXCTL0),
2970     igb_getreg(TXCTL1),
2971     igb_getreg(TXCTL2),
2972     igb_getreg(TXCTL3),
2973     igb_getreg(TXCTL4),
2974     igb_getreg(TXCTL5),
2975     igb_getreg(TXCTL6),
2976     igb_getreg(TXCTL7),
2977     igb_getreg(TXCTL8),
2978     igb_getreg(TXCTL9),
2979     igb_getreg(TXCTL10),
2980     igb_getreg(TXCTL11),
2981     igb_getreg(TXCTL12),
2982     igb_getreg(TXCTL13),
2983     igb_getreg(TXCTL14),
2984     igb_getreg(TXCTL15),
2985     igb_getreg(TDWBAL0),
2986     igb_getreg(TDWBAL1),
2987     igb_getreg(TDWBAL2),
2988     igb_getreg(TDWBAL3),
2989     igb_getreg(TDWBAL4),
2990     igb_getreg(TDWBAL5),
2991     igb_getreg(TDWBAL6),
2992     igb_getreg(TDWBAL7),
2993     igb_getreg(TDWBAL8),
2994     igb_getreg(TDWBAL9),
2995     igb_getreg(TDWBAL10),
2996     igb_getreg(TDWBAL11),
2997     igb_getreg(TDWBAL12),
2998     igb_getreg(TDWBAL13),
2999     igb_getreg(TDWBAL14),
3000     igb_getreg(TDWBAL15),
3001     igb_getreg(TDWBAH0),
3002     igb_getreg(TDWBAH1),
3003     igb_getreg(TDWBAH2),
3004     igb_getreg(TDWBAH3),
3005     igb_getreg(TDWBAH4),
3006     igb_getreg(TDWBAH5),
3007     igb_getreg(TDWBAH6),
3008     igb_getreg(TDWBAH7),
3009     igb_getreg(TDWBAH8),
3010     igb_getreg(TDWBAH9),
3011     igb_getreg(TDWBAH10),
3012     igb_getreg(TDWBAH11),
3013     igb_getreg(TDWBAH12),
3014     igb_getreg(TDWBAH13),
3015     igb_getreg(TDWBAH14),
3016     igb_getreg(TDWBAH15),
3017     igb_getreg(PVTCTRL0),
3018     igb_getreg(PVTCTRL1),
3019     igb_getreg(PVTCTRL2),
3020     igb_getreg(PVTCTRL3),
3021     igb_getreg(PVTCTRL4),
3022     igb_getreg(PVTCTRL5),
3023     igb_getreg(PVTCTRL6),
3024     igb_getreg(PVTCTRL7),
3025     igb_getreg(PVTEIMS0),
3026     igb_getreg(PVTEIMS1),
3027     igb_getreg(PVTEIMS2),
3028     igb_getreg(PVTEIMS3),
3029     igb_getreg(PVTEIMS4),
3030     igb_getreg(PVTEIMS5),
3031     igb_getreg(PVTEIMS6),
3032     igb_getreg(PVTEIMS7),
3033     igb_getreg(PVTEIAC0),
3034     igb_getreg(PVTEIAC1),
3035     igb_getreg(PVTEIAC2),
3036     igb_getreg(PVTEIAC3),
3037     igb_getreg(PVTEIAC4),
3038     igb_getreg(PVTEIAC5),
3039     igb_getreg(PVTEIAC6),
3040     igb_getreg(PVTEIAC7),
3041     igb_getreg(PVTEIAM0),
3042     igb_getreg(PVTEIAM1),
3043     igb_getreg(PVTEIAM2),
3044     igb_getreg(PVTEIAM3),
3045     igb_getreg(PVTEIAM4),
3046     igb_getreg(PVTEIAM5),
3047     igb_getreg(PVTEIAM6),
3048     igb_getreg(PVTEIAM7),
3049     igb_getreg(PVFGPRC0),
3050     igb_getreg(PVFGPRC1),
3051     igb_getreg(PVFGPRC2),
3052     igb_getreg(PVFGPRC3),
3053     igb_getreg(PVFGPRC4),
3054     igb_getreg(PVFGPRC5),
3055     igb_getreg(PVFGPRC6),
3056     igb_getreg(PVFGPRC7),
3057     igb_getreg(PVFGPTC0),
3058     igb_getreg(PVFGPTC1),
3059     igb_getreg(PVFGPTC2),
3060     igb_getreg(PVFGPTC3),
3061     igb_getreg(PVFGPTC4),
3062     igb_getreg(PVFGPTC5),
3063     igb_getreg(PVFGPTC6),
3064     igb_getreg(PVFGPTC7),
3065     igb_getreg(PVFGORC0),
3066     igb_getreg(PVFGORC1),
3067     igb_getreg(PVFGORC2),
3068     igb_getreg(PVFGORC3),
3069     igb_getreg(PVFGORC4),
3070     igb_getreg(PVFGORC5),
3071     igb_getreg(PVFGORC6),
3072     igb_getreg(PVFGORC7),
3073     igb_getreg(PVFGOTC0),
3074     igb_getreg(PVFGOTC1),
3075     igb_getreg(PVFGOTC2),
3076     igb_getreg(PVFGOTC3),
3077     igb_getreg(PVFGOTC4),
3078     igb_getreg(PVFGOTC5),
3079     igb_getreg(PVFGOTC6),
3080     igb_getreg(PVFGOTC7),
3081     igb_getreg(PVFMPRC0),
3082     igb_getreg(PVFMPRC1),
3083     igb_getreg(PVFMPRC2),
3084     igb_getreg(PVFMPRC3),
3085     igb_getreg(PVFMPRC4),
3086     igb_getreg(PVFMPRC5),
3087     igb_getreg(PVFMPRC6),
3088     igb_getreg(PVFMPRC7),
3089     igb_getreg(PVFGPRLBC0),
3090     igb_getreg(PVFGPRLBC1),
3091     igb_getreg(PVFGPRLBC2),
3092     igb_getreg(PVFGPRLBC3),
3093     igb_getreg(PVFGPRLBC4),
3094     igb_getreg(PVFGPRLBC5),
