xref: /openbmc/qemu/hw/net/igb_core.c (revision e9e5b930691e5995210ca82aa6b9516733c20577)
1 /*
2  * Core code for QEMU igb emulation
3  *
4  * Datasheet:
5  * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
6  *
7  * Copyright (c) 2020-2023 Red Hat, Inc.
8  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
9  * Developed by Daynix Computing LTD (http://www.daynix.com)
10  *
11  * Authors:
12  * Akihiko Odaki <akihiko.odaki@daynix.com>
13  * Gal Hammmer <gal.hammer@sap.com>
14  * Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
15  * Dmitry Fleytman <dmitry@daynix.com>
16  * Leonid Bloch <leonid@daynix.com>
17  * Yan Vugenfirer <yan@daynix.com>
18  *
19  * Based on work done by:
20  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
21  * Copyright (c) 2008 Qumranet
22  * Based on work done by:
23  * Copyright (c) 2007 Dan Aloni
24  * Copyright (c) 2004 Antony T Curtis
25  *
26  * This library is free software; you can redistribute it and/or
27  * modify it under the terms of the GNU Lesser General Public
28  * License as published by the Free Software Foundation; either
29  * version 2.1 of the License, or (at your option) any later version.
30  *
31  * This library is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34  * Lesser General Public License for more details.
35  *
36  * You should have received a copy of the GNU Lesser General Public
37  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/log.h"
42 #include "net/net.h"
43 #include "net/tap.h"
44 #include "hw/net/mii.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "sysemu/runstate.h"
48 
49 #include "net_tx_pkt.h"
50 #include "net_rx_pkt.h"
51 
52 #include "igb_common.h"
53 #include "e1000x_common.h"
54 #include "igb_core.h"
55 
56 #include "trace.h"
57 
58 #define E1000E_MAX_TX_FRAGS (64)
59 
60 union e1000_rx_desc_union {
61     struct e1000_rx_desc legacy;
62     union e1000_adv_rx_desc adv;
63 };
64 
65 typedef struct IGBTxPktVmdqCallbackContext {
66     IGBCore *core;
67     NetClientState *nc;
68 } IGBTxPktVmdqCallbackContext;
69 
70 typedef struct L2Header {
71     struct eth_header eth;
72     struct vlan_header vlan;
73 } L2Header;
74 
75 static ssize_t
76 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
77                      bool has_vnet, bool *external_tx);
78 
79 static inline void
80 igb_set_interrupt_cause(IGBCore *core, uint32_t val);
81 
82 static void igb_update_interrupt_state(IGBCore *core);
83 static void igb_reset(IGBCore *core, bool sw);
84 
85 static inline void
86 igb_raise_legacy_irq(IGBCore *core)
87 {
88     trace_e1000e_irq_legacy_notify(true);
89     e1000x_inc_reg_if_not_full(core->mac, IAC);
90     pci_set_irq(core->owner, 1);
91 }
92 
93 static inline void
94 igb_lower_legacy_irq(IGBCore *core)
95 {
96     trace_e1000e_irq_legacy_notify(false);
97     pci_set_irq(core->owner, 0);
98 }
99 
100 static void igb_msix_notify(IGBCore *core, unsigned int vector)
101 {
102     PCIDevice *dev = core->owner;
103     uint16_t vfn;
104 
105     vfn = 8 - (vector + 2) / IGBVF_MSIX_VEC_NUM;
106     if (vfn < pcie_sriov_num_vfs(core->owner)) {
107         dev = pcie_sriov_get_vf_at_index(core->owner, vfn);
108         assert(dev);
109         vector = (vector + 2) % IGBVF_MSIX_VEC_NUM;
110     } else if (vector >= IGB_MSIX_VEC_NUM) {
111         qemu_log_mask(LOG_GUEST_ERROR,
112                       "igb: Tried to use vector unavailable for PF");
113         return;
114     }
115 
116     msix_notify(dev, vector);
117 }
118 
119 static inline void
120 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer)
121 {
122     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
123                                  timer->delay_resolution_ns;
124 
125     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
126 
127     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
128 
129     timer->running = true;
130 }
131 
132 static void
133 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer)
134 {
135     if (timer->running) {
136         igb_intrmgr_rearm_timer(timer);
137     }
138 }
139 
140 static void
141 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer)
142 {
143     if (timer->running) {
144         timer_del(timer->timer);
145     }
146 }
147 
148 static void
149 igb_intrmgr_on_msix_throttling_timer(void *opaque)
150 {
151     IGBIntrDelayTimer *timer = opaque;
152     int idx = timer - &timer->core->eitr[0];
153 
154     timer->running = false;
155 
156     trace_e1000e_irq_msix_notify_postponed_vec(idx);
157     igb_msix_notify(timer->core, idx);
158 }
159 
160 static void
161 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create)
162 {
163     int i;
164 
165     for (i = 0; i < IGB_INTR_NUM; i++) {
166         core->eitr[i].core = core;
167         core->eitr[i].delay_reg = EITR0 + i;
168         core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
169     }
170 
171     if (!create) {
172         return;
173     }
174 
175     for (i = 0; i < IGB_INTR_NUM; i++) {
176         core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
177                                            igb_intrmgr_on_msix_throttling_timer,
178                                            &core->eitr[i]);
179     }
180 }
181 
182 static void
183 igb_intrmgr_resume(IGBCore *core)
184 {
185     int i;
186 
187     for (i = 0; i < IGB_INTR_NUM; i++) {
188         igb_intmgr_timer_resume(&core->eitr[i]);
189     }
190 }
191 
192 static void
193 igb_intrmgr_pause(IGBCore *core)
194 {
195     int i;
196 
197     for (i = 0; i < IGB_INTR_NUM; i++) {
198         igb_intmgr_timer_pause(&core->eitr[i]);
199     }
200 }
201 
202 static void
203 igb_intrmgr_reset(IGBCore *core)
204 {
205     int i;
206 
207     for (i = 0; i < IGB_INTR_NUM; i++) {
208         if (core->eitr[i].running) {
209             timer_del(core->eitr[i].timer);
210             igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
211         }
212     }
213 }
214 
215 static void
216 igb_intrmgr_pci_unint(IGBCore *core)
217 {
218     int i;
219 
220     for (i = 0; i < IGB_INTR_NUM; i++) {
221         timer_free(core->eitr[i].timer);
222     }
223 }
224 
225 static void
226 igb_intrmgr_pci_realize(IGBCore *core)
227 {
228     igb_intrmgr_initialize_all_timers(core, true);
229 }
230 
231 static inline bool
232 igb_rx_csum_enabled(IGBCore *core)
233 {
234     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
235 }
236 
237 static inline bool
238 igb_rx_use_legacy_descriptor(IGBCore *core)
239 {
240     /*
241      * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx
242      * descriptor.
243      */
244     return false;
245 }
246 
247 static inline bool
248 igb_rss_enabled(IGBCore *core)
249 {
250     return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ &&
251            !igb_rx_csum_enabled(core) &&
252            !igb_rx_use_legacy_descriptor(core);
253 }
254 
255 typedef struct E1000E_RSSInfo_st {
256     bool enabled;
257     uint32_t hash;
258     uint32_t queue;
259     uint32_t type;
260 } E1000E_RSSInfo;
261 
262 static uint32_t
263 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt)
264 {
265     bool hasip4, hasip6;
266     EthL4HdrProto l4hdr_proto;
267 
268     assert(igb_rss_enabled(core));
269 
270     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
271 
272     if (hasip4) {
273         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
274                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
275                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
276 
277         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
278             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
279             return E1000_MRQ_RSS_TYPE_IPV4TCP;
280         }
281 
282         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
283             return E1000_MRQ_RSS_TYPE_IPV4;
284         }
285     } else if (hasip6) {
286         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
287 
288         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
289         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
290 
291         /*
292          * Following two traces must not be combined because resulting
293          * event will have 11 arguments totally and some trace backends
294          * (at least "ust") have limitation of maximum 10 arguments per
295          * event. Events with more arguments fail to compile for
296          * backends like these.
297          */
298         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
299         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
300                                 ip6info->has_ext_hdrs,
301                                 ip6info->rss_ex_dst_valid,
302                                 ip6info->rss_ex_src_valid,
303                                 core->mac[MRQC],
304                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
305                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
306                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
307 
308         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
309             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
310                               ip6info->rss_ex_src_valid))) {
311 
312             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
313                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
314                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
315             }
316 
317             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
318                 return E1000_MRQ_RSS_TYPE_IPV6EX;
319             }
320 
321         }
322 
323         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
324             return E1000_MRQ_RSS_TYPE_IPV6;
325         }
326 
327     }
328 
329     return E1000_MRQ_RSS_TYPE_NONE;
330 }
331 
332 static uint32_t
333 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info)
334 {
335     NetRxPktRssType type;
336 
337     assert(igb_rss_enabled(core));
338 
339     switch (info->type) {
340     case E1000_MRQ_RSS_TYPE_IPV4:
341         type = NetPktRssIpV4;
342         break;
343     case E1000_MRQ_RSS_TYPE_IPV4TCP:
344         type = NetPktRssIpV4Tcp;
345         break;
346     case E1000_MRQ_RSS_TYPE_IPV6TCP:
347         type = NetPktRssIpV6TcpEx;
348         break;
349     case E1000_MRQ_RSS_TYPE_IPV6:
350         type = NetPktRssIpV6;
351         break;
352     case E1000_MRQ_RSS_TYPE_IPV6EX:
353         type = NetPktRssIpV6Ex;
354         break;
355     default:
356         assert(false);
357         return 0;
358     }
359 
360     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
361 }
362 
363 static void
364 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx,
365                      E1000E_RSSInfo *info)
366 {
367     trace_e1000e_rx_rss_started();
368 
369     if (tx || !igb_rss_enabled(core)) {
370         info->enabled = false;
371         info->hash = 0;
372         info->queue = 0;
373         info->type = 0;
374         trace_e1000e_rx_rss_disabled();
375         return;
376     }
377 
378     info->enabled = true;
379 
380     info->type = igb_rss_get_hash_type(core, pkt);
381 
382     trace_e1000e_rx_rss_type(info->type);
383 
384     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
385         info->hash = 0;
386         info->queue = 0;
387         return;
388     }
389 
390     info->hash = igb_rss_calc_hash(core, pkt, info);
391     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
392 }
393 
394 static void
395 igb_tx_insert_vlan(IGBCore *core, uint16_t qn, struct igb_tx *tx,
396     uint16_t vlan, bool insert_vlan)
397 {
398     if (core->mac[MRQC] & 1) {
399         uint16_t pool = qn % IGB_NUM_VM_POOLS;
400 
401         if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_DEFAULT) {
402             /* always insert default VLAN */
403             insert_vlan = true;
404             vlan = core->mac[VMVIR0 + pool] & 0xffff;
405         } else if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_NEVER) {
406             insert_vlan = false;
407         }
408     }
409 
410     if (insert_vlan) {
411         net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan,
412             core->mac[VET] & 0xffff);
413     }
414 }
415 
416 static bool
417 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx)
418 {
419     if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) {
420         uint32_t idx = (tx->first_olinfo_status >> 4) & 1;
421         uint32_t mss = tx->ctx[idx].mss_l4len_idx >> 16;
422         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) {
423             return false;
424         }
425 
426         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
427         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
428         return true;
429     }
430 
431     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) {
432         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
433             return false;
434         }
435     }
436 
437     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) {
438         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
439     }
440 
441     return true;
442 }
443 
444 static void igb_tx_pkt_mac_callback(void *core,
445                                     const struct iovec *iov,
446                                     int iovcnt,
447                                     const struct iovec *virt_iov,
448                                     int virt_iovcnt)
449 {
450     igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL);
451 }
452 
453 static void igb_tx_pkt_vmdq_callback(void *opaque,
454                                      const struct iovec *iov,
455                                      int iovcnt,
456                                      const struct iovec *virt_iov,
457                                      int virt_iovcnt)
458 {
459     IGBTxPktVmdqCallbackContext *context = opaque;
460     bool external_tx;
461 
462     igb_receive_internal(context->core, virt_iov, virt_iovcnt, true,
463                          &external_tx);
464 
465     if (external_tx) {
466         if (context->core->has_vnet) {
467             qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt);
468         } else {
469             qemu_sendv_packet(context->nc, iov, iovcnt);
470         }
471     }
472 }
473 
474 /* TX Packets Switching (7.10.3.6) */
475 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx,
476                               NetClientState *nc)
477 {
478     IGBTxPktVmdqCallbackContext context;
479 
480     /* TX switching is only used to serve VM to VM traffic. */
481     if (!(core->mac[MRQC] & 1)) {
482         goto send_out;
483     }
484 
485     /* TX switching requires DTXSWC.Loopback_en bit enabled. */
486     if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) {
487         goto send_out;
488     }
489 
490     context.core = core;
491     context.nc = nc;
492 
493     return net_tx_pkt_send_custom(tx->tx_pkt, false,
494                                   igb_tx_pkt_vmdq_callback, &context);
495 
496 send_out:
497     return net_tx_pkt_send(tx->tx_pkt, nc);
498 }
499 
500 static bool
501 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index)
502 {
503     int target_queue = MIN(core->max_queue_num, queue_index);
504     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
505 
506     if (!igb_setup_tx_offloads(core, tx)) {
507         return false;
508     }
509 
510     net_tx_pkt_dump(tx->tx_pkt);
511 
512     if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) ||
513         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
514         return net_tx_pkt_send_custom(tx->tx_pkt, false,
515                                       igb_tx_pkt_mac_callback, core);
516     } else {
517         return igb_tx_pkt_switch(core, tx, queue);
518     }
519 }
520 
521 static void
522 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt, int qn)
523 {
524     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
525                                     PTC1023, PTC1522 };
526 
527     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
528 
529     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
530     e1000x_inc_reg_if_not_full(core->mac, TPT);
531     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
532 
533     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
534     case ETH_PKT_BCAST:
535         e1000x_inc_reg_if_not_full(core->mac, BPTC);
536         break;
537     case ETH_PKT_MCAST:
538         e1000x_inc_reg_if_not_full(core->mac, MPTC);
539         break;
540     case ETH_PKT_UCAST:
541         break;
542     default:
543         g_assert_not_reached();
544     }
545 
546     e1000x_inc_reg_if_not_full(core->mac, GPTC);
547     e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
548 
549     if (core->mac[MRQC] & 1) {
550         uint16_t pool = qn % IGB_NUM_VM_POOLS;
551 
552         core->mac[PVFGOTC0 + (pool * 64)] += tot_len;
553         core->mac[PVFGPTC0 + (pool * 64)]++;
554     }
555 }
556 
557 static void
558 igb_process_tx_desc(IGBCore *core,
559                     PCIDevice *dev,
560                     struct igb_tx *tx,
561                     union e1000_adv_tx_desc *tx_desc,
562                     int queue_index)
563 {
564     struct e1000_adv_tx_context_desc *tx_ctx_desc;
565     uint32_t cmd_type_len;
566     uint32_t idx;
567     uint64_t buffer_addr;
568     uint16_t length;
569 
570     cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
571 
572     if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) {
573         if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) ==
574             E1000_ADVTXD_DTYP_DATA) {
575             /* advanced transmit data descriptor */
576             if (tx->first) {
577                 tx->first_cmd_type_len = cmd_type_len;
578                 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status);
579                 tx->first = false;
580             }
581         } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) ==
582                    E1000_ADVTXD_DTYP_CTXT) {
583             /* advanced transmit context descriptor */
584             tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc;
585             idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1;
586             tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens);
587             tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed);
588             tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl);
589             tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx);
590             return;
591         } else {
592             /* unknown descriptor type */
593             return;
594         }
595     } else {
596         /* legacy descriptor */
597 
598         /* TODO: Implement a support for legacy descriptors (7.2.2.1). */
599     }
600 
601     buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr);
602     length = cmd_type_len & 0xFFFF;
603 
604     if (!tx->skip_cp) {
605         if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, dev,
606                                              buffer_addr, length)) {
607             tx->skip_cp = true;
608         }
609     }
610 
611     if (cmd_type_len & E1000_TXD_CMD_EOP) {
612         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
613             idx = (tx->first_olinfo_status >> 4) & 1;
614             igb_tx_insert_vlan(core, queue_index, tx,
615                 tx->ctx[idx].vlan_macip_lens >> 16,
616                 !!(cmd_type_len & E1000_TXD_CMD_VLE));
617 
618             if (igb_tx_pkt_send(core, tx, queue_index)) {
619                 igb_on_tx_done_update_stats(core, tx->tx_pkt, queue_index);
620             }
621         }
622 
623         tx->first = true;
624         tx->skip_cp = false;
625         net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, dev);
626     }
627 }
628 
629 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx)
630 {
631     uint32_t n, ent = 0;
632 
633     n = igb_ivar_entry_tx(queue_idx);
634     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
635 
636     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
637 }
638 
639 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx)
640 {
641     uint32_t n, ent = 0;
642 
643     n = igb_ivar_entry_rx(queue_idx);
644     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
645 
646     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
647 }
648 
649 typedef struct E1000E_RingInfo_st {
650     int dbah;
651     int dbal;
652     int dlen;
653     int dh;
654     int dt;
655     int idx;
656 } E1000E_RingInfo;
657 
658 static inline bool
659 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r)
660 {
661     return core->mac[r->dh] == core->mac[r->dt] ||
662                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
663 }
664 
665 static inline uint64_t
666 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r)
667 {
668     uint64_t bah = core->mac[r->dbah];
669     uint64_t bal = core->mac[r->dbal];
670 
671     return (bah << 32) + bal;
672 }
673 
674 static inline uint64_t
675 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r)
676 {
677     return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
678 }
679 
680 static inline void
681 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count)
682 {
683     core->mac[r->dh] += count;
684 
685     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
686         core->mac[r->dh] = 0;
687     }
688 }
689 
690 static inline uint32_t
691 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r)
692 {
