1 /* 2 * Core code for QEMU igb emulation 3 * 4 * Datasheet: 5 * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf 6 * 7 * Copyright (c) 2020-2023 Red Hat, Inc. 8 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) 9 * Developed by Daynix Computing LTD (http://www.daynix.com) 10 * 11 * Authors: 12 * Akihiko Odaki <akihiko.odaki@daynix.com> 13 * Gal Hammmer <gal.hammer@sap.com> 14 * Marcel Apfelbaum <marcel.apfelbaum@gmail.com> 15 * Dmitry Fleytman <dmitry@daynix.com> 16 * Leonid Bloch <leonid@daynix.com> 17 * Yan Vugenfirer <yan@daynix.com> 18 * 19 * Based on work done by: 20 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 21 * Copyright (c) 2008 Qumranet 22 * Based on work done by: 23 * Copyright (c) 2007 Dan Aloni 24 * Copyright (c) 2004 Antony T Curtis 25 * 26 * This library is free software; you can redistribute it and/or 27 * modify it under the terms of the GNU Lesser General Public 28 * License as published by the Free Software Foundation; either 29 * version 2.1 of the License, or (at your option) any later version. 30 * 31 * This library is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 34 * Lesser General Public License for more details. 35 * 36 * You should have received a copy of the GNU Lesser General Public 37 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 38 */ 39 40 #include "qemu/osdep.h" 41 #include "qemu/log.h" 42 #include "net/net.h" 43 #include "net/tap.h" 44 #include "hw/net/mii.h" 45 #include "hw/pci/msi.h" 46 #include "hw/pci/msix.h" 47 #include "sysemu/runstate.h" 48 49 #include "net_tx_pkt.h" 50 #include "net_rx_pkt.h" 51 52 #include "igb_common.h" 53 #include "e1000x_common.h" 54 #include "igb_core.h" 55 56 #include "trace.h" 57 58 #define E1000E_MAX_TX_FRAGS (64) 59 60 union e1000_rx_desc_union { 61 struct e1000_rx_desc legacy; 62 union e1000_adv_rx_desc adv; 63 }; 64 65 typedef struct IGBTxPktVmdqCallbackContext { 66 IGBCore *core; 67 NetClientState *nc; 68 } IGBTxPktVmdqCallbackContext; 69 70 typedef struct L2Header { 71 struct eth_header eth; 72 struct vlan_header vlan; 73 } L2Header; 74 75 static ssize_t 76 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt, 77 bool has_vnet, bool *external_tx); 78 79 static inline void 80 igb_set_interrupt_cause(IGBCore *core, uint32_t val); 81 82 static void igb_update_interrupt_state(IGBCore *core); 83 static void igb_reset(IGBCore *core, bool sw); 84 85 static inline void 86 igb_raise_legacy_irq(IGBCore *core) 87 { 88 trace_e1000e_irq_legacy_notify(true); 89 e1000x_inc_reg_if_not_full(core->mac, IAC); 90 pci_set_irq(core->owner, 1); 91 } 92 93 static inline void 94 igb_lower_legacy_irq(IGBCore *core) 95 { 96 trace_e1000e_irq_legacy_notify(false); 97 pci_set_irq(core->owner, 0); 98 } 99 100 static void igb_msix_notify(IGBCore *core, unsigned int vector) 101 { 102 PCIDevice *dev = core->owner; 103 uint16_t vfn; 104 105 vfn = 8 - (vector + 2) / IGBVF_MSIX_VEC_NUM; 106 if (vfn < pcie_sriov_num_vfs(core->owner)) { 107 dev = pcie_sriov_get_vf_at_index(core->owner, vfn); 108 assert(dev); 109 vector = (vector + 2) % IGBVF_MSIX_VEC_NUM; 110 } else if (vector >= IGB_MSIX_VEC_NUM) { 111 qemu_log_mask(LOG_GUEST_ERROR, 112 "igb: Tried to use vector unavailable for PF"); 113 return; 114 } 115 116 msix_notify(dev, vector); 117 } 118 119 static inline void 120 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer) 121 { 122 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] * 123 timer->delay_resolution_ns; 124 125 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns); 126 127 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns); 128 129 timer->running = true; 130 } 131 132 static void 133 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer) 134 { 135 if (timer->running) { 136 igb_intrmgr_rearm_timer(timer); 137 } 138 } 139 140 static void 141 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer) 142 { 143 if (timer->running) { 144 timer_del(timer->timer); 145 } 146 } 147 148 static void 149 igb_intrmgr_on_msix_throttling_timer(void *opaque) 150 { 151 IGBIntrDelayTimer *timer = opaque; 152 int idx = timer - &timer->core->eitr[0]; 153 154 timer->running = false; 155 156 trace_e1000e_irq_msix_notify_postponed_vec(idx); 157 igb_msix_notify(timer->core, idx); 158 } 159 160 static void 161 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create) 162 { 163 int i; 164 165 for (i = 0; i < IGB_INTR_NUM; i++) { 166 core->eitr[i].core = core; 167 core->eitr[i].delay_reg = EITR0 + i; 168 core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 169 } 170 171 if (!create) { 172 return; 173 } 174 175 for (i = 0; i < IGB_INTR_NUM; i++) { 176 core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 177 igb_intrmgr_on_msix_throttling_timer, 178 &core->eitr[i]); 179 } 180 } 181 182 static void 183 igb_intrmgr_resume(IGBCore *core) 184 { 185 int i; 186 187 for (i = 0; i < IGB_INTR_NUM; i++) { 188 igb_intmgr_timer_resume(&core->eitr[i]); 189 } 190 } 191 192 static void 193 igb_intrmgr_pause(IGBCore *core) 194 { 195 int i; 196 197 for (i = 0; i < IGB_INTR_NUM; i++) { 198 igb_intmgr_timer_pause(&core->eitr[i]); 199 } 200 } 201 202 static void 203 igb_intrmgr_reset(IGBCore *core) 204 { 205 int i; 206 207 for (i = 0; i < IGB_INTR_NUM; i++) { 208 if (core->eitr[i].running) { 209 timer_del(core->eitr[i].timer); 210 igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]); 211 } 212 } 213 } 214 215 static void 216 igb_intrmgr_pci_unint(IGBCore *core) 217 { 218 int i; 219 220 for (i = 0; i < IGB_INTR_NUM; i++) { 221 timer_free(core->eitr[i].timer); 222 } 223 } 224 225 static void 226 igb_intrmgr_pci_realize(IGBCore *core) 227 { 228 igb_intrmgr_initialize_all_timers(core, true); 229 } 230 231 static inline bool 232 igb_rx_csum_enabled(IGBCore *core) 233 { 234 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true; 235 } 236 237 static inline bool 238 igb_rx_use_legacy_descriptor(IGBCore *core) 239 { 240 /* 241 * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx 242 * descriptor. 243 */ 244 return false; 245 } 246 247 static inline bool 248 igb_rss_enabled(IGBCore *core) 249 { 250 return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ && 251 !igb_rx_csum_enabled(core) && 252 !igb_rx_use_legacy_descriptor(core); 253 } 254 255 typedef struct E1000E_RSSInfo_st { 256 bool enabled; 257 uint32_t hash; 258 uint32_t queue; 259 uint32_t type; 260 } E1000E_RSSInfo; 261 262 static uint32_t 263 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt) 264 { 265 bool hasip4, hasip6; 266 EthL4HdrProto l4hdr_proto; 267 268 assert(igb_rss_enabled(core)); 269 270 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); 271 272 if (hasip4) { 273 trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC], 274 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]), 275 E1000_MRQC_EN_IPV4(core->mac[MRQC])); 276 277 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && 278 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) { 279 return E1000_MRQ_RSS_TYPE_IPV4TCP; 280 } 281 282 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) { 283 return E1000_MRQ_RSS_TYPE_IPV4; 284 } 285 } else if (hasip6) { 286 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt); 287 288 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS; 289 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS; 290 291 /* 292 * Following two traces must not be combined because resulting 293 * event will have 11 arguments totally and some trace backends 294 * (at least "ust") have limitation of maximum 10 arguments per 295 * event. Events with more arguments fail to compile for 296 * backends like these. 297 */ 298 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]); 299 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto, 300 ip6info->has_ext_hdrs, 301 ip6info->rss_ex_dst_valid, 302 ip6info->rss_ex_src_valid, 303 core->mac[MRQC], 304 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]), 305 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]), 306 E1000_MRQC_EN_IPV6(core->mac[MRQC])); 307 308 if ((!ex_dis || !ip6info->has_ext_hdrs) && 309 (!new_ex_dis || !(ip6info->rss_ex_dst_valid || 310 ip6info->rss_ex_src_valid))) { 311 312 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && 313 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) { 314 return E1000_MRQ_RSS_TYPE_IPV6TCP; 315 } 316 317 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) { 318 return E1000_MRQ_RSS_TYPE_IPV6EX; 319 } 320 321 } 322 323 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) { 324 return E1000_MRQ_RSS_TYPE_IPV6; 325 } 326 327 } 328 329 return E1000_MRQ_RSS_TYPE_NONE; 330 } 331 332 static uint32_t 333 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info) 334 { 335 NetRxPktRssType type; 336 337 assert(igb_rss_enabled(core)); 338 339 switch (info->type) { 340 case E1000_MRQ_RSS_TYPE_IPV4: 341 type = NetPktRssIpV4; 342 break; 343 case E1000_MRQ_RSS_TYPE_IPV4TCP: 344 type = NetPktRssIpV4Tcp; 345 break; 346 case E1000_MRQ_RSS_TYPE_IPV6TCP: 347 type = NetPktRssIpV6TcpEx; 348 break; 349 case E1000_MRQ_RSS_TYPE_IPV6: 350 type = NetPktRssIpV6; 351 break; 352 case E1000_MRQ_RSS_TYPE_IPV6EX: 353 type = NetPktRssIpV6Ex; 354 break; 355 default: 356 assert(false); 357 return 0; 358 } 359 360 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]); 361 } 362 363 static void 364 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx, 365 E1000E_RSSInfo *info) 366 { 367 trace_e1000e_rx_rss_started(); 368 369 if (tx || !igb_rss_enabled(core)) { 370 info->enabled = false; 371 info->hash = 0; 372 info->queue = 0; 373 info->type = 0; 374 trace_e1000e_rx_rss_disabled(); 375 return; 376 } 377 378 info->enabled = true; 379 380 info->type = igb_rss_get_hash_type(core, pkt); 381 382 trace_e1000e_rx_rss_type(info->type); 383 384 if (info->type == E1000_MRQ_RSS_TYPE_NONE) { 385 info->hash = 0; 386 info->queue = 0; 387 return; 388 } 389 390 info->hash = igb_rss_calc_hash(core, pkt, info); 391 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash); 392 } 393 394 static void 395 igb_tx_insert_vlan(IGBCore *core, uint16_t qn, struct igb_tx *tx, 396 uint16_t vlan, bool insert_vlan) 397 { 398 if (core->mac[MRQC] & 1) { 399 uint16_t pool = qn % IGB_NUM_VM_POOLS; 400 401 if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_DEFAULT) { 402 /* always insert default VLAN */ 403 insert_vlan = true; 404 vlan = core->mac[VMVIR0 + pool] & 0xffff; 405 } else if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_NEVER) { 406 insert_vlan = false; 407 } 408 } 409 410 if (insert_vlan) { 411 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan, 412 core->mac[VET] & 0xffff); 413 } 414 } 415 416 static bool 417 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx) 418 { 419 if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) { 420 uint32_t idx = (tx->first_olinfo_status >> 4) & 1; 421 uint32_t mss = tx->ctx[idx].mss_l4len_idx >> 16; 422 if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) { 423 return false; 424 } 425 426 net_tx_pkt_update_ip_checksums(tx->tx_pkt); 427 e1000x_inc_reg_if_not_full(core->mac, TSCTC); 428 return true; 429 } 430 431 if (tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) { 432 if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) { 433 return false; 434 } 435 } 436 437 if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) { 438 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); 439 } 440 441 return true; 442 } 443 444 static void igb_tx_pkt_mac_callback(void *core, 445 const struct iovec *iov, 446 int iovcnt, 447 const struct iovec *virt_iov, 448 int virt_iovcnt) 449 { 450 igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL); 451 } 452 453 static void igb_tx_pkt_vmdq_callback(void *opaque, 454 const struct iovec *iov, 455 int iovcnt, 456 const struct iovec *virt_iov, 457 int virt_iovcnt) 458 { 459 IGBTxPktVmdqCallbackContext *context = opaque; 460 bool external_tx; 461 462 igb_receive_internal(context->core, virt_iov, virt_iovcnt, true, 463 &external_tx); 464 465 if (external_tx) { 466 if (context->core->has_vnet) { 467 qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt); 468 } else { 469 qemu_sendv_packet(context->nc, iov, iovcnt); 470 } 471 } 472 } 473 474 /* TX Packets Switching (7.10.3.6) */ 475 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx, 476 NetClientState *nc) 477 { 478 IGBTxPktVmdqCallbackContext context; 479 480 /* TX switching is only used to serve VM to VM traffic. */ 481 if (!