3095     igb_getreg(PVFGPRLBC6),
3096     igb_getreg(PVFGPRLBC7),
3097     igb_getreg(PVFGPTLBC0),
3098     igb_getreg(PVFGPTLBC1),
3099     igb_getreg(PVFGPTLBC2),
3100     igb_getreg(PVFGPTLBC3),
3101     igb_getreg(PVFGPTLBC4),
3102     igb_getreg(PVFGPTLBC5),
3103     igb_getreg(PVFGPTLBC6),
3104     igb_getreg(PVFGPTLBC7),
3105     igb_getreg(PVFGORLBC0),
3106     igb_getreg(PVFGORLBC1),
3107     igb_getreg(PVFGORLBC2),
3108     igb_getreg(PVFGORLBC3),
3109     igb_getreg(PVFGORLBC4),
3110     igb_getreg(PVFGORLBC5),
3111     igb_getreg(PVFGORLBC6),
3112     igb_getreg(PVFGORLBC7),
3113     igb_getreg(PVFGOTLBC0),
3114     igb_getreg(PVFGOTLBC1),
3115     igb_getreg(PVFGOTLBC2),
3116     igb_getreg(PVFGOTLBC3),
3117     igb_getreg(PVFGOTLBC4),
3118     igb_getreg(PVFGOTLBC5),
3119     igb_getreg(PVFGOTLBC6),
3120     igb_getreg(PVFGOTLBC7),
3121     igb_getreg(RCTL),
3122     igb_getreg(MDIC),
3123     igb_getreg(FCRUC),
3124     igb_getreg(VET),
3125     igb_getreg(RDBAL0),
3126     igb_getreg(RDBAL1),
3127     igb_getreg(RDBAL2),
3128     igb_getreg(RDBAL3),
3129     igb_getreg(RDBAL4),
3130     igb_getreg(RDBAL5),
3131     igb_getreg(RDBAL6),
3132     igb_getreg(RDBAL7),
3133     igb_getreg(RDBAL8),
3134     igb_getreg(RDBAL9),
3135     igb_getreg(RDBAL10),
3136     igb_getreg(RDBAL11),
3137     igb_getreg(RDBAL12),
3138     igb_getreg(RDBAL13),
3139     igb_getreg(RDBAL14),
3140     igb_getreg(RDBAL15),
3141     igb_getreg(TDBAH0),
3142     igb_getreg(TDBAH1),
3143     igb_getreg(TDBAH2),
3144     igb_getreg(TDBAH3),
3145     igb_getreg(TDBAH4),
3146     igb_getreg(TDBAH5),
3147     igb_getreg(TDBAH6),
3148     igb_getreg(TDBAH7),
3149     igb_getreg(TDBAH8),
3150     igb_getreg(TDBAH9),
3151     igb_getreg(TDBAH10),
3152     igb_getreg(TDBAH11),
3153     igb_getreg(TDBAH12),
3154     igb_getreg(TDBAH13),
3155     igb_getreg(TDBAH14),
3156     igb_getreg(TDBAH15),
3157     igb_getreg(SCC),
3158     igb_getreg(COLC),
3159     igb_getreg(XOFFRXC),
3160     igb_getreg(IPAV),
3161     igb_getreg(GOTCL),
3162     igb_getreg(MGTPDC),
3163     igb_getreg(GCR),
3164     igb_getreg(MFVAL),
3165     igb_getreg(FUNCTAG),
3166     igb_getreg(GSCL_4),
3167     igb_getreg(GSCN_3),
3168     igb_getreg(MRQC),
3169     igb_getreg(FCT),
3170     igb_getreg(FLA),
3171     igb_getreg(RXDCTL0),
3172     igb_getreg(RXDCTL1),
3173     igb_getreg(RXDCTL2),
3174     igb_getreg(RXDCTL3),
3175     igb_getreg(RXDCTL4),
3176     igb_getreg(RXDCTL5),
3177     igb_getreg(RXDCTL6),
3178     igb_getreg(RXDCTL7),
3179     igb_getreg(RXDCTL8),
3180     igb_getreg(RXDCTL9),
3181     igb_getreg(RXDCTL10),
3182     igb_getreg(RXDCTL11),
3183     igb_getreg(RXDCTL12),
3184     igb_getreg(RXDCTL13),
3185     igb_getreg(RXDCTL14),
3186     igb_getreg(RXDCTL15),
3187     igb_getreg(RXSTMPL),
3188     igb_getreg(TIMADJH),
3189     igb_getreg(FCRTL),
3190     igb_getreg(XONRXC),
3191     igb_getreg(RFCTL),
3192     igb_getreg(GSCN_1),
3193     igb_getreg(FCAL),
3194     igb_getreg(GPIE),
3195     igb_getreg(TXPBS),
3196     igb_getreg(RLPML),
3197 
3198     [TOTH]    = igb_mac_read_clr8,
3199     [GOTCH]   = igb_mac_read_clr8,
3200     [PRC64]   = igb_mac_read_clr4,
3201     [PRC255]  = igb_mac_read_clr4,
3202     [PRC1023] = igb_mac_read_clr4,
3203     [PTC64]   = igb_mac_read_clr4,
3204     [PTC255]  = igb_mac_read_clr4,
3205     [PTC1023] = igb_mac_read_clr4,
3206     [GPRC]    = igb_mac_read_clr4,
3207     [TPT]     = igb_mac_read_clr4,
3208     [RUC]     = igb_mac_read_clr4,
3209     [BPRC]    = igb_mac_read_clr4,
3210     [MPTC]    = igb_mac_read_clr4,
3211     [IAC]     = igb_mac_read_clr4,
3212     [ICR]     = igb_mac_icr_read,
3213     [STATUS]  = igb_get_status,
3214     [ICS]     = igb_mac_ics_read,
3215     /*
3216      * 8.8.10: Reading the IMC register returns the value of the IMS register.