693     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
694                                  core->mac[r->dh],  core->mac[r->dt]);
695 
696     if (core->mac[r->dh] <= core->mac[r->dt]) {
697         return core->mac[r->dt] - core->mac[r->dh];
698     }
699 
700     if (core->mac[r->dh] > core->mac[r->dt]) {
701         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
702                core->mac[r->dt] - core->mac[r->dh];
703     }
704 
705     g_assert_not_reached();
706     return 0;
707 }
708 
709 static inline bool
710 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r)
711 {
712     return core->mac[r->dlen] > 0;
713 }
714 
715 typedef struct IGB_TxRing_st {
716     const E1000E_RingInfo *i;
717     struct igb_tx *tx;
718 } IGB_TxRing;
719 
720 static inline int
721 igb_mq_queue_idx(int base_reg_idx, int reg_idx)
722 {
723     return (reg_idx - base_reg_idx) / 16;
724 }
725 
726 static inline void
727 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx)
728 {
729     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
730         { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 },
731         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 },
732         { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 },
733         { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 },
734         { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 },
735         { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 },
736         { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 },
737         { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 },
738         { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 },
739         { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 },
740         { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 },
741         { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 },
742         { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 },
743         { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 },
744         { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 },
745         { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 }
746     };
747 
748     assert(idx < ARRAY_SIZE(i));
749 
750     txr->i     = &i[idx];
751     txr->tx    = &core->tx[idx];
752 }
753 
754 typedef struct E1000E_RxRing_st {
755     const E1000E_RingInfo *i;
756 } E1000E_RxRing;
757 
758 static inline void
759 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx)
760 {
761     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
762         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
763         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 },
764         { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 },
765         { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 },
766         { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 },
767         { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 },
768         { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 },
769         { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 },
770         { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 },
771         { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 },
772         { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 },
773         { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 },
774         { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 },
775         { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 },
776         { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 },
777         { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 }
778     };
779 
780     assert(idx < ARRAY_SIZE(i));
781 
782     rxr->i      = &i[idx];
783 }
784 
785 static uint32_t
786 igb_txdesc_writeback(IGBCore *core, dma_addr_t base,
787                      union e1000_adv_tx_desc *tx_desc,
788                      const E1000E_RingInfo *txi)
789 {
790     PCIDevice *d;
791     uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
792     uint64_t tdwba;
793 
794     tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2];
795     tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32;
796 
797     if (!(cmd_type_len & E1000_TXD_CMD_RS)) {
798         return 0;
799     }
800 
801     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
802     if (!d) {
803         d = core->owner;
804     }
805 
806     if (tdwba & 1) {
807         uint32_t buffer = cpu_to_le32(core->mac[txi->dh]);
808         pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer));
809     } else {
810         uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD;
811 
812         tx_desc->wb.status = cpu_to_le32(status);
813         pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb),
814             &tx_desc->wb, sizeof(tx_desc->wb));
815     }
816 
817     return igb_tx_wb_eic(core, txi->idx);
818 }
819 
820 static inline bool
821 igb_tx_enabled(IGBCore *core, const E1000E_RingInfo *txi)
822 {
823     bool vmdq = core->mac[MRQC] & 1;
824     uint16_t qn = txi->idx;
825     uint16_t pool = qn % IGB_NUM_VM_POOLS;
826 
827     return (core->mac[TCTL] & E1000_TCTL_EN) &&
828         (!vmdq || core->mac[VFTE] & BIT(pool)) &&
829         (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE);
830 }
831 
832 static void
833 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr)
834 {
835     PCIDevice *d;
836     dma_addr_t base;
837     union e1000_adv_tx_desc desc;
838     const E1000E_RingInfo *txi = txr->i;
839     uint32_t eic = 0;
840 
841     if (!igb_tx_enabled(core, txi)) {
842         trace_e1000e_tx_disabled();
843         return;
844     }
845 
846     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
847     if (!d) {
848         d = core->owner;
849     }
850 
851     while (!igb_ring_empty(core, txi)) {
852         base = igb_ring_head_descr(core, txi);
853 
854         pci_dma_read(d, base, &desc, sizeof(desc));
855 
856         trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr,
857                               desc.read.cmd_type_len, desc.wb.status);
858 
859         igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx);
860         igb_ring_advance(core, txi, 1);
861         eic |= igb_txdesc_writeback(core, base, &desc, txi);
862     }
863 
864     if (eic) {
865         core->mac[EICR] |= eic;
866         igb_set_interrupt_cause(core, E1000_ICR_TXDW);
867     }
868 
869     net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, d);
870 }
871 
872 static uint32_t
873 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r)
874 {
875     uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2];
876     uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK;
877     if (bsizepkt) {
878         return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT;
879     }
880 
881     return e1000x_rxbufsize(core->mac[RCTL]);
882 }
883 
884 static bool
885 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size)
886 {
887     uint32_t bufs = igb_ring_free_descr_num(core, r);
888     uint32_t bufsize = igb_rxbufsize(core, r);
889 
890     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize);
891 
892     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
893                          bufsize;
894 }
895 
896 void
897 igb_start_recv(IGBCore *core)
898 {
899     int i;
900 
901     trace_e1000e_rx_start_recv();
902 
903     for (i = 0; i <= core->max_queue_num; i++) {
904         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
905     }
906 }
907 
908 bool
909 igb_can_receive(IGBCore *core)
910 {
911     int i;
912 
913     if (!e1000x_rx_ready(core->owner, core->mac)) {
914         return false;
915     }
916 
917     for (i = 0; i < IGB_NUM_QUEUES; i++) {
918         E1000E_RxRing rxr;
919         if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
920             continue;
921         }
922 
923         igb_rx_ring_init(core, &rxr, i);
924         if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) {
925             trace_e1000e_rx_can_recv();
926             return true;
927         }
928     }
929 
930     trace_e1000e_rx_can_recv_rings_full();
931     return false;
932 }
933 
934 ssize_t
935 igb_receive(IGBCore *core, const uint8_t *buf, size_t size)
936 {
937     const struct iovec iov = {
938         .iov_base = (uint8_t *)buf,
939         .iov_len = size
940     };
941 
942     return igb_receive_iov(core, &iov, 1);
943 }
944 
945 static inline bool
946 igb_rx_l3_cso_enabled(IGBCore *core)
947 {
948     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
949 }
950 
951 static inline bool
952 igb_rx_l4_cso_enabled(IGBCore *core)
953 {
954     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
955 }
956 
957 static bool
958 igb_rx_is_oversized(IGBCore *core, uint16_t qn, size_t size)
959 {
960     uint16_t pool = qn % IGB_NUM_VM_POOLS;
961     bool lpe = !!(core->mac[VMOLR0 + pool] & E1000_VMOLR_LPE);
962     int max_ethernet_lpe_size =
963         core->mac[VMOLR0 + pool] & E1000_VMOLR_RLPML_MASK;
964     int max_ethernet_vlan_size = 1522;
965 
966     return size > (lpe ? max_ethernet_lpe_size : max_ethernet_vlan_size);
967 }
968 
969 static uint16_t igb_receive_assign(IGBCore *core, const L2Header *l2_header,
970                                    size_t size, E1000E_RSSInfo *rss_info,
971                                    bool *external_tx)
972 {
973     static const int ta_shift[] = { 4, 3, 2, 0 };
974     const struct eth_header *ehdr = &l2_header->eth;
975     uint32_t f, ra[2], *macp, rctl = core->mac[RCTL];
976     uint16_t queues = 0;
977     uint16_t oversized = 0;
978     uint16_t vid = be16_to_cpu(l2_header->vlan.h_tci) & VLAN_VID_MASK;
979     int i;
980 
981     memset(rss_info, 0, sizeof(E1000E_RSSInfo));
982 
983     if (external_tx) {
984         *external_tx = true;
985     }
986 
987     if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff) &&
988         !e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(ehdr))) {
989         return queues;
990     }
991 
992     if (core->mac[MRQC] & 1) {
993         if (is_broadcast_ether_addr(ehdr->h_dest)) {
994             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
995                 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) {
996                     queues |= BIT(i);
997                 }
998             }
999         } else {
1000             for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) {
1001                 if (!(macp[1] & E1000_RAH_AV)) {
1002                     continue;
1003                 }
1004                 ra[0] = cpu_to_le32(macp[0]);
1005                 ra[1] = cpu_to_le32(macp[1]);
1006                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1007                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
1008                 }
1009             }
1010 
1011             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1012                 if (!(macp[1] & E1000_RAH_AV)) {
1013                     continue;
1014                 }
1015                 ra[0] = cpu_to_le32(macp[0]);
1016                 ra[1] = cpu_to_le32(macp[1]);
1017                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1018                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
1019                 }
1020             }
1021 
1022             if (!queues) {
1023                 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA);
1024 
1025                 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
1026                 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
1027                 if (macp[f >> 5] & (1 << (f & 0x1f))) {
1028                     for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1029                         if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) {
1030                             queues |= BIT(i);
1031                         }
1032                     }
1033                 }
1034             } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) {
1035                 *external_tx = false;
1036             }
1037         }
1038 
1039         if (e1000x_vlan_rx_filter_enabled(core->mac)) {
1040             uint16_t mask = 0;
1041 
1042             if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff)) {
1043                 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
1044                     if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid &&
1045                         (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) {
1046                         uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK;
1047                         mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT;
1048                     }
1049                 }
1050             } else {
1051                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1052                     if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) {
1053                         mask |= BIT(i);
1054                     }
1055                 }
1056             }
1057 
1058             queues &= mask;
1059         }
1060 
1061         if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx &&
1062             !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) {
1063             uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK;
1064             queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1065         }
1066 
1067         queues &= core->mac[VFRE];
1068         if (queues) {
1069             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1070                 if ((queues & BIT(i)) && igb_rx_is_oversized(core, i, size)) {
1071                     oversized |= BIT(i);
1072                 }
1073             }
1074             /* 8.19.37 increment ROC if packet is oversized for all queues */
1075             if (oversized == queues) {
1076                 trace_e1000x_rx_oversized(size);
1077                 e1000x_inc_reg_if_not_full(core->mac, ROC);
1078             }
1079             queues &= ~oversized;
1080         }
1081 
1082         if (queues) {
1083             igb_rss_parse_packet(core, core->rx_pkt,
1084                                  external_tx != NULL, rss_info);
1085             /* Sec 8.26.1: PQn = VFn + VQn*8 */
1086             if (rss_info->queue & 1) {
1087                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1088                     if ((queues & BIT(i)) &&
1089                         (core->mac[VMOLR0 + i] & E1000_VMOLR_RSSE)) {
1090                         queues |= BIT(i + IGB_NUM_VM_POOLS);
1091                         queues &= ~BIT(i);
1092                     }
1093                 }
1094             }
1095         }
1096     } else {
1097         bool accepted = e1000x_rx_group_filter(core->mac, ehdr);
1098         if (!accepted) {
1099             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1100                 if (!(macp[1] & E1000_RAH_AV)) {
1101                     continue;
1102                 }
1103                 ra[0] = cpu_to_le32(macp[0]);
1104                 ra[1] = cpu_to_le32(macp[1]);
1105                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1106                     trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2,
1107                                                     MAC_ARG(ehdr->h_dest));
1108 
1109                     accepted = true;
1110                     break;
1111                 }
1112             }
1113         }
1114 
1115         if (accepted) {
1116             igb_rss_parse_packet(core, core->rx_pkt, false, rss_info);
1117             queues = BIT(rss_info->queue);
1118         }
1119     }
1120 
1121     return queues;
1122 }
1123 
1124 static inline void
1125 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1126                        hwaddr *buff_addr)
1127 {
1128     *buff_addr = le64_to_cpu(desc->buffer_addr);
1129 }
1130 
1131 static inline void
1132 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1133                       hwaddr *buff_addr)
1134 {
1135     *buff_addr = le64_to_cpu(desc->read.pkt_addr);
1136 }
1137 
1138 static inline void
1139 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1140                   hwaddr *buff_addr)
1141 {
1142     if (igb_rx_use_legacy_descriptor(core)) {
1143         igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr);
1144     } else {
1145         igb_read_adv_rx_descr(core, &desc->adv, buff_addr);
1146     }
1147 }
1148 
1149 static void
1150 igb_verify_csum_in_sw(IGBCore *core,
1151                       struct NetRxPkt *pkt,
1152                       uint32_t *status_flags,
1153                       EthL4HdrProto l4hdr_proto)
1154 {
1155     bool csum_valid;
1156     uint32_t csum_error;
1157 
1158     if (igb_rx_l3_cso_enabled(core)) {
1159         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1160             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1161         } else {
1162             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1163             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1164         }
1165     } else {
1166         trace_e1000e_rx_metadata_l3_cso_disabled();
1167     }
1168 
1169     if (!igb_rx_l4_cso_enabled(core)) {
1170         trace_e1000e_rx_metadata_l4_cso_disabled();
1171         return;
1172     }
1173 
1174     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1175         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1176         return;
1177     }
1178 
1179     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1180     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1181 
1182     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1183         *status_flags |= E1000_RXD_STAT_UDPCS;
1184     }
1185 }
1186 
1187 static void
1188 igb_build_rx_metadata(IGBCore *core,
1189                       struct NetRxPkt *pkt,
1190                       bool is_eop,
1191                       const E1000E_RSSInfo *rss_info,
1192                       uint16_t *pkt_info, uint16_t *hdr_info,
1193                       uint32_t *rss,
1194                       uint32_t *status_flags,
1195                       uint16_t *ip_id,
1196                       uint16_t *vlan_tag)
1197 {
1198     struct virtio_net_hdr *vhdr;
1199     bool hasip4, hasip6;
1200     EthL4HdrProto l4hdr_proto;
1201 
1202     *status_flags = E1000_RXD_STAT_DD;
1203 
1204     /* No additional metadata needed for non-EOP descriptors */
1205     /* TODO: EOP apply only to status so don't skip whole function. */
1206     if (!is_eop) {
1207         goto func_exit;
1208     }
1209 
1210     *status_flags |= E1000_RXD_STAT_EOP;
1211 
1212     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1213     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1214 
1215     /* VLAN state */
1216     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1217         *status_flags |= E1000_RXD_STAT_VP;
1218         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1219         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1220     }
1221 
1222     /* Packet parsing results */
1223     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1224         if (rss_info->enabled) {
1225             *rss = cpu_to_le32(rss_info->hash);
1226             trace_igb_rx_metadata_rss(*rss);
1227         }
1228     } else if (hasip4) {
1229             *status_flags |= E1000_RXD_STAT_IPIDV;
1230             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1231             trace_e1000e_rx_metadata_ip_id(*ip_id);
1232     }
1233 
1234     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) {
1235         *status_flags |= E1000_RXD_STAT_ACK;
1236         trace_e1000e_rx_metadata_ack();
1237     }
1238 
1239     if (pkt_info) {
1240         *pkt_info = rss_info->enabled ? rss_info->type : 0;
1241 
1242         if (hasip4) {
1243             *pkt_info |= E1000_ADVRXD_PKT_IP4;
1244         }
1245 
1246         if (hasip6) {
1247             *pkt_info |= E1000_ADVRXD_PKT_IP6;
1248         }
1249 
1250         switch (l4hdr_proto) {
1251         case ETH_L4_HDR_PROTO_TCP:
1252             *pkt_info |= E1000_ADVRXD_PKT_TCP;
1253             break;
1254 
1255         case ETH_L4_HDR_PROTO_UDP:
1256             *pkt_info |= E1000_ADVRXD_PKT_UDP;
1257             break;
1258 
1259         default:
1260             break;
1261         }
1262     }
1263 
1264     if (hdr_info) {
1265         *hdr_info = 0;
1266     }
1267 
1268     /* RX CSO information */
1269     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1270         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1271         goto func_exit;
1272     }
1273 
1274     vhdr = net_rx_pkt_get_vhdr(pkt);
1275 
1276     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1277         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1278         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1279         igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1280         goto func_exit;
1281     }
1282 
1283     if (igb_rx_l3_cso_enabled(core)) {
1284         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1285     } else {
1286         trace_e1000e_rx_metadata_l3_cso_disabled();
1287     }
1288 
1289     if (igb_rx_l4_cso_enabled(core)) {
1290         switch (l4hdr_proto) {
1291         case ETH_L4_HDR_PROTO_TCP:
1292             *status_flags |= E1000_RXD_STAT_TCPCS;
1293             break;
1294 
1295         case ETH_L4_HDR_PROTO_UDP:
1296             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1297             break;
1298 
1299         default:
1300             goto func_exit;
1301         }