(core->mac[MRQC] & 1)) { 482 goto send_out; 483 } 484 485 /* TX switching requires DTXSWC.Loopback_en bit enabled. */ 486 if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) { 487 goto send_out; 488 } 489 490 context.core = core; 491 context.nc = nc; 492 493 return net_tx_pkt_send_custom(tx->tx_pkt, false, 494 igb_tx_pkt_vmdq_callback, &context); 495 496 send_out: 497 return net_tx_pkt_send(tx->tx_pkt, nc); 498 } 499 500 static bool 501 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index) 502 { 503 int target_queue = MIN(core->max_queue_num, queue_index); 504 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue); 505 506 if (!igb_setup_tx_offloads(core, tx)) { 507 return false; 508 } 509 510 net_tx_pkt_dump(tx->tx_pkt); 511 512 if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) || 513 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) { 514 return net_tx_pkt_send_custom(tx->tx_pkt, false, 515 igb_tx_pkt_mac_callback, core); 516 } else { 517 return igb_tx_pkt_switch(core, tx, queue); 518 } 519 } 520 521 static void 522 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt, int qn) 523 { 524 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 525 PTC1023, PTC1522 }; 526 527 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4; 528 529 e1000x_increase_size_stats(core->mac, PTCregs, tot_len); 530 e1000x_inc_reg_if_not_full(core->mac, TPT); 531 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len); 532 533 switch (net_tx_pkt_get_packet_type(tx_pkt)) { 534 case ETH_PKT_BCAST: 535 e1000x_inc_reg_if_not_full(core->mac, BPTC); 536 break; 537 case ETH_PKT_MCAST: 538 e1000x_inc_reg_if_not_full(core->mac, MPTC); 539 break; 540 case ETH_PKT_UCAST: 541 break; 542 default: 543 g_assert_not_reached(); 544 } 545 546 e1000x_inc_reg_if_not_full(core->mac, GPTC); 547 e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len); 548 549 if (core->mac[MRQC] & 1) { 550 uint16_t pool = qn % IGB_NUM_VM_POOLS; 551 552 core->mac[PVFGOTC0 + (pool * 64)] += tot_len; 553 core->mac[PVFGPTC0 + (pool * 64)]++; 554 } 555 } 556 557 static void 558 igb_process_tx_desc(IGBCore *core, 559 PCIDevice *dev, 560 struct igb_tx *tx, 561 union e1000_adv_tx_desc *tx_desc, 562 int queue_index) 563 { 564 struct e1000_adv_tx_context_desc *tx_ctx_desc; 565 uint32_t cmd_type_len; 566 uint32_t idx; 567 uint64_t buffer_addr; 568 uint16_t length; 569 570 cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len); 571 572 if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) { 573 if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) == 574 E1000_ADVTXD_DTYP_DATA) { 575 /* advanced transmit data descriptor */ 576 if (tx->first) { 577 tx->first_cmd_type_len = cmd_type_len; 578 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status); 579 tx->first = false; 580 } 581 } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) == 582 E1000_ADVTXD_DTYP_CTXT) { 583 /* advanced transmit context descriptor */ 584 tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc; 585 idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1; 586 tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens); 587 tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed); 588 tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl); 589 tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx); 590 return; 591 } else { 592 /* unknown descriptor type */ 593 return; 594 } 595 } else { 596 /* legacy descriptor */ 597 598 /* TODO: Implement a support for legacy descriptors (7.2.2.1). */ 599 } 600 601 buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr); 602 length = cmd_type_len & 0xFFFF; 603 604 if (!tx->skip_cp) { 605 if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, dev, 606 buffer_addr, length)) { 607 tx->skip_cp = true; 608 } 609 } 610 611 if (cmd_type_len & E1000_TXD_CMD_EOP) { 612 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) { 613 idx = (tx->first_olinfo_status >> 4) & 1; 614 igb_tx_insert_vlan(core, queue_index, tx, 615 tx->ctx[idx].vlan_macip_lens >> 16, 616 !!(cmd_type_len & E1000_TXD_CMD_VLE)); 617 618 if (igb_tx_pkt_send(core, tx, queue_index)) { 619 igb_on_tx_done_update_stats(core, tx->tx_pkt, queue_index); 620 } 621 } 622 623 tx->first = true; 624 tx->skip_cp = false; 625 net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, dev); 626 } 627 } 628 629 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx) 630 { 631 uint32_t n, ent = 0; 632 633 n = igb_ivar_entry_tx(queue_idx); 634 ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff; 635 636 return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0; 637 } 638 639 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx) 640 { 641 uint32_t n, ent = 0; 642 643 n = igb_ivar_entry_rx(queue_idx); 644 ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff; 645 646 return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0; 647 } 648 649 typedef struct E1000E_RingInfo_st { 650 int dbah; 651 int dbal; 652 int dlen; 653 int dh; 654 int dt; 655 int idx; 656 } E1000E_RingInfo; 657 658 static inline bool 659 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r) 660 { 661 return core->mac[r->dh] == core->mac[r->dt] || 662 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN; 663 } 664 665 static inline uint64_t 666 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r) 667 { 668 uint64_t bah = core->mac[r->dbah]; 669 uint64_t bal = core->mac[r->dbal]; 670 671 return (bah << 32) + bal; 672 } 673 674 static inline uint64_t 675 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r) 676 { 677 return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh]; 678 } 679 680 static inline void 681 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count) 682 { 683 core->mac[r->dh] += count; 684 685 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) { 686 core->mac[r->dh] = 0; 687 } 688 } 689 690 static inline uint32_t 691 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r) 692 { 693 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen], 694 core->mac[r->dh], core->mac[r->dt]); 695 696 if (core->mac[r->dh] <= core->mac[r->dt]) { 697 return core->mac[r->dt] - core->mac[r->dh]; 698 } 699 700 if (core->mac[r->dh] > core->mac[r->dt]) { 701 return core->mac[r->dlen] / E1000_RING_DESC_LEN + 702 core->mac[r->dt] - core->mac[r->dh]; 703 } 704 705 g_assert_not_reached(); 706 return 0; 707 } 708 709 static inline bool 710 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r) 711 { 712 return core->mac[r->dlen] > 0; 713 } 714 715 typedef struct IGB_TxRing_st { 716 const E1000E_RingInfo *i; 717 struct igb_tx *tx; 718 } IGB_TxRing; 719 720 static inline int 721 igb_mq_queue_idx(int base_reg_idx, int reg_idx) 722 { 723 return (reg_idx - base_reg_idx) / 16; 724 } 725 726 static inline void 727 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx) 728 { 729 static const E1000E_RingInfo i[IGB_NUM_QUEUES] = { 730 { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 }, 731 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }, 732 { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 }, 733 { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 }, 734 { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 }, 735 { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 }, 736 { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 }, 737 { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 }, 738 { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 }, 739 { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 }, 740 { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 }, 741 { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 }, 742 { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 }, 743 { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 }, 744 { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 }, 745 { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 } 746 }; 747 748 assert(idx < ARRAY_SIZE(i)); 749 750 txr->i = &i[idx]; 751 txr->tx = &core->tx[idx]; 752 } 753 754 typedef struct E1000E_RxRing_st { 755 const E1000E_RingInfo *i; 756 } E1000E_RxRing; 757 758 static inline void 759 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx) 760 { 761 static const E1000E_RingInfo i[IGB_NUM_QUEUES] = { 762 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 }, 763 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }, 764 { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 }, 765 { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 }, 766 { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 }, 767 { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 }, 768 { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 }, 769 { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 }, 770 { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 }, 771 { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 }, 772 { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 }, 773 { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 }, 774 { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 }, 775 { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 }, 776 { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 }, 777 { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 } 778 }; 779 780 assert(idx < ARRAY_SIZE(i)); 781 782 rxr->i = &i[idx]; 783 } 784 785 static uint32_t 786 igb_txdesc_writeback(IGBCore *core, dma_addr_t base, 787 union e1000_adv_tx_desc *tx_desc, 788 const E1000E_RingInfo *txi) 789 { 790 PCIDevice *d; 791 uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len); 792 uint64_t tdwba; 793 794 tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2]; 795 tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32; 796 797 if (!(cmd_type_len & E1000_TXD_CMD_RS)) { 798 return 0; 799 } 800 801 d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8); 802 if (!d) { 803 d = core->owner; 804 } 805 806 if (tdwba & 1) { 807 uint32_t buffer = cpu_to_le32(core->mac[txi->dh]); 808 pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer)); 809 } else { 810 uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD; 811 812 tx_desc->wb.status = cpu_to_le32(status); 813 pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb), 814 &tx_desc->wb, sizeof(tx_desc->wb)); 815 } 816 817 return igb_tx_wb_eic(core, txi->idx); 818 } 819 820 static inline bool 821 igb_tx_enabled(IGBCore *core, const E1000E_RingInfo *txi) 822 { 823 bool vmdq = core->mac[MRQC] & 1; 824 uint16_t qn = txi->idx; 825 uint16_t pool = qn % IGB_NUM_VM_POOLS; 826 827 return (core->mac[TCTL] & E1000_TCTL_EN) && 828 (!vmdq || core->mac[VFTE] & BIT(pool)) && 829 (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE); 830 } 831 832 static void 833 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr) 834 { 835 PCIDevice *d; 836 dma_addr_t base; 837 union e1000_adv_tx_desc desc; 838 const E1000E_RingInfo *txi = txr->i; 839 uint32_t eic = 0; 840 841 if (!igb_tx_enabled(core, txi)) { 842 trace_e1000e_tx_disabled(); 843 return; 844 } 845 846 d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8); 847 if (!d) { 848 d = core->owner; 849 } 850 851 while (!igb_ring_empty(core, txi)) { 852 base = igb_ring_head_descr(core, txi); 853 854 pci_dma_read(d, base, &desc, sizeof(desc)); 855 856 trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr, 857 desc.read.cmd_type_len, desc.wb.status); 858 859 igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx); 860 igb_ring_advance(core, txi, 1); 861 eic |= igb_txdesc_writeback(core, base, &desc, txi); 862 } 863 864 if (eic) { 865 core->mac[EICR] |= eic; 866 igb_set_interrupt_cause(core, E1000_ICR_TXDW); 867 } 868 869 net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, d); 870 } 871 872 static uint32_t 873 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r) 874 { 875 uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2]; 876 uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK; 877 if (bsizepkt) { 878 return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT; 879 } 880 881 return e1000x_rxbufsize(core->mac[RCTL]); 882 } 883 884 static bool 885 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size) 886 { 887 uint32_t bufs = igb_ring_free_descr_num(core, r); 888 uint32_t bufsize = igb_rxbufsize(core, r); 889 890 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize); 891 892 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) * 893 bufsize; 894 } 895 896 void 897 igb_start_recv(IGBCore *core) 898 { 899 int i; 900 901 trace_e1000e_rx_start_recv(); 902 903 for (i = 0; i <= core->max_queue_num; i++) { 904 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i)); 905 } 906 } 907 908 bool 909 igb_can_receive(IGBCore *core) 910 { 911 int i; 912 913 if (!e1000x_rx_ready(core->owner, core->mac)) { 914 return false; 915 } 916 917 for (i = 0; i < IGB_NUM_QUEUES; i++) { 918 E1000E_RxRing rxr; 919 if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) { 920 continue; 921 } 922 923 igb_rx_ring_init(core, &rxr, i); 924 if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) { 925 trace_e1000e_rx_can_recv(); 926 return true; 927 } 928 } 929 930 trace_e1000e_rx_can_recv_rings_full(); 931 return false; 932 } 933 934 ssize_t 935 igb_receive(IGBCore *core, const uint8_t *buf, size_t size) 936 { 937 const struct iovec iov = { 938 .iov_base = (uint8_t *)buf, 939 .iov_len = size 940 }; 941 942 return igb_receive_iov(core, &iov, 1); 943 } 944 945 static inline bool 946 igb_rx_l3_cso_enabled(IGBCore *core) 947 { 948 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD); 949 } 950 951 static inline bool 952 igb_rx_l4_cso_enabled(IGBCore *core) 953 { 954 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD); 955 } 956 957 static bool 958 igb_rx_is_oversized(IGBCore *core, uint16_t qn, size_t size) 959 { 960 uint16_t pool = qn % IGB_NUM_VM_POOLS; 961 bool lpe = !!