3217      */
3218     [IMC]     = igb_mac_ims_read,
3219     [TORH]    = igb_mac_read_clr8,
3220     [GORCH]   = igb_mac_read_clr8,
3221     [PRC127]  = igb_mac_read_clr4,
3222     [PRC511]  = igb_mac_read_clr4,
3223     [PRC1522] = igb_mac_read_clr4,
3224     [PTC127]  = igb_mac_read_clr4,
3225     [PTC511]  = igb_mac_read_clr4,
3226     [PTC1522] = igb_mac_read_clr4,
3227     [GPTC]    = igb_mac_read_clr4,
3228     [TPR]     = igb_mac_read_clr4,
3229     [ROC]     = igb_mac_read_clr4,
3230     [MPRC]    = igb_mac_read_clr4,
3231     [BPTC]    = igb_mac_read_clr4,
3232     [TSCTC]   = igb_mac_read_clr4,
3233     [CTRL]    = igb_get_ctrl,
3234     [SWSM]    = igb_mac_swsm_read,
3235     [IMS]     = igb_mac_ims_read,
3236     [SYSTIML] = igb_get_systiml,
3237     [RXSATRH] = igb_get_rxsatrh,
3238     [TXSTMPH] = igb_get_txstmph,
3239 
3240     [CRCERRS ... MPC]      = igb_mac_readreg,
3241     [IP6AT ... IP6AT + 3]  = igb_mac_readreg,
3242     [IP4AT ... IP4AT + 6]  = igb_mac_readreg,
3243     [RA ... RA + 31]       = igb_mac_readreg,
3244     [RA2 ... RA2 + 31]     = igb_mac_readreg,
3245     [WUPM ... WUPM + 31]   = igb_mac_readreg,
3246     [MTA ... MTA + E1000_MC_TBL_SIZE - 1]    = igb_mac_readreg,
3247     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = igb_mac_readreg,
3248     [FFMT ... FFMT + 254]  = igb_mac_readreg,
3249     [MDEF ... MDEF + 7]    = igb_mac_readreg,
3250     [FTFT ... FTFT + 254]  = igb_mac_readreg,
3251     [RETA ... RETA + 31]   = igb_mac_readreg,
3252     [RSSRK ... RSSRK + 9]  = igb_mac_readreg,
3253     [MAVTV0 ... MAVTV3]    = igb_mac_readreg,
3254     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read,
3255     [PVTEICR0] = igb_mac_read_clr4,
3256     [PVTEICR1] = igb_mac_read_clr4,
3257     [PVTEICR2] = igb_mac_read_clr4,
3258     [PVTEICR3] = igb_mac_read_clr4,
3259     [PVTEICR4] = igb_mac_read_clr4,
3260     [PVTEICR5] = igb_mac_read_clr4,
3261     [PVTEICR6] = igb_mac_read_clr4,
3262     [PVTEICR7] = igb_mac_read_clr4,
3263 
3264     /* IGB specific: */
3265     [FWSM]       = igb_mac_readreg,
3266     [SW_FW_SYNC] = igb_mac_readreg,
3267     [HTCBDPC]    = igb_mac_read_clr4,
3268     [EICR]       = igb_mac_read_clr4,
3269     [EIMS]       = igb_mac_readreg,
3270     [EIAM]       = igb_mac_readreg,
3271     [IVAR0 ... IVAR0 + 7] = igb_mac_readreg,
3272     igb_getreg(IVAR_MISC),
3273     igb_getreg(VT_CTL),
3274     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg,
3275     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read,
3276     igb_getreg(MBVFICR),
3277     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg,
3278     igb_getreg(MBVFIMR),
3279     igb_getreg(VFLRE),
3280     igb_getreg(VFRE),
3281     igb_getreg(VFTE),
3282     igb_getreg(QDE),
3283     igb_getreg(DTXSWC),
3284     igb_getreg(RPLOLR),
3285     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg,
3286     [VMVIR0 ... VMVIR7] = igb_mac_readreg,
3287     [VMOLR0 ... VMOLR7] = igb_mac_readreg,
3288     [WVBR] = igb_mac_read_clr4,
3289     [RQDPC0] = igb_mac_read_clr4,
3290     [RQDPC1] = igb_mac_read_clr4,
3291     [RQDPC2] = igb_mac_read_clr4,
3292     [RQDPC3] = igb_mac_read_clr4,
3293     [RQDPC4] = igb_mac_read_clr4,
3294     [RQDPC5] = igb_mac_read_clr4,
3295     [RQDPC6] = igb_mac_read_clr4,
3296     [RQDPC7] = igb_mac_read_clr4,
3297     [RQDPC8] = igb_mac_read_clr4,
3298     [RQDPC9] = igb_mac_read_clr4,
3299     [RQDPC10] = igb_mac_read_clr4,
3300     [RQDPC11] = igb_mac_read_clr4,
3301     [RQDPC12] = igb_mac_read_clr4,
3302     [RQDPC13] = igb_mac_read_clr4,
3303     [RQDPC14] = igb_mac_read_clr4,
3304     [RQDPC15] = igb_mac_read_clr4,
3305     [VTIVAR ... VTIVAR + 7] = igb_mac_readreg,
3306     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg,
3307 };
3308 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) };
3309 
3310 #define igb_putreg(x)    [x] = igb_mac_writereg
3311 typedef void (*writeops)(IGBCore *, int, uint32_t);
3312 static const writeops igb_macreg_writeops[] = {
3313     igb_putreg(SWSM),
3314     igb_putreg(WUFC),
3315     igb_putreg(RDBAH0),
3316     igb_putreg(RDBAH1),
3317     igb_putreg(RDBAH2),
3318     igb_putreg(RDBAH3),
3319     igb_putreg(RDBAH4),
3320     igb_putreg(RDBAH5),
3321     igb_putreg(RDBAH6),
3322     igb_putreg(RDBAH7),
3323     igb_putreg(RDBAH8),
3324     igb_putreg(RDBAH9),
3325     igb_putreg(RDBAH10),
3326     igb_putreg(RDBAH11),
3327     igb_putreg(RDBAH12),
3328     igb_putreg(RDBAH13),
3329     igb_putreg(RDBAH14),
3330     igb_putreg(RDBAH15),
3331     igb_putreg(SRRCTL0),
3332     igb_putreg(SRRCTL1),
3333     igb_putreg(SRRCTL2),
3334     igb_putreg(SRRCTL3),
3335     igb_putreg(SRRCTL4),
3336     igb_putreg(SRRCTL5),
3337     igb_putreg(SRRCTL6),
3338     igb_putreg(SRRCTL7),
3339     igb_putreg(SRRCTL8),
3340     igb_putreg(SRRCTL9),
3341     igb_putreg(SRRCTL10),
3342     igb_putreg(SRRCTL11),
3343     igb_putreg(SRRCTL12),