1302     } else {
1303         trace_e1000e_rx_metadata_l4_cso_disabled();
1304     }
1305 
1306     trace_e1000e_rx_metadata_status_flags(*status_flags);
1307 
1308 func_exit:
1309     *status_flags = cpu_to_le32(*status_flags);
1310 }
1311 
1312 static inline void
1313 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1314                         struct NetRxPkt *pkt,
1315                         const E1000E_RSSInfo *rss_info,
1316                         uint16_t length)
1317 {
1318     uint32_t status_flags, rss;
1319     uint16_t ip_id;
1320 
1321     assert(!rss_info->enabled);
1322     desc->length = cpu_to_le16(length);
1323     desc->csum = 0;
1324 
1325     igb_build_rx_metadata(core, pkt, pkt != NULL,
1326                           rss_info,
1327                           NULL, NULL, &rss,
1328                           &status_flags, &ip_id,
1329                           &desc->special);
1330     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1331     desc->status = (uint8_t) le32_to_cpu(status_flags);
1332 }
1333 
1334 static inline void
1335 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1336                        struct NetRxPkt *pkt,
1337                        const E1000E_RSSInfo *rss_info,
1338                        uint16_t length)
1339 {
1340     memset(&desc->wb, 0, sizeof(desc->wb));
1341 
1342     desc->wb.upper.length = cpu_to_le16(length);
1343 
1344     igb_build_rx_metadata(core, pkt, pkt != NULL,
1345                           rss_info,
1346                           &desc->wb.lower.lo_dword.pkt_info,
1347                           &desc->wb.lower.lo_dword.hdr_info,
1348                           &desc->wb.lower.hi_dword.rss,
1349                           &desc->wb.upper.status_error,
1350                           &desc->wb.lower.hi_dword.csum_ip.ip_id,
1351                           &desc->wb.upper.vlan);
1352 }
1353 
1354 static inline void
1355 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1356 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length)
1357 {
1358     if (igb_rx_use_legacy_descriptor(core)) {
1359         igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, length);
1360     } else {
1361         igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, length);
1362     }
1363 }
1364 
1365 static inline void
1366 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr,
1367                           union e1000_rx_desc_union *desc, dma_addr_t len)
1368 {
1369     if (igb_rx_use_legacy_descriptor(core)) {
1370         struct e1000_rx_desc *d = &desc->legacy;
1371         size_t offset = offsetof(struct e1000_rx_desc, status);
1372         uint8_t status = d->status;
1373 
1374         d->status &= ~E1000_RXD_STAT_DD;
1375         pci_dma_write(dev, addr, desc, len);
1376 
1377         if (status & E1000_RXD_STAT_DD) {
1378             d->status = status;
1379             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1380         }
1381     } else {
1382         union e1000_adv_rx_desc *d = &desc->adv;
1383         size_t offset =
1384             offsetof(union e1000_adv_rx_desc, wb.upper.status_error);
1385         uint32_t status = d->wb.upper.status_error;
1386 
1387         d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1388         pci_dma_write(dev, addr, desc, len);
1389 
1390         if (status & E1000_RXD_STAT_DD) {
1391             d->wb.upper.status_error = status;
1392             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1393         }
1394     }
1395 }
1396 
1397 static void
1398 igb_write_to_rx_buffers(IGBCore *core,
1399                         PCIDevice *d,
1400                         hwaddr ba,
1401                         uint16_t *written,
1402                         const char *data,
1403                         dma_addr_t data_len)
1404 {
1405     trace_igb_rx_desc_buff_write(ba, *written, data, data_len);
1406     pci_dma_write(d, ba + *written, data, data_len);
1407     *written += data_len;
1408 }
1409 
1410 static void
1411 igb_update_rx_stats(IGBCore *core, const E1000E_RingInfo *rxi,
1412                     size_t pkt_size, size_t pkt_fcs_size)
1413 {
1414     eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1415     e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1416 
1417     if (core->mac[MRQC] & 1) {
1418         uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS;
1419 
1420         core->mac[PVFGORC0 + (pool * 64)] += pkt_size + 4;
1421         core->mac[PVFGPRC0 + (pool * 64)]++;
1422         if (pkt_type == ETH_PKT_MCAST) {
1423             core->mac[PVFMPRC0 + (pool * 64)]++;
1424         }
1425     }
1426 }
1427 
1428 static inline bool
1429 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi)
1430 {
1431     return igb_ring_free_descr_num(core, rxi) ==
1432            ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16;
1433 }
1434 
1435 static void
1436 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt,
1437                           const E1000E_RxRing *rxr,
1438                           const E1000E_RSSInfo *rss_info)
1439 {
1440     PCIDevice *d;
1441     dma_addr_t base;
1442     union e1000_rx_desc_union desc;
1443     size_t desc_size;
1444     size_t desc_offset = 0;
1445     size_t iov_ofs = 0;
1446 
1447     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1448     size_t size = net_rx_pkt_get_total_len(pkt);
1449     size_t total_size = size + e1000x_fcs_len(core->mac);
1450     const E1000E_RingInfo *rxi = rxr->i;
1451     size_t bufsize = igb_rxbufsize(core, rxi);
1452 
1453     d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8);
1454     if (!d) {
1455         d = core->owner;
1456     }
1457 
1458     do {
1459         hwaddr ba;
1460         uint16_t written = 0;
1461         bool is_last = false;
1462 
1463         desc_size = total_size - desc_offset;
1464 
1465         if (desc_size > bufsize) {
1466             desc_size = bufsize;
1467         }
1468 
1469         if (igb_ring_empty(core, rxi)) {
1470             return;
1471         }
1472 
1473         base = igb_ring_head_descr(core, rxi);
1474 
1475         pci_dma_read(d, base, &desc, core->rx_desc_len);
1476 
1477         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1478 
1479         igb_read_rx_descr(core, &desc, &ba);
1480 
1481         if (ba) {
1482             if (desc_offset < size) {
1483                 static const uint32_t fcs_pad;
1484                 size_t iov_copy;
1485                 size_t copy_size = size - desc_offset;
1486                 if (copy_size > bufsize) {
1487                     copy_size = bufsize;
1488                 }
1489 
1490                 /* Copy packet payload */
1491                 while (copy_size) {
1492                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1493 
1494                     igb_write_to_rx_buffers(core, d, ba, &written,
1495                                             iov->iov_base + iov_ofs, iov_copy);
1496 
1497                     copy_size -= iov_copy;
1498                     iov_ofs += iov_copy;
1499                     if (iov_ofs == iov->iov_len) {
1500                         iov++;
1501                         iov_ofs = 0;
1502                     }
1503                 }
1504 
1505                 if (desc_offset + desc_size >= total_size) {
1506                     /* Simulate FCS checksum presence in the last descriptor */
1507                     igb_write_to_rx_buffers(core, d, ba, &written,
1508                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1509                 }
1510             }
1511         } else { /* as per intel docs; skip descriptors with null buf addr */
1512             trace_e1000e_rx_null_descriptor();
1513         }
1514         desc_offset += desc_size;
1515         if (desc_offset >= total_size) {
1516             is_last = true;
1517         }
1518 
1519         igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1520                            rss_info, written);
1521         igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len);
1522 
1523         igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1524 
1525     } while (desc_offset < total_size);
1526 
1527     igb_update_rx_stats(core, rxi, size, total_size);
1528 }
1529 
1530 static bool
1531 igb_rx_strip_vlan(IGBCore *core, const E1000E_RingInfo *rxi)
1532 {
1533     if (core->mac[MRQC] & 1) {
1534         uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS;
1535         /* Sec 7.10.3.8: CTRL.VME is ignored, only VMOLR/RPLOLR is used */
1536         return (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) ?
1537                 core->mac[RPLOLR] & E1000_RPLOLR_STRVLAN :
1538                 core->mac[VMOLR0 + pool] & E1000_VMOLR_STRVLAN;
1539     }
1540 
1541     return e1000x_vlan_enabled(core->mac);
1542 }
1543 
1544 static inline void
1545 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt)
1546 {
1547     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1548 
1549     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1550         net_rx_pkt_fix_l4_csum(pkt);
1551     }
1552 }
1553 
1554 ssize_t
1555 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt)
1556 {
1557     return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL);
1558 }
1559 
1560 static ssize_t
1561 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
1562                      bool has_vnet, bool *external_tx)
1563 {
1564     uint16_t queues = 0;
1565     uint32_t n = 0;
1566     union {
1567         L2Header l2_header;
1568         uint8_t octets[ETH_ZLEN];
1569     } buf;
1570     struct iovec min_iov;
1571     size_t size, orig_size;
1572     size_t iov_ofs = 0;
1573     E1000E_RxRing rxr;
1574     E1000E_RSSInfo rss_info;
1575     size_t total_size;
1576     int i;
1577 
1578     trace_e1000e_rx_receive_iov(iovcnt);
1579 
1580     if (external_tx) {
1581         *external_tx = true;
1582     }
1583 
1584     if (!e1000x_hw_rx_enabled(core->mac)) {
1585         return -1;
1586     }
1587 
1588     /* Pull virtio header in */
1589     if (has_vnet) {
1590         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1591         iov_ofs = sizeof(struct virtio_net_hdr);
1592     } else {
1593         net_rx_pkt_unset_vhdr(core->rx_pkt);
1594     }
1595 
1596     orig_size = iov_size(iov, iovcnt);
1597     size = orig_size - iov_ofs;
1598 
1599     /* Pad to minimum Ethernet frame length */
1600     if (size < sizeof(buf)) {
1601         iov_to_buf(iov, iovcnt, iov_ofs, &buf, size);
1602         memset(&buf.octets[size], 0, sizeof(buf) - size);
1603         e1000x_inc_reg_if_not_full(core->mac, RUC);
1604         min_iov.iov_base = &buf;
1605         min_iov.iov_len = size = sizeof(buf);
1606         iovcnt = 1;
1607         iov = &min_iov;
1608         iov_ofs = 0;
1609     } else {
1610         iov_to_buf(iov, iovcnt, iov_ofs, &buf, sizeof(buf.l2_header));
1611     }
1612 
1613     /* Discard oversized packets if !LPE and !SBP. */
1614     if (e1000x_is_oversized(core->mac, size)) {
1615         return orig_size;
1616     }
1617 
1618     net_rx_pkt_set_packet_type(core->rx_pkt,
1619                                get_eth_packet_type(&buf.l2_header.eth));
1620     net_rx_pkt_set_protocols(core->rx_pkt, iov, iovcnt, iov_ofs);
1621 
1622     queues = igb_receive_assign(core, &buf.l2_header, size,
1623                                 &rss_info, external_tx);
1624     if (!queues) {
1625         trace_e1000e_rx_flt_dropped();
1626         return orig_size;
1627     }
1628 
1629     for (i = 0; i < IGB_NUM_QUEUES; i++) {
1630         if (!(queues & BIT(i)) ||
1631             !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
1632             continue;
1633         }
1634 
1635         igb_rx_ring_init(core, &rxr, i);
1636 
1637         net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1638                                    igb_rx_strip_vlan(core, rxr.i),
1639                                    core->mac[VET] & 0xffff);
1640 
1641         total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1642             e1000x_fcs_len(core->mac);
1643 
1644         if (!igb_has_rxbufs(core, rxr.i, total_size)) {
1645             n |= E1000_ICS_RXO;
1646             trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1647             continue;
1648         }
1649 
1650         n |= E1000_ICR_RXDW;
1651 
1652         igb_rx_fix_l4_csum(core, core->rx_pkt);
1653         igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1654 
1655         /* Check if receive descriptor minimum threshold hit */
1656         if (igb_rx_descr_threshold_hit(core, rxr.i)) {
1657             n |= E1000_ICS_RXDMT0;
1658         }
1659 
1660         core->mac[EICR] |= igb_rx_wb_eic(core, rxr.i->idx);
1661 
1662         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1663     }
1664 
1665     trace_e1000e_rx_interrupt_set(n);
1666     igb_set_interrupt_cause(core, n);
1667 
1668     return orig_size;
1669 }
1670 
1671 static inline bool
1672 igb_have_autoneg(IGBCore *core)
1673 {
1674     return core->phy[MII_BMCR] & MII_BMCR_AUTOEN;
1675 }
1676 
1677 static void igb_update_flowctl_status(IGBCore *core)
1678 {
1679     if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) {
1680         trace_e1000e_link_autoneg_flowctl(true);
1681         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1682     } else {
1683         trace_e1000e_link_autoneg_flowctl(false);
1684     }
1685 }
1686 
1687 static inline void
1688 igb_link_down(IGBCore *core)
1689 {
1690     e1000x_update_regs_on_link_down(core->mac, core->phy);
1691     igb_update_flowctl_status(core);
1692 }
1693 
1694 static inline void
1695 igb_set_phy_ctrl(IGBCore *core, uint16_t val)
1696 {
1697     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1698     core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART);
1699 
1700     if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) {
1701         e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer);
1702     }
1703 }
1704 
1705 void igb_core_set_link_status(IGBCore *core)
1706 {
1707     NetClientState *nc = qemu_get_queue(core->owner_nic);
1708     uint32_t old_status = core->mac[STATUS];
1709 
1710     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1711 
1712     if (nc->link_down) {
1713         e1000x_update_regs_on_link_down(core->mac, core->phy);
1714     } else {
1715         if (igb_have_autoneg(core) &&
1716             !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
1717             e1000x_restart_autoneg(core->mac, core->phy,
1718                                    core->autoneg_timer);
1719         } else {
1720             e1000x_update_regs_on_link_up(core->mac, core->phy);
1721             igb_start_recv(core);
1722         }
1723     }
1724 
1725     if (core->mac[STATUS] != old_status) {
1726         igb_set_interrupt_cause(core, E1000_ICR_LSC);
1727     }
1728 }
1729 
1730 static void
1731 igb_set_ctrl(IGBCore *core, int index, uint32_t val)
1732 {
1733     trace_e1000e_core_ctrl_write(index, val);
1734 
1735     /* RST is self clearing */
1736     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1737     core->mac[CTRL_DUP] = core->mac[CTRL];
1738 
1739     trace_e1000e_link_set_params(
1740         !!(val & E1000_CTRL_ASDE),
1741         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1742         !!(val & E1000_CTRL_FRCSPD),
1743         !!(val & E1000_CTRL_FRCDPX),
1744         !!(val & E1000_CTRL_RFCE),
1745         !!(val & E1000_CTRL_TFCE));
1746 
1747     if (val & E1000_CTRL_RST) {
1748         trace_e1000e_core_ctrl_sw_reset();
1749         igb_reset(core, true);
1750     }
1751 
1752     if (val & E1000_CTRL_PHY_RST) {
1753         trace_e1000e_core_ctrl_phy_reset();
1754         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1755     }
1756 }
1757 
1758 static void
1759 igb_set_rfctl(IGBCore *core, int index, uint32_t val)
1760 {
1761     trace_e1000e_rx_set_rfctl(val);
1762 
1763     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1764         trace_e1000e_wrn_iscsi_filtering_not_supported();
1765     }
1766 
1767     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1768         trace_e1000e_wrn_nfsw_filtering_not_supported();
1769     }
1770 
1771     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1772         trace_e1000e_wrn_nfsr_filtering_not_supported();
1773     }
1774 
1775     core->mac[RFCTL] = val;
1776 }
1777 
1778 static void
1779 igb_calc_rxdesclen(IGBCore *core)
1780 {
1781     if (igb_rx_use_legacy_descriptor(core)) {
1782         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1783     } else {
1784         core->rx_desc_len = sizeof(union e1000_adv_rx_desc);
1785     }
1786     trace_e1000e_rx_desc_len(core->rx_desc_len);
1787 }
1788 
1789 static void
1790 igb_set_rx_control(IGBCore *core, int index, uint32_t val)
1791 {
1792     core->mac[RCTL] = val;
1793     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1794 
1795     if (val & E1000_RCTL_DTYP_MASK) {
1796         qemu_log_mask(LOG_GUEST_ERROR,
1797                       "igb: RCTL.DTYP must be zero for compatibility");
1798     }
1799 
1800     if (val & E1000_RCTL_EN) {
1801         igb_calc_rxdesclen(core);
1802         igb_start_recv(core);
1803     }
1804 }
1805 
1806 static inline void
1807 igb_clear_ims_bits(IGBCore *core, uint32_t bits)
1808 {
1809     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1810     core->mac[IMS] &= ~bits;
1811 }
1812 
1813 static inline bool
1814 igb_postpone_interrupt(IGBIntrDelayTimer *timer)
1815 {
1816     if (timer->running) {
1817         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1818 
1819         return true;
1820     }
1821 
1822     if (timer->core->mac[timer->delay_reg] != 0) {
1823         igb_intrmgr_rearm_timer(timer);
1824     }
1825 
1826     return false;
1827 }
1828 
1829 static inline bool
1830 igb_eitr_should_postpone(IGBCore *core, int idx)
1831 {
1832     return igb_postpone_interrupt(&core->eitr[idx]);
1833 }
1834 
1835 static void igb_send_msix(IGBCore *core)
1836 {
1837     uint32_t causes = core->mac[EICR] & core->mac[EIMS];
1838     uint32_t effective_eiac;
1839     int vector;
1840 
1841     for (vector = 0; vector < IGB_INTR_NUM; ++vector) {
1842         if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) {
1843 
1844             trace_e1000e_irq_msix_notify_vec(vector);
1845             igb_msix_notify(core, vector);
1846 
1847             trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]);
1848             effective_eiac = core->mac[EIAC] & BIT(vector);
1849             core->mac[EICR] &= ~effective_eiac;
1850         }
1851     }
1852 }
1853 
1854 static inline void
1855 igb_fix_icr_asserted(IGBCore *core)
1856 {
1857     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
1858     if (core->mac[ICR]) {
1859         core->mac[ICR] |= E1000_ICR_ASSERTED;
1860     }
1861 
1862     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
1863 }
1864 
1865 static void
1866 igb_update_interrupt_state(IGBCore *core)
1867 {
1868     uint32_t icr;
1869     uint32_t causes;
1870     uint32_t int_alloc;
1871 
1872     icr = core->mac[ICR] & core->mac[IMS];
1873 
1874     if (msix_enabled(core->owner)) {
1875         if (icr) {
1876             causes = 0;
1877             if (icr & E1000_ICR_DRSTA) {
1878                 int_alloc = core->mac[IVAR_MISC] & 0xff;
1879                 if (int_alloc & E1000_IVAR_VALID) {
1880                     causes |= BIT(int_alloc & 0x1f);
1881                 }
1882             }
1883             /* Check if other bits (excluding the TCP Timer) are enabled. */
1884             if (icr & ~E1000_ICR_DRSTA) {
1885                 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff;
1886                 if (int_alloc & E1000_IVAR_VALID) {
1887                     causes |= BIT(int_alloc & 0x1f);
1888                 }
1889                 trace_e1000e_irq_add_msi_other(core->mac[EICR]);
1890             }
1891             core->mac[EICR] |= causes;
1892         }
1893 
1894         if ((core->mac[EICR] & core->mac[EIMS])) {
1895             igb_send_msix(core);
1896         }
1897     } else {
1898         igb_fix_icr_asserted(core);
1899 
1900         if (icr) {
1901             core->mac[EICR] |= (icr & E1000_ICR_DRSTA) | E1000_EICR_OTHER;
1902         } else {
1903             core->mac[EICR] &= ~E1000_EICR_OTHER;
1904         }
1905 
1906         trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
1907                                             core->mac[ICR], core->mac[IMS]);
1908 
1909         if (msi_enabled(core->owner)) {
1910             if (icr) {
1911                 msi_notify(core->owner, 0);
1912             }
1913         } else {
1914             if (icr) {
1915                 igb_raise_legacy_irq(core);
1916             } else {
1917                 igb_lower_legacy_irq(core);
1918             }
1919         }
1920     }
1921 }
1922 
1923 static void
1924 igb_set_interrupt_cause(IGBCore *core, uint32_t val)
1925 {
1926     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
1927 
1928     core->mac[ICR] |= val;
1929 
1930     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
1931 
1932     igb_update_interrupt_state(core);
1933 }
1934 
1935 static void igb_set_eics(IGBCore *core, int index, uint32_t val)
1936 {
1937     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1938 
1939     trace_igb_irq_write_eics(val, msix);
1940 
1941     core->mac[EICS] |=
1942         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1943 
1944     /*
1945      * TODO: Move to igb_update_interrupt_state if EICS is modified in other
1946      * places.