(core->mac[VMOLR0 + pool] & E1000_VMOLR_LPE); 962 int max_ethernet_lpe_size = 963 core->mac[VMOLR0 + pool] & E1000_VMOLR_RLPML_MASK; 964 int max_ethernet_vlan_size = 1522; 965 966 return size > (lpe ? max_ethernet_lpe_size : max_ethernet_vlan_size); 967 } 968 969 static uint16_t igb_receive_assign(IGBCore *core, const L2Header *l2_header, 970 size_t size, E1000E_RSSInfo *rss_info, 971 bool *external_tx) 972 { 973 static const int ta_shift[] = { 4, 3, 2, 0 }; 974 const struct eth_header *ehdr = &l2_header->eth; 975 uint32_t f, ra[2], *macp, rctl = core->mac[RCTL]; 976 uint16_t queues = 0; 977 uint16_t oversized = 0; 978 uint16_t vid = be16_to_cpu(l2_header->vlan.h_tci) & VLAN_VID_MASK; 979 int i; 980 981 memset(rss_info, 0, sizeof(E1000E_RSSInfo)); 982 983 if (external_tx) { 984 *external_tx = true; 985 } 986 987 if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff) && 988 !e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(ehdr))) { 989 return queues; 990 } 991 992 if (core->mac[MRQC] & 1) { 993 if (is_broadcast_ether_addr(ehdr->h_dest)) { 994 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 995 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) { 996 queues |= BIT(i); 997 } 998 } 999 } else { 1000 for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) { 1001 if (!(macp[1] & E1000_RAH_AV)) { 1002 continue; 1003 } 1004 ra[0] = cpu_to_le32(macp[0]); 1005 ra[1] = cpu_to_le32(macp[1]); 1006 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1007 queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1; 1008 } 1009 } 1010 1011 for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) { 1012 if (!(macp[1] & E1000_RAH_AV)) { 1013 continue; 1014 } 1015 ra[0] = cpu_to_le32(macp[0]); 1016 ra[1] = cpu_to_le32(macp[1]); 1017 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1018 queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1; 1019 } 1020 } 1021 1022 if (!queues) { 1023 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA); 1024 1025 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3]; 1026 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff; 1027 if (macp[f >> 5] & (1 << (f & 0x1f))) { 1028 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1029 if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) { 1030 queues |= BIT(i); 1031 } 1032 } 1033 } 1034 } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) { 1035 *external_tx = false; 1036 } 1037 } 1038 1039 if (e1000x_vlan_rx_filter_enabled(core->mac)) { 1040 uint16_t mask = 0; 1041 1042 if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff)) { 1043 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 1044 if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid && 1045 (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) { 1046 uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK; 1047 mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT; 1048 } 1049 } 1050 } else { 1051 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1052 if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) { 1053 mask |= BIT(i); 1054 } 1055 } 1056 } 1057 1058 queues &= mask; 1059 } 1060 1061 if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx && 1062 !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) { 1063 uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK; 1064 queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT); 1065 } 1066 1067 queues &= core->mac[VFRE]; 1068 if (queues) { 1069 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1070 if ((queues & BIT(i)) && igb_rx_is_oversized(core, i, size)) { 1071 oversized |= BIT(i); 1072 } 1073 } 1074 /* 8.19.37 increment ROC if packet is oversized for all queues */ 1075 if (oversized == queues) { 1076 trace_e1000x_rx_oversized(size); 1077 e1000x_inc_reg_if_not_full(core->mac, ROC); 1078 } 1079 queues &= ~oversized; 1080 } 1081 1082 if (queues) { 1083 igb_rss_parse_packet(core, core->rx_pkt, 1084 external_tx != NULL, rss_info); 1085 /* Sec 8.26.1: PQn = VFn + VQn*8 */ 1086 if (rss_info->queue & 1) { 1087 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1088 if ((queues & BIT(i)) && 1089 (core->mac[VMOLR0 + i] & E1000_VMOLR_RSSE)) { 1090 queues |= BIT(i + IGB_NUM_VM_POOLS); 1091 queues &= ~BIT(i); 1092 } 1093 } 1094 } 1095 } 1096 } else { 1097 bool accepted = e1000x_rx_group_filter(core->mac, ehdr); 1098 if (!accepted) { 1099 for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) { 1100 if (!(macp[1] & E1000_RAH_AV)) { 1101 continue; 1102 } 1103 ra[0] = cpu_to_le32(macp[0]); 1104 ra[1] = cpu_to_le32(macp[1]); 1105 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1106 trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2, 1107 MAC_ARG(ehdr->h_dest)); 1108 1109 accepted = true; 1110 break; 1111 } 1112 } 1113 } 1114 1115 if (accepted) { 1116 igb_rss_parse_packet(core, core->rx_pkt, false, rss_info); 1117 queues = BIT(rss_info->queue); 1118 } 1119 } 1120 1121 return queues; 1122 } 1123 1124 static inline void 1125 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc, 1126 hwaddr *buff_addr) 1127 { 1128 *buff_addr = le64_to_cpu(desc->buffer_addr); 1129 } 1130 1131 static inline void 1132 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc, 1133 hwaddr *buff_addr) 1134 { 1135 *buff_addr = le64_to_cpu(desc->read.pkt_addr); 1136 } 1137 1138 static inline void 1139 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc, 1140 hwaddr *buff_addr) 1141 { 1142 if (igb_rx_use_legacy_descriptor(core)) { 1143 igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr); 1144 } else { 1145 igb_read_adv_rx_descr(core, &desc->adv, buff_addr); 1146 } 1147 } 1148 1149 static void 1150 igb_verify_csum_in_sw(IGBCore *core, 1151 struct NetRxPkt *pkt, 1152 uint32_t *status_flags, 1153 EthL4HdrProto l4hdr_proto) 1154 { 1155 bool csum_valid; 1156 uint32_t csum_error; 1157 1158 if (igb_rx_l3_cso_enabled(core)) { 1159 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) { 1160 trace_e1000e_rx_metadata_l3_csum_validation_failed(); 1161 } else { 1162 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE; 1163 *status_flags |= E1000_RXD_STAT_IPCS | csum_error; 1164 } 1165 } else { 1166 trace_e1000e_rx_metadata_l3_cso_disabled(); 1167 } 1168 1169 if (!igb_rx_l4_cso_enabled(core)) { 1170 trace_e1000e_rx_metadata_l4_cso_disabled(); 1171 return; 1172 } 1173 1174 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { 1175 trace_e1000e_rx_metadata_l4_csum_validation_failed(); 1176 return; 1177 } 1178 1179 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE; 1180 *status_flags |= E1000_RXD_STAT_TCPCS | csum_error; 1181 1182 if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) { 1183 *status_flags |= E1000_RXD_STAT_UDPCS; 1184 } 1185 } 1186 1187 static void 1188 igb_build_rx_metadata(IGBCore *core, 1189 struct NetRxPkt *pkt, 1190 bool is_eop, 1191 const E1000E_RSSInfo *rss_info, 1192 uint16_t *pkt_info, uint16_t *hdr_info, 1193 uint32_t *rss, 1194 uint32_t *status_flags, 1195 uint16_t *ip_id, 1196 uint16_t *vlan_tag) 1197 { 1198 struct virtio_net_hdr *vhdr; 1199 bool hasip4, hasip6; 1200 EthL4HdrProto l4hdr_proto; 1201 1202 *status_flags = E1000_RXD_STAT_DD; 1203 1204 /* No additional metadata needed for non-EOP descriptors */ 1205 /* TODO: EOP apply only to status so don't skip whole function. */ 1206 if (!is_eop) { 1207 goto func_exit; 1208 } 1209 1210 *status_flags |= E1000_RXD_STAT_EOP; 1211 1212 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); 1213 trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto); 1214 1215 /* VLAN state */ 1216 if (net_rx_pkt_is_vlan_stripped(pkt)) { 1217 *status_flags |= E1000_RXD_STAT_VP; 1218 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt)); 1219 trace_e1000e_rx_metadata_vlan(*vlan_tag); 1220 } 1221 1222 /* Packet parsing results */ 1223 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) { 1224 if (rss_info->enabled) { 1225 *rss = cpu_to_le32(rss_info->hash); 1226 trace_igb_rx_metadata_rss(*rss); 1227 } 1228 } else if (hasip4) { 1229 *status_flags |= E1000_RXD_STAT_IPIDV; 1230 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt)); 1231 trace_e1000e_rx_metadata_ip_id(*ip_id); 1232 } 1233 1234 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) { 1235 *status_flags |= E1000_RXD_STAT_ACK; 1236 trace_e1000e_rx_metadata_ack(); 1237 } 1238 1239 if (pkt_info) { 1240 *pkt_info = rss_info->enabled ? rss_info->type : 0; 1241 1242 if (hasip4) { 1243 *pkt_info |= E1000_ADVRXD_PKT_IP4; 1244 } 1245 1246 if (hasip6) { 1247 *pkt_info |= E1000_ADVRXD_PKT_IP6; 1248 } 1249 1250 switch (l4hdr_proto) { 1251 case ETH_L4_HDR_PROTO_TCP: 1252 *pkt_info |= E1000_ADVRXD_PKT_TCP; 1253 break; 1254 1255 case ETH_L4_HDR_PROTO_UDP: 1256 *pkt_info |= E1000_ADVRXD_PKT_UDP; 1257 break; 1258 1259 default: 1260 break; 1261 } 1262 } 1263 1264 if (hdr_info) { 1265 *hdr_info = 0; 1266 } 1267 1268 /* RX CSO information */ 1269 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) { 1270 trace_e1000e_rx_metadata_ipv6_sum_disabled(); 1271 goto func_exit; 1272 } 1273 1274 vhdr = net_rx_pkt_get_vhdr(pkt); 1275 1276 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) && 1277 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) { 1278 trace_e1000e_rx_metadata_virthdr_no_csum_info(); 1279 igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto); 1280 goto func_exit; 1281 } 1282 1283 if (igb_rx_l3_cso_enabled(core)) { 1284 *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0; 1285 } else { 1286 trace_e1000e_rx_metadata_l3_cso_disabled(); 1287 } 1288 1289 if (igb_rx_l4_cso_enabled(core)) { 1290 switch (l4hdr_proto) { 1291 case ETH_L4_HDR_PROTO_TCP: 1292 *status_flags |= E1000_RXD_STAT_TCPCS; 1293 break; 1294 1295 case ETH_L4_HDR_PROTO_UDP: 1296 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS; 1297 break; 1298 1299 default: 1300 goto func_exit; 1301 } 1302 } else { 1303 trace_e1000e_rx_metadata_l4_cso_disabled(); 1304 } 1305 1306 trace_e1000e_rx_metadata_status_flags(*status_flags); 1307 1308 func_exit: 1309 *status_flags = cpu_to_le32(*status_flags); 1310 } 1311 1312 static inline void 1313 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc, 1314 struct NetRxPkt *pkt, 1315 const E1000E_RSSInfo *rss_info, 1316 uint16_t length) 1317 { 1318 uint32_t status_flags, rss; 1319 uint16_t ip_id; 1320 1321 assert(!rss_info->enabled); 1322 desc->length = cpu_to_le16(length); 1323 desc->csum = 0; 1324 1325 igb_build_rx_metadata(core, pkt, pkt != NULL, 1326 rss_info, 1327 NULL, NULL, &rss, 1328 &status_flags, &ip_id, 1329 &desc->special); 1330 desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24); 1331 desc->status = (uint8_t) le32_to_cpu(status_flags); 1332 } 1333 1334 static inline void 1335 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc, 1336 struct NetRxPkt *pkt, 1337 const E1000E_RSSInfo *rss_info, 1338 uint16_t length) 1339 { 1340 memset(&desc->wb, 0, sizeof(desc->wb)); 1341 1342 desc->wb.upper.length = cpu_to_le16(length); 1343 1344 igb_build_rx_metadata(core, pkt, pkt != NULL, 1345 rss_info, 1346 &desc->wb.lower.lo_dword.pkt_info, 1347 &desc->wb.lower.lo_dword.hdr_info, 1348 &desc->wb.lower.hi_dword.rss, 1349 &desc->wb.upper.status_error, 1350 &desc->wb.lower.hi_dword.csum_ip.ip_id, 1351 &desc->wb.upper.vlan); 1352 } 1353 1354 static inline void 1355 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc, 1356 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length) 1357 { 1358 if (igb_rx_use_legacy_descriptor(core)) { 1359 igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, length); 1360 } else { 1361 igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, length); 1362 } 1363 } 1364 1365 static inline void 1366 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr, 1367 union e1000_rx_desc_union *desc, dma_addr_t len) 1368 { 1369 if (igb_rx_use_legacy_descriptor(core)) { 1370 struct e1000_rx_desc *d = &desc->legacy; 1371 size_t offset = offsetof(struct e1000_rx_desc, status); 1372 uint8_t status = d->status; 1373 1374 d->status &= ~E1000_RXD_STAT_DD; 1375 pci_dma_write(dev, addr, desc, len); 1376 1377 if (status & E1000_RXD_STAT_DD) { 1378 d->status = status; 1379 pci_dma_write(dev, addr + offset, &status, sizeof(status)); 1380 } 1381 } else { 1382 union e1000_adv_rx_desc *d = &desc->adv; 1383 size_t offset = 1384 offsetof(union e1000_adv_rx_desc, wb.upper.status_error); 1385 uint32_t status = d->wb.upper.status_error; 1386 1387 d->wb.upper.status_error &= ~E1000_RXD_STAT_DD; 1388 pci_dma_write(dev, addr, desc, len); 1389 1390 if (status & E1000_RXD_STAT_DD) { 1391 d->wb.upper.status_error = status; 1392 pci_dma_write(dev, addr + offset, &status, sizeof(status)); 1393 } 1394 } 1395 } 1396 1397 static void 1398 igb_write_to_rx_buffers(IGBCore *core, 1399 PCIDevice *d, 1400 hwaddr ba, 1401 uint16_t *written, 1402 const char *data, 1403 dma_addr_t data_len) 1404 { 1405 trace_igb_rx_desc_buff_write(ba, *written, data, data_len); 1406 pci_dma_write(d, ba + *written, data, data_len); 1407 *written += data_len; 1408 } 1409 1410 static void 1411 igb_update_rx_stats(IGBCore *core, const E1000E_RingInfo *rxi, 1412 size_t pkt_size, size_t pkt_fcs_size) 1413 { 1414 eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt); 1415 e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size); 1416 1417 if (core->mac[MRQC] & 1) { 1418 uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS; 1419 1420 core->mac[PVFGORC0 + (pool * 64)] += pkt_size + 4; 1421 core->mac[PVFGPRC0 + (pool * 64)]++; 1422 if (pkt_type == ETH_PKT_MCAST) { 1423 core->mac[PVFMPRC0 + (pool * 64)]++; 1424 } 1425 } 1426 } 1427 1428 static inline bool 1429 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi) 1430 { 1431 return igb_ring_free_descr_num(core, rxi) == 1432 ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16; 1433 } 1434 1435 static void 1436 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt, 1437 const E1000E_RxRing *rxr, 1438 const E1000E_RSSInfo *rss_info) 1439 { 1440 PCIDevice *d; 1441 dma_addr_t base; 1442 union e1000_rx_desc_union desc; 1443 size_t desc_size; 1444 size_t desc_offset = 0; 1445 size_t iov_ofs = 0; 1446 1447 struct iovec *iov = net_rx_pkt_get_iovec(pkt); 1448 size_t size = net_rx_pkt_get_total_len(pkt); 1449 size_t total_size = size + e1000x_fcs_len(core->mac); 1450 const E1000E_RingInfo *rxi = rxr->i; 1451 size_t bufsize = igb_rxbufsize(core, rxi); 1452 1453 d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8); 1454 if (!d) { 1455 d = core->owner; 1456 } 1457 1458 do { 1459 hwaddr ba; 1460 uint16_t written = 0; 1461 bool is_last = false; 1462 1463 desc_size = total_size - desc_offset; 1464 1465 if (desc_size > bufsize) { 1466 desc_size = bufsize; 1467 } 1468 1469 if (igb_ring_empty(core, rxi)) { 1470 return; 1471 } 1472 1473 base = igb_ring_head_descr(core, rxi); 1474 1475 pci_dma_read(d, base, &desc, core->rx_desc_len); 1476 1477 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len); 1478 1479 igb_read_rx_descr(core, &desc, &ba); 1480 1481 if (ba) { 1482 if (desc_offset < size) { 1483 static const uint32_t fcs_pad; 1484 size_t iov_copy; 1485 size_t copy_size = size - desc_offset; 1486 if (copy_size > bufsize) { 1487 copy_size = bufsize; 1488 } 1489 1490 /* Copy packet payload */ 1491 while (copy_size) { 1492 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 1493 1494 igb_write_to_rx_buffers(core, d, ba, &written, 1495 iov->iov_base + iov_ofs, iov_copy); 1496 1497 copy_size -= iov_copy; 1498 iov_ofs += iov_copy; 1499 if (iov_ofs == iov->iov_len) { 1500 iov++; 1501 iov_ofs = 0; 1502 } 1503 } 1504 1505 if (desc_offset + desc_size >= total_size) { 1506 /* Simulate FCS checksum presence in the last descriptor */ 1507 igb_write_to_rx_buffers(core, d, ba, &written, 1508 (const char *) &fcs_pad, e1000x_fcs_len(core->mac)); 1509 } 1510 } 1511 } else { /* as per intel docs; skip descriptors with null buf addr */ 1512 trace_e1000e_rx_null_descriptor(); 1513 } 1514 desc_offset += desc_size; 1515 if (desc_offset >= total_size) { 1516 is_last = true; 1517 } 1518 1519 igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL, 1520 rss_info, written); 1521 igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len); 1522 1523 igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN); 1524 1525 } while (desc_offset < total_size); 1526 1527 igb_update_rx_stats(core, rxi, size, total_size); 1528 } 1529 1530 static bool 1531 igb_rx_strip_vlan(IGBCore *core, const E1000E_RingInfo *rxi) 1532 { 1533 if (core->mac[MRQC] & 1) { 1534 uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS; 1535 /* Sec 7.10.3.8: CTRL.VME is ignored, only VMOLR/RPLOLR is used */ 1536 return (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) ? 1537 core->mac[RPLOLR] & E1000_RPLOLR_STRVLAN : 1538 core->mac[VMOLR0 + pool] & E1000_VMOLR_STRVLAN; 1539 } 1540 1541 return e1000x_vlan_enabled(core->mac); 1542 } 1543 1544 static inline void 1545 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt) 1546 { 1547 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt); 1548 1549 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 1550 net_rx_pkt_fix_l4_csum(pkt); 1551 } 1552 } 1553 1554 ssize_t 1555 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt) 1556 { 1557 return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL); 1558 } 1559 1560 static ssize_t 1561 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt, 1562 bool has_vnet, bool *external_tx) 1563 { 1564 uint16_t queues = 0; 1565 uint32_t n = 0; 1566 union { 1567 L2Header l2_header; 1568 uint8_t octets[ETH_ZLEN]; 1569 } buf; 1570 struct iovec min_iov; 1571 size_t size, orig_size; 1572 size_t iov_ofs = 0; 1573 E1000E_RxRing rxr; 1574 E1000E_RSSInfo rss_info; 1575 size_t total_size; 1576 int i; 1577 1578 trace_e1000e_rx_receive_iov(iovcnt); 1579 1580 if (external_tx) { 1581 *external_tx = true; 1582 } 1583 1584 if (!e1000x_hw_rx_enabled(core->mac)) { 1585 return -1; 1586 } 1587 1588 /* Pull virtio header in */ 1589 if (has_vnet) { 1590 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt); 1591 iov_ofs = sizeof(struct virtio_net_hdr); 1592 } else { 1593 net_rx_pkt_unset_vhdr(core->rx_pkt); 1594 } 1595 1596 orig_size = iov_size(iov, iovcnt); 1597 size = orig_size - iov_ofs; 1598 1599 /* Pad to minimum Ethernet frame length */ 1600 if (size < sizeof(buf)) { 1601 iov_to_buf(iov, iovcnt, iov_ofs, &buf, size); 1602 memset(&buf.octets[size], 0, sizeof(buf) - size); 1603 e1000x_inc_reg_if_not_full(core->mac, RUC); 1604 min_iov.iov_base = &buf; 1605 min_iov.iov_len = size = sizeof(buf); 1606 iovcnt = 1; 1607 iov = &min_iov; 1608 iov_ofs = 0; 1609 } else { 1610 iov_to_buf(iov, iovcnt, iov_ofs, &buf, sizeof(buf.l2_header)); 1611 } 1612 1613 /* Discard oversized packets if !LPE and !SBP. */ 1614 if (e1000x_is_oversized(core->mac, size)) { 1615 return orig_size; 1616 } 1617 1618 net_rx_pkt_set_packet_type(core->rx_pkt, 1619 get_eth_packet_type(&buf.l2_header.eth)); 1620 net_rx_pkt_set_protocols(core->rx_pkt, iov, iovcnt, iov_ofs); 1621 1622 queues = igb_receive_assign(core, &buf.l2_header, size, 1623 &rss_info, external_tx); 1624 if (!queues) { 1625 trace_e1000e_rx_flt_dropped(); 1626 return orig_size; 1627 } 1628 1629 for (i = 0; i < IGB_NUM_QUEUES; i++) { 1630 if (!(queues & BIT(i)) || 1631 !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) { 1632 continue; 1633 } 1634 1635 igb_rx_ring_init(core, &rxr, i); 1636 1637 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs, 1638 igb_rx_strip_vlan(core, rxr.i), 1639 core->mac[VET] & 0xffff); 1640 1641 total_size = net_rx_pkt_get_total_len(core->rx_pkt) + 1642 e1000x_fcs_len(core->mac); 1643 1644 if (!igb_has_rxbufs(core, rxr.i, total_size)) { 1645 n |= E1000_ICS_RXO; 1646 trace_e1000e_rx_not_written_to_guest(rxr.i->idx); 1647 continue; 1648 } 1649 1650 n |= E1000_ICR_RXDW; 1651 1652 igb_rx_fix_l4_csum(core, core->rx_pkt); 1653 igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info); 1654 1655 /* Check if receive descriptor minimum threshold hit */ 1656 if (igb_rx_descr_threshold_hit(core, rxr.i)) { 1657 n |= E1000_ICS_RXDMT0; 1658 } 1659 1660 core->mac[EICR] |= igb_rx_wb_eic(core, rxr.i->idx); 1661 1662 trace_e1000e_rx_written_to_guest(rxr.i->idx); 1663 } 1664 1665 trace_e1000e_rx_interrupt_set(n); 1666 igb_set_interrupt_cause(core, n); 1667 1668 return orig_size; 1669 } 1670 1671 static inline bool 1672 igb_have_autoneg(IGBCore *core) 1673 { 1674 return core->phy[MII_BMCR] & MII_BMCR_AUTOEN; 1675 } 1676 1677 static void igb_update_flowctl_status(IGBCore *core) 1678 { 1679 if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) { 1680 trace_e1000e_link_autoneg_flowctl(true); 1681 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE; 1682 } else { 1683 trace_e1000e_link_autoneg_flowctl(false); 1684 } 1685 } 1686 1687 static inline void 1688 igb_link_down(IGBCore *core) 1689 { 1690 e1000x_update_regs_on_link_down(core->mac, core->phy); 1691 igb_update_flowctl_status(core); 1692 } 1693 1694 static inline void 1695 igb_set_phy_ctrl(IGBCore *core, uint16_t val) 1696 { 1697 /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */ 1698 core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART); 1699 1700 if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) { 1701 e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer); 1702 } 1703 } 1704 1705 void igb_core_set_link_status(IGBCore *core) 1706 { 1707 NetClientState *nc = qemu_get_queue(core->owner_nic); 1708 uint32_t old_status = core->mac[STATUS]; 1709 1710 trace_e1000e_link_status_changed(nc->link_down ? false : true); 1711 1712 if (nc->link_down) { 1713 e1000x_update_regs_on_link_down(core->mac, core->phy); 1714 } else { 1715 if (igb_have_autoneg(core) && 1716 !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) { 1717 e1000x_restart_autoneg(core->mac, core->phy, 1718 core->autoneg_timer); 1719 } else { 1720 e1000x_update_regs_on_link_up(core->mac, core->phy); 1721 igb_start_recv(core); 1722 } 1723 } 1724 1725 if (core->mac[STATUS] != old_status) { 1726 igb_set_interrupt_cause(core, E1000_ICR_LSC); 1727 } 1728 } 1729 1730 static void 1731 igb_set_ctrl(IGBCore *core, int index, uint32_t val) 1732 { 1733 trace_e1000e_core_ctrl_write(index, val); 1734 1735 /* RST is self clearing */ 1736 core->mac[CTRL] = val & ~E1000_CTRL_RST; 1737 core->mac[CTRL_DUP] = core->mac[CTRL]; 1738 1739 trace_e1000e_link_set_params( 1740 !!(val & E1000_CTRL_ASDE), 1741 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 1742 !!(val & E1000_CTRL_FRCSPD), 1743 !!(val & E1000_CTRL_FRCDPX), 1744 !!(val & E1000_CTRL_RFCE), 1745 !!(val & E1000_CTRL_TFCE)); 1746 1747 if (val & E1000_CTRL_RST) { 1748 trace_e1000e_core_ctrl_sw_reset(); 1749 igb_reset(core, true); 1750 } 1751 1752 if (val & E1000_CTRL_PHY_RST) { 1753 trace_e1000e_core_ctrl_phy_reset(); 1754 core->mac[STATUS] |= E1000_STATUS_PHYRA; 1755 } 1756 } 1757 1758 static void 1759 igb_set_rfctl(IGBCore *core, int index, uint32_t val) 1760 { 1761 trace_e1000e_rx_set_rfctl(val); 1762 1763 if (!(val & E1000_RFCTL_ISCSI_DIS)) { 1764 trace_e1000e_wrn_iscsi_filtering_not_supported(); 1765 } 1766 1767 if (!(val & E1000_RFCTL_NFSW_DIS)) { 1768 trace_e1000e_wrn_nfsw_filtering_not_supported(); 1769 } 1770 1771 if (!