3344     igb_putreg(SRRCTL13),
3345     igb_putreg(SRRCTL14),
3346     igb_putreg(SRRCTL15),
3347     igb_putreg(RXDCTL0),
3348     igb_putreg(RXDCTL1),
3349     igb_putreg(RXDCTL2),
3350     igb_putreg(RXDCTL3),
3351     igb_putreg(RXDCTL4),
3352     igb_putreg(RXDCTL5),
3353     igb_putreg(RXDCTL6),
3354     igb_putreg(RXDCTL7),
3355     igb_putreg(RXDCTL8),
3356     igb_putreg(RXDCTL9),
3357     igb_putreg(RXDCTL10),
3358     igb_putreg(RXDCTL11),
3359     igb_putreg(RXDCTL12),
3360     igb_putreg(RXDCTL13),
3361     igb_putreg(RXDCTL14),
3362     igb_putreg(RXDCTL15),
3363     igb_putreg(LEDCTL),
3364     igb_putreg(TCTL),
3365     igb_putreg(TCTL_EXT),
3366     igb_putreg(DTXCTL),
3367     igb_putreg(RXPBS),
3368     igb_putreg(RQDPC0),
3369     igb_putreg(FCAL),
3370     igb_putreg(FCRUC),
3371     igb_putreg(WUC),
3372     igb_putreg(WUS),
3373     igb_putreg(IPAV),
3374     igb_putreg(TDBAH0),
3375     igb_putreg(TDBAH1),
3376     igb_putreg(TDBAH2),
3377     igb_putreg(TDBAH3),
3378     igb_putreg(TDBAH4),
3379     igb_putreg(TDBAH5),
3380     igb_putreg(TDBAH6),
3381     igb_putreg(TDBAH7),
3382     igb_putreg(TDBAH8),
3383     igb_putreg(TDBAH9),
3384     igb_putreg(TDBAH10),
3385     igb_putreg(TDBAH11),
3386     igb_putreg(TDBAH12),
3387     igb_putreg(TDBAH13),
3388     igb_putreg(TDBAH14),
3389     igb_putreg(TDBAH15),
3390     igb_putreg(IAM),
3391     igb_putreg(MANC),
3392     igb_putreg(MANC2H),
3393     igb_putreg(MFVAL),
3394     igb_putreg(FACTPS),
3395     igb_putreg(FUNCTAG),
3396     igb_putreg(GSCL_1),
3397     igb_putreg(GSCL_2),
3398     igb_putreg(GSCL_3),
3399     igb_putreg(GSCL_4),
3400     igb_putreg(GSCN_0),
3401     igb_putreg(GSCN_1),
3402     igb_putreg(GSCN_2),
3403     igb_putreg(GSCN_3),
3404     igb_putreg(MRQC),
3405     igb_putreg(FLOP),
3406     igb_putreg(FLA),
3407     igb_putreg(TXDCTL0),
3408     igb_putreg(TXDCTL1),
3409     igb_putreg(TXDCTL2),
3410     igb_putreg(TXDCTL3),
3411     igb_putreg(TXDCTL4),
3412     igb_putreg(TXDCTL5),
3413     igb_putreg(TXDCTL6),
3414     igb_putreg(TXDCTL7),
3415     igb_putreg(TXDCTL8),
3416     igb_putreg(TXDCTL9),
3417     igb_putreg(TXDCTL10),
3418     igb_putreg(TXDCTL11),
3419     igb_putreg(TXDCTL12),
3420     igb_putreg(TXDCTL13),
3421     igb_putreg(TXDCTL14),
3422     igb_putreg(TXDCTL15),
3423     igb_putreg(TXCTL0),
3424     igb_putreg(TXCTL1),
3425     igb_putreg(TXCTL2),
3426     igb_putreg(TXCTL3),
3427     igb_putreg(TXCTL4),
3428     igb_putreg(TXCTL5),
3429     igb_putreg(TXCTL6),
3430     igb_putreg(TXCTL7),
3431     igb_putreg(TXCTL8),
3432     igb_putreg(TXCTL9),
3433     igb_putreg(TXCTL10),
3434     igb_putreg(TXCTL11),
3435     igb_putreg(TXCTL12),
3436     igb_putreg(TXCTL13),
3437     igb_putreg(TXCTL14),
3438     igb_putreg(TXCTL15),
3439     igb_putreg(TDWBAL0),
3440     igb_putreg(TDWBAL1),
3441     igb_putreg(TDWBAL2),
3442     igb_putreg(TDWBAL3),
3443     igb_putreg(TDWBAL4),
3444     igb_putreg(TDWBAL5),
3445     igb_putreg(TDWBAL6),
3446     igb_putreg(TDWBAL7),
3447     igb_putreg(TDWBAL8),
3448     igb_putreg(TDWBAL9),
3449     igb_putreg(TDWBAL10),
3450     igb_putreg(TDWBAL11),
3451     igb_putreg(TDWBAL12),
3452     igb_putreg(TDWBAL13),
3453     igb_putreg(TDWBAL14),
3454     igb_putreg(TDWBAL15),
3455     igb_putreg(TDWBAH0),
3456     igb_putreg(TDWBAH1),
3457     igb_putreg(TDWBAH2),
3458     igb_putreg(TDWBAH3),
3459     igb_putreg(TDWBAH4),
3460     igb_putreg(TDWBAH5),
3461     igb_putreg(TDWBAH6),
3462     igb_putreg(TDWBAH7),
3463     igb_putreg(TDWBAH8),
3464     igb_putreg(TDWBAH9),
3465     igb_putreg(TDWBAH10),
3466     igb_putreg(TDWBAH11),
3467     igb_putreg(TDWBAH12),
3468     igb_putreg(TDWBAH13),
3469     igb_putreg(TDWBAH14),
3470     igb_putreg(TDWBAH15),
3471     igb_putreg(TIPG),
3472     igb_putreg(RXSTMPH),
3473     igb_putreg(RXSTMPL),
3474     igb_putreg(RXSATRL),
3475     igb_putreg(RXSATRH),
3476     igb_putreg(TXSTMPL),
3477     igb_putreg(TXSTMPH),
3478     igb_putreg(SYSTIML),
3479     igb_putreg(SYSTIMH),
3480     igb_putreg(TIMADJL),
3481     igb_putreg(TSYNCRXCTL),
3482     igb_putreg(TSYNCTXCTL),
3483     igb_putreg(EEMNGCTL),
3484     igb_putreg(GPIE),
3485     igb_putreg(TXPBS),
3486     igb_putreg(RLPML),
3487     igb_putreg(VET),
3488 
3489     [TDH0]     = igb_set_16bit,
3490     [TDH1]     = igb_set_16bit,
3491     [TDH2]     = igb_set_16bit,
3492     [TDH3]     = igb_set_16bit,
3493     [TDH4]     = igb_set_16bit,
3494     [TDH5]     = igb_set_16bit,
3495     [TDH6]     = igb_set_16bit,
3496     [TDH7]     = igb_set_16bit,
3497     [TDH8]     = igb_set_16bit,
3498     [TDH9]     = igb_set_16bit,
3499     [TDH10]    = igb_set_16bit,
3500     [TDH11]    = igb_set_16bit,
3501     [TDH12]    = igb_set_16bit,
3502     [TDH13]    = igb_set_16bit,
3503     [TDH14]    = igb_set_16bit,
3504     [TDH15]    = igb_set_16bit,
3505     [TDT0]     = igb_set_tdt,