1947      */
1948     core->mac[EICR] = core->mac[EICS];
1949 
1950     igb_update_interrupt_state(core);
1951 }
1952 
1953 static void igb_set_eims(IGBCore *core, int index, uint32_t val)
1954 {
1955     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1956 
1957     trace_igb_irq_write_eims(val, msix);
1958 
1959     core->mac[EIMS] |=
1960         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1961 
1962     igb_update_interrupt_state(core);
1963 }
1964 
1965 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn)
1966 {
1967     uint32_t ent = core->mac[VTIVAR_MISC + vfn];
1968 
1969     if ((ent & E1000_IVAR_VALID)) {
1970         core->mac[EICR] |= (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM);
1971         igb_update_interrupt_state(core);
1972     }
1973 }
1974 
1975 static void mailbox_interrupt_to_pf(IGBCore *core)
1976 {
1977     igb_set_interrupt_cause(core, E1000_ICR_VMMB);
1978 }
1979 
1980 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val)
1981 {
1982     uint16_t vfn = index - P2VMAILBOX0;
1983 
1984     trace_igb_set_pfmailbox(vfn, val);
1985 
1986     if (val & E1000_P2VMAILBOX_STS) {
1987         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS;
1988         mailbox_interrupt_to_vf(core, vfn);
1989     }
1990 
1991     if (val & E1000_P2VMAILBOX_ACK) {
1992         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK;
1993         mailbox_interrupt_to_vf(core, vfn);
1994     }
1995 
1996     /* Buffer Taken by PF (can be set only if the VFU is cleared). */
1997     if (val & E1000_P2VMAILBOX_PFU) {
1998         if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) {
1999             core->mac[index] |= E1000_P2VMAILBOX_PFU;
2000             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU;
2001         }
2002     } else {
2003         core->mac[index] &= ~E1000_P2VMAILBOX_PFU;
2004         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU;
2005     }
2006 
2007     if (val & E1000_P2VMAILBOX_RVFU) {
2008         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU;
2009         core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) |
2010                                 (E1000_MBVFICR_VFREQ_VF1 << vfn));
2011     }
2012 }
2013 
2014 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val)
2015 {
2016     uint16_t vfn = index - V2PMAILBOX0;
2017 
2018     trace_igb_set_vfmailbox(vfn, val);
2019 
2020     if (val & E1000_V2PMAILBOX_REQ) {
2021         core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn;
2022         mailbox_interrupt_to_pf(core);
2023     }
2024 
2025     if (val & E1000_V2PMAILBOX_ACK) {
2026         core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn;
2027         mailbox_interrupt_to_pf(core);
2028     }
2029 
2030     /* Buffer Taken by VF (can be set only if the PFU is cleared). */
2031     if (val & E1000_V2PMAILBOX_VFU) {
2032         if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) {
2033             core->mac[index] |= E1000_V2PMAILBOX_VFU;
2034             core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU;
2035         }
2036     } else {
2037         core->mac[index] &= ~E1000_V2PMAILBOX_VFU;
2038         core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU;
2039     }
2040 }
2041 
2042 static void igb_vf_reset(IGBCore *core, uint16_t vfn)
2043 {
2044     uint16_t qn0 = vfn;
2045     uint16_t qn1 = vfn + IGB_NUM_VM_POOLS;
2046 
2047     /* disable Rx and Tx for the VF*/
2048     core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2049     core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2050     core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2051     core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2052     core->mac[VFRE] &= ~BIT(vfn);
2053     core->mac[VFTE] &= ~BIT(vfn);
2054     /* indicate VF reset to PF */
2055     core->mac[VFLRE] |= BIT(vfn);
2056     /* VFLRE and mailbox use the same interrupt cause */
2057     mailbox_interrupt_to_pf(core);
2058 }
2059 
2060 static void igb_w1c(IGBCore *core, int index, uint32_t val)
2061 {
2062     core->mac[index] &= ~val;
2063 }
2064 
2065 static void igb_set_eimc(IGBCore *core, int index, uint32_t val)
2066 {
2067     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2068 
2069     /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */
2070     core->mac[EIMS] &=
2071         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2072 
2073     trace_igb_irq_write_eimc(val, core->mac[EIMS], msix);
2074     igb_update_interrupt_state(core);
2075 }
2076 
2077 static void igb_set_eiac(IGBCore *core, int index, uint32_t val)
2078 {
2079     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2080 
2081     if (msix) {
2082         trace_igb_irq_write_eiac(val);
2083 
2084         /*
2085          * TODO: When using IOV, the bits that correspond to MSI-X vectors
2086          * that are assigned to a VF are read-only.
2087          */
2088         core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK);
2089     }
2090 }
2091 
2092 static void igb_set_eiam(IGBCore *core, int index, uint32_t val)
2093 {
2094     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2095 
2096     /*
2097      * TODO: When using IOV, the bits that correspond to MSI-X vectors that
2098      * are assigned to a VF are read-only.
2099      */
2100     core->mac[EIAM] |=
2101         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2102 
2103     trace_igb_irq_write_eiam(val, msix);
2104 }
2105 
2106 static void igb_set_eicr(IGBCore *core, int index, uint32_t val)
2107 {
2108     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2109 
2110     /*
2111      * TODO: In IOV mode, only bit zero of this vector is available for the PF
2112      * function.
2113      */
2114     core->mac[EICR] &=
2115         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2116 
2117     trace_igb_irq_write_eicr(val, msix);
2118     igb_update_interrupt_state(core);
2119 }
2120 
2121 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val)
2122 {
2123     uint16_t vfn;
2124 
2125     if (val & E1000_CTRL_RST) {
2126         vfn = (index - PVTCTRL0) / 0x40;
2127         igb_vf_reset(core, vfn);
2128     }
2129 }
2130 
2131 static void igb_set_vteics(IGBCore *core, int index, uint32_t val)
2132 {
2133     uint16_t vfn = (index - PVTEICS0) / 0x40;
2134 
2135     core->mac[index] = val;
2136     igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2137 }
2138 
2139 static void igb_set_vteims(IGBCore *core, int index, uint32_t val)
2140 {
2141     uint16_t vfn = (index - PVTEIMS0) / 0x40;
2142 
2143     core->mac[index] = val;
2144     igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2145 }
2146 
2147 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val)
2148 {
2149     uint16_t vfn = (index - PVTEIMC0) / 0x40;
2150 
2151     core->mac[index] = val;
2152     igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2153 }
2154 
2155 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val)
2156 {
2157     uint16_t vfn = (index - PVTEIAC0) / 0x40;
2158 
2159     core->mac[index] = val;
2160     igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2161 }
2162 
2163 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val)
2164 {
2165     uint16_t vfn = (index - PVTEIAM0) / 0x40;
2166 
2167     core->mac[index] = val;
2168     igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2169 }
2170 
2171 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val)
2172 {
2173     uint16_t vfn = (index - PVTEICR0) / 0x40;
2174 
2175     core->mac[index] = val;
2176     igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2177 }
2178 
2179 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val)
2180 {
2181     uint16_t vfn = (index - VTIVAR);
2182     uint16_t qn = vfn;
2183     uint8_t ent;
2184     int n;
2185 
2186     core->mac[index] = val;
2187 
2188     /* Get assigned vector associated with queue Rx#0. */
2189     if ((val & E1000_IVAR_VALID)) {
2190         n = igb_ivar_entry_rx(qn);
2191         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7)));
2192         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2193     }
2194 
2195     /* Get assigned vector associated with queue Tx#0 */
2196     ent = val >> 8;
2197     if ((ent & E1000_IVAR_VALID)) {
2198         n = igb_ivar_entry_tx(qn);
2199         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7)));
2200         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2201     }
2202 
2203     /*
2204      * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now.
2205      */
2206 }
2207 
2208 static inline void
2209 igb_autoneg_timer(void *opaque)
2210 {
2211     IGBCore *core = opaque;
2212     if (!qemu_get_queue(core->owner_nic)->link_down) {
2213         e1000x_update_regs_on_autoneg_done(core->mac, core->phy);
2214         igb_start_recv(core);
2215 
2216         igb_update_flowctl_status(core);
2217         /* signal link status change to the guest */
2218         igb_set_interrupt_cause(core, E1000_ICR_LSC);
2219     }
2220 }
2221 
2222 static inline uint16_t
2223 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2224 {
2225     uint16_t index = (addr & 0x1ffff) >> 2;
2226     return index + (mac_reg_access[index] & 0xfffe);
2227 }
2228 
2229 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = {
2230     [MII_BMCR]                   = PHY_RW,
2231     [MII_BMSR]                   = PHY_R,
2232     [MII_PHYID1]                 = PHY_R,
2233     [MII_PHYID2]                 = PHY_R,
2234     [MII_ANAR]                   = PHY_RW,
2235     [MII_ANLPAR]                 = PHY_R,
2236     [MII_ANER]                   = PHY_R,
2237     [MII_ANNP]                   = PHY_RW,
2238     [MII_ANLPRNP]                = PHY_R,
2239     [MII_CTRL1000]               = PHY_RW,
2240     [MII_STAT1000]               = PHY_R,
2241     [MII_EXTSTAT]                = PHY_R,
2242 
2243     [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW,
2244     [IGP01E1000_PHY_PORT_STATUS] = PHY_R,
2245     [IGP01E1000_PHY_PORT_CTRL]   = PHY_RW,
2246     [IGP01E1000_PHY_LINK_HEALTH] = PHY_R,
2247     [IGP02E1000_PHY_POWER_MGMT]  = PHY_RW,
2248     [IGP01E1000_PHY_PAGE_SELECT] = PHY_W
2249 };
2250 
2251 static void
2252 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data)
2253 {
2254     assert(addr <= MAX_PHY_REG_ADDRESS);
2255 
2256     if (addr == MII_BMCR) {
2257         igb_set_phy_ctrl(core, data);
2258     } else {
2259         core->phy[addr] = data;
2260     }
2261 }
2262 
2263 static void
2264 igb_set_mdic(IGBCore *core, int index, uint32_t val)
2265 {
2266     uint32_t data = val & E1000_MDIC_DATA_MASK;
2267     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2268 
2269     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2270         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2271     } else if (val & E1000_MDIC_OP_READ) {
2272         if (!(igb_phy_regcap[addr] & PHY_R)) {
2273             trace_igb_core_mdic_read_unhandled(addr);
2274             val |= E1000_MDIC_ERROR;
2275         } else {
2276             val = (val ^ data) | core->phy[addr];
2277             trace_igb_core_mdic_read(addr, val);
2278         }
2279     } else if (val & E1000_MDIC_OP_WRITE) {
2280         if (!(igb_phy_regcap[addr] & PHY_W)) {
2281             trace_igb_core_mdic_write_unhandled(addr);
2282             val |= E1000_MDIC_ERROR;
2283         } else {
2284             trace_igb_core_mdic_write(addr, data);
2285             igb_phy_reg_write(core, addr, data);
2286         }
2287     }
2288     core->mac[MDIC] = val | E1000_MDIC_READY;
2289 
2290     if (val & E1000_MDIC_INT_EN) {
2291         igb_set_interrupt_cause(core, E1000_ICR_MDAC);
2292     }
2293 }
2294 
2295 static void
2296 igb_set_rdt(IGBCore *core, int index, uint32_t val)
2297 {
2298     core->mac[index] = val & 0xffff;
2299     trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val);
2300     igb_start_recv(core);
2301 }
2302 
2303 static void
2304 igb_set_status(IGBCore *core, int index, uint32_t val)
2305 {
2306     if ((val & E1000_STATUS_PHYRA) == 0) {
2307         core->mac[index] &= ~E1000_STATUS_PHYRA;
2308     }
2309 }
2310 
2311 static void
2312 igb_set_ctrlext(IGBCore *core, int index, uint32_t val)
2313 {
2314     trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2315                                   !!(val & E1000_CTRL_EXT_SPD_BYPS),
2316                                   !!(val & E1000_CTRL_EXT_PFRSTD));
2317 
2318     /* Zero self-clearing bits */
2319     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2320     core->mac[CTRL_EXT] = val;
2321 
2322     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) {
2323         for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
2324             core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI;
2325             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD;
2326         }
2327     }
2328 }
2329 
2330 static void
2331 igb_set_pbaclr(IGBCore *core, int index, uint32_t val)
2332 {
2333     int i;
2334 
2335     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2336 
2337     if (!msix_enabled(core->owner)) {
2338         return;
2339     }
2340 
2341     for (i = 0; i < IGB_INTR_NUM; i++) {
2342         if (core->mac[PBACLR] & BIT(i)) {
2343             msix_clr_pending(core->owner, i);
2344         }
2345     }
2346 }
2347 
2348 static void
2349 igb_set_fcrth(IGBCore *core, int index, uint32_t val)
2350 {
2351     core->mac[FCRTH] = val & 0xFFF8;
2352 }
2353 
2354 static void
2355 igb_set_fcrtl(IGBCore *core, int index, uint32_t val)
2356 {
2357     core->mac[FCRTL] = val & 0x8000FFF8;
2358 }
2359 
2360 #define IGB_LOW_BITS_SET_FUNC(num)                             \
2361     static void                                                \
2362     igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \
2363     {                                                          \
2364         core->mac[index] = val & (BIT(num) - 1);               \
2365     }
2366 
2367 IGB_LOW_BITS_SET_FUNC(4)
2368 IGB_LOW_BITS_SET_FUNC(13)
2369 IGB_LOW_BITS_SET_FUNC(16)
2370 
2371 static void
2372 igb_set_dlen(IGBCore *core, int index, uint32_t val)
2373 {
2374     core->mac[index] = val & 0xffff0;
2375 }
2376 
2377 static void
2378 igb_set_dbal(IGBCore *core, int index, uint32_t val)
2379 {
2380     core->mac[index] = val & E1000_XDBAL_MASK;
2381 }
2382 
2383 static void
2384 igb_set_tdt(IGBCore *core, int index, uint32_t val)
2385 {
2386     IGB_TxRing txr;
2387     int qn = igb_mq_queue_idx(TDT0, index);
2388 
2389     core->mac[index] = val & 0xffff;
2390 
2391     igb_tx_ring_init(core, &txr, qn);
2392     igb_start_xmit(core, &txr);
2393 }
2394 
2395 static void
2396 igb_set_ics(IGBCore *core, int index, uint32_t val)
2397 {
2398     trace_e1000e_irq_write_ics(val);
2399     igb_set_interrupt_cause(core, val);
2400 }
2401 
2402 static void
2403 igb_set_imc(IGBCore *core, int index, uint32_t val)
2404 {
2405     trace_e1000e_irq_ims_clear_set_imc(val);
2406     igb_clear_ims_bits(core, val);
2407     igb_update_interrupt_state(core);
2408 }
2409 
2410 static void
2411 igb_set_ims(IGBCore *core, int index, uint32_t val)
2412 {
2413     uint32_t valid_val = val & 0x77D4FBFD;
2414 
2415     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2416     core->mac[IMS] |= valid_val;
2417     igb_update_interrupt_state(core);
2418 }
2419 
2420 static void igb_commit_icr(IGBCore *core)
2421 {
2422     /*
2423      * If GPIE.NSICR = 0, then the clear of IMS will occur only if at
2424      * least one bit is set in the IMS and there is a true interrupt as
2425      * reflected in ICR.INTA.