(val & E1000_RFCTL_NFSR_DIS)) { 1772 trace_e1000e_wrn_nfsr_filtering_not_supported(); 1773 } 1774 1775 core->mac[RFCTL] = val; 1776 } 1777 1778 static void 1779 igb_calc_rxdesclen(IGBCore *core) 1780 { 1781 if (igb_rx_use_legacy_descriptor(core)) { 1782 core->rx_desc_len = sizeof(struct e1000_rx_desc); 1783 } else { 1784 core->rx_desc_len = sizeof(union e1000_adv_rx_desc); 1785 } 1786 trace_e1000e_rx_desc_len(core->rx_desc_len); 1787 } 1788 1789 static void 1790 igb_set_rx_control(IGBCore *core, int index, uint32_t val) 1791 { 1792 core->mac[RCTL] = val; 1793 trace_e1000e_rx_set_rctl(core->mac[RCTL]); 1794 1795 if (val & E1000_RCTL_DTYP_MASK) { 1796 qemu_log_mask(LOG_GUEST_ERROR, 1797 "igb: RCTL.DTYP must be zero for compatibility"); 1798 } 1799 1800 if (val & E1000_RCTL_EN) { 1801 igb_calc_rxdesclen(core); 1802 igb_start_recv(core); 1803 } 1804 } 1805 1806 static inline void 1807 igb_clear_ims_bits(IGBCore *core, uint32_t bits) 1808 { 1809 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits); 1810 core->mac[IMS] &= ~bits; 1811 } 1812 1813 static inline bool 1814 igb_postpone_interrupt(IGBIntrDelayTimer *timer) 1815 { 1816 if (timer->running) { 1817 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2); 1818 1819 return true; 1820 } 1821 1822 if (timer->core->mac[timer->delay_reg] != 0) { 1823 igb_intrmgr_rearm_timer(timer); 1824 } 1825 1826 return false; 1827 } 1828 1829 static inline bool 1830 igb_eitr_should_postpone(IGBCore *core, int idx) 1831 { 1832 return igb_postpone_interrupt(&core->eitr[idx]); 1833 } 1834 1835 static void igb_send_msix(IGBCore *core) 1836 { 1837 uint32_t causes = core->mac[EICR] & core->mac[EIMS]; 1838 uint32_t effective_eiac; 1839 int vector; 1840 1841 for (vector = 0; vector < IGB_INTR_NUM; ++vector) { 1842 if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) { 1843 1844 trace_e1000e_irq_msix_notify_vec(vector); 1845 igb_msix_notify(core, vector); 1846 1847 trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]); 1848 effective_eiac = core->mac[EIAC] & BIT(vector); 1849 core->mac[EICR] &= ~effective_eiac; 1850 } 1851 } 1852 } 1853 1854 static inline void 1855 igb_fix_icr_asserted(IGBCore *core) 1856 { 1857 core->mac[ICR] &= ~E1000_ICR_ASSERTED; 1858 if (core->mac[ICR]) { 1859 core->mac[ICR] |= E1000_ICR_ASSERTED; 1860 } 1861 1862 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]); 1863 } 1864 1865 static void 1866 igb_update_interrupt_state(IGBCore *core) 1867 { 1868 uint32_t icr; 1869 uint32_t causes; 1870 uint32_t int_alloc; 1871 1872 icr = core->mac[ICR] & core->mac[IMS]; 1873 1874 if (msix_enabled(core->owner)) { 1875 if (icr) { 1876 causes = 0; 1877 if (icr & E1000_ICR_DRSTA) { 1878 int_alloc = core->mac[IVAR_MISC] & 0xff; 1879 if (int_alloc & E1000_IVAR_VALID) { 1880 causes |= BIT(int_alloc & 0x1f); 1881 } 1882 } 1883 /* Check if other bits (excluding the TCP Timer) are enabled. */ 1884 if (icr & ~E1000_ICR_DRSTA) { 1885 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff; 1886 if (int_alloc & E1000_IVAR_VALID) { 1887 causes |= BIT(int_alloc & 0x1f); 1888 } 1889 trace_e1000e_irq_add_msi_other(core->mac[EICR]); 1890 } 1891 core->mac[EICR] |= causes; 1892 } 1893 1894 if ((core->mac[EICR] & core->mac[EIMS])) { 1895 igb_send_msix(core); 1896 } 1897 } else { 1898 igb_fix_icr_asserted(core); 1899 1900 if (icr) { 1901 core->mac[EICR] |= (icr & E1000_ICR_DRSTA) | E1000_EICR_OTHER; 1902 } else { 1903 core->mac[EICR] &= ~E1000_EICR_OTHER; 1904 } 1905 1906 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], 1907 core->mac[ICR], core->mac[IMS]); 1908 1909 if (msi_enabled(core->owner)) { 1910 if (icr) { 1911 msi_notify(core->owner, 0); 1912 } 1913 } else { 1914 if (icr) { 1915 igb_raise_legacy_irq(core); 1916 } else { 1917 igb_lower_legacy_irq(core); 1918 } 1919 } 1920 } 1921 } 1922 1923 static void 1924 igb_set_interrupt_cause(IGBCore *core, uint32_t val) 1925 { 1926 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]); 1927 1928 core->mac[ICR] |= val; 1929 1930 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]); 1931 1932 igb_update_interrupt_state(core); 1933 } 1934 1935 static void igb_set_eics(IGBCore *core, int index, uint32_t val) 1936 { 1937 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 1938 1939 trace_igb_irq_write_eics(val, msix); 1940 1941 core->mac[EICS] |= 1942 val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK); 1943 1944 /* 1945 * TODO: Move to igb_update_interrupt_state if EICS is modified in other 1946 * places. 1947 */ 1948 core->mac[EICR] = core->mac[EICS]; 1949 1950 igb_update_interrupt_state(core); 1951 } 1952 1953 static void igb_set_eims(IGBCore *core, int index, uint32_t val) 1954 { 1955 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 1956 1957 trace_igb_irq_write_eims(val, msix); 1958 1959 core->mac[EIMS] |= 1960 val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK); 1961 1962 igb_update_interrupt_state(core); 1963 } 1964 1965 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn) 1966 { 1967 uint32_t ent = core->mac[VTIVAR_MISC + vfn]; 1968 1969 if ((ent & E1000_IVAR_VALID)) { 1970 core->mac[EICR] |= (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM); 1971 igb_update_interrupt_state(core); 1972 } 1973 } 1974 1975 static void mailbox_interrupt_to_pf(IGBCore *core) 1976 { 1977 igb_set_interrupt_cause(core, E1000_ICR_VMMB); 1978 } 1979 1980 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val) 1981 { 1982 uint16_t vfn = index - P2VMAILBOX0; 1983 1984 trace_igb_set_pfmailbox(vfn, val); 1985 1986 if (val & E1000_P2VMAILBOX_STS) { 1987 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS; 1988 mailbox_interrupt_to_vf(core, vfn); 1989 } 1990 1991 if (val & E1000_P2VMAILBOX_ACK) { 1992 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK; 1993 mailbox_interrupt_to_vf(core, vfn); 1994 } 1995 1996 /* Buffer Taken by PF (can be set only if the VFU is cleared). */ 1997 if (val & E1000_P2VMAILBOX_PFU) { 1998 if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) { 1999 core->mac[index] |= E1000_P2VMAILBOX_PFU; 2000 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU; 2001 } 2002 } else { 2003 core->mac[index] &= ~E1000_P2VMAILBOX_PFU; 2004 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU; 2005 } 2006 2007 if (val & E1000_P2VMAILBOX_RVFU) { 2008 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU; 2009 core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) | 2010 (E1000_MBVFICR_VFREQ_VF1 << vfn)); 2011 } 2012 } 2013 2014 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val) 2015 { 2016 uint16_t vfn = index - V2PMAILBOX0; 2017 2018 trace_igb_set_vfmailbox(vfn, val); 2019 2020 if (val & E1000_V2PMAILBOX_REQ) { 2021 core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn; 2022 mailbox_interrupt_to_pf(core); 2023 } 2024 2025 if (val & E1000_V2PMAILBOX_ACK) { 2026 core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn; 2027 mailbox_interrupt_to_pf(core); 2028 } 2029 2030 /* Buffer Taken by VF (can be set only if the PFU is cleared). */ 2031 if (val & E1000_V2PMAILBOX_VFU) { 2032 if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) { 2033 core->mac[index] |= E1000_V2PMAILBOX_VFU; 2034 core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU; 2035 } 2036 } else { 2037 core->mac[index] &= ~E1000_V2PMAILBOX_VFU; 2038 core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU; 2039 } 2040 } 2041 2042 static void igb_vf_reset(IGBCore *core, uint16_t vfn) 2043 { 2044 uint16_t qn0 = vfn; 2045 uint16_t qn1 = vfn + IGB_NUM_VM_POOLS; 2046 2047 /* disable Rx and Tx for the VF*/ 2048 core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE; 2049 core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE; 2050 core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE; 2051 core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE; 2052 core->mac[VFRE] &= ~BIT(vfn); 2053 core->mac[VFTE] &= ~BIT(vfn); 2054 /* indicate VF reset to PF */ 2055 core->mac[VFLRE] |= BIT(vfn); 2056 /* VFLRE and mailbox use the same interrupt cause */ 2057 mailbox_interrupt_to_pf(core); 2058 } 2059 2060 static void igb_w1c(IGBCore *core, int index, uint32_t val) 2061 { 2062 core->mac[index] &= ~val; 2063 } 2064 2065 static void igb_set_eimc(IGBCore *core, int index, uint32_t val) 2066 { 2067 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2068 2069 /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */ 2070 core->mac[EIMS] &= 2071 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2072 2073 trace_igb_irq_write_eimc(val, core->mac[EIMS], msix); 2074 igb_update_interrupt_state(core); 2075 } 2076 2077 static void igb_set_eiac(IGBCore *core, int index, uint32_t val) 2078 { 2079 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2080 2081 if (msix) { 2082 trace_igb_irq_write_eiac(val); 2083 2084 /* 2085 * TODO: When using IOV, the bits that correspond to MSI-X vectors 2086 * that are assigned to a VF are read-only. 2087 */ 2088 core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK); 2089 } 2090 } 2091 2092 static void igb_set_eiam(IGBCore *core, int index, uint32_t val) 2093 { 2094 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2095 2096 /* 2097 * TODO: When using IOV, the bits that correspond to MSI-X vectors that 2098 * are assigned to a VF are read-only. 2099 */ 2100 core->mac[EIAM] |= 2101 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2102 2103 trace_igb_irq_write_eiam(val, msix); 2104 } 2105 2106 static void igb_set_eicr(IGBCore *core, int index, uint32_t val) 2107 { 2108 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2109 2110 /* 2111 * TODO: In IOV mode, only bit zero of this vector is available for the PF 2112 * function. 2113 */ 2114 core->mac[EICR] &= 2115 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2116 2117 trace_igb_irq_write_eicr(val, msix); 2118 igb_update_interrupt_state(core); 2119 } 2120 2121 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val) 2122 { 2123 uint16_t vfn; 2124 2125 if (val & E1000_CTRL_RST) { 2126 vfn = (index - PVTCTRL0) / 0x40; 2127 igb_vf_reset(core, vfn); 2128 } 2129 } 2130 2131 static void igb_set_vteics(IGBCore *core, int index, uint32_t val) 2132 { 2133 uint16_t vfn = (index - PVTEICS0) / 0x40; 2134 2135 core->mac[index] = val; 2136 igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2137 } 2138 2139 static void igb_set_vteims(IGBCore *core, int index, uint32_t val) 2140 { 2141 uint16_t vfn = (index - PVTEIMS0) / 0x40; 2142 2143 core->mac[index] = val; 2144 igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2145 } 2146 2147 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val) 2148 { 2149 uint16_t vfn = (index - PVTEIMC0) / 0x40; 2150 2151 core->mac[index] = val; 2152 igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2153 } 2154 2155 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val) 2156 { 2157 uint16_t vfn = (index - PVTEIAC0) / 0x40; 2158 2159 core->mac[index] = val; 2160 igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2161 } 2162 2163 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val) 2164 { 2165 uint16_t vfn = (index - PVTEIAM0) / 0x40; 2166 2167 core->mac[index] = val; 2168 igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2169 } 2170 2171 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val) 2172 { 2173 uint16_t vfn = (index - PVTEICR0) / 0x40; 2174 2175 core->mac[index] = val; 2176 igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2177 } 2178 2179 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val) 2180 { 2181 uint16_t vfn = (index - VTIVAR); 2182 uint16_t qn = vfn; 2183 uint8_t ent; 2184 int n; 2185 2186 core->mac[index] = val; 2187 2188 /* Get assigned vector associated with queue Rx#0. */ 2189 if ((val & E1000_IVAR_VALID)) { 2190 n = igb_ivar_entry_rx(qn); 2191 ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7))); 2192 core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4); 2193 } 2194 2195 /* Get assigned vector associated with queue Tx#0 */ 2196 ent = val >> 8; 2197 if ((ent & E1000_IVAR_VALID)) { 2198 n = igb_ivar_entry_tx(qn); 2199 ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7))); 2200 core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4); 2201 } 2202 2203 /* 2204 * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now. 2205 */ 2206 } 2207 2208 static inline void 2209 igb_autoneg_timer(void *opaque) 2210 { 2211 IGBCore *core = opaque; 2212 if (!qemu_get_queue(core->owner_nic)->link_down) { 2213 e1000x_update_regs_on_autoneg_done(core->mac, core->phy); 2214 igb_start_recv(core); 2215 2216 igb_update_flowctl_status(core); 2217 /* signal link status change to the guest */ 2218 igb_set_interrupt_cause(core, E1000_ICR_LSC); 2219 } 2220 } 2221 2222 static inline uint16_t 2223 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr) 2224 { 2225 uint16_t index = (addr & 0x1ffff) >> 2; 2226 return index + (mac_reg_access[index] & 0xfffe); 2227 } 2228 2229 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = { 2230 [MII_BMCR] = PHY_RW, 2231 [MII_BMSR] = PHY_R, 2232 [MII_PHYID1] = PHY_R, 2233 [MII_PHYID2] = PHY_R, 2234 [MII_ANAR] = PHY_RW, 2235 [MII_ANLPAR] = PHY_R, 2236 [MII_ANER] = PHY_R, 2237 [MII_ANNP] = PHY_RW, 2238 [MII_ANLPRNP] = PHY_R, 2239 [MII_CTRL1000] = PHY_RW, 2240 [MII_STAT1000] = PHY_R, 2241 [MII_EXTSTAT] = PHY_R, 2242 2243 [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW, 2244 [IGP01E1000_PHY_PORT_STATUS] = PHY_R, 2245 [IGP01E1000_PHY_PORT_CTRL] = PHY_RW, 2246 [IGP01E1000_PHY_LINK_HEALTH] = PHY_R, 2247 [IGP02E1000_PHY_POWER_MGMT] = PHY_RW, 2248 [IGP01E1000_PHY_PAGE_SELECT] = PHY_W 2249 }; 2250 2251 static void 2252 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data) 2253 { 2254 assert(addr <= MAX_PHY_REG_ADDRESS); 2255 2256 if (addr == MII_BMCR) { 2257 igb_set_phy_ctrl(core, data); 2258 } else { 2259 core->phy[addr] = data; 2260 } 2261 } 2262 2263 static void 2264 igb_set_mdic(IGBCore *core, int index, uint32_t val) 2265 { 2266 uint32_t data = val & E1000_MDIC_DATA_MASK; 2267 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 2268 2269 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */ 2270 val = core->mac[MDIC] | E1000_MDIC_ERROR; 2271 } else if (val & E1000_MDIC_OP_READ) { 2272 if (!