3506     [TDT1]     = igb_set_tdt,
3507     [TDT2]     = igb_set_tdt,
3508     [TDT3]     = igb_set_tdt,
3509     [TDT4]     = igb_set_tdt,
3510     [TDT5]     = igb_set_tdt,
3511     [TDT6]     = igb_set_tdt,
3512     [TDT7]     = igb_set_tdt,
3513     [TDT8]     = igb_set_tdt,
3514     [TDT9]     = igb_set_tdt,
3515     [TDT10]    = igb_set_tdt,
3516     [TDT11]    = igb_set_tdt,
3517     [TDT12]    = igb_set_tdt,
3518     [TDT13]    = igb_set_tdt,
3519     [TDT14]    = igb_set_tdt,
3520     [TDT15]    = igb_set_tdt,
3521     [MDIC]     = igb_set_mdic,
3522     [ICS]      = igb_set_ics,
3523     [RDH0]     = igb_set_16bit,
3524     [RDH1]     = igb_set_16bit,
3525     [RDH2]     = igb_set_16bit,
3526     [RDH3]     = igb_set_16bit,
3527     [RDH4]     = igb_set_16bit,
3528     [RDH5]     = igb_set_16bit,
3529     [RDH6]     = igb_set_16bit,
3530     [RDH7]     = igb_set_16bit,
3531     [RDH8]     = igb_set_16bit,
3532     [RDH9]     = igb_set_16bit,
3533     [RDH10]    = igb_set_16bit,
3534     [RDH11]    = igb_set_16bit,
3535     [RDH12]    = igb_set_16bit,
3536     [RDH13]    = igb_set_16bit,
3537     [RDH14]    = igb_set_16bit,
3538     [RDH15]    = igb_set_16bit,
3539     [RDT0]     = igb_set_rdt,
3540     [RDT1]     = igb_set_rdt,
3541     [RDT2]     = igb_set_rdt,
3542     [RDT3]     = igb_set_rdt,
3543     [RDT4]     = igb_set_rdt,
3544     [RDT5]     = igb_set_rdt,
3545     [RDT6]     = igb_set_rdt,
3546     [RDT7]     = igb_set_rdt,
3547     [RDT8]     = igb_set_rdt,
3548     [RDT9]     = igb_set_rdt,
3549     [RDT10]    = igb_set_rdt,
3550     [RDT11]    = igb_set_rdt,
3551     [RDT12]    = igb_set_rdt,
3552     [RDT13]    = igb_set_rdt,
3553     [RDT14]    = igb_set_rdt,
3554     [RDT15]    = igb_set_rdt,
3555     [IMC]      = igb_set_imc,
3556     [IMS]      = igb_set_ims,
3557     [ICR]      = igb_set_icr,
3558     [EECD]     = igb_set_eecd,
3559     [RCTL]     = igb_set_rx_control,
3560     [CTRL]     = igb_set_ctrl,
3561     [EERD]     = igb_set_eerd,
3562     [TDFH]     = igb_set_13bit,
3563     [TDFT]     = igb_set_13bit,
3564     [TDFHS]    = igb_set_13bit,
3565     [TDFTS]    = igb_set_13bit,
3566     [TDFPC]    = igb_set_13bit,
3567     [RDFH]     = igb_set_13bit,
3568     [RDFT]     = igb_set_13bit,
3569     [RDFHS]    = igb_set_13bit,
3570     [RDFTS]    = igb_set_13bit,
3571     [RDFPC]    = igb_set_13bit,
3572     [GCR]      = igb_set_gcr,
3573     [RXCSUM]   = igb_set_rxcsum,
3574     [TDLEN0]   = igb_set_dlen,
3575     [TDLEN1]   = igb_set_dlen,
3576     [TDLEN2]   = igb_set_dlen,
3577     [TDLEN3]   = igb_set_dlen,
3578     [TDLEN4]   = igb_set_dlen,
3579     [TDLEN5]   = igb_set_dlen,
3580     [TDLEN6]   = igb_set_dlen,
3581     [TDLEN7]   = igb_set_dlen,
3582     [TDLEN8]   = igb_set_dlen,
3583     [TDLEN9]   = igb_set_dlen,
3584     [TDLEN10]  = igb_set_dlen,
3585     [TDLEN11]  = igb_set_dlen,
3586     [TDLEN12]  = igb_set_dlen,
3587     [TDLEN13]  = igb_set_dlen,
3588     [TDLEN14]  = igb_set_dlen,
3589     [TDLEN15]  = igb_set_dlen,
3590     [RDLEN0]   = igb_set_dlen,
3591     [RDLEN1]   = igb_set_dlen,
3592     [RDLEN2]   = igb_set_dlen,
3593     [RDLEN3]   = igb_set_dlen,
3594     [RDLEN4]   = igb_set_dlen,
3595     [RDLEN5]   = igb_set_dlen,
3596     [RDLEN6]   = igb_set_dlen,
3597     [RDLEN7]   = igb_set_dlen,
3598     [RDLEN8]   = igb_set_dlen,
3599     [RDLEN9]   = igb_set_dlen,
3600     [RDLEN10]  = igb_set_dlen,
3601     [RDLEN11]  = igb_set_dlen,
3602     [RDLEN12]  = igb_set_dlen,
3603     [RDLEN13]  = igb_set_dlen,
3604     [RDLEN14]  = igb_set_dlen,
3605     [RDLEN15]  = igb_set_dlen,
3606     [TDBAL0]   = igb_set_dbal,
3607     [TDBAL1]   = igb_set_dbal,
3608     [TDBAL2]   = igb_set_dbal,
3609     [TDBAL3]   = igb_set_dbal,
3610     [TDBAL4]   = igb_set_dbal,
3611     [TDBAL5]   = igb_set_dbal,
3612     [TDBAL6]   = igb_set_dbal,
3613     [TDBAL7]   = igb_set_dbal,
3614     [TDBAL8]   = igb_set_dbal,
3615     [TDBAL9]   = igb_set_dbal,
3616     [TDBAL10]  = igb_set_dbal,
3617     [TDBAL11]  = igb_set_dbal,
3618     [TDBAL12]  = igb_set_dbal,
3619     [TDBAL13]  = igb_set_dbal,
3620     [TDBAL14]  = igb_set_dbal,
3621     [TDBAL15]  = igb_set_dbal,
3622     [RDBAL0]   = igb_set_dbal,
3623     [RDBAL1]   = igb_set_dbal,
3624     [RDBAL2]   = igb_set_dbal,
3625     [RDBAL3]   = igb_set_dbal,
3626     [RDBAL4]   = igb_set_dbal,
3627     [RDBAL5]   = igb_set_dbal,
3628     [RDBAL6]   = igb_set_dbal,
3629     [RDBAL7]   = igb_set_dbal,
3630     [RDBAL8]   = igb_set_dbal,
3631     [RDBAL9]   = igb_set_dbal,
3632     [RDBAL10]  = igb_set_dbal,
3633     [RDBAL11]  = igb_set_dbal,
3634     [RDBAL12]  = igb_set_dbal,
3635     [RDBAL13]  = igb_set_dbal,
3636     [RDBAL14]  = igb_set_dbal,
3637     [RDBAL15]  = igb_set_dbal,
3638     [STATUS]   = igb_set_status,
3639     [PBACLR]   = igb_set_pbaclr,
3640     [CTRL_EXT] = igb_set_ctrlext,
3641     [FCAH]     = igb_set_16bit,
3642     [FCT]      = igb_set_16bit,