2426      */
2427     if ((core->mac[GPIE] & E1000_GPIE_NSICR) ||
2428         (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) {
2429         igb_clear_ims_bits(core, core->mac[IAM]);
2430     }
2431 
2432     igb_update_interrupt_state(core);
2433 }
2434 
2435 static void igb_set_icr(IGBCore *core, int index, uint32_t val)
2436 {
2437     uint32_t icr = core->mac[ICR] & ~val;
2438 
2439     trace_igb_irq_icr_write(val, core->mac[ICR], icr);
2440     core->mac[ICR] = icr;
2441     igb_commit_icr(core);
2442 }
2443 
2444 static uint32_t
2445 igb_mac_readreg(IGBCore *core, int index)
2446 {
2447     return core->mac[index];
2448 }
2449 
2450 static uint32_t
2451 igb_mac_ics_read(IGBCore *core, int index)
2452 {
2453     trace_e1000e_irq_read_ics(core->mac[ICS]);
2454     return core->mac[ICS];
2455 }
2456 
2457 static uint32_t
2458 igb_mac_ims_read(IGBCore *core, int index)
2459 {
2460     trace_e1000e_irq_read_ims(core->mac[IMS]);
2461     return core->mac[IMS];
2462 }
2463 
2464 static uint32_t
2465 igb_mac_swsm_read(IGBCore *core, int index)
2466 {
2467     uint32_t val = core->mac[SWSM];
2468     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2469     return val;
2470 }
2471 
2472 static uint32_t
2473 igb_mac_eitr_read(IGBCore *core, int index)
2474 {
2475     return core->eitr_guest_value[index - EITR0];
2476 }
2477 
2478 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index)
2479 {
2480     uint32_t val = core->mac[index];
2481 
2482     core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK |
2483                           E1000_V2PMAILBOX_RSTD);
2484 
2485     return val;
2486 }
2487 
2488 static uint32_t
2489 igb_mac_icr_read(IGBCore *core, int index)
2490 {
2491     uint32_t ret = core->mac[ICR];
2492     trace_e1000e_irq_icr_read_entry(ret);
2493 
2494     if (core->mac[GPIE] & E1000_GPIE_NSICR) {
2495         trace_igb_irq_icr_clear_gpie_nsicr();
2496         core->mac[ICR] = 0;
2497     } else if (core->mac[IMS] == 0) {
2498         trace_e1000e_irq_icr_clear_zero_ims();
2499         core->mac[ICR] = 0;
2500     } else if (!msix_enabled(core->owner)) {
2501         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2502         core->mac[ICR] = 0;
2503     }
2504 
2505     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2506     igb_commit_icr(core);
2507     return ret;
2508 }
2509 
2510 static uint32_t
2511 igb_mac_read_clr4(IGBCore *core, int index)
2512 {
2513     uint32_t ret = core->mac[index];
2514 
2515     core->mac[index] = 0;
2516     return ret;
2517 }
2518 
2519 static uint32_t
2520 igb_mac_read_clr8(IGBCore *core, int index)
2521 {
2522     uint32_t ret = core->mac[index];
2523 
2524     core->mac[index] = 0;
2525     core->mac[index - 1] = 0;
2526     return ret;
2527 }
2528 
2529 static uint32_t
2530 igb_get_ctrl(IGBCore *core, int index)
2531 {
2532     uint32_t val = core->mac[CTRL];
2533 
2534     trace_e1000e_link_read_params(
2535         !!(val & E1000_CTRL_ASDE),
2536         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2537         !!(val & E1000_CTRL_FRCSPD),
2538         !!(val & E1000_CTRL_FRCDPX),
2539         !!(val & E1000_CTRL_RFCE),
2540         !!(val & E1000_CTRL_TFCE));
2541 
2542     return val;
2543 }
2544 
2545 static uint32_t igb_get_status(IGBCore *core, int index)
2546 {
2547     uint32_t res = core->mac[STATUS];
2548     uint16_t num_vfs = pcie_sriov_num_vfs(core->owner);
2549 
2550     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2551         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2552     } else {
2553         res |= E1000_STATUS_FD;
2554     }
2555 
2556     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2557         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2558         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2559         case E1000_CTRL_SPD_10:
2560             res |= E1000_STATUS_SPEED_10;
2561             break;
2562         case E1000_CTRL_SPD_100:
2563             res |= E1000_STATUS_SPEED_100;
2564             break;
2565         case E1000_CTRL_SPD_1000:
2566         default:
2567             res |= E1000_STATUS_SPEED_1000;
2568             break;
2569         }
2570     } else {
2571         res |= E1000_STATUS_SPEED_1000;
2572     }
2573 
2574     if (num_vfs) {
2575         res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT;
2576         res |= E1000_STATUS_IOV_MODE;
2577     }
2578 
2579     /*
2580      * Windows driver 12.18.9.23 resets if E1000_STATUS_GIO_MASTER_ENABLE is
2581      * left set after E1000_CTRL_LRST is set.
2582      */
2583     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE) &&
2584         !(core->mac[CTRL] & E1000_CTRL_LRST)) {
2585         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2586     }
2587 
2588     return res;
2589 }
2590 
2591 static void
2592 igb_mac_writereg(IGBCore *core, int index, uint32_t val)
2593 {
2594     core->mac[index] = val;
2595 }
2596 
2597 static void
2598 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val)
2599 {
2600     uint32_t macaddr[2];
2601 
2602     core->mac[index] = val;
2603 
2604     macaddr[0] = cpu_to_le32(core->mac[RA]);
2605     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2606     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2607         (uint8_t *) macaddr);
2608 
2609     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2610 }
2611 
2612 static void
2613 igb_set_eecd(IGBCore *core, int index, uint32_t val)
2614 {
2615     static const uint32_t ro_bits = E1000_EECD_PRES          |
2616                                     E1000_EECD_AUTO_RD       |
2617                                     E1000_EECD_SIZE_EX_MASK;
2618 
2619     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2620 }
2621 
2622 static void
2623 igb_set_eerd(IGBCore *core, int index, uint32_t val)
2624 {
2625     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2626     uint32_t flags = 0;
2627     uint32_t data = 0;
2628 
2629     if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2630         data = core->eeprom[addr];
2631         flags = E1000_EERW_DONE;
2632     }
2633 
2634     core->mac[EERD] = flags                           |
2635                       (addr << E1000_EERW_ADDR_SHIFT) |
2636                       (data << E1000_EERW_DATA_SHIFT);
2637 }
2638 
2639 static void
2640 igb_set_eitr(IGBCore *core, int index, uint32_t val)
2641 {
2642     uint32_t eitr_num = index - EITR0;
2643 
2644     trace_igb_irq_eitr_set(eitr_num, val);
2645 
2646     core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR;
2647     core->mac[index] = val & 0x7FFE;
2648 }
2649 
2650 static void
2651 igb_update_rx_offloads(IGBCore *core)
2652 {
2653     int cso_state = igb_rx_l4_cso_enabled(core);
2654 
2655     trace_e1000e_rx_set_cso(cso_state);
2656 
2657     if (core->has_vnet) {
2658         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2659                          cso_state, 0, 0, 0, 0);
2660     }
2661 }
2662 
2663 static void
2664 igb_set_rxcsum(IGBCore *core, int index, uint32_t val)
2665 {
2666     core->mac[RXCSUM] = val;
2667     igb_update_rx_offloads(core);
2668 }
2669 
2670 static void
2671 igb_set_gcr(IGBCore *core, int index, uint32_t val)
2672 {
2673     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2674     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2675 }
2676 
2677 static uint32_t igb_get_systiml(IGBCore *core, int index)
2678 {
2679     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2680     return core->mac[SYSTIML];
2681 }
2682 
2683 static uint32_t igb_get_rxsatrh(IGBCore *core, int index)
2684 {
2685     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2686     return core->mac[RXSATRH];
2687 }
2688 
2689 static uint32_t igb_get_txstmph(IGBCore *core, int index)
2690 {
2691     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2692     return core->mac[TXSTMPH];
2693 }
2694 
2695 static void igb_set_timinca(IGBCore *core, int index, uint32_t val)
2696 {
2697     e1000x_set_timinca(core->mac, &core->timadj, val);
2698 }
2699 
2700 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val)
2701 {
2702     core->mac[TIMADJH] = val;
2703     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2704 }
2705 
2706 #define igb_getreg(x)    [x] = igb_mac_readreg
2707 typedef uint32_t (*readops)(IGBCore *, int);
2708 static const readops igb_macreg_readops[] = {
2709     igb_getreg(WUFC),
2710     igb_getreg(MANC),
2711     igb_getreg(TOTL),
2712     igb_getreg(RDT0),
2713     igb_getreg(RDT1),
2714     igb_getreg(RDT2),
2715     igb_getreg(RDT3),
2716     igb_getreg(RDT4),
2717     igb_getreg(RDT5),
2718     igb_getreg(RDT6),
2719     igb_getreg(RDT7),
2720     igb_getreg(RDT8),
2721     igb_getreg(RDT9),
2722     igb_getreg(RDT10),
2723     igb_getreg(RDT11),
2724     igb_getreg(RDT12),
2725     igb_getreg(RDT13),
2726     igb_getreg(RDT14),
2727     igb_getreg(RDT15),
2728     igb_getreg(RDBAH0),
2729     igb_getreg(RDBAH1),
2730     igb_getreg(RDBAH2),
2731     igb_getreg(RDBAH3),
2732     igb_getreg(RDBAH4),
2733     igb_getreg(RDBAH5),
2734     igb_getreg(RDBAH6),
2735     igb_getreg(RDBAH7),
2736     igb_getreg(RDBAH8),
2737     igb_getreg(RDBAH9),
2738     igb_getreg(RDBAH10),
2739     igb_getreg(RDBAH11),
2740     igb_getreg(RDBAH12),
2741     igb_getreg(RDBAH13),
2742     igb_getreg(RDBAH14),
2743     igb_getreg(RDBAH15),
2744     igb_getreg(TDBAL0),
2745     igb_getreg(TDBAL1),
2746     igb_getreg(TDBAL2),
2747     igb_getreg(TDBAL3),
2748     igb_getreg(TDBAL4),
2749     igb_getreg(TDBAL5),
2750     igb_getreg(TDBAL6),
2751     igb_getreg(TDBAL7),
2752     igb_getreg(TDBAL8),
2753     igb_getreg(TDBAL9),
2754     igb_getreg(TDBAL10),
2755     igb_getreg(TDBAL11),
2756     igb_getreg(TDBAL12),
2757     igb_getreg(TDBAL13),
2758     igb_getreg(TDBAL14),
2759     igb_getreg(TDBAL15),
2760     igb_getreg(RDLEN0),
2761     igb_getreg(RDLEN1),
2762     igb_getreg(RDLEN2),
2763     igb_getreg(RDLEN3),
2764     igb_getreg(RDLEN4),
2765     igb_getreg(RDLEN5),
2766     igb_getreg(RDLEN6),
2767     igb_getreg(RDLEN7),
2768     igb_getreg(RDLEN8),
2769     igb_getreg(RDLEN9),
2770     igb_getreg(RDLEN10),
2771     igb_getreg(RDLEN11),
2772     igb_getreg(RDLEN12),
2773     igb_getreg(RDLEN13),
2774     igb_getreg(RDLEN14),
2775     igb_getreg(RDLEN15),
2776     igb_getreg(SRRCTL0),
2777     igb_getreg(SRRCTL1),
2778     igb_getreg(SRRCTL2),
2779     igb_getreg(SRRCTL3),
2780     igb_getreg(SRRCTL4),
2781     igb_getreg(SRRCTL5),
2782     igb_getreg(SRRCTL6),
2783     igb_getreg(SRRCTL7),
2784     igb_getreg(SRRCTL8),
2785     igb_getreg(SRRCTL9),
2786     igb_getreg(SRRCTL10),
2787     igb_getreg(SRRCTL11),
2788     igb_getreg(SRRCTL12),
2789     igb_getreg(SRRCTL13),
2790     igb_getreg(SRRCTL14),
2791     igb_getreg(SRRCTL15),
2792     igb_getreg(LATECOL),
2793     igb_getreg(XONTXC),
2794     igb_getreg(TDFH),
2795     igb_getreg(TDFT),
2796     igb_getreg(TDFHS),
2797     igb_getreg(TDFTS),
2798     igb_getreg(TDFPC),
2799     igb_getreg(WUS),
2800     igb_getreg(RDFH),
2801     igb_getreg(RDFT),
2802     igb_getreg(RDFHS),
2803     igb_getreg(RDFTS),
2804     igb_getreg(RDFPC),
2805     igb_getreg(GORCL),
2806     igb_getreg(MGTPRC),
2807     igb_getreg(EERD),
2808     igb_getreg(EIAC),
2809     igb_getreg(MANC2H),
2810     igb_getreg(RXCSUM),
2811     igb_getreg(GSCL_3),
2812     igb_getreg(GSCN_2),
2813     igb_getreg(FCAH),
2814     igb_getreg(FCRTH),
2815     igb_getreg(FLOP),
2816     igb_getreg(RXSTMPH),
2817     igb_getreg(TXSTMPL),
2818     igb_getreg(TIMADJL),
2819     igb_getreg(RDH0),
2820     igb_getreg(RDH1),
2821     igb_getreg(RDH2),
2822     igb_getreg(RDH3),
2823     igb_getreg(RDH4),
2824     igb_getreg(RDH5),
2825     igb_getreg(RDH6),
2826     igb_getreg(RDH7),
2827     igb_getreg(RDH8),
2828     igb_getreg(RDH9),
2829     igb_getreg(RDH10),
2830     igb_getreg(RDH11),
2831     igb_getreg(RDH12),
2832     igb_getreg(RDH13),
2833     igb_getreg(RDH14),
2834     igb_getreg(RDH15),
2835     igb_getreg(TDT0),
2836     igb_getreg(TDT1),
2837     igb_getreg(TDT2),
2838     igb_getreg(TDT3),
2839     igb_getreg(TDT4),
2840     igb_getreg(TDT5),
2841     igb_getreg(TDT6),
2842     igb_getreg(TDT7),
2843     igb_getreg(TDT8),
2844     igb_getreg(TDT9),
2845     igb_getreg(TDT10),
2846     igb_getreg(TDT11),
2847     igb_getreg(TDT12),
2848     igb_getreg(TDT13),
2849     igb_getreg(TDT14),
2850     igb_getreg(TDT15),
2851     igb_getreg(TNCRS),
2852     igb_getreg(RJC),
2853     igb_getreg(IAM),
2854     igb_getreg(GSCL_2),
2855     igb_getreg(TIPG),
2856     igb_getreg(FLMNGCTL),
2857     igb_getreg(FLMNGCNT),
2858     igb_getreg(TSYNCTXCTL),
2859     igb_getreg(EEMNGDATA),
2860     igb_getreg(CTRL_EXT),
2861     igb_getreg(SYSTIMH),
2862     igb_getreg(EEMNGCTL),
2863     igb_getreg(FLMNGDATA),
2864     igb_getreg(TSYNCRXCTL),
2865     igb_getreg(LEDCTL),
2866     igb_getreg(TCTL),
2867     igb_getreg(TCTL_EXT),
2868     igb_getreg(DTXCTL),
2869     igb_getreg(RXPBS),
2870     igb_getreg(TDH0),
2871     igb_getreg(TDH1),
2872     igb_getreg(TDH2),
2873     igb_getreg(TDH3),
2874     igb_getreg(TDH4),
2875     igb_getreg(TDH5),
2876     igb_getreg(TDH6),
2877     igb_getreg(TDH7),
2878     igb_getreg(TDH8),
2879     igb_getreg(TDH9),
2880     igb_getreg(TDH10),
2881     igb_getreg(TDH11),
2882     igb_getreg(TDH12),
2883     igb_getreg(TDH13),
2884     igb_getreg(TDH14),
2885     igb_getreg(TDH15),
2886     igb_getreg(ECOL),
2887     igb_getreg(DC),
2888     igb_getreg(RLEC),
2889     igb_getreg(XOFFTXC),
2890     igb_getreg(RFC),
2891     igb_getreg(RNBC),
2892     igb_getreg(MGTPTC),
2893     igb_getreg(TIMINCA),
2894     igb_getreg(FACTPS),
2895     igb_getreg(GSCL_1),
2896     igb_getreg(GSCN_0),
2897     igb_getreg(PBACLR),
2898     igb_getreg(FCTTV),
2899     igb_getreg(RXSATRL),
2900     igb_getreg(TORL),
2901     igb_getreg(TDLEN0),
2902     igb_getreg(TDLEN1),
2903     igb_getreg(TDLEN2),
2904     igb_getreg(TDLEN3),
2905     igb_getreg(TDLEN4),
2906     igb_getreg(TDLEN5),
2907     igb_getreg(TDLEN6),
2908     igb_getreg(TDLEN7),