(igb_phy_regcap[addr] & PHY_R)) { 2273 trace_igb_core_mdic_read_unhandled(addr); 2274 val |= E1000_MDIC_ERROR; 2275 } else { 2276 val = (val ^ data) | core->phy[addr]; 2277 trace_igb_core_mdic_read(addr, val); 2278 } 2279 } else if (val & E1000_MDIC_OP_WRITE) { 2280 if (!(igb_phy_regcap[addr] & PHY_W)) { 2281 trace_igb_core_mdic_write_unhandled(addr); 2282 val |= E1000_MDIC_ERROR; 2283 } else { 2284 trace_igb_core_mdic_write(addr, data); 2285 igb_phy_reg_write(core, addr, data); 2286 } 2287 } 2288 core->mac[MDIC] = val | E1000_MDIC_READY; 2289 2290 if (val & E1000_MDIC_INT_EN) { 2291 igb_set_interrupt_cause(core, E1000_ICR_MDAC); 2292 } 2293 } 2294 2295 static void 2296 igb_set_rdt(IGBCore *core, int index, uint32_t val) 2297 { 2298 core->mac[index] = val & 0xffff; 2299 trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val); 2300 igb_start_recv(core); 2301 } 2302 2303 static void 2304 igb_set_status(IGBCore *core, int index, uint32_t val) 2305 { 2306 if ((val & E1000_STATUS_PHYRA) == 0) { 2307 core->mac[index] &= ~E1000_STATUS_PHYRA; 2308 } 2309 } 2310 2311 static void 2312 igb_set_ctrlext(IGBCore *core, int index, uint32_t val) 2313 { 2314 trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK), 2315 !!(val & E1000_CTRL_EXT_SPD_BYPS), 2316 !!(val & E1000_CTRL_EXT_PFRSTD)); 2317 2318 /* Zero self-clearing bits */ 2319 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST); 2320 core->mac[CTRL_EXT] = val; 2321 2322 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) { 2323 for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) { 2324 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI; 2325 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD; 2326 } 2327 } 2328 } 2329 2330 static void 2331 igb_set_pbaclr(IGBCore *core, int index, uint32_t val) 2332 { 2333 int i; 2334 2335 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK; 2336 2337 if (!msix_enabled(core->owner)) { 2338 return; 2339 } 2340 2341 for (i = 0; i < IGB_INTR_NUM; i++) { 2342 if (core->mac[PBACLR] & BIT(i)) { 2343 msix_clr_pending(core->owner, i); 2344 } 2345 } 2346 } 2347 2348 static void 2349 igb_set_fcrth(IGBCore *core, int index, uint32_t val) 2350 { 2351 core->mac[FCRTH] = val & 0xFFF8; 2352 } 2353 2354 static void 2355 igb_set_fcrtl(IGBCore *core, int index, uint32_t val) 2356 { 2357 core->mac[FCRTL] = val & 0x8000FFF8; 2358 } 2359 2360 #define IGB_LOW_BITS_SET_FUNC(num) \ 2361 static void \ 2362 igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \ 2363 { \ 2364 core->mac[index] = val & (BIT(num) - 1); \ 2365 } 2366 2367 IGB_LOW_BITS_SET_FUNC(4) 2368 IGB_LOW_BITS_SET_FUNC(13) 2369 IGB_LOW_BITS_SET_FUNC(16) 2370 2371 static void 2372 igb_set_dlen(IGBCore *core, int index, uint32_t val) 2373 { 2374 core->mac[index] = val & 0xffff0; 2375 } 2376 2377 static void 2378 igb_set_dbal(IGBCore *core, int index, uint32_t val) 2379 { 2380 core->mac[index] = val & E1000_XDBAL_MASK; 2381 } 2382 2383 static void 2384 igb_set_tdt(IGBCore *core, int index, uint32_t val) 2385 { 2386 IGB_TxRing txr; 2387 int qn = igb_mq_queue_idx(TDT0, index); 2388 2389 core->mac[index] = val & 0xffff; 2390 2391 igb_tx_ring_init(core, &txr, qn); 2392 igb_start_xmit(core, &txr); 2393 } 2394 2395 static void 2396 igb_set_ics(IGBCore *core, int index, uint32_t val) 2397 { 2398 trace_e1000e_irq_write_ics(val); 2399 igb_set_interrupt_cause(core, val); 2400 } 2401 2402 static void 2403 igb_set_imc(IGBCore *core, int index, uint32_t val) 2404 { 2405 trace_e1000e_irq_ims_clear_set_imc(val); 2406 igb_clear_ims_bits(core, val); 2407 igb_update_interrupt_state(core); 2408 } 2409 2410 static void 2411 igb_set_ims(IGBCore *core, int index, uint32_t val) 2412 { 2413 uint32_t valid_val = val & 0x77D4FBFD; 2414 2415 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val); 2416 core->mac[IMS] |= valid_val; 2417 igb_update_interrupt_state(core); 2418 } 2419 2420 static void igb_commit_icr(IGBCore *core) 2421 { 2422 /* 2423 * If GPIE.NSICR = 0, then the clear of IMS will occur only if at 2424 * least one bit is set in the IMS and there is a true interrupt as 2425 * reflected in ICR.INTA. 2426 */ 2427 if ((core->mac[GPIE] & E1000_GPIE_NSICR) || 2428 (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) { 2429 igb_clear_ims_bits(core, core->mac[IAM]); 2430 } 2431 2432 igb_update_interrupt_state(core); 2433 } 2434 2435 static void igb_set_icr(IGBCore *core, int index, uint32_t val) 2436 { 2437 uint32_t icr = core->mac[ICR] & ~val; 2438 2439 trace_igb_irq_icr_write(val, core->mac[ICR], icr); 2440 core->mac[ICR] = icr; 2441 igb_commit_icr(core); 2442 } 2443 2444 static uint32_t 2445 igb_mac_readreg(IGBCore *core, int index) 2446 { 2447 return core->mac[index]; 2448 } 2449 2450 static uint32_t 2451 igb_mac_ics_read(IGBCore *core, int index) 2452 { 2453 trace_e1000e_irq_read_ics(core->mac[ICS]); 2454 return core->mac[ICS]; 2455 } 2456 2457 static uint32_t 2458 igb_mac_ims_read(IGBCore *core, int index) 2459 { 2460 trace_e1000e_irq_read_ims(core->mac[IMS]); 2461 return core->mac[IMS]; 2462 } 2463 2464 static uint32_t 2465 igb_mac_swsm_read(IGBCore *core, int index) 2466 { 2467 uint32_t val = core->mac[SWSM]; 2468 core->mac[SWSM] = val | E1000_SWSM_SMBI; 2469 return val; 2470 } 2471 2472 static uint32_t 2473 igb_mac_eitr_read(IGBCore *core, int index) 2474 { 2475 return core->eitr_guest_value[index - EITR0]; 2476 } 2477 2478 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index) 2479 { 2480 uint32_t val = core->mac[index]; 2481 2482 core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK | 2483 E1000_V2PMAILBOX_RSTD); 2484 2485 return val; 2486 } 2487 2488 static uint32_t 2489 igb_mac_icr_read(IGBCore *core, int index) 2490 { 2491 uint32_t ret = core->mac[ICR]; 2492 trace_e1000e_irq_icr_read_entry(ret); 2493 2494 if (core->mac[GPIE] & E1000_GPIE_NSICR) { 2495 trace_igb_irq_icr_clear_gpie_nsicr(); 2496 core->mac[ICR] = 0; 2497 } else if (core->mac[IMS] == 0) { 2498 trace_e1000e_irq_icr_clear_zero_ims(); 2499 core->mac[ICR] = 0; 2500 } else if (!msix_enabled(core->owner)) { 2501 trace_e1000e_irq_icr_clear_nonmsix_icr_read(); 2502 core->mac[ICR] = 0; 2503 } 2504 2505 trace_e1000e_irq_icr_read_exit(core->mac[ICR]); 2506 igb_commit_icr(core); 2507 return ret; 2508 } 2509 2510 static uint32_t 2511 igb_mac_read_clr4(IGBCore *core, int index) 2512 { 2513 uint32_t ret = core->mac[index]; 2514 2515 core->mac[index] = 0; 2516 return ret; 2517 } 2518 2519 static uint32_t 2520 igb_mac_read_clr8(IGBCore *core, int index) 2521 { 2522 uint32_t ret = core->mac[index]; 2523 2524 core->mac[index] = 0; 2525 core->mac[index - 1] = 0; 2526 return ret; 2527 } 2528 2529 static uint32_t 2530 igb_get_ctrl(IGBCore *core, int index) 2531 { 2532 uint32_t val = core->mac[CTRL]; 2533 2534 trace_e1000e_link_read_params( 2535 !!(val & E1000_CTRL_ASDE), 2536 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 2537 !!(val & E1000_CTRL_FRCSPD), 2538 !!(val & E1000_CTRL_FRCDPX), 2539 !!(val & E1000_CTRL_RFCE), 2540 !!(val & E1000_CTRL_TFCE)); 2541 2542 return val; 2543 } 2544 2545 static uint32_t igb_get_status(IGBCore *core, int index) 2546 { 2547 uint32_t res = core->mac[STATUS]; 2548 uint16_t num_vfs = pcie_sriov_num_vfs(core->owner); 2549 2550 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) { 2551 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0; 2552 } else { 2553 res |= E1000_STATUS_FD; 2554 } 2555 2556 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) || 2557 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) { 2558 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) { 2559 case E1000_CTRL_SPD_10: 2560 res |= E1000_STATUS_SPEED_10; 2561 break; 2562 case E1000_CTRL_SPD_100: 2563 res |= E1000_STATUS_SPEED_100; 2564 break; 2565 case E1000_CTRL_SPD_1000: 2566 default: 2567 res |= E1000_STATUS_SPEED_1000; 2568 break; 2569 } 2570 } else { 2571 res |= E1000_STATUS_SPEED_1000; 2572 } 2573 2574 if (num_vfs) { 2575 res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT; 2576 res |= E1000_STATUS_IOV_MODE; 2577 } 2578 2579 /* 2580 * Windows driver 12.18.9.23 resets if E1000_STATUS_GIO_MASTER_ENABLE is 2581 * left set after E1000_CTRL_LRST is set. 2582 */ 2583 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE) && 2584 !(core->mac[CTRL] & E1000_CTRL_LRST)) { 2585 res |= E1000_STATUS_GIO_MASTER_ENABLE; 2586 } 2587 2588 return res; 2589 } 2590 2591 static void 2592 igb_mac_writereg(IGBCore *core, int index, uint32_t val) 2593 { 2594 core->mac[index] = val; 2595 } 2596 2597 static void 2598 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val) 2599 { 2600 uint32_t macaddr[2]; 2601 2602 core->mac[index] = val; 2603 2604 macaddr[0] = cpu_to_le32(core->mac[RA]); 2605 macaddr[1] = cpu_to_le32(core->mac[RA + 1]); 2606 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic), 2607 (uint8_t *) macaddr); 2608 2609 trace_e1000e_mac_set_sw(MAC_ARG(macaddr)); 2610 } 2611 2612 static void 2613 igb_set_eecd(IGBCore *core, int index, uint32_t val) 2614 { 2615 static const uint32_t ro_bits = E1000_EECD_PRES | 2616 E1000_EECD_AUTO_RD | 2617 E1000_EECD_SIZE_EX_MASK; 2618 2619 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits); 2620 } 2621 2622 static void 2623 igb_set_eerd(IGBCore *core, int index, uint32_t val) 2624 { 2625 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; 2626 uint32_t flags = 0; 2627 uint32_t data = 0; 2628 2629 if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) { 2630 data = core->eeprom[addr]; 2631 flags = E1000_EERW_DONE; 2632 } 2633 2634 core->mac[EERD] = flags | 2635 (addr << E1000_EERW_ADDR_SHIFT) | 2636 (data << E1000_EERW_DATA_SHIFT); 2637 } 2638 2639 static void 2640 igb_set_eitr(IGBCore *core, int index, uint32_t val) 2641 { 2642 uint32_t eitr_num = index - EITR0; 2643 2644 trace_igb_irq_eitr_set(eitr_num, val); 2645 2646 core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR; 2647 core->mac[index] = val & 0x7FFE; 2648 } 2649 2650 static void 2651 igb_update_rx_offloads(IGBCore *core) 2652 { 2653 int cso_state = igb_rx_l4_cso_enabled(core); 2654 2655 trace_e1000e_rx_set_cso(cso_state); 2656 2657 if (core->has_vnet) { 2658 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer, 2659 cso_state, 0, 0, 0, 0); 2660 } 2661 } 2662 2663 static void 2664 igb_set_rxcsum(IGBCore *core, int index, uint32_t val) 2665 { 2666 core->mac[RXCSUM] = val; 2667 igb_update_rx_offloads(core); 2668 } 2669 2670 static void 2671 igb_set_gcr(IGBCore *core, int index, uint32_t val) 2672 { 2673 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS; 2674 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits; 2675 } 2676 2677 static uint32_t igb_get_systiml(IGBCore *core, int index) 2678 { 2679 e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH); 2680 return core->mac[SYSTIML]; 2681 } 2682 2683 static uint32_t igb_get_rxsatrh(IGBCore *core, int index) 2684 { 2685 core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID; 2686 return core->mac[RXSATRH]; 2687 } 2688 2689 static uint32_t igb_get_txstmph(IGBCore *core, int index) 2690 { 2691 core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID; 2692 return core->mac[TXSTMPH]; 2693 } 2694 2695 static void igb_set_timinca(IGBCore *core, int index, uint32_t val) 2696 { 2697 e1000x_set_timinca(core->mac, &core->timadj, val); 2698 } 2699 2700 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val) 2701 { 2702 core->mac[TIMADJH] = val; 2703 core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32); 2704 } 2705 2706 #define igb_getreg(x) [x] = igb_mac_readreg 2707 typedef uint32_t (*readops)(IGBCore *, int); 2708 static const readops igb_macreg_readops[] = { 2709 igb_getreg(WUFC), 2710 igb_getreg(MANC), 2711 igb_getreg(TOTL), 2712 