3643     [FCTTV]    = igb_set_16bit,
3644     [FCRTV]    = igb_set_16bit,
3645     [FCRTH]    = igb_set_fcrth,
3646     [FCRTL]    = igb_set_fcrtl,
3647     [CTRL_DUP] = igb_set_ctrl,
3648     [RFCTL]    = igb_set_rfctl,
3649     [TIMINCA]  = igb_set_timinca,
3650     [TIMADJH]  = igb_set_timadjh,
3651 
3652     [IP6AT ... IP6AT + 3]    = igb_mac_writereg,
3653     [IP4AT ... IP4AT + 6]    = igb_mac_writereg,
3654     [RA]                     = igb_mac_writereg,
3655     [RA + 1]                 = igb_mac_setmacaddr,
3656     [RA + 2 ... RA + 31]     = igb_mac_writereg,
3657     [RA2 ... RA2 + 31]       = igb_mac_writereg,
3658     [WUPM ... WUPM + 31]     = igb_mac_writereg,
3659     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3660     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg,
3661     [FFMT ... FFMT + 254]    = igb_set_4bit,
3662     [MDEF ... MDEF + 7]      = igb_mac_writereg,
3663     [FTFT ... FTFT + 254]    = igb_mac_writereg,
3664     [RETA ... RETA + 31]     = igb_mac_writereg,
3665     [RSSRK ... RSSRK + 9]    = igb_mac_writereg,
3666     [MAVTV0 ... MAVTV3]      = igb_mac_writereg,
3667     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr,
3668 
3669     /* IGB specific: */
3670     [FWSM]     = igb_mac_writereg,
3671     [SW_FW_SYNC] = igb_mac_writereg,
3672     [EICR] = igb_set_eicr,
3673     [EICS] = igb_set_eics,
3674     [EIAC] = igb_set_eiac,
3675     [EIAM] = igb_set_eiam,
3676     [EIMC] = igb_set_eimc,
3677     [EIMS] = igb_set_eims,
3678     [IVAR0 ... IVAR0 + 7] = igb_mac_writereg,
3679     igb_putreg(IVAR_MISC),
3680     igb_putreg(VT_CTL),
3681     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox,
3682     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox,
3683     [MBVFICR] = igb_w1c,
3684     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg,
3685     igb_putreg(MBVFIMR),
3686     [VFLRE] = igb_w1c,
3687     igb_putreg(VFRE),
3688     igb_putreg(VFTE),
3689     igb_putreg(QDE),
3690     igb_putreg(DTXSWC),
3691     igb_putreg(RPLOLR),
3692     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg,
3693     [VMVIR0 ... VMVIR7] = igb_mac_writereg,
3694     [VMOLR0 ... VMOLR7] = igb_mac_writereg,
3695     [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3696     [PVTCTRL0] = igb_set_vtctrl,
3697     [PVTCTRL1] = igb_set_vtctrl,
3698     [PVTCTRL2] = igb_set_vtctrl,
3699     [PVTCTRL3] = igb_set_vtctrl,
3700     [PVTCTRL4] = igb_set_vtctrl,
3701     [PVTCTRL5] = igb_set_vtctrl,
3702     [PVTCTRL6] = igb_set_vtctrl,
3703     [PVTCTRL7] = igb_set_vtctrl,
3704     [PVTEICS0] = igb_set_vteics,
3705     [PVTEICS1] = igb_set_vteics,
3706     [PVTEICS2] = igb_set_vteics,
3707     [PVTEICS3] = igb_set_vteics,
3708     [PVTEICS4] = igb_set_vteics,
3709     [PVTEICS5] = igb_set_vteics,
3710     [PVTEICS6] = igb_set_vteics,
3711     [PVTEICS7] = igb_set_vteics,
3712     [PVTEIMS0] = igb_set_vteims,
3713     [PVTEIMS1] = igb_set_vteims,
3714     [PVTEIMS2] = igb_set_vteims,
3715     [PVTEIMS3] = igb_set_vteims,
3716     [PVTEIMS4] = igb_set_vteims,
3717     [PVTEIMS5] = igb_set_vteims,
3718     [PVTEIMS6] = igb_set_vteims,
3719     [PVTEIMS7] = igb_set_vteims,
3720     [PVTEIMC0] = igb_set_vteimc,
3721     [PVTEIMC1] = igb_set_vteimc,
3722     [PVTEIMC2] = igb_set_vteimc,
3723     [PVTEIMC3] = igb_set_vteimc,
3724     [PVTEIMC4] = igb_set_vteimc,
3725     [PVTEIMC5] = igb_set_vteimc,
3726     [PVTEIMC6] = igb_set_vteimc,
3727     [PVTEIMC7] = igb_set_vteimc,
3728     [PVTEIAC0] = igb_set_vteiac,
3729     [PVTEIAC1] = igb_set_vteiac,
3730     [PVTEIAC2] = igb_set_vteiac,
3731     [PVTEIAC3] = igb_set_vteiac,
3732     [PVTEIAC4] = igb_set_vteiac,
3733     [PVTEIAC5] = igb_set_vteiac,
3734     [PVTEIAC6] = igb_set_vteiac,
3735     [PVTEIAC7] = igb_set_vteiac,
3736     [PVTEIAM0] = igb_set_vteiam,
3737     [PVTEIAM1] = igb_set_vteiam,
3738     [PVTEIAM2] = igb_set_vteiam,
3739     [PVTEIAM3] = igb_set_vteiam,
3740     [PVTEIAM4] = igb_set_vteiam,
3741     [PVTEIAM5] = igb_set_vteiam,
3742     [PVTEIAM6] = igb_set_vteiam,
3743     [PVTEIAM7] = igb_set_vteiam,
3744     [PVTEICR0] = igb_set_vteicr,
3745     [PVTEICR1] = igb_set_vteicr,
3746     [PVTEICR2] = igb_set_vteicr,
3747     [PVTEICR3] = igb_set_vteicr,
3748     [PVTEICR4] = igb_set_vteicr,
3749     [PVTEICR5] = igb_set_vteicr,
3750     [PVTEICR6] = igb_set_vteicr,
3751     [PVTEICR7] = igb_set_vteicr,
3752     [VTIVAR ... VTIVAR + 7] = igb_set_vtivar,
3753     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg
3754 };
3755 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) };
3756 
3757 enum { MAC_ACCESS_PARTIAL = 1 };
3758 
3759 /*
3760  * The array below combines alias offsets of the index values for the
3761  * MAC registers that have aliases, with the indication of not fully
3762  * implemented registers (lowest bit). This combination is possible
3763  * because all of the offsets are even.