2909     igb_getreg(TDLEN8),
2910     igb_getreg(TDLEN9),
2911     igb_getreg(TDLEN10),
2912     igb_getreg(TDLEN11),
2913     igb_getreg(TDLEN12),
2914     igb_getreg(TDLEN13),
2915     igb_getreg(TDLEN14),
2916     igb_getreg(TDLEN15),
2917     igb_getreg(MCC),
2918     igb_getreg(WUC),
2919     igb_getreg(EECD),
2920     igb_getreg(FCRTV),
2921     igb_getreg(TXDCTL0),
2922     igb_getreg(TXDCTL1),
2923     igb_getreg(TXDCTL2),
2924     igb_getreg(TXDCTL3),
2925     igb_getreg(TXDCTL4),
2926     igb_getreg(TXDCTL5),
2927     igb_getreg(TXDCTL6),
2928     igb_getreg(TXDCTL7),
2929     igb_getreg(TXDCTL8),
2930     igb_getreg(TXDCTL9),
2931     igb_getreg(TXDCTL10),
2932     igb_getreg(TXDCTL11),
2933     igb_getreg(TXDCTL12),
2934     igb_getreg(TXDCTL13),
2935     igb_getreg(TXDCTL14),
2936     igb_getreg(TXDCTL15),
2937     igb_getreg(TXCTL0),
2938     igb_getreg(TXCTL1),
2939     igb_getreg(TXCTL2),
2940     igb_getreg(TXCTL3),
2941     igb_getreg(TXCTL4),
2942     igb_getreg(TXCTL5),
2943     igb_getreg(TXCTL6),
2944     igb_getreg(TXCTL7),
2945     igb_getreg(TXCTL8),
2946     igb_getreg(TXCTL9),
2947     igb_getreg(TXCTL10),
2948     igb_getreg(TXCTL11),
2949     igb_getreg(TXCTL12),
2950     igb_getreg(TXCTL13),
2951     igb_getreg(TXCTL14),
2952     igb_getreg(TXCTL15),
2953     igb_getreg(TDWBAL0),
2954     igb_getreg(TDWBAL1),
2955     igb_getreg(TDWBAL2),
2956     igb_getreg(TDWBAL3),
2957     igb_getreg(TDWBAL4),
2958     igb_getreg(TDWBAL5),
2959     igb_getreg(TDWBAL6),
2960     igb_getreg(TDWBAL7),
2961     igb_getreg(TDWBAL8),
2962     igb_getreg(TDWBAL9),
2963     igb_getreg(TDWBAL10),
2964     igb_getreg(TDWBAL11),
2965     igb_getreg(TDWBAL12),
2966     igb_getreg(TDWBAL13),
2967     igb_getreg(TDWBAL14),
2968     igb_getreg(TDWBAL15),
2969     igb_getreg(TDWBAH0),
2970     igb_getreg(TDWBAH1),
2971     igb_getreg(TDWBAH2),
2972     igb_getreg(TDWBAH3),
2973     igb_getreg(TDWBAH4),
2974     igb_getreg(TDWBAH5),
2975     igb_getreg(TDWBAH6),
2976     igb_getreg(TDWBAH7),
2977     igb_getreg(TDWBAH8),
2978     igb_getreg(TDWBAH9),
2979     igb_getreg(TDWBAH10),
2980     igb_getreg(TDWBAH11),
2981     igb_getreg(TDWBAH12),
2982     igb_getreg(TDWBAH13),
2983     igb_getreg(TDWBAH14),
2984     igb_getreg(TDWBAH15),
2985     igb_getreg(PVTCTRL0),
2986     igb_getreg(PVTCTRL1),
2987     igb_getreg(PVTCTRL2),
2988     igb_getreg(PVTCTRL3),
2989     igb_getreg(PVTCTRL4),
2990     igb_getreg(PVTCTRL5),
2991     igb_getreg(PVTCTRL6),
2992     igb_getreg(PVTCTRL7),
2993     igb_getreg(PVTEIMS0),
2994     igb_getreg(PVTEIMS1),
2995     igb_getreg(PVTEIMS2),
2996     igb_getreg(PVTEIMS3),
2997     igb_getreg(PVTEIMS4),
2998     igb_getreg(PVTEIMS5),
2999     igb_getreg(PVTEIMS6),
3000     igb_getreg(PVTEIMS7),
3001     igb_getreg(PVTEIAC0),
3002     igb_getreg(PVTEIAC1),
3003     igb_getreg(PVTEIAC2),
3004     igb_getreg(PVTEIAC3),
3005     igb_getreg(PVTEIAC4),
3006     igb_getreg(PVTEIAC5),
3007     igb_getreg(PVTEIAC6),
3008     igb_getreg(PVTEIAC7),
3009     igb_getreg(PVTEIAM0),
3010     igb_getreg(PVTEIAM1),
3011     igb_getreg(PVTEIAM2),
3012     igb_getreg(PVTEIAM3),
3013     igb_getreg(PVTEIAM4),
3014     igb_getreg(PVTEIAM5),
3015     igb_getreg(PVTEIAM6),
3016     igb_getreg(PVTEIAM7),
3017     igb_getreg(PVFGPRC0),
3018     igb_getreg(PVFGPRC1),
3019     igb_getreg(PVFGPRC2),
3020     igb_getreg(PVFGPRC3),
3021     igb_getreg(PVFGPRC4),
3022     igb_getreg(PVFGPRC5),
3023     igb_getreg(PVFGPRC6),
3024     igb_getreg(PVFGPRC7),
3025     igb_getreg(PVFGPTC0),
3026     igb_getreg(PVFGPTC1),
3027     igb_getreg(PVFGPTC2),
3028     igb_getreg(PVFGPTC3),
3029     igb_getreg(PVFGPTC4),
3030     igb_getreg(PVFGPTC5),
3031     igb_getreg(PVFGPTC6),
3032     igb_getreg(PVFGPTC7),
3033     igb_getreg(PVFGORC0),
3034     igb_getreg(PVFGORC1),
3035     igb_getreg(PVFGORC2),
3036     igb_getreg(PVFGORC3),
3037     igb_getreg(PVFGORC4),
3038     igb_getreg(PVFGORC5),
3039     igb_getreg(PVFGORC6),
3040     igb_getreg(PVFGORC7),
3041     igb_getreg(PVFGOTC0),
3042     igb_getreg(PVFGOTC1),
3043     igb_getreg(PVFGOTC2),
3044     igb_getreg(PVFGOTC3),
3045     igb_getreg(PVFGOTC4),
3046     igb_getreg(PVFGOTC5),
3047     igb_getreg(PVFGOTC6),
3048     igb_getreg(PVFGOTC7),
3049     igb_getreg(PVFMPRC0),
3050     igb_getreg(PVFMPRC1),
3051     igb_getreg(PVFMPRC2),
3052     igb_getreg(PVFMPRC3),
3053     igb_getreg(PVFMPRC4),
3054     igb_getreg(PVFMPRC5),
3055     igb_getreg(PVFMPRC6),
3056     igb_getreg(PVFMPRC7),
3057     igb_getreg(PVFGPRLBC0),
3058     igb_getreg(PVFGPRLBC1),
3059     igb_getreg(PVFGPRLBC2),
3060     igb_getreg(PVFGPRLBC3),
3061     igb_getreg(PVFGPRLBC4),
3062     igb_getreg(PVFGPRLBC5),
3063     igb_getreg(PVFGPRLBC6),
3064     igb_getreg(PVFGPRLBC7),
3065     igb_getreg(PVFGPTLBC0),
3066     igb_getreg(PVFGPTLBC1),
3067     igb_getreg(PVFGPTLBC2),
3068     igb_getreg(PVFGPTLBC3),
3069     igb_getreg(PVFGPTLBC4),
3070     igb_getreg(PVFGPTLBC5),
3071     igb_getreg(PVFGPTLBC6),
3072     igb_getreg(PVFGPTLBC7),
3073     igb_getreg(PVFGORLBC0),
3074     igb_getreg(PVFGORLBC1),
3075     igb_getreg(PVFGORLBC2),
3076     igb_getreg(PVFGORLBC3),
3077     igb_getreg(PVFGORLBC4),
3078     igb_getreg(PVFGORLBC5),
3079     igb_getreg(PVFGORLBC6),
3080     igb_getreg(PVFGORLBC7),
3081     igb_getreg(PVFGOTLBC0),
3082     igb_getreg(PVFGOTLBC1),
3083     igb_getreg(PVFGOTLBC2),
3084     igb_getreg(PVFGOTLBC3),
3085     igb_getreg(PVFGOTLBC4),
3086     igb_getreg(PVFGOTLBC5),
3087     igb_getreg(PVFGOTLBC6),
3088     igb_getreg(PVFGOTLBC7),
3089     igb_getreg(RCTL),
3090     igb_getreg(MDIC),
3091     igb_getreg(FCRUC),
3092     igb_getreg(VET),
3093     igb_getreg(RDBAL0),
3094     igb_getreg(RDBAL1),
3095     igb_getreg(RDBAL2),
3096     igb_getreg(RDBAL3),
3097     igb_getreg(RDBAL4),
3098     igb_getreg(RDBAL5),
3099     igb_getreg(RDBAL6),
3100     igb_getreg(RDBAL7),
3101     igb_getreg(RDBAL8),
3102     igb_getreg(RDBAL9),
3103     igb_getreg(RDBAL10),
3104     igb_getreg(RDBAL11),
3105     igb_getreg(RDBAL12),
3106     igb_getreg(RDBAL13),
3107     igb_getreg(RDBAL14),
3108     igb_getreg(RDBAL15),
3109     igb_getreg(TDBAH0),
3110     igb_getreg(TDBAH1),
3111     igb_getreg(TDBAH2),
3112     igb_getreg(TDBAH3),
3113     igb_getreg(TDBAH4),
3114     igb_getreg(TDBAH5),
3115     igb_getreg(TDBAH6),
3116     igb_getreg(TDBAH7),
3117     igb_getreg(TDBAH8),
3118     igb_getreg(TDBAH9),
3119     igb_getreg(TDBAH10),
3120     igb_getreg(TDBAH11),
3121     igb_getreg(TDBAH12),
3122     igb_getreg(TDBAH13),
3123     igb_getreg(TDBAH14),
3124     igb_getreg(TDBAH15),
3125     igb_getreg(SCC),
3126     igb_getreg(COLC),
3127     igb_getreg(XOFFRXC),
3128     igb_getreg(IPAV),
3129     igb_getreg(GOTCL),
3130     igb_getreg(MGTPDC),
3131     igb_getreg(GCR),
3132     igb_getreg(MFVAL),
3133     igb_getreg(FUNCTAG),
3134     igb_getreg(GSCL_4),
3135     igb_getreg(GSCN_3),
3136     igb_getreg(MRQC),
3137     igb_getreg(FCT),
3138     igb_getreg(FLA),
3139     igb_getreg(RXDCTL0),
3140     igb_getreg(RXDCTL1),
3141     igb_getreg(RXDCTL2),
3142     igb_getreg(RXDCTL3),
3143     igb_getreg(RXDCTL4),
3144     igb_getreg(RXDCTL5),
3145     igb_getreg(RXDCTL6),
3146     igb_getreg(RXDCTL7),
3147     igb_getreg(RXDCTL8),
3148     igb_getreg(RXDCTL9),
3149     igb_getreg(RXDCTL10),
3150     igb_getreg(RXDCTL11),
3151     igb_getreg(RXDCTL12),
3152     igb_getreg(RXDCTL13),
3153     igb_getreg(RXDCTL14),
3154     igb_getreg(RXDCTL15),
3155     igb_getreg(RXSTMPL),
3156     igb_getreg(TIMADJH),
3157     igb_getreg(FCRTL),
3158     igb_getreg(XONRXC),
3159     igb_getreg(RFCTL),
3160     igb_getreg(GSCN_1),
3161     igb_getreg(FCAL),
3162     igb_getreg(GPIE),
3163     igb_getreg(TXPBS),
3164     igb_getreg(RLPML),
3165 
3166     [TOTH]    = igb_mac_read_clr8,
3167     [GOTCH]   = igb_mac_read_clr8,
3168     [PRC64]   = igb_mac_read_clr4,
3169     [PRC255]  = igb_mac_read_clr4,
3170     [PRC1023] = igb_mac_read_clr4,
3171     [PTC64]   = igb_mac_read_clr4,
3172     [PTC255]  = igb_mac_read_clr4,
3173     [PTC1023] = igb_mac_read_clr4,
3174     [GPRC]    = igb_mac_read_clr4,
3175     [TPT]     = igb_mac_read_clr4,
3176     [RUC]     = igb_mac_read_clr4,
3177     [BPRC]    = igb_mac_read_clr4,
3178     [MPTC]    = igb_mac_read_clr4,
3179     [IAC]     = igb_mac_read_clr4,
3180     [ICR]     = igb_mac_icr_read,
3181     [STATUS]  = igb_get_status,
3182     [ICS]     = igb_mac_ics_read,
3183     /*
3184      * 8.8.10: Reading the IMC register returns the value of the IMS register.
3185      */
3186     [IMC]     = igb_mac_ims_read,
3187     [TORH]    = igb_mac_read_clr8,
3188     [GORCH]   = igb_mac_read_clr8,
3189     [PRC127]  = igb_mac_read_clr4,
3190     [PRC511]  = igb_mac_read_clr4,
3191     [PRC1522] = igb_mac_read_clr4,
3192     [PTC127]  = igb_mac_read_clr4,
3193     [PTC511]  = igb_mac_read_clr4,
3194     [PTC1522] = igb_mac_read_clr4,
3195     [GPTC]    = igb_mac_read_clr4,
3196     [TPR]     = igb_mac_read_clr4,
3197     [ROC]     = igb_mac_read_clr4,
3198     [MPRC]    = igb_mac_read_clr4,
3199     [BPTC]    = igb_mac_read_clr4,
3200     [TSCTC]   = igb_mac_read_clr4,
3201     [CTRL]    = igb_get_ctrl,
3202     [SWSM]    = igb_mac_swsm_read,
3203     [IMS]     = igb_mac_ims_read,
3204     [SYSTIML] = igb_get_systiml,
3205     [RXSATRH] = igb_get_rxsatrh,
3206     [TXSTMPH] = igb_get_txstmph,
3207 
3208     [CRCERRS ... MPC]      = igb_mac_readreg,
3209     [IP6AT ... IP6AT + 3]  = igb_mac_readreg,
3210     [IP4AT ... IP4AT + 6]  = igb_mac_readreg,
3211     [RA ... RA + 31]       = igb_mac_readreg,
3212     [RA2 ... RA2 + 31]     = igb_mac_readreg,
3213     [WUPM ... WUPM + 31]   = igb_mac_readreg,
3214     [MTA ... MTA + E1000_MC_TBL_SIZE - 1]    = igb_mac_readreg,
3215     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = igb_mac_readreg,
3216     [FFMT ... FFMT + 254]  = igb_mac_readreg,
3217     [MDEF ... MDEF + 7]    = igb_mac_readreg,
3218     [FTFT ... FTFT + 254]  = igb_mac_readreg,
3219     [RETA ... RETA + 31]   = igb_mac_readreg,
3220     [RSSRK ... RSSRK + 9]  = igb_mac_readreg,
3221     [MAVTV0 ... MAVTV3]    = igb_mac_readreg,
3222     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read,
3223     [PVTEICR0] = igb_mac_read_clr4,
3224     [PVTEICR1] = igb_mac_read_clr4,
3225     [PVTEICR2] = igb_mac_read_clr4,
3226     [PVTEICR3] = igb_mac_read_clr4,
3227     [PVTEICR4] = igb_mac_read_clr4,
3228     [PVTEICR5] = igb_mac_read_clr4,
3229     [PVTEICR6] = igb_mac_read_clr4,
3230     [PVTEICR7] = igb_mac_read_clr4,
3231 
3232     /* IGB specific: */
3233     [FWSM]       = igb_mac_readreg,
3234     [SW_FW_SYNC] = igb_mac_readreg,
3235     [HTCBDPC]    = igb_mac_read_clr4,
3236     [EICR]       = igb_mac_read_clr4,
3237     [EIMS]       = igb_mac_readreg,
3238     [EIAM]       = igb_mac_readreg,
3239     [IVAR0 ... IVAR0 + 7] = igb_mac_readreg,
3240     igb_getreg(IVAR_MISC),
3241     igb_getreg(VT_CTL),
3242     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg,
3243     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read,
3244     igb_getreg(MBVFICR),
3245     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg,
3246     igb_getreg(MBVFIMR),
3247     igb_getreg(VFLRE),
3248     igb_getreg(VFRE),
3249     igb_getreg(VFTE),
3250     igb_getreg(QDE),
3251     igb_getreg(DTXSWC),
3252     igb_getreg(RPLOLR),
3253     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg,
3254     [VMVIR0 ... VMVIR7] = igb_mac_readreg,
3255     [VMOLR0 ... VMOLR7] = igb_mac_readreg,
3256     [WVBR] = igb_mac_read_clr4,
3257     [RQDPC0] = igb_mac_read_clr4,
3258     [RQDPC1] = igb_mac_read_clr4,
3259     [RQDPC2] = igb_mac_read_clr4,
3260     [RQDPC3] = igb_mac_read_clr4,
3261     [RQDPC4] = igb_mac_read_clr4,
3262     [RQDPC5] = igb_mac_read_clr4,
3263     [RQDPC6] = igb_mac_read_clr4,
3264     [RQDPC7] = igb_mac_read_clr4,
3265     [RQDPC8] = igb_mac_read_clr4,
3266     [RQDPC9] = igb_mac_read_clr4,
3267     [RQDPC10] = igb_mac_read_clr4,
3268     [RQDPC11] = igb_mac_read_clr4,
3269     [RQDPC12] = igb_mac_read_clr4,
3270     [RQDPC13] = igb_mac_read_clr4,
3271     [RQDPC14] = igb_mac_read_clr4,
3272     [RQDPC15] = igb_mac_read_clr4,
3273     [VTIVAR ... VTIVAR + 7] = igb_mac_readreg,
3274     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg,
3275 };
3276 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) };
3277 
3278 #define igb_putreg(x)    [x] = igb_mac_writereg
3279 typedef void (*writeops)(IGBCore *, int, uint32_t);
3280 static const writeops igb_macreg_writeops[] = {
3281     igb_putreg(SWSM),
3282     igb_putreg(WUFC),
3283     igb_putreg(RDBAH0),
3284     igb_putreg(RDBAH1),
3285     igb_putreg(RDBAH2),
3286     igb_putreg(RDBAH3),
3287     igb_putreg(RDBAH4),
3288     igb_putreg(RDBAH5),
3289     igb_putreg(RDBAH6),
3290     igb_putreg(RDBAH7),
3291     igb_putreg(RDBAH8),
3292     igb_putreg(RDBAH9),
3293     igb_putreg(RDBAH10),
3294     igb_putreg(RDBAH11),
3295     igb_putreg(RDBAH12),
3296     igb_putreg(RDBAH13),
3297     igb_putreg(RDBAH14),
3298     igb_putreg(RDBAH15),
3299     igb_putreg(SRRCTL0),
3300     igb_putreg(SRRCTL1),
3301     igb_putreg(SRRCTL2),
3302     igb_putreg(SRRCTL3),
3303     igb_putreg(SRRCTL4),
3304     igb_putreg(SRRCTL5),
3305     igb_putreg(SRRCTL6),
3306     igb_putreg(SRRCTL7),
3307     igb_putreg(SRRCTL8),
3308     igb_putreg(SRRCTL9),
3309     igb_putreg(SRRCTL10),
3310     igb_putreg(SRRCTL11),
3311     igb_putreg(SRRCTL12),
3312     igb_putreg(SRRCTL13),
3313     igb_putreg(SRRCTL14),
3314     igb_putreg(SRRCTL15),
3315     igb_putreg(RXDCTL0),
3316     igb_putreg(RXDCTL1),
3317     igb_putreg(RXDCTL2),
3318     igb_putreg(RXDCTL3),
3319     igb_putreg(RXDCTL4),
3320     igb_putreg(RXDCTL5),
3321     igb_putreg(RXDCTL6),
3322     igb_putreg(RXDCTL7),
3323     igb_putreg(RXDCTL8),
3324     igb_putreg(RXDCTL9),
3325     igb_putreg(RXDCTL10),
3326     igb_putreg(RXDCTL11),
3327     igb_putreg(RXDCTL12),
3328     igb_putreg(RXDCTL13),
3329     igb_putreg(RXDCTL14),
3330     igb_putreg(RXDCTL15),
3331     igb_putreg(LEDCTL),
3332     igb_putreg(TCTL),