igb_getreg(RDT0), 2713 igb_getreg(RDT1), 2714 igb_getreg(RDT2), 2715 igb_getreg(RDT3), 2716 igb_getreg(RDT4), 2717 igb_getreg(RDT5), 2718 igb_getreg(RDT6), 2719 igb_getreg(RDT7), 2720 igb_getreg(RDT8), 2721 igb_getreg(RDT9), 2722 igb_getreg(RDT10), 2723 igb_getreg(RDT11), 2724 igb_getreg(RDT12), 2725 igb_getreg(RDT13), 2726 igb_getreg(RDT14), 2727 igb_getreg(RDT15), 2728 igb_getreg(RDBAH0), 2729 igb_getreg(RDBAH1), 2730 igb_getreg(RDBAH2), 2731 igb_getreg(RDBAH3), 2732 igb_getreg(RDBAH4), 2733 igb_getreg(RDBAH5), 2734 igb_getreg(RDBAH6), 2735 igb_getreg(RDBAH7), 2736 igb_getreg(RDBAH8), 2737 igb_getreg(RDBAH9), 2738 igb_getreg(RDBAH10), 2739 igb_getreg(RDBAH11), 2740 igb_getreg(RDBAH12), 2741 igb_getreg(RDBAH13), 2742 igb_getreg(RDBAH14), 2743 igb_getreg(RDBAH15), 2744 igb_getreg(TDBAL0), 2745 igb_getreg(TDBAL1), 2746 igb_getreg(TDBAL2), 2747 igb_getreg(TDBAL3), 2748 igb_getreg(TDBAL4), 2749 igb_getreg(TDBAL5), 2750 igb_getreg(TDBAL6), 2751 igb_getreg(TDBAL7), 2752 igb_getreg(TDBAL8), 2753 igb_getreg(TDBAL9), 2754 igb_getreg(TDBAL10), 2755 igb_getreg(TDBAL11), 2756 igb_getreg(TDBAL12), 2757 igb_getreg(TDBAL13), 2758 igb_getreg(TDBAL14), 2759 igb_getreg(TDBAL15), 2760 igb_getreg(RDLEN0), 2761 igb_getreg(RDLEN1), 2762 igb_getreg(RDLEN2), 2763 igb_getreg(RDLEN3), 2764 igb_getreg(RDLEN4), 2765 igb_getreg(RDLEN5), 2766 igb_getreg(RDLEN6), 2767 igb_getreg(RDLEN7), 2768 igb_getreg(RDLEN8), 2769 igb_getreg(RDLEN9), 2770 igb_getreg(RDLEN10), 2771 igb_getreg(RDLEN11), 2772 igb_getreg(RDLEN12), 2773 igb_getreg(RDLEN13), 2774 igb_getreg(RDLEN14), 2775 igb_getreg(RDLEN15), 2776 igb_getreg(SRRCTL0), 2777 igb_getreg(SRRCTL1), 2778 igb_getreg(SRRCTL2), 2779 igb_getreg(SRRCTL3), 2780 igb_getreg(SRRCTL4), 2781 igb_getreg(SRRCTL5), 2782 igb_getreg(SRRCTL6), 2783 igb_getreg(SRRCTL7), 2784 igb_getreg(SRRCTL8), 2785 igb_getreg(SRRCTL9), 2786 igb_getreg(SRRCTL10), 2787 igb_getreg(SRRCTL11), 2788 igb_getreg(SRRCTL12), 2789 igb_getreg(SRRCTL13), 2790 igb_getreg(SRRCTL14), 2791 igb_getreg(SRRCTL15), 2792 igb_getreg(LATECOL), 2793 igb_getreg(XONTXC), 2794 igb_getreg(TDFH), 2795 igb_getreg(TDFT), 2796 igb_getreg(TDFHS), 2797 igb_getreg(TDFTS), 2798 igb_getreg(TDFPC), 2799 igb_getreg(WUS), 2800 igb_getreg(RDFH), 2801 igb_getreg(RDFT), 2802 igb_getreg(RDFHS), 2803 igb_getreg(RDFTS), 2804 igb_getreg(RDFPC), 2805 igb_getreg(GORCL), 2806 igb_getreg(MGTPRC), 2807 igb_getreg(EERD), 2808 igb_getreg(EIAC), 2809 igb_getreg(MANC2H), 2810 igb_getreg(RXCSUM), 2811 igb_getreg(GSCL_3), 2812 igb_getreg(GSCN_2), 2813 igb_getreg(FCAH), 2814 igb_getreg(FCRTH), 2815 igb_getreg(FLOP), 2816 igb_getreg(RXSTMPH), 2817 igb_getreg(TXSTMPL), 2818 igb_getreg(TIMADJL), 2819 igb_getreg(RDH0), 2820 igb_getreg(RDH1), 2821 igb_getreg(RDH2), 2822 igb_getreg(RDH3), 2823 igb_getreg(RDH4), 2824 igb_getreg(RDH5), 2825 igb_getreg(RDH6), 2826 igb_getreg(RDH7), 2827 igb_getreg(RDH8), 2828 igb_getreg(RDH9), 2829 igb_getreg(RDH10), 2830 igb_getreg(RDH11), 2831 igb_getreg(RDH12), 2832 igb_getreg(RDH13), 2833 igb_getreg(RDH14), 2834 igb_getreg(RDH15), 2835 igb_getreg(TDT0), 2836 igb_getreg(TDT1), 2837 igb_getreg(TDT2), 2838 igb_getreg(TDT3), 2839 igb_getreg(TDT4), 2840 igb_getreg(TDT5), 2841 igb_getreg(TDT6), 2842 igb_getreg(TDT7), 2843 igb_getreg(TDT8), 2844 igb_getreg(TDT9), 2845 igb_getreg(TDT10), 2846 igb_getreg(TDT11), 2847 igb_getreg(TDT12), 2848 igb_getreg(TDT13), 2849 igb_getreg(TDT14), 2850 igb_getreg(TDT15), 2851 igb_getreg(TNCRS), 2852 igb_getreg(RJC), 2853 igb_getreg(IAM), 2854 igb_getreg(GSCL_2), 2855 igb_getreg(TIPG), 2856 igb_getreg(FLMNGCTL), 2857 igb_getreg(FLMNGCNT), 2858 igb_getreg(TSYNCTXCTL), 2859 igb_getreg(EEMNGDATA), 2860 igb_getreg(CTRL_EXT), 2861 igb_getreg(SYSTIMH), 2862 igb_getreg(EEMNGCTL), 2863 igb_getreg(FLMNGDATA), 2864 igb_getreg(TSYNCRXCTL), 2865 igb_getreg(LEDCTL), 2866 igb_getreg(TCTL), 2867 igb_getreg(TCTL_EXT), 2868 igb_getreg(DTXCTL), 2869 igb_getreg(RXPBS), 2870 igb_getreg(TDH0), 2871 igb_getreg(TDH1), 2872 igb_getreg(TDH2), 2873 igb_getreg(TDH3), 2874 igb_getreg(TDH4), 2875 igb_getreg(TDH5), 2876 igb_getreg(TDH6), 2877 igb_getreg(TDH7), 2878 igb_getreg(TDH8), 2879 igb_getreg(TDH9), 2880 igb_getreg(TDH10), 2881 igb_getreg(TDH11), 2882 igb_getreg(TDH12), 2883 igb_getreg(TDH13), 2884 igb_getreg(TDH14), 2885 igb_getreg(TDH15), 2886 igb_getreg(ECOL), 2887 igb_getreg(DC), 2888 igb_getreg(RLEC), 2889 igb_getreg(XOFFTXC), 2890 igb_getreg(RFC), 2891 igb_getreg(RNBC), 2892 igb_getreg(MGTPTC), 2893 igb_getreg(TIMINCA), 2894 igb_getreg(FACTPS), 2895 igb_getreg(GSCL_1), 2896 igb_getreg(GSCN_0), 2897 igb_getreg(PBACLR), 2898 igb_getreg(FCTTV), 2899 igb_getreg(RXSATRL), 2900 igb_getreg(TORL), 2901 igb_getreg(TDLEN0), 2902 igb_getreg(TDLEN1), 2903 igb_getreg(TDLEN2), 2904 igb_getreg(TDLEN3), 2905 igb_getreg(TDLEN4), 2906 igb_getreg(TDLEN5), 2907 igb_getreg(TDLEN6), 2908 igb_getreg(TDLEN7), 2909 igb_getreg(TDLEN8), 2910 igb_getreg(TDLEN9), 2911 igb_getreg(TDLEN10), 2912 igb_getreg(TDLEN11), 2913 igb_getreg(TDLEN12), 2914 igb_getreg(TDLEN13), 2915 igb_getreg(TDLEN14), 2916 igb_getreg(TDLEN15), 2917 igb_getreg(MCC), 2918 igb_getreg(WUC), 2919 igb_getreg(EECD), 2920 igb_getreg(FCRTV), 2921 igb_getreg(TXDCTL0), 2922 igb_getreg(TXDCTL1), 2923 igb_getreg(TXDCTL2), 2924 igb_getreg(TXDCTL3), 2925 igb_getreg(TXDCTL4), 2926 igb_getreg(TXDCTL5), 2927 igb_getreg(TXDCTL6), 2928 igb_getreg(TXDCTL7), 2929 igb_getreg(TXDCTL8), 2930 igb_getreg(TXDCTL9), 2931 igb_getreg(TXDCTL10), 2932 igb_getreg(TXDCTL11), 2933 igb_getreg(TXDCTL12), 2934 igb_getreg(TXDCTL13), 2935 igb_getreg(TXDCTL14), 2936 igb_getreg(TXDCTL15), 2937 igb_getreg(TXCTL0), 2938 igb_getreg(TXCTL1), 2939 igb_getreg(TXCTL2), 2940 igb_getreg(TXCTL3), 2941 igb_getreg(TXCTL4), 2942 igb_getreg(TXCTL5), 2943 igb_getreg(TXCTL6), 2944 igb_getreg(TXCTL7), 2945 igb_getreg(TXCTL8), 2946 igb_getreg(TXCTL9), 2947 igb_getreg(TXCTL10), 2948 igb_getreg(TXCTL11), 2949 igb_getreg(TXCTL12), 2950 igb_getreg(TXCTL13), 2951 igb_getreg(TXCTL14), 2952 igb_getreg(TXCTL15), 2953 igb_getreg(TDWBAL0), 2954 igb_getreg(TDWBAL1), 2955 igb_getreg(TDWBAL2), 2956 igb_getreg(TDWBAL3), 2957 igb_getreg(TDWBAL4), 2958 igb_getreg(TDWBAL5), 2959 igb_getreg(TDWBAL6), 2960 igb_getreg(TDWBAL7), 2961 igb_getreg(TDWBAL8), 2962 igb_getreg(TDWBAL9), 2963 igb_getreg(TDWBAL10), 2964 igb_getreg(TDWBAL11), 2965 igb_getreg(TDWBAL12), 2966 igb_getreg(TDWBAL13), 2967 igb_getreg(TDWBAL14), 2968 igb_getreg(TDWBAL15), 2969 igb_getreg(TDWBAH0), 2970 igb_getreg(TDWBAH1), 2971 igb_getreg(TDWBAH2), 2972 igb_getreg(TDWBAH3), 2973 igb_getreg(TDWBAH4), 2974 igb_getreg(TDWBAH5), 2975 igb_getreg(TDWBAH6), 2976 igb_getreg(TDWBAH7), 2977 igb_getreg(TDWBAH8), 2978 igb_getreg(TDWBAH9), 2979 igb_getreg(TDWBAH10), 2980 igb_getreg(TDWBAH11), 2981 igb_getreg(TDWBAH12), 2982 igb_getreg(TDWBAH13), 2983 igb_getreg(TDWBAH14), 2984 igb_getreg(TDWBAH15), 2985 igb_getreg(PVTCTRL0), 2986 igb_getreg(PVTCTRL1), 2987 igb_getreg(PVTCTRL2), 2988 igb_getreg(PVTCTRL3), 2989 igb_getreg(PVTCTRL4), 2990 igb_getreg(PVTCTRL5), 2991 igb_getreg(PVTCTRL6), 2992 igb_getreg(PVTCTRL7), 2993 igb_getreg(PVTEIMS0), 2994 igb_getreg(PVTEIMS1), 2995 igb_getreg(PVTEIMS2), 2996 igb_getreg(PVTEIMS3), 2997 igb_getreg(PVTEIMS4), 2998 igb_getreg(PVTEIMS5), 2999 igb_getreg(PVTEIMS6), 3000 igb_getreg(PVTEIMS7), 3001 igb_getreg(PVTEIAC0), 3002 igb_getreg(PVTEIAC1), 3003 igb_getreg(PVTEIAC2), 3004 igb_getreg(PVTEIAC3), 3005 igb_getreg(PVTEIAC4), 3006 igb_getreg(PVTEIAC5), 3007 igb_getreg(PVTEIAC6), 3008 igb_getreg(PVTEIAC7), 3009 igb_getreg(PVTEIAM0), 3010 igb_getreg(PVTEIAM1), 3011 igb_getreg(PVTEIAM2), 3012 igb_getreg(PVTEIAM3), 3013 igb_getreg(PVTEIAM4), 3014 igb_getreg(PVTEIAM5), 3015 igb_getreg(PVTEIAM6), 3016 igb_getreg(PVTEIAM7), 3017 igb_getreg(PVFGPRC0), 3018 igb_getreg(PVFGPRC1), 3019 igb_getreg(PVFGPRC2), 3020 igb_getreg(PVFGPRC3), 3021 igb_getreg(PVFGPRC4), 3022 igb_getreg(PVFGPRC5), 3023 igb_getreg(PVFGPRC6), 3024 igb_getreg(PVFGPRC7), 3025 igb_getreg(PVFGPTC0), 3026 igb_getreg(PVFGPTC1), 3027 igb_getreg(PVFGPTC2), 3028 igb_getreg(PVFGPTC3), 3029 igb_getreg(PVFGPTC4), 3030 igb_getreg(PVFGPTC5), 3031 igb_getreg(PVFGPTC6), 3032 igb_getreg(PVFGPTC7), 3033 igb_getreg(PVFGORC0), 3034 igb_getreg(PVFGORC1), 3035 igb_getreg(PVFGORC2), 3036 igb_getreg(PVFGORC3), 3037 igb_getreg(PVFGORC4), 3038 igb_getreg(PVFGORC5), 3039 igb_getreg(PVFGORC6), 3040 igb_getreg(PVFGORC7), 3041 igb_getreg(PVFGOTC0), 3042 igb_getreg(PVFGOTC1), 3043 igb_getreg(PVFGOTC2), 3044 igb_getreg(PVFGOTC3), 3045 igb_getreg(PVFGOTC4), 3046 igb_getreg(PVFGOTC5), 3047 igb_getreg(PVFGOTC6), 3048 igb_getreg(PVFGOTC7), 3049 igb_getreg(PVFMPRC0), 3050 igb_getreg(PVFMPRC1), 3051 igb_getreg(PVFMPRC2), 3052 igb_getreg(PVFMPRC3), 3053 igb_getreg(PVFMPRC4), 3054 igb_getreg(PVFMPRC5), 3055 igb_getreg(PVFMPRC6), 3056 igb_getreg(PVFMPRC7), 3057 igb_getreg(PVFGPRLBC0), 3058 igb_getreg(PVFGPRLBC1), 3059 igb_getreg(PVFGPRLBC2), 3060 igb_getreg(PVFGPRLBC3), 3061 igb_getreg(PVFGPRLBC4), 3062 igb_getreg(PVFGPRLBC5), 3063 igb_getreg(PVFGPRLBC6), 3064 igb_getreg(PVFGPRLBC7), 3065 igb_getreg(PVFGPTLBC0), 3066 igb_getreg(PVFGPTLBC1), 3067 igb_getreg(PVFGPTLBC2), 3068 igb_getreg(PVFGPTLBC3), 3069 igb_getreg(PVFGPTLBC4), 3070 igb_getreg(PVFGPTLBC5), 3071 igb_getreg(PVFGPTLBC6), 3072 igb_getreg(PVFGPTLBC7), 3073 igb_getreg(PVFGORLBC0), 3074 igb_getreg(PVFGORLBC1), 3075 igb_getreg(PVFGORLBC2), 3076 igb_getreg(PVFGORLBC3), 3077 igb_getreg(PVFGORLBC4), 3078 igb_getreg(PVFGORLBC5), 3079 igb_getreg(PVFGORLBC6), 3080 igb_getreg(PVFGORLBC7), 3081 igb_getreg(PVFGOTLBC0), 3082 igb_getreg(PVFGOTLBC1), 3083 igb_getreg(PVFGOTLBC2), 3084 igb_getreg(PVFGOTLBC3), 3085 igb_getreg(PVFGOTLBC4), 3086 igb_getreg(PVFGOTLBC5), 3087 igb_getreg(PVFGOTLBC6), 3088 igb_getreg(PVFGOTLBC7), 3089 igb_getreg(RCTL), 3090 igb_getreg(MDIC), 3091 igb_getreg(FCRUC), 3092 igb_getreg(VET), 3093 igb_getreg(RDBAL0), 3094 igb_getreg(RDBAL1), 3095 igb_getreg(RDBAL2), 3096 igb_getreg(RDBAL3), 3097 igb_getreg(RDBAL4), 3098 igb_getreg(RDBAL5), 3099 igb_getreg(RDBAL6), 3100 igb_getreg(RDBAL7), 3101 igb_getreg(RDBAL8), 3102 igb_getreg(RDBAL9), 3103 igb_getreg(RDBAL10), 3104 igb_getreg(RDBAL11), 3105 igb_getreg(RDBAL12), 3106 igb_getreg(RDBAL13), 3107 igb_getreg(RDBAL14), 3108 igb_getreg(RDBAL15), 3109 igb_getreg(TDBAH0), 3110 igb_getreg(TDBAH1), 3111 igb_getreg(TDBAH2), 3112 igb_getreg(TDBAH3), 3113 igb_getreg(TDBAH4), 3114 igb_getreg(TDBAH5), 3115 igb_getreg(TDBAH6), 3116 igb_getreg(TDBAH7), 3117 igb_getreg(TDBAH8), 3118 igb_getreg(TDBAH9), 3119 igb_getreg(TDBAH10), 3120 igb_getreg(TDBAH11), 3121 igb_getreg(TDBAH12), 3122 igb_getreg(TDBAH13), 3123 igb_getreg(TDBAH14), 3124 igb_getreg(TDBAH15), 3125 igb_getreg(SCC), 3126 igb_getreg(COLC), 3127 igb_getreg(XOFFRXC), 3128 igb_getreg(IPAV), 3129 igb_getreg(GOTCL), 3130 igb_getreg(MGTPDC), 3131 igb_getreg(GCR), 3132 igb_getreg(MFVAL), 3133 igb_getreg(FUNCTAG), 3134 igb_getreg(GSCL_4), 3135 igb_getreg(GSCN_3), 3136 igb_getreg(MRQC), 3137 igb_getreg(FCT), 3138 igb_getreg(FLA), 3139 igb_getreg(RXDCTL0), 3140 igb_getreg(RXDCTL1), 3141 igb_getreg(RXDCTL2), 3142 igb_getreg(RXDCTL3), 3143 igb_getreg(RXDCTL4), 3144 igb_getreg(RXDCTL5), 3145 igb_getreg(RXDCTL6), 3146 igb_getreg(RXDCTL7), 3147 igb_getreg(RXDCTL8), 3148 igb_getreg(RXDCTL9), 3149 igb_getreg(RXDCTL10), 3150 igb_getreg(RXDCTL11), 3151 igb_getreg(RXDCTL12), 3152 igb_getreg(RXDCTL13), 3153 igb_getreg(RXDCTL14), 3154 igb_getreg(RXDCTL15), 3155 igb_getreg(RXSTMPL), 3156 igb_getreg(TIMADJH), 3157 igb_getreg(FCRTL), 3158 igb_getreg(XONRXC), 3159 igb_getreg(RFCTL), 3160 igb_getreg(GSCN_1), 3161 igb_getreg(FCAL), 3162 igb_getreg(GPIE), 3163 igb_getreg(TXPBS), 3164 igb_getreg(RLPML), 3165 3166 [TOTH] = igb_mac_read_clr8, 3167 [GOTCH] = igb_mac_read_clr8, 3168 [PRC64] = igb_mac_read_clr4, 3169 [PRC255] = igb_mac_read_clr4, 3170 [PRC1023] = igb_mac_read_clr4, 3171 [PTC64] = igb_mac_read_clr4, 3172 [PTC255] = igb_mac_read_clr4, 3173 [PTC1023] = igb_mac_read_clr4, 3174 [GPRC] = igb_mac_read_clr4, 3175 [TPT] = igb_mac_read_clr4, 3176 [RUC] = igb_mac_read_clr4, 3177 [BPRC] = igb_mac_read_clr4, 3178 [MPTC] = igb_mac_read_clr4, 3179 [IAC] = igb_mac_read_clr4, 3180 [ICR] = igb_mac_icr_read, 3181 [STATUS] = igb_get_status, 3182 [ICS] = igb_mac_ics_read, 3183 /* 3184 * 8.8.10: Reading the IMC register returns the value of the IMS register. 