3764  */
3765 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3766     /* Alias index offsets */
3767     [FCRTL_A] = 0x07fe,
3768     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3769     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3770     [RA_A ... RA_A + 31]      = 0x14f0,
3771     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3772 
3773     [RDBAL0_A] = 0x2600,
3774     [RDBAH0_A] = 0x2600,
3775     [RDLEN0_A] = 0x2600,
3776     [SRRCTL0_A] = 0x2600,
3777     [RDH0_A] = 0x2600,
3778     [RDT0_A] = 0x2600,
3779     [RXDCTL0_A] = 0x2600,
3780     [RXCTL0_A] = 0x2600,
3781     [RQDPC0_A] = 0x2600,
3782     [RDBAL1_A] = 0x25D0,
3783     [RDBAL2_A] = 0x25A0,
3784     [RDBAL3_A] = 0x2570,
3785     [RDBAH1_A] = 0x25D0,
3786     [RDBAH2_A] = 0x25A0,
3787     [RDBAH3_A] = 0x2570,
3788     [RDLEN1_A] = 0x25D0,
3789     [RDLEN2_A] = 0x25A0,
3790     [RDLEN3_A] = 0x2570,
3791     [SRRCTL1_A] = 0x25D0,
3792     [SRRCTL2_A] = 0x25A0,
3793     [SRRCTL3_A] = 0x2570,
3794     [RDH1_A] = 0x25D0,
3795     [RDH2_A] = 0x25A0,
3796     [RDH3_A] = 0x2570,
3797     [RDT1_A] = 0x25D0,
3798     [RDT2_A] = 0x25A0,
3799     [RDT3_A] = 0x2570,
3800     [RXDCTL1_A] = 0x25D0,
3801     [RXDCTL2_A] = 0x25A0,
3802     [RXDCTL3_A] = 0x2570,
3803     [RXCTL1_A] = 0x25D0,
3804     [RXCTL2_A] = 0x25A0,
3805     [RXCTL3_A] = 0x2570,
3806     [RQDPC1_A] = 0x25D0,
3807     [RQDPC2_A] = 0x25A0,
3808     [RQDPC3_A] = 0x2570,
3809     [TDBAL0_A] = 0x2A00,
3810     [TDBAH0_A] = 0x2A00,
3811     [TDLEN0_A] = 0x2A00,
3812     [TDH0_A] = 0x2A00,
3813     [TDT0_A] = 0x2A00,
3814     [TXCTL0_A] = 0x2A00,
3815     [TDWBAL0_A] = 0x2A00,
3816     [TDWBAH0_A] = 0x2A00,
3817     [TDBAL1_A] = 0x29D0,
3818     [TDBAL2_A] = 0x29A0,
3819     [TDBAL3_A] = 0x2970,
3820     [TDBAH1_A] = 0x29D0,
3821     [TDBAH2_A] = 0x29A0,
3822     [TDBAH3_A] = 0x2970,
3823     [TDLEN1_A] = 0x29D0,
3824     [TDLEN2_A] = 0x29A0,
3825     [TDLEN3_A] = 0x2970,
3826     [TDH1_A] = 0x29D0,
3827     [TDH2_A] = 0x29A0,
3828     [TDH3_A] = 0x2970,
3829     [TDT1_A] = 0x29D0,
3830     [TDT2_A] = 0x29A0,
3831     [TDT3_A] = 0x2970,
3832     [TXDCTL0_A] = 0x2A00,
3833     [TXDCTL1_A] = 0x29D0,
3834     [TXDCTL2_A] = 0x29A0,
3835     [TXDCTL3_A] = 0x2970,
3836     [TXCTL1_A] = 0x29D0,
3837     [TXCTL2_A] = 0x29A0,
3838     [TXCTL3_A] = 0x29D0,
3839     [TDWBAL1_A] = 0x29D0,
3840     [TDWBAL2_A] = 0x29A0,
3841     [TDWBAL3_A] = 0x2970,
3842     [TDWBAH1_A] = 0x29D0,
3843     [TDWBAH2_A] = 0x29A0,
3844     [TDWBAH3_A] = 0x2970,
3845 
3846     /* Access options */
3847     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3848     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3849     [RDFPC] = MAC_ACCESS_PARTIAL,
3850     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3851     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3852     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3853     [FLA]   = MAC_ACCESS_PARTIAL,
3854     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3855     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3856     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3857     [FCRTH] = MAC_ACCESS_PARTIAL,
3858     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3859 };
3860 
3861 void
3862 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size)
3863 {
3864     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3865 
3866     if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) {
3867         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3868             trace_e1000e_wrn_regs_write_trivial(index << 2);
3869         }
3870         trace_e1000e_core_write(index << 2, size, val);
3871         igb_macreg_writeops[index](core, index, val);
3872     } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3873         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3874     } else {
3875         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3876     }
3877 }
3878 
3879 uint64_t
3880 igb_core_read(IGBCore *core, hwaddr addr, unsigned size)
3881 {
3882     uint64_t val;
3883     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3884 
3885     if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3886         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3887             trace_e1000e_wrn_regs_read_trivial(index << 2);
3888         }
3889         val = igb_macreg_readops[index](core, index);
3890         trace_e1000e_core_read(index << 2, size, val);
3891         return val;
3892     } else {
3893         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3894     }
3895     return 0;
3896 }
3897 
3898 static inline void
3899 igb_autoneg_pause(IGBCore *core)
3900 {
3901     timer_del(core->autoneg_timer);
3902 }
3903 
3904 static void
3905 igb_autoneg_resume(IGBCore *core)
3906 {
3907     if (igb_have_autoneg(core) &&
3908         !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
3909         qemu_get_queue(core->owner_nic)->link_down = false;
3910         timer_mod(core->autoneg_timer,
3911                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3912     }
3913 }
3914 
3915 static void
3916 igb_vm_state_change(void *opaque, bool running, RunState state)
3917 {
3918     IGBCore *core = opaque;
3919 
3920     if (running) {
3921         trace_e1000e_vm_state_running();
3922         igb_intrmgr_resume(core);
3923         igb_autoneg_resume(core);
3924     } else {
3925         trace_e1000e_vm_state_stopped();
3926         igb_autoneg_pause(core);
3927         igb_intrmgr_pause(core);
3928     }
3929 }
3930 
3931 void
3932 igb_core_pci_realize(IGBCore        *core,
3933                      const uint16_t *eeprom_templ,
3934                      uint32_t        eeprom_size,
3935                      const uint8_t  *macaddr)
3936 {
3937     int i;
3938 
3939     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3940                                        igb_autoneg_timer, core);
3941     igb_intrmgr_pci_realize(core);
3942 
3943     core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core);
3944 
3945     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3946         net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3947     }
3948 
3949     net_rx_pkt_init(&core->rx_pkt);
3950 
3951     e1000x_core_prepare_eeprom(core->eeprom,
3952                                eeprom_templ,
3953                                eeprom_size,
3954                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3955                                macaddr);
3956     igb_update_rx_offloads(core);
3957 }
3958 
3959 void
3960 igb_core_pci_uninit(IGBCore *core)
3961 {
3962     int i;
3963 
3964     timer_free(core->autoneg_timer);
3965 
3966     igb_intrmgr_pci_unint(core);
3967 
3968     qemu_del_vm_change_state_handler(core->vmstate);
3969 
3970     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3971         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3972     }
3973 
3974     net_rx_pkt_uninit(core->rx_pkt);
3975 }
3976 
3977 static const uint16_t
3978 igb_phy_reg_init[] = {
3979     [MII_BMCR] = MII_BMCR_SPEED1000 |
3980                  MII_BMCR_FD        |
3981                  MII_BMCR_AUTOEN,
3982 
3983     [MII_BMSR] = MII_BMSR_EXTCAP    |
3984                  MII_BMSR_LINK_ST   |
3985                  MII_BMSR_AUTONEG   |
3986                  MII_BMSR_MFPS      |
3987                  MII_BMSR_EXTSTAT   |
3988                  MII_BMSR_10T_HD    |
3989                  MII_BMSR_10T_FD    |
3990                  MII_BMSR_100TX_HD  |
3991                  MII_BMSR_100TX_FD,
3992 
3993     [MII_PHYID1]            = IGP03E1000_E_PHY_ID >> 16,
3994     [MII_PHYID2]            = (IGP03E1000_E_PHY_ID & 0xfff0) | 1,
3995     [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3996                               MII_ANAR_10FD | MII_ANAR_TX |
3997                               MII_ANAR_TXFD | MII_ANAR_PAUSE |
3998                               MII_ANAR_PAUSE_ASYM,
3999     [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
4000                               MII_ANLPAR_TX | MII_ANLPAR_TXFD |
4001                               MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
4002     [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
4003     [MII_ANNP]              = 0x1 | MII_ANNP_MP,
4004     [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
4005                               MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
4006     [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
4007                               MII_STAT1000_ROK | MII_STAT1000_LOK,
4008     [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