3333     igb_putreg(TCTL_EXT),
3334     igb_putreg(DTXCTL),
3335     igb_putreg(RXPBS),
3336     igb_putreg(RQDPC0),
3337     igb_putreg(FCAL),
3338     igb_putreg(FCRUC),
3339     igb_putreg(WUC),
3340     igb_putreg(WUS),
3341     igb_putreg(IPAV),
3342     igb_putreg(TDBAH0),
3343     igb_putreg(TDBAH1),
3344     igb_putreg(TDBAH2),
3345     igb_putreg(TDBAH3),
3346     igb_putreg(TDBAH4),
3347     igb_putreg(TDBAH5),
3348     igb_putreg(TDBAH6),
3349     igb_putreg(TDBAH7),
3350     igb_putreg(TDBAH8),
3351     igb_putreg(TDBAH9),
3352     igb_putreg(TDBAH10),
3353     igb_putreg(TDBAH11),
3354     igb_putreg(TDBAH12),
3355     igb_putreg(TDBAH13),
3356     igb_putreg(TDBAH14),
3357     igb_putreg(TDBAH15),
3358     igb_putreg(IAM),
3359     igb_putreg(MANC),
3360     igb_putreg(MANC2H),
3361     igb_putreg(MFVAL),
3362     igb_putreg(FACTPS),
3363     igb_putreg(FUNCTAG),
3364     igb_putreg(GSCL_1),
3365     igb_putreg(GSCL_2),
3366     igb_putreg(GSCL_3),
3367     igb_putreg(GSCL_4),
3368     igb_putreg(GSCN_0),
3369     igb_putreg(GSCN_1),
3370     igb_putreg(GSCN_2),
3371     igb_putreg(GSCN_3),
3372     igb_putreg(MRQC),
3373     igb_putreg(FLOP),
3374     igb_putreg(FLA),
3375     igb_putreg(TXDCTL0),
3376     igb_putreg(TXDCTL1),
3377     igb_putreg(TXDCTL2),
3378     igb_putreg(TXDCTL3),
3379     igb_putreg(TXDCTL4),
3380     igb_putreg(TXDCTL5),
3381     igb_putreg(TXDCTL6),
3382     igb_putreg(TXDCTL7),
3383     igb_putreg(TXDCTL8),
3384     igb_putreg(TXDCTL9),
3385     igb_putreg(TXDCTL10),
3386     igb_putreg(TXDCTL11),
3387     igb_putreg(TXDCTL12),
3388     igb_putreg(TXDCTL13),
3389     igb_putreg(TXDCTL14),
3390     igb_putreg(TXDCTL15),
3391     igb_putreg(TXCTL0),
3392     igb_putreg(TXCTL1),
3393     igb_putreg(TXCTL2),
3394     igb_putreg(TXCTL3),
3395     igb_putreg(TXCTL4),
3396     igb_putreg(TXCTL5),
3397     igb_putreg(TXCTL6),
3398     igb_putreg(TXCTL7),
3399     igb_putreg(TXCTL8),
3400     igb_putreg(TXCTL9),
3401     igb_putreg(TXCTL10),
3402     igb_putreg(TXCTL11),
3403     igb_putreg(TXCTL12),
3404     igb_putreg(TXCTL13),
3405     igb_putreg(TXCTL14),
3406     igb_putreg(TXCTL15),
3407     igb_putreg(TDWBAL0),
3408     igb_putreg(TDWBAL1),
3409     igb_putreg(TDWBAL2),
3410     igb_putreg(TDWBAL3),
3411     igb_putreg(TDWBAL4),
3412     igb_putreg(TDWBAL5),
3413     igb_putreg(TDWBAL6),
3414     igb_putreg(TDWBAL7),
3415     igb_putreg(TDWBAL8),
3416     igb_putreg(TDWBAL9),
3417     igb_putreg(TDWBAL10),
3418     igb_putreg(TDWBAL11),
3419     igb_putreg(TDWBAL12),
3420     igb_putreg(TDWBAL13),
3421     igb_putreg(TDWBAL14),
3422     igb_putreg(TDWBAL15),
3423     igb_putreg(TDWBAH0),
3424     igb_putreg(TDWBAH1),
3425     igb_putreg(TDWBAH2),
3426     igb_putreg(TDWBAH3),
3427     igb_putreg(TDWBAH4),
3428     igb_putreg(TDWBAH5),
3429     igb_putreg(TDWBAH6),
3430     igb_putreg(TDWBAH7),
3431     igb_putreg(TDWBAH8),
3432     igb_putreg(TDWBAH9),
3433     igb_putreg(TDWBAH10),
3434     igb_putreg(TDWBAH11),
3435     igb_putreg(TDWBAH12),
3436     igb_putreg(TDWBAH13),
3437     igb_putreg(TDWBAH14),
3438     igb_putreg(TDWBAH15),
3439     igb_putreg(TIPG),
3440     igb_putreg(RXSTMPH),
3441     igb_putreg(RXSTMPL),
3442     igb_putreg(RXSATRL),
3443     igb_putreg(RXSATRH),
3444     igb_putreg(TXSTMPL),
3445     igb_putreg(TXSTMPH),
3446     igb_putreg(SYSTIML),
3447     igb_putreg(SYSTIMH),
3448     igb_putreg(TIMADJL),
3449     igb_putreg(TSYNCRXCTL),
3450     igb_putreg(TSYNCTXCTL),
3451     igb_putreg(EEMNGCTL),
3452     igb_putreg(GPIE),
3453     igb_putreg(TXPBS),
3454     igb_putreg(RLPML),
3455     igb_putreg(VET),
3456 
3457     [TDH0]     = igb_set_16bit,
3458     [TDH1]     = igb_set_16bit,
3459     [TDH2]     = igb_set_16bit,
3460     [TDH3]     = igb_set_16bit,
3461     [TDH4]     = igb_set_16bit,
3462     [TDH5]     = igb_set_16bit,
3463     [TDH6]     = igb_set_16bit,
3464     [TDH7]     = igb_set_16bit,
3465     [TDH8]     = igb_set_16bit,
3466     [TDH9]     = igb_set_16bit,
3467     [TDH10]    = igb_set_16bit,
3468     [TDH11]    = igb_set_16bit,
3469     [TDH12]    = igb_set_16bit,
3470     [TDH13]    = igb_set_16bit,
3471     [TDH14]    = igb_set_16bit,
3472     [TDH15]    = igb_set_16bit,
3473     [TDT0]     = igb_set_tdt,
3474     [TDT1]     = igb_set_tdt,
3475     [TDT2]     = igb_set_tdt,
3476     [TDT3]     = igb_set_tdt,
3477     [TDT4]     = igb_set_tdt,
3478     [TDT5]     = igb_set_tdt,
3479     [TDT6]     = igb_set_tdt,
3480     [TDT7]     = igb_set_tdt,
3481     [TDT8]     = igb_set_tdt,
3482     [TDT9]     = igb_set_tdt,
3483     [TDT10]    = igb_set_tdt,
3484     [TDT11]    = igb_set_tdt,
3485     [TDT12]    = igb_set_tdt,
3486     [TDT13]    = igb_set_tdt,
3487     [TDT14]    = igb_set_tdt,
3488     [TDT15]    = igb_set_tdt,
3489     [MDIC]     = igb_set_mdic,
3490     [ICS]      = igb_set_ics,
3491     [RDH0]     = igb_set_16bit,
3492     [RDH1]     = igb_set_16bit,
3493     [RDH2]     = igb_set_16bit,
3494     [RDH3]     = igb_set_16bit,
3495     [RDH4]     = igb_set_16bit,
3496     [RDH5]     = igb_set_16bit,
3497     [RDH6]     = igb_set_16bit,
3498     [RDH7]     = igb_set_16bit,
3499     [RDH8]     = igb_set_16bit,
3500     [RDH9]     = igb_set_16bit,
3501     [RDH10]    = igb_set_16bit,
3502     [RDH11]    = igb_set_16bit,
3503     [RDH12]    = igb_set_16bit,
3504     [RDH13]    = igb_set_16bit,
3505     [RDH14]    = igb_set_16bit,
3506     [RDH15]    = igb_set_16bit,
3507     [RDT0]     = igb_set_rdt,
3508     [RDT1]     = igb_set_rdt,
3509     [RDT2]     = igb_set_rdt,
3510     [RDT3]     = igb_set_rdt,
3511     [RDT4]     = igb_set_rdt,
3512     [RDT5]     = igb_set_rdt,
3513     [RDT6]     = igb_set_rdt,
3514     [RDT7]     = igb_set_rdt,
3515     [RDT8]     = igb_set_rdt,
3516     [RDT9]     = igb_set_rdt,
3517     [RDT10]    = igb_set_rdt,
3518     [RDT11]    = igb_set_rdt,
3519     [RDT12]    = igb_set_rdt,
3520     [RDT13]    = igb_set_rdt,
3521     [RDT14]    = igb_set_rdt,
3522     [RDT15]    = igb_set_rdt,
3523     [IMC]      = igb_set_imc,
3524     [IMS]      = igb_set_ims,
3525     [ICR]      = igb_set_icr,
3526     [EECD]     = igb_set_eecd,
3527     [RCTL]     = igb_set_rx_control,
3528     [CTRL]     = igb_set_ctrl,
3529     [EERD]     = igb_set_eerd,
3530     [TDFH]     = igb_set_13bit,
3531     [TDFT]     = igb_set_13bit,
3532     [TDFHS]    = igb_set_13bit,
3533     [TDFTS]    = igb_set_13bit,
3534     [TDFPC]    = igb_set_13bit,
3535     [RDFH]     = igb_set_13bit,
3536     [RDFT]     = igb_set_13bit,
3537     [RDFHS]    = igb_set_13bit,
3538     [RDFTS]    = igb_set_13bit,
3539     [RDFPC]    = igb_set_13bit,
3540     [GCR]      = igb_set_gcr,
3541     [RXCSUM]   = igb_set_rxcsum,
3542     [TDLEN0]   = igb_set_dlen,
3543     [TDLEN1]   = igb_set_dlen,
3544     [TDLEN2]   = igb_set_dlen,
3545     [TDLEN3]   = igb_set_dlen,
3546     [TDLEN4]   = igb_set_dlen,
3547     [TDLEN5]   = igb_set_dlen,
3548     [TDLEN6]   = igb_set_dlen,
3549     [TDLEN7]   = igb_set_dlen,
3550     [TDLEN8]   = igb_set_dlen,
3551     [TDLEN9]   = igb_set_dlen,
3552     [TDLEN10]  = igb_set_dlen,
3553     [TDLEN11]  = igb_set_dlen,
3554     [TDLEN12]  = igb_set_dlen,
3555     [TDLEN13]  = igb_set_dlen,
3556     [TDLEN14]  = igb_set_dlen,
3557     [TDLEN15]  = igb_set_dlen,
3558     [RDLEN0]   = igb_set_dlen,
3559     [RDLEN1]   = igb_set_dlen,
3560     [RDLEN2]   = igb_set_dlen,
3561     [RDLEN3]   = igb_set_dlen,
3562     [RDLEN4]   = igb_set_dlen,
3563     [RDLEN5]   = igb_set_dlen,
3564     [RDLEN6]   = igb_set_dlen,
3565     [RDLEN7]   = igb_set_dlen,
3566     [RDLEN8]   = igb_set_dlen,
3567     [RDLEN9]   = igb_set_dlen,
3568     [RDLEN10]  = igb_set_dlen,
3569     [RDLEN11]  = igb_set_dlen,
3570     [RDLEN12]  = igb_set_dlen,
3571     [RDLEN13]  = igb_set_dlen,
3572     [RDLEN14]  = igb_set_dlen,
3573     [RDLEN15]  = igb_set_dlen,
3574     [TDBAL0]   = igb_set_dbal,
3575     [TDBAL1]   = igb_set_dbal,
3576     [TDBAL2]   = igb_set_dbal,
3577     [TDBAL3]   = igb_set_dbal,
3578     [TDBAL4]   = igb_set_dbal,
3579     [TDBAL5]   = igb_set_dbal,
3580     [TDBAL6]   = igb_set_dbal,
3581     [TDBAL7]   = igb_set_dbal,
3582     [TDBAL8]   = igb_set_dbal,
3583     [TDBAL9]   = igb_set_dbal,
3584     [TDBAL10]  = igb_set_dbal,
3585     [TDBAL11]  = igb_set_dbal,
3586     [TDBAL12]  = igb_set_dbal,
3587     [TDBAL13]  = igb_set_dbal,
3588     [TDBAL14]  = igb_set_dbal,
3589     [TDBAL15]  = igb_set_dbal,
3590     [RDBAL0]   = igb_set_dbal,
3591     [RDBAL1]   = igb_set_dbal,
3592     [RDBAL2]   = igb_set_dbal,
3593     [RDBAL3]   = igb_set_dbal,
3594     [RDBAL4]   = igb_set_dbal,
3595     [RDBAL5]   = igb_set_dbal,
3596     [RDBAL6]   = igb_set_dbal,
3597     [RDBAL7]   = igb_set_dbal,
3598     [RDBAL8]   = igb_set_dbal,
3599     [RDBAL9]   = igb_set_dbal,
3600     [RDBAL10]  = igb_set_dbal,
3601     [RDBAL11]  = igb_set_dbal,
3602     [RDBAL12]  = igb_set_dbal,
3603     [RDBAL13]  = igb_set_dbal,
3604     [RDBAL14]  = igb_set_dbal,
3605     [RDBAL15]  = igb_set_dbal,
3606     [STATUS]   = igb_set_status,
3607     [PBACLR]   = igb_set_pbaclr,
3608     [CTRL_EXT] = igb_set_ctrlext,
3609     [FCAH]     = igb_set_16bit,
3610     [FCT]      = igb_set_16bit,
3611     [FCTTV]    = igb_set_16bit,
3612     [FCRTV]    = igb_set_16bit,
3613     [FCRTH]    = igb_set_fcrth,
3614     [FCRTL]    = igb_set_fcrtl,
3615     [CTRL_DUP] = igb_set_ctrl,
3616     [RFCTL]    = igb_set_rfctl,
3617     [TIMINCA]  = igb_set_timinca,
3618     [TIMADJH]  = igb_set_timadjh,
3619 
3620     [IP6AT ... IP6AT + 3]    = igb_mac_writereg,
3621     [IP4AT ... IP4AT + 6]    = igb_mac_writereg,
3622     [RA]                     = igb_mac_writereg,
3623     [RA + 1]                 = igb_mac_setmacaddr,
3624     [RA + 2 ... RA + 31]     = igb_mac_writereg,
3625     [RA2 ... RA2 + 31]       = igb_mac_writereg,
3626     [WUPM ... WUPM + 31]     = igb_mac_writereg,
3627     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3628     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg,
3629     [FFMT ... FFMT + 254]    = igb_set_4bit,
3630     [MDEF ... MDEF + 7]      = igb_mac_writereg,
3631     [FTFT ... FTFT + 254]    = igb_mac_writereg,
3632     [RETA ... RETA + 31]     = igb_mac_writereg,
3633     [RSSRK ... RSSRK + 9]    = igb_mac_writereg,
3634     [MAVTV0 ... MAVTV3]      = igb_mac_writereg,
3635     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr,
3636 
3637     /* IGB specific: */
3638     [FWSM]     = igb_mac_writereg,
3639     [SW_FW_SYNC] = igb_mac_writereg,
3640     [EICR] = igb_set_eicr,
3641     [EICS] = igb_set_eics,
3642     [EIAC] = igb_set_eiac,
3643     [EIAM] = igb_set_eiam,
3644     [EIMC] = igb_set_eimc,
3645     [EIMS] = igb_set_eims,
3646     [IVAR0 ... IVAR0 + 7] = igb_mac_writereg,
3647     igb_putreg(IVAR_MISC),
3648     igb_putreg(VT_CTL),
3649     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox,
3650     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox,
3651     [MBVFICR] = igb_w1c,
3652     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg,
3653     igb_putreg(MBVFIMR),
3654     [VFLRE] = igb_w1c,
3655     igb_putreg(VFRE),
3656     igb_putreg(VFTE),
3657     igb_putreg(QDE),
3658     igb_putreg(DTXSWC),
3659     igb_putreg(RPLOLR),
3660     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg,
3661     [VMVIR0 ... VMVIR7] = igb_mac_writereg,
3662     [VMOLR0 ... VMOLR7] = igb_mac_writereg,
3663     [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3664     [PVTCTRL0] = igb_set_vtctrl,
3665     [PVTCTRL1] = igb_set_vtctrl,
3666     [PVTCTRL2] = igb_set_vtctrl,
3667     [PVTCTRL3] = igb_set_vtctrl,
3668     [PVTCTRL4] = igb_set_vtctrl,
3669     [PVTCTRL5] = igb_set_vtctrl,
3670     [PVTCTRL6] = igb_set_vtctrl,
3671     [PVTCTRL7] = igb_set_vtctrl,
3672     [PVTEICS0] = igb_set_vteics,
3673     [PVTEICS1] = igb_set_vteics,
3674     [PVTEICS2] = igb_set_vteics,
3675     [PVTEICS3] = igb_set_vteics,
3676     [PVTEICS4] = igb_set_vteics,
3677     [PVTEICS5] = igb_set_vteics,
3678     [PVTEICS6] = igb_set_vteics,
3679     [PVTEICS7] = igb_set_vteics,
3680     [PVTEIMS0] = igb_set_vteims,
3681     [PVTEIMS1] = igb_set_vteims,
3682     [PVTEIMS2] = igb_set_vteims,
3683     [PVTEIMS3] = igb_set_vteims,
3684     [PVTEIMS4] = igb_set_vteims,
3685     [PVTEIMS5] = igb_set_vteims,
3686     [PVTEIMS6] = igb_set_vteims,
3687     [PVTEIMS7] = igb_set_vteims,
3688     [PVTEIMC0] = igb_set_vteimc,
3689     [PVTEIMC1] = igb_set_vteimc,
3690     [PVTEIMC2] = igb_set_vteimc,
3691     [PVTEIMC3] = igb_set_vteimc,
3692     [PVTEIMC4] = igb_set_vteimc,
3693     [PVTEIMC5] = igb_set_vteimc,
3694     [PVTEIMC6] = igb_set_vteimc,
3695     [PVTEIMC7] = igb_set_vteimc,
3696     [PVTEIAC0] = igb_set_vteiac,
3697     [PVTEIAC1] = igb_set_vteiac,
3698     [PVTEIAC2] = igb_set_vteiac,
3699     [PVTEIAC3] = igb_set_vteiac,
3700     [PVTEIAC4] = igb_set_vteiac,
3701     [PVTEIAC5] = igb_set_vteiac,
3702     [PVTEIAC6] = igb_set_vteiac,
3703     [PVTEIAC7] = igb_set_vteiac,
3704     [PVTEIAM0] = igb_set_vteiam,
3705     [PVTEIAM1] = igb_set_vteiam,
3706     [PVTEIAM2] = igb_set_vteiam,
3707     [PVTEIAM3] = igb_set_vteiam,
3708     [PVTEIAM4] = igb_set_vteiam,
3709     [PVTEIAM5] = igb_set_vteiam,
3710     [PVTEIAM6] = igb_set_vteiam,
3711     [PVTEIAM7] = igb_set_vteiam,
3712     [PVTEICR0] = igb_set_vteicr,
3713     [PVTEICR1] = igb_set_vteicr,
3714     [PVTEICR2] = igb_set_vteicr,
3715     [PVTEICR3] = igb_set_vteicr,
3716     [PVTEICR4] = igb_set_vteicr,
3717     [PVTEICR5] = igb_set_vteicr,
3718     [PVTEICR6] = igb_set_vteicr,
3719     [PVTEICR7] = igb_set_vteicr,
3720     [VTIVAR ... VTIVAR + 7] = igb_set_vtivar,
3721     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg
3722 };
3723 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) };
3724 
3725 enum { MAC_ACCESS_PARTIAL = 1 };
3726 
3727 /*
3728  * The array below combines alias offsets of the index values for the
3729  * MAC registers that have aliases, with the indication of not fully
3730  * implemented registers (lowest bit). This combination is possible
3731  * because all of the offsets are even.