3185 */ 3186 [IMC] = igb_mac_ims_read, 3187 [TORH] = igb_mac_read_clr8, 3188 [GORCH] = igb_mac_read_clr8, 3189 [PRC127] = igb_mac_read_clr4, 3190 [PRC511] = igb_mac_read_clr4, 3191 [PRC1522] = igb_mac_read_clr4, 3192 [PTC127] = igb_mac_read_clr4, 3193 [PTC511] = igb_mac_read_clr4, 3194 [PTC1522] = igb_mac_read_clr4, 3195 [GPTC] = igb_mac_read_clr4, 3196 [TPR] = igb_mac_read_clr4, 3197 [ROC] = igb_mac_read_clr4, 3198 [MPRC] = igb_mac_read_clr4, 3199 [BPTC] = igb_mac_read_clr4, 3200 [TSCTC] = igb_mac_read_clr4, 3201 [CTRL] = igb_get_ctrl, 3202 [SWSM] = igb_mac_swsm_read, 3203 [IMS] = igb_mac_ims_read, 3204 [SYSTIML] = igb_get_systiml, 3205 [RXSATRH] = igb_get_rxsatrh, 3206 [TXSTMPH] = igb_get_txstmph, 3207 3208 [CRCERRS ... MPC] = igb_mac_readreg, 3209 [IP6AT ... IP6AT + 3] = igb_mac_readreg, 3210 [IP4AT ... IP4AT + 6] = igb_mac_readreg, 3211 [RA ... RA + 31] = igb_mac_readreg, 3212 [RA2 ... RA2 + 31] = igb_mac_readreg, 3213 [WUPM ... WUPM + 31] = igb_mac_readreg, 3214 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_readreg, 3215 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_readreg, 3216 [FFMT ... FFMT + 254] = igb_mac_readreg, 3217 [MDEF ... MDEF + 7] = igb_mac_readreg, 3218 [FTFT ... FTFT + 254] = igb_mac_readreg, 3219 [RETA ... RETA + 31] = igb_mac_readreg, 3220 [RSSRK ... RSSRK + 9] = igb_mac_readreg, 3221 [MAVTV0 ... MAVTV3] = igb_mac_readreg, 3222 [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read, 3223 [PVTEICR0] = igb_mac_read_clr4, 3224 [PVTEICR1] = igb_mac_read_clr4, 3225 [PVTEICR2] = igb_mac_read_clr4, 3226 [PVTEICR3] = igb_mac_read_clr4, 3227 [PVTEICR4] = igb_mac_read_clr4, 3228 [PVTEICR5] = igb_mac_read_clr4, 3229 [PVTEICR6] = igb_mac_read_clr4, 3230 [PVTEICR7] = igb_mac_read_clr4, 3231 3232 /* IGB specific: */ 3233 [FWSM] = igb_mac_readreg, 3234 [SW_FW_SYNC] = igb_mac_readreg, 3235 [HTCBDPC] = igb_mac_read_clr4, 3236 [EICR] = igb_mac_read_clr4, 3237 [EIMS] = igb_mac_readreg, 3238 [EIAM] = igb_mac_readreg, 3239 [IVAR0 ... IVAR0 + 7] = igb_mac_readreg, 3240 igb_getreg(IVAR_MISC), 3241 igb_getreg(VT_CTL), 3242 [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg, 3243 [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read, 3244 igb_getreg(MBVFICR), 3245 [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg, 3246 igb_getreg(MBVFIMR), 3247 igb_getreg(VFLRE), 3248 igb_getreg(VFRE), 3249 igb_getreg(VFTE), 3250 igb_getreg(QDE), 3251 igb_getreg(DTXSWC), 3252 igb_getreg(RPLOLR), 3253 [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg, 3254 [VMVIR0 ... VMVIR7] = igb_mac_readreg, 3255 [VMOLR0 ... VMOLR7] = igb_mac_readreg, 3256 [WVBR] = igb_mac_read_clr4, 3257 [RQDPC0] = igb_mac_read_clr4, 3258 [RQDPC1] = igb_mac_read_clr4, 3259 [RQDPC2] = igb_mac_read_clr4, 3260 [RQDPC3] = igb_mac_read_clr4, 3261 [RQDPC4] = igb_mac_read_clr4, 3262 [RQDPC5] = igb_mac_read_clr4, 3263 [RQDPC6] = igb_mac_read_clr4, 3264 [RQDPC7] = igb_mac_read_clr4, 3265 [RQDPC8] = igb_mac_read_clr4, 3266 [RQDPC9] = igb_mac_read_clr4, 3267 [RQDPC10] = igb_mac_read_clr4, 3268 [RQDPC11] = igb_mac_read_clr4, 3269 [RQDPC12] = igb_mac_read_clr4, 3270 [RQDPC13] = igb_mac_read_clr4, 3271 [RQDPC14] = igb_mac_read_clr4, 3272 [RQDPC15] = igb_mac_read_clr4, 3273 [VTIVAR ... VTIVAR + 7] = igb_mac_readreg, 3274 [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg, 3275 }; 3276 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) }; 3277 3278 #define igb_putreg(x) [x] = igb_mac_writereg 3279 typedef void (*writeops)(IGBCore *, int, uint32_t); 3280 static const writeops igb_macreg_writeops[] = { 3281 igb_putreg(SWSM), 3282 igb_putreg(WUFC), 3283 igb_putreg(RDBAH0), 3284 igb_putreg(RDBAH1), 3285 igb_putreg(RDBAH2), 3286 igb_putreg(RDBAH3), 3287 igb_putreg(RDBAH4), 3288 igb_putreg(RDBAH5), 3289 igb_putreg(RDBAH6), 3290 igb_putreg(RDBAH7), 3291 igb_putreg(RDBAH8), 3292 igb_putreg(RDBAH9), 3293 igb_putreg(RDBAH10), 3294 igb_putreg(RDBAH11), 3295 igb_putreg(RDBAH12), 3296 igb_putreg(RDBAH13), 3297 igb_putreg(RDBAH14), 3298 igb_putreg(RDBAH15), 3299 igb_putreg(SRRCTL0), 3300 igb_putreg(SRRCTL1), 3301 igb_putreg(SRRCTL2), 3302 igb_putreg(SRRCTL3), 3303 igb_putreg(SRRCTL4), 3304 igb_putreg(SRRCTL5), 3305 igb_putreg(SRRCTL6), 3306 igb_putreg(SRRCTL7), 3307 igb_putreg(SRRCTL8), 3308 igb_putreg(SRRCTL9), 3309 igb_putreg(SRRCTL10), 3310 igb_putreg(SRRCTL11), 3311 igb_putreg(SRRCTL12), 3312 igb_putreg(SRRCTL13), 3313 igb_putreg(SRRCTL14), 3314 igb_putreg(SRRCTL15), 3315 igb_putreg(RXDCTL0), 3316 igb_putreg(RXDCTL1), 3317 igb_putreg(RXDCTL2), 3318 igb_putreg(RXDCTL3), 3319 igb_putreg(RXDCTL4), 3320 igb_putreg(RXDCTL5), 3321 igb_putreg(RXDCTL6), 3322 igb_putreg(RXDCTL7), 3323 igb_putreg(RXDCTL8), 3324 igb_putreg(RXDCTL9), 3325 igb_putreg(RXDCTL10), 3326 igb_putreg(RXDCTL11), 3327 igb_putreg(RXDCTL12), 3328 igb_putreg(RXDCTL13), 3329 igb_putreg(RXDCTL14), 3330 igb_putreg(RXDCTL15), 3331 igb_putreg(LEDCTL), 3332 igb_putreg(TCTL), 3333 igb_putreg(TCTL_EXT), 3334 igb_putreg(DTXCTL), 3335 igb_putreg(RXPBS), 3336 igb_putreg(RQDPC0), 3337 igb_putreg(FCAL), 3338 igb_putreg(FCRUC), 3339 igb_putreg(WUC), 3340 igb_putreg(WUS), 3341 igb_putreg(IPAV), 3342 igb_putreg(TDBAH0), 3343 igb_putreg(TDBAH1), 3344 igb_putreg(TDBAH2), 3345 igb_putreg(TDBAH3), 3346 igb_putreg(TDBAH4), 3347 igb_putreg(TDBAH5), 3348 igb_putreg(TDBAH6), 3349 igb_putreg(TDBAH7), 3350 igb_putreg(TDBAH8), 3351 igb_putreg(TDBAH9), 3352 igb_putreg(TDBAH10), 3353 igb_putreg(TDBAH11), 3354 igb_putreg(TDBAH12), 3355 igb_putreg(TDBAH13), 3356 igb_putreg(TDBAH14), 3357 igb_putreg(TDBAH15), 3358 igb_putreg(IAM), 3359 igb_putreg(MANC), 3360 igb_putreg(MANC2H), 3361 igb_putreg(MFVAL), 3362 igb_putreg(FACTPS), 3363 igb_putreg(FUNCTAG), 3364 igb_putreg(GSCL_1), 3365 igb_putreg(GSCL_2), 3366 igb_putreg(GSCL_3), 3367 igb_putreg(GSCL_4), 3368 igb_putreg(GSCN_0), 3369 igb_putreg(GSCN_1), 3370 igb_putreg(GSCN_2), 3371 igb_putreg(GSCN_3), 3372 igb_putreg(MRQC), 3373 igb_putreg(FLOP), 3374 igb_putreg(FLA), 3375 igb_putreg(TXDCTL0), 3376 igb_putreg(TXDCTL1), 3377 igb_putreg(TXDCTL2), 3378 igb_putreg(TXDCTL3), 3379 igb_putreg(TXDCTL4), 3380 igb_putreg(TXDCTL5), 3381 igb_putreg(TXDCTL6), 3382 igb_putreg(TXDCTL7), 3383 igb_putreg(TXDCTL8), 3384 igb_putreg(TXDCTL9), 3385 igb_putreg(TXDCTL10), 3386 igb_putreg(TXDCTL11), 3387 igb_putreg(TXDCTL12), 3388 igb_putreg(TXDCTL13), 3389 igb_putreg(TXDCTL14), 3390 igb_putreg(TXDCTL15), 3391 igb_putreg(TXCTL0), 3392 igb_putreg(TXCTL1), 3393 igb_putreg(TXCTL2), 3394 igb_putreg(TXCTL3), 3395 igb_putreg(TXCTL4), 3396 igb_putreg(TXCTL5), 3397 igb_putreg(TXCTL6), 3398 igb_putreg(TXCTL7), 3399 igb_putreg(TXCTL8), 3400 igb_putreg(TXCTL9), 3401 igb_putreg(TXCTL10), 3402 igb_putreg(TXCTL11), 3403 igb_putreg(TXCTL12), 3404 igb_putreg(TXCTL13), 3405 igb_putreg(TXCTL14), 3406 igb_putreg(TXCTL15), 3407 igb_putreg(TDWBAL0), 3408 igb_putreg(TDWBAL1), 3409 igb_putreg(TDWBAL2), 3410 igb_putreg(TDWBAL3), 3411 igb_putreg(TDWBAL4), 3412 igb_putreg(TDWBAL5), 3413 igb_putreg(TDWBAL6), 3414 igb_putreg(TDWBAL7), 3415 igb_putreg(TDWBAL8), 3416 igb_putreg(TDWBAL9), 3417 igb_putreg(TDWBAL10), 3418 igb_putreg(TDWBAL11), 3419 igb_putreg(TDWBAL12), 3420 igb_putreg(TDWBAL13), 3421 igb_putreg(TDWBAL14), 3422 igb_putreg(TDWBAL15), 3423 igb_putreg(TDWBAH0), 3424 igb_putreg(TDWBAH1), 3425 igb_putreg(TDWBAH2), 3426 igb_putreg(TDWBAH3), 3427 igb_putreg(TDWBAH4), 3428 igb_putreg(TDWBAH5), 3429 igb_putreg(TDWBAH6), 3430 igb_putreg(TDWBAH7), 3431 igb_putreg(TDWBAH8), 3432 igb_putreg(TDWBAH9), 3433 igb_putreg(TDWBAH10), 3434 igb_putreg(TDWBAH11), 3435 igb_putreg(TDWBAH12), 3436 igb_putreg(TDWBAH13), 3437 igb_putreg(TDWBAH14), 3438 igb_putreg(TDWBAH15), 3439 igb_putreg(TIPG), 3440 igb_putreg(RXSTMPH), 3441 igb_putreg(RXSTMPL), 3442 igb_putreg(RXSATRL), 3443 igb_putreg(RXSATRH), 3444 igb_putreg(TXSTMPL), 3445 igb_putreg(TXSTMPH), 3446 igb_putreg(SYSTIML), 3447 igb_putreg(SYSTIMH), 3448 igb_putreg(TIMADJL), 3449 igb_putreg(TSYNCRXCTL), 3450 igb_putreg(TSYNCTXCTL), 3451 igb_putreg(EEMNGCTL), 3452 igb_putreg(GPIE), 3453 igb_putreg(TXPBS), 3454 igb_putreg(RLPML), 3455 igb_putreg(VET), 3456 3457 [TDH0] = igb_set_16bit, 3458 [TDH1] = igb_set_16bit, 3459 [TDH2] = igb_set_16bit, 3460 [TDH3] = igb_set_16bit, 3461 [TDH4] = igb_set_16bit, 3462 [TDH5] = igb_set_16bit, 3463 [TDH6] = igb_set_16bit, 3464 [TDH7] = igb_set_16bit, 3465 [TDH8] = igb_set_16bit, 3466 [TDH9] = igb_set_16bit, 3467 [TDH10] = igb_set_16bit, 3468 [TDH11] = igb_set_16bit, 3469 [TDH12] = igb_set_16bit, 3470 [TDH13] = igb_set_16bit, 3471 [TDH14] = igb_set_16bit, 3472 [TDH15] = igb_set_16bit, 3473 [TDT0] = igb_set_tdt, 3474 [TDT1] = igb_set_tdt, 3475 [TDT2] = igb_set_tdt, 3476 [TDT3] = igb_set_tdt, 3477 [TDT4] = igb_set_tdt, 3478 [TDT5] = igb_set_tdt, 3479 [TDT6] = igb_set_tdt, 3480 [TDT7] = igb_set_tdt, 3481 [TDT8] = igb_set_tdt, 3482 [TDT9] = igb_set_tdt, 3483 [TDT10] = igb_set_tdt, 3484 [TDT11] = igb_set_tdt, 3485 [TDT12] = igb_set_tdt, 3486 [TDT13] = igb_set_tdt, 3487 [TDT14] = igb_set_tdt, 3488 [TDT15] = igb_set_tdt, 3489 [MDIC] = igb_set_mdic, 3490 [ICS] = igb_set_ics, 3491 [RDH0] = igb_set_16bit, 3492 [RDH1] = igb_set_16bit, 3493 [RDH2] = igb_set_16bit, 3494 [RDH3] = igb_set_16bit, 3495 [RDH4] = igb_set_16bit, 3496 [RDH5] = igb_set_16bit, 3497 [RDH6] = igb_set_16bit, 3498 [RDH7] = igb_set_16bit, 3499 [RDH8] = igb_set_16bit, 3500 [RDH9] = igb_set_16bit, 3501 [RDH10] = igb_set_16bit, 3502 [RDH11] = igb_set_16bit, 3503 [RDH12] = igb_set_16bit, 3504 [RDH13] = igb_set_16bit, 3505 [RDH14] = igb_set_16bit, 3506 [RDH15] = igb_set_16bit, 3507 [RDT0] = igb_set_rdt, 3508 [RDT1] = igb_set_rdt, 3509 [RDT2] = igb_set_rdt, 3510 [RDT3] = igb_set_rdt, 3511 [RDT4] = igb_set_rdt, 3512 [RDT5] = igb_set_rdt, 3513 [RDT6] = igb_set_rdt, 3514 [RDT7] = igb_set_rdt, 3515 [RDT8] = igb_set_rdt, 3516 [RDT9] = igb_set_rdt, 3517 [RDT10] = igb_set_rdt, 3518 [RDT11] = igb_set_rdt, 3519 [RDT12] = igb_set_rdt, 3520 [RDT13] = igb_set_rdt, 3521 [RDT14] = igb_set_rdt, 3522 [RDT15] = igb_set_rdt, 3523 [IMC] = igb_set_imc, 3524 [IMS] = igb_set_ims, 3525 [ICR] = igb_set_icr, 3526 [EECD] = igb_set_eecd, 3527 [RCTL] = igb_set_rx_control, 3528 [CTRL] = igb_set_ctrl, 3529 [EERD] = igb_set_eerd, 3530 [TDFH] = igb_set_13bit, 3531 [TDFT] = igb_set_13bit, 3532 [TDFHS] = igb_set_13bit, 3533 [TDFTS] = igb_set_13bit, 3534 [TDFPC] = igb_set_13bit, 3535 [RDFH] = igb_set_13bit, 3536 [RDFT] = igb_set_13bit, 3537 [RDFHS] = igb_set_13bit, 3538 [RDFTS] = igb_set_13bit, 3539 [RDFPC] = igb_set_13bit, 3540 [GCR] = igb_set_gcr, 3541 [RXCSUM] = igb_set_rxcsum, 3542 [TDLEN0] = igb_set_dlen, 3543 [TDLEN1] = igb_set_dlen, 3544 [TDLEN2] = igb_set_dlen, 3545 [TDLEN3] = igb_set_dlen, 3546 [TDLEN4] = igb_set_dlen, 3547 [TDLEN5] = igb_set_dlen, 3548 [TDLEN6] = igb_set_dlen, 3549 [TDLEN7] = igb_set_dlen, 3550 [TDLEN8] = igb_set_dlen, 3551 [TDLEN9] = igb_set_dlen, 3552 [TDLEN10] = igb_set_dlen, 3553 [TDLEN11] = igb_set_dlen, 3554 [TDLEN12] = igb_set_dlen, 3555 [TDLEN13] = igb_set_dlen, 3556 [TDLEN14] = igb_set_dlen, 3557 [TDLEN15] = igb_set_dlen, 3558 [RDLEN0] = igb_set_dlen, 3559 [RDLEN1] = igb_set_dlen, 3560 [RDLEN2] = igb_set_dlen, 3561 [RDLEN3] = igb_set_dlen, 3562 [RDLEN4] = igb_set_dlen, 3563 [RDLEN5] = igb_set_dlen, 3564 [RDLEN6] = igb_set_dlen, 3565 [RDLEN7] = igb_set_dlen, 3566 [RDLEN8] = igb_set_dlen, 3567 [RDLEN9] = igb_set_dlen, 3568 [RDLEN10] = igb_set_dlen, 3569 [RDLEN11] = igb_set_dlen, 3570 [RDLEN12] = igb_set_dlen, 3571 [RDLEN13] = igb_set_dlen, 3572 [RDLEN14] = igb_set_dlen, 3573 [RDLEN15] = igb_set_dlen, 3574 [TDBAL0] = igb_set_dbal, 3575 [TDBAL1] = igb_set_dbal, 3576 [TDBAL2] = igb_set_dbal, 3577 [TDBAL3] = igb_set_dbal, 3578 [TDBAL4] = igb_set_dbal, 3579 [TDBAL5] = igb_set_dbal, 3580 [TDBAL6] = igb_set_dbal, 3581 [TDBAL7] = igb_set_dbal, 3582 [TDBAL8] = igb_set_dbal, 3583 [TDBAL9] = igb_set_dbal, 3584 [TDBAL10] = igb_set_dbal, 3585 [TDBAL11] = igb_set_dbal, 3586 [TDBAL12] = igb_set_dbal, 3587 [TDBAL13] = igb_set_dbal, 3588 [TDBAL14] = igb_set_dbal, 3589 [TDBAL15] = igb_set_dbal, 3590 [RDBAL0] = igb_set_dbal, 3591 [RDBAL1] = igb_set_dbal, 3592 [RDBAL2] = igb_set_dbal, 3593 [RDBAL3] = igb_set_dbal, 3594 [RDBAL4] = igb_set_dbal, 3595 [RDBAL5] = igb_set_dbal, 3596 [RDBAL6] = igb_set_dbal, 3597 [RDBAL7] = igb_set_dbal, 3598 [RDBAL8] = igb_set_dbal, 3599 [RDBAL9] = igb_set_dbal, 3600 [RDBAL10] = igb_set_dbal, 3601 [RDBAL11] = igb_set_dbal, 3602 [RDBAL12] = igb_set_dbal, 3603 [RDBAL13] = igb_set_dbal, 3604 [RDBAL14] = igb_set_dbal, 3605 [RDBAL15] = igb_set_dbal, 3606 [STATUS] = igb_set_status, 3607 [PBACLR] = igb_set_pbaclr, 3608 [CTRL_EXT] = igb_set_ctrlext, 3609 [FCAH] = igb_set_16bit, 3610 [FCT] = igb_set_16bit, 3611 [FCTTV] = igb_set_16bit, 3612 [FCRTV] = igb_set_16bit, 3613 [FCRTH] = igb_set_fcrth, 3614 [FCRTL] = igb_set_fcrtl, 3615 [CTRL_DUP] = igb_set_ctrl, 3616 [RFCTL] = igb_set_rfctl, 3617 [TIMINCA] = igb_set_timinca, 3618 [TIMADJH] = igb_