4009 
4010     [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8),
4011     [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS,
4012     [IGP02E1000_PHY_POWER_MGMT]  = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU |
4013                                    IGP01E1000_PSCFR_SMART_SPEED
4014 };
4015 
4016 static const uint32_t igb_mac_reg_init[] = {
4017     [LEDCTL]        = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24),
4018     [EEMNGCTL]      = BIT(31),
4019     [TXDCTL0]       = E1000_TXDCTL_QUEUE_ENABLE,
4020     [RXDCTL0]       = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16),
4021     [RXDCTL1]       = 1 << 16,
4022     [RXDCTL2]       = 1 << 16,
4023     [RXDCTL3]       = 1 << 16,
4024     [RXDCTL4]       = 1 << 16,
4025     [RXDCTL5]       = 1 << 16,
4026     [RXDCTL6]       = 1 << 16,
4027     [RXDCTL7]       = 1 << 16,
4028     [RXDCTL8]       = 1 << 16,
4029     [RXDCTL9]       = 1 << 16,
4030     [RXDCTL10]      = 1 << 16,
4031     [RXDCTL11]      = 1 << 16,
4032     [RXDCTL12]      = 1 << 16,
4033     [RXDCTL13]      = 1 << 16,
4034     [RXDCTL14]      = 1 << 16,
4035     [RXDCTL15]      = 1 << 16,
4036     [TIPG]          = 0x08 | (0x04 << 10) | (0x06 << 20),
4037     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 |
4038                       E1000_CTRL_ADVD3WUC,
4039     [STATUS]        = E1000_STATUS_PHYRA | BIT(31),
4040     [EECD]          = E1000_EECD_FWE_DIS | E1000_EECD_PRES |
4041                       (2 << E1000_EECD_SIZE_EX_SHIFT),
4042     [GCR]           = E1000_L0S_ADJUST |
4043                       E1000_GCR_CMPL_TMOUT_RESEND |
4044                       E1000_GCR_CAP_VER2 |
4045                       E1000_L1_ENTRY_LATENCY_MSB |
4046                       E1000_L1_ENTRY_LATENCY_LSB,
4047     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
4048     [TXPBS]         = 0x28,
4049     [RXPBS]         = 0x40,
4050     [TCTL]          = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) |
4051                       (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28),
4052     [TCTL_EXT]      = 0x40 | (0x42 << 10),
4053     [DTXCTL]        = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT,
4054     [VET]           = ETH_P_VLAN | (ETH_P_VLAN << 16),
4055 
4056     [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI,
4057     [MBVFIMR]       = 0xFF,
4058     [VFRE]          = 0xFF,
4059     [VFTE]          = 0xFF,
4060     [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC,
4061     [RPLOLR]        = E1000_RPLOLR_STRCRC,
4062     [RLPML]         = 0x2600,
4063     [TXCTL0]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4064                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4065                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4066     [TXCTL1]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4067                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4068                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4069     [TXCTL2]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4070                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4071                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4072     [TXCTL3]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4073                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4074                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4075     [TXCTL4]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4076                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4077                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4078     [TXCTL5]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4079                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4080                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4081     [TXCTL6]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4082                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4083                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4084     [TXCTL7]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4085                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4086                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4087     [TXCTL8]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4088                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4089                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4090     [TXCTL9]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4091                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4092                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4093     [TXCTL10]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4094                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4095                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4096     [TXCTL11]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4097                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4098                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4099     [TXCTL12]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4100                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4101                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4102     [TXCTL13]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4103                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4104                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4105     [TXCTL14]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4106                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4107                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4108     [TXCTL15]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4109                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4110                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4111 };
4112 
4113 static void igb_reset(IGBCore *core, bool sw)
4114 {
4115     struct igb_tx *tx;
4116     int i;
4117 
4118     timer_del(core->autoneg_timer);
4119 
4120     igb_intrmgr_reset(core);
4121 
4122     memset(core->phy, 0, sizeof core->phy);
4123     memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init);
4124 
4125     for (i = 0; i < E1000E_MAC_SIZE; i++) {
4126         if (sw &&
4127             (i == RXPBS || i == TXPBS ||
4128              (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) {
4129             continue;
4130         }
4131 
4132         core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ?
4133                        igb_mac_reg_init[i] : 0;
4134     }
4135 
4136     if (qemu_get_queue(core->owner_nic)->link_down) {
4137         igb_link_down(core);
4138     }
4139 
4140     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
4141 
4142     for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
4143         /* Set RSTI, so VF can identify a PF reset is in progress */
4144         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI;
4145     }
4146 
4147     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4148         tx = &core->tx[i];
4149         memset(tx->ctx, 0, sizeof(tx->ctx));
4150         tx->first = true;
4151         tx->skip_cp = false;
4152     }
4153 }
4154 
4155 void
4156 igb_core_reset(IGBCore *core)
4157 {
4158     igb_reset(core, false);
4159 }
4160 
4161 void igb_core_pre_save(IGBCore *core)
4162 {
4163     int i;
4164     NetClientState *nc = qemu_get_queue(core->owner_nic);
4165 
4166     /*
4167      * If link is down and auto-negotiation is supported and ongoing,
4168      * complete auto-negotiation immediately. This allows us to look
4169      * at MII_BMSR_AN_COMP to infer link status on load.
4170      */
4171     if (nc->link_down && igb_have_autoneg(core)) {
4172         core->phy[MII_BMSR] |= MII_BMSR_AN_COMP;
4173         igb_update_flowctl_status(core);
4174     }
4175 
4176     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4177         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
4178             core->tx[i].skip_cp = true;
4179         }
4180     }
4181 }
4182 
4183 int
4184 igb_core_post_load(IGBCore *core)
4185 {
4186     NetClientState *nc = qemu_get_queue(core->owner_nic);
4187 
4188     /*
4189      * nc.link_down can't be migrated, so infer link_down according
4190      * to link status bit in core.mac[STATUS].
4191      */
4192     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
4193 
4194     return 0;
4195 }
4196