3732  */
3733 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3734     /* Alias index offsets */
3735     [FCRTL_A] = 0x07fe,
3736     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3737     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3738     [RA_A ... RA_A + 31]      = 0x14f0,
3739     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3740 
3741     [RDBAL0_A] = 0x2600,
3742     [RDBAH0_A] = 0x2600,
3743     [RDLEN0_A] = 0x2600,
3744     [SRRCTL0_A] = 0x2600,
3745     [RDH0_A] = 0x2600,
3746     [RDT0_A] = 0x2600,
3747     [RXDCTL0_A] = 0x2600,
3748     [RXCTL0_A] = 0x2600,
3749     [RQDPC0_A] = 0x2600,
3750     [RDBAL1_A] = 0x25D0,
3751     [RDBAL2_A] = 0x25A0,
3752     [RDBAL3_A] = 0x2570,
3753     [RDBAH1_A] = 0x25D0,
3754     [RDBAH2_A] = 0x25A0,
3755     [RDBAH3_A] = 0x2570,
3756     [RDLEN1_A] = 0x25D0,
3757     [RDLEN2_A] = 0x25A0,
3758     [RDLEN3_A] = 0x2570,
3759     [SRRCTL1_A] = 0x25D0,
3760     [SRRCTL2_A] = 0x25A0,
3761     [SRRCTL3_A] = 0x2570,
3762     [RDH1_A] = 0x25D0,
3763     [RDH2_A] = 0x25A0,
3764     [RDH3_A] = 0x2570,
3765     [RDT1_A] = 0x25D0,
3766     [RDT2_A] = 0x25A0,
3767     [RDT3_A] = 0x2570,
3768     [RXDCTL1_A] = 0x25D0,
3769     [RXDCTL2_A] = 0x25A0,
3770     [RXDCTL3_A] = 0x2570,
3771     [RXCTL1_A] = 0x25D0,
3772     [RXCTL2_A] = 0x25A0,
3773     [RXCTL3_A] = 0x2570,
3774     [RQDPC1_A] = 0x25D0,
3775     [RQDPC2_A] = 0x25A0,
3776     [RQDPC3_A] = 0x2570,
3777     [TDBAL0_A] = 0x2A00,
3778     [TDBAH0_A] = 0x2A00,
3779     [TDLEN0_A] = 0x2A00,
3780     [TDH0_A] = 0x2A00,
3781     [TDT0_A] = 0x2A00,
3782     [TXCTL0_A] = 0x2A00,
3783     [TDWBAL0_A] = 0x2A00,
3784     [TDWBAH0_A] = 0x2A00,
3785     [TDBAL1_A] = 0x29D0,
3786     [TDBAL2_A] = 0x29A0,
3787     [TDBAL3_A] = 0x2970,
3788     [TDBAH1_A] = 0x29D0,
3789     [TDBAH2_A] = 0x29A0,
3790     [TDBAH3_A] = 0x2970,
3791     [TDLEN1_A] = 0x29D0,
3792     [TDLEN2_A] = 0x29A0,
3793     [TDLEN3_A] = 0x2970,
3794     [TDH1_A] = 0x29D0,
3795     [TDH2_A] = 0x29A0,
3796     [TDH3_A] = 0x2970,
3797     [TDT1_A] = 0x29D0,
3798     [TDT2_A] = 0x29A0,
3799     [TDT3_A] = 0x2970,
3800     [TXDCTL0_A] = 0x2A00,
3801     [TXDCTL1_A] = 0x29D0,
3802     [TXDCTL2_A] = 0x29A0,
3803     [TXDCTL3_A] = 0x2970,
3804     [TXCTL1_A] = 0x29D0,
3805     [TXCTL2_A] = 0x29A0,
3806     [TXCTL3_A] = 0x29D0,
3807     [TDWBAL1_A] = 0x29D0,
3808     [TDWBAL2_A] = 0x29A0,
3809     [TDWBAL3_A] = 0x2970,
3810     [TDWBAH1_A] = 0x29D0,
3811     [TDWBAH2_A] = 0x29A0,
3812     [TDWBAH3_A] = 0x2970,
3813 
3814     /* Access options */
3815     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3816     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3817     [RDFPC] = MAC_ACCESS_PARTIAL,
3818     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3819     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3820     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3821     [FLA]   = MAC_ACCESS_PARTIAL,
3822     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3823     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3824     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3825     [FCRTH] = MAC_ACCESS_PARTIAL,
3826     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3827 };
3828 
3829 void
3830 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size)
3831 {
3832     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3833 
3834     if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) {
3835         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3836             trace_e1000e_wrn_regs_write_trivial(index << 2);
3837         }
3838         trace_e1000e_core_write(index << 2, size, val);
3839         igb_macreg_writeops[index](core, index, val);
3840     } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3841         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3842     } else {
3843         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3844     }
3845 }
3846 
3847 uint64_t
3848 igb_core_read(IGBCore *core, hwaddr addr, unsigned size)
3849 {
3850     uint64_t val;
3851     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3852 
3853     if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3854         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3855             trace_e1000e_wrn_regs_read_trivial(index << 2);
3856         }
3857         val = igb_macreg_readops[index](core, index);
3858         trace_e1000e_core_read(index << 2, size, val);
3859         return val;
3860     } else {
3861         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3862     }
3863     return 0;
3864 }
3865 
3866 static inline void
3867 igb_autoneg_pause(IGBCore *core)
3868 {
3869     timer_del(core->autoneg_timer);
3870 }
3871 
3872 static void
3873 igb_autoneg_resume(IGBCore *core)
3874 {
3875     if (igb_have_autoneg(core) &&
3876         !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
3877         qemu_get_queue(core->owner_nic)->link_down = false;
3878         timer_mod(core->autoneg_timer,
3879                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3880     }
3881 }
3882 
3883 static void
3884 igb_vm_state_change(void *opaque, bool running, RunState state)
3885 {
3886     IGBCore *core = opaque;
3887 
3888     if (running) {
3889         trace_e1000e_vm_state_running();
3890         igb_intrmgr_resume(core);
3891         igb_autoneg_resume(core);
3892     } else {
3893         trace_e1000e_vm_state_stopped();
3894         igb_autoneg_pause(core);
3895         igb_intrmgr_pause(core);
3896     }
3897 }
3898 
3899 void
3900 igb_core_pci_realize(IGBCore        *core,
3901                      const uint16_t *eeprom_templ,
3902                      uint32_t        eeprom_size,
3903                      const uint8_t  *macaddr)
3904 {
3905     int i;
3906 
3907     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3908                                        igb_autoneg_timer, core);
3909     igb_intrmgr_pci_realize(core);
3910 
3911     core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core);
3912 
3913     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3914         net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3915     }
3916 
3917     net_rx_pkt_init(&core->rx_pkt);
3918 
3919     e1000x_core_prepare_eeprom(core->eeprom,
3920                                eeprom_templ,
3921                                eeprom_size,
3922                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3923                                macaddr);
3924     igb_update_rx_offloads(core);
3925 }
3926 
3927 void
3928 igb_core_pci_uninit(IGBCore *core)
3929 {
3930     int i;
3931 
3932     timer_free(core->autoneg_timer);
3933 
3934     igb_intrmgr_pci_unint(core);
3935 
3936     qemu_del_vm_change_state_handler(core->vmstate);
3937 
3938     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3939         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3940     }
3941 
3942     net_rx_pkt_uninit(core->rx_pkt);
3943 }
3944 
3945 static const uint16_t
3946 igb_phy_reg_init[] = {
3947     [MII_BMCR] = MII_BMCR_SPEED1000 |
3948                  MII_BMCR_FD        |
3949                  MII_BMCR_AUTOEN,
3950 
3951     [MII_BMSR] = MII_BMSR_EXTCAP    |
3952                  MII_BMSR_LINK_ST   |
3953                  MII_BMSR_AUTONEG   |
3954                  MII_BMSR_MFPS      |
3955                  MII_BMSR_EXTSTAT   |
3956                  MII_BMSR_10T_HD    |
3957                  MII_BMSR_10T_FD    |
3958                  MII_BMSR_100TX_HD  |
3959                  MII_BMSR_100TX_FD,
3960 
3961     [MII_PHYID1]            = IGP03E1000_E_PHY_ID >> 16,
3962     [MII_PHYID2]            = (IGP03E1000_E_PHY_ID & 0xfff0) | 1,
3963     [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3964                               MII_ANAR_10FD | MII_ANAR_TX |
3965                               MII_ANAR_TXFD | MII_ANAR_PAUSE |
3966                               MII_ANAR_PAUSE_ASYM,
3967     [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3968                               MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3969                               MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3970     [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3971     [MII_ANNP]              = 0x1 | MII_ANNP_MP,
3972     [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3973                               MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3974     [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3975                               MII_STAT1000_ROK | MII_STAT1000_LOK,
3976     [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3977 
3978     [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8),
3979     [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS,
3980     [IGP02E1000_PHY_POWER_MGMT]  = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU |
3981                                    IGP01E1000_PSCFR_SMART_SPEED
3982 };
3983 
3984 static const uint32_t igb_mac_reg_init[] = {
3985     [LEDCTL]        = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24),
3986     [EEMNGCTL]      = BIT(31),
3987     [TXDCTL0]       = E1000_TXDCTL_QUEUE_ENABLE,
3988     [RXDCTL0]       = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16),
3989     [RXDCTL1]       = 1 << 16,
3990     [RXDCTL2]       = 1 << 16,
3991     [RXDCTL3]       = 1 << 16,
3992     [RXDCTL4]       = 1 << 16,
3993     [RXDCTL5]       = 1 << 16,
3994     [RXDCTL6]       = 1 << 16,
3995     [RXDCTL7]       = 1 << 16,
3996     [RXDCTL8]       = 1 << 16,
3997     [RXDCTL9]       = 1 << 16,
3998     [RXDCTL10]      = 1 << 16,
3999     [RXDCTL11]      = 1 << 16,
4000     [RXDCTL12]      = 1 << 16,
4001     [RXDCTL13]      = 1 << 16,
4002     [RXDCTL14]      = 1 << 16,
4003     [RXDCTL15]      = 1 << 16,
4004     [TIPG]          = 0x08 | (0x04 << 10) | (0x06 << 20),
4005     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 |
4006                       E1000_CTRL_ADVD3WUC,
4007     [STATUS]        = E1000_STATUS_PHYRA | BIT(31),
4008     [EECD]          = E1000_EECD_FWE_DIS | E1000_EECD_PRES |
4009                       (2 << E1000_EECD_SIZE_EX_SHIFT),
4010     [GCR]           = E1000_L0S_ADJUST |
4011                       E1000_GCR_CMPL_TMOUT_RESEND |
4012                       E1000_GCR_CAP_VER2 |
4013                       E1000_L1_ENTRY_LATENCY_MSB |
4014                       E1000_L1_ENTRY_LATENCY_LSB,
4015     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
4016     [TXPBS]         = 0x28,
4017     [RXPBS]         = 0x40,
4018     [TCTL]          = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) |
4019                       (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28),
4020     [TCTL_EXT]      = 0x40 | (0x42 << 10),
4021     [DTXCTL]        = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT,
4022     [VET]           = ETH_P_VLAN | (ETH_P_VLAN << 16),
4023 
4024     [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI,
4025     [MBVFIMR]       = 0xFF,
4026     [VFRE]          = 0xFF,
4027     [VFTE]          = 0xFF,
4028     [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC,
4029     [RPLOLR]        = E1000_RPLOLR_STRCRC,
4030     [RLPML]         = 0x2600,
4031     [TXCTL0]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4032                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4033                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4034     [TXCTL1]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4035                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4036                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4037     [TXCTL2]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4038                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4039                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4040     [TXCTL3]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4041                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4042                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4043     [TXCTL4]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4044                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4045                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4046     [TXCTL5]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4047                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4048                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4049     [TXCTL6]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4050                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4051                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4052     [TXCTL7]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4053                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4054                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4055     [TXCTL8]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4056                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4057                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4058     [TXCTL9]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4059                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4060                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4061     [TXCTL10]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4062                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4063                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4064     [TXCTL11]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4065                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4066                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4067     [TXCTL12]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4068                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4069                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4070     [TXCTL13]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4071                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4072                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4073     [TXCTL14]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4074                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4075                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4076     [TXCTL15]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4077                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4078                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4079 };
4080 
4081 static void igb_reset(IGBCore *core, bool sw)
4082 {
4083     struct igb_tx *tx;
4084     int i;
4085 
4086     timer_del(core->autoneg_timer);
4087 
4088     igb_intrmgr_reset(core);
4089 
4090     memset(core->phy, 0, sizeof core->phy);
4091     memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init);
4092 
4093     for (i = 0; i < E1000E_MAC_SIZE; i++) {
4094         if (sw &&
4095             (i == RXPBS || i == TXPBS ||
4096              (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) {
4097             continue;
4098         }
4099 
4100         core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ?
4101                        igb_mac_reg_init[i] : 0;
4102     }
4103 
4104     if (qemu_get_queue(core->owner_nic)->link_down) {
4105         igb_link_down(core);
4106     }
4107 
4108     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
4109 
4110     for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
4111         /* Set RSTI, so VF can identify a PF reset is in progress */
4112         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI;
4113     }
4114 
4115     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4116         tx = &core->tx[i];
4117         memset(tx->ctx, 0, sizeof(tx->ctx));
4118         tx->first = true;
4119         tx->skip_cp = false;
4120     }
4121 }
4122 
4123 void
4124 igb_core_reset(IGBCore *core)
4125 {
4126     igb_reset(core, false);
4127 }
4128 
4129 void igb_core_pre_save(IGBCore *core)
4130 {
4131     int i;
4132     NetClientState *nc = qemu_get_queue(core->owner_nic);
4133 
4134     /*
4135      * If link is down and auto-negotiation is supported and ongoing,
4136      * complete auto-negotiation immediately. This allows us to look
4137      * at MII_BMSR_AN_COMP to infer link status on load.
4138      */
4139     if (nc->link_down && igb_have_autoneg(core)) {
4140         core->phy[MII_BMSR] |= MII_BMSR_AN_COMP;
4141         igb_update_flowctl_status(core);
4142     }
4143 
4144     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4145         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
4146             core->tx[i].skip_cp = true;
4147         }
4148     }
4149 }
4150 
4151 int
4152 igb_core_post_load(IGBCore *core)
4153 {
4154     NetClientState *nc = qemu_get_queue(core->owner_nic);
4155 
4156     /*
4157      * nc.link_down can't be migrated, so infer link_down according
4158      * to link status bit in core.mac[STATUS].
4159      */
4160     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
4161 
4162     return 0;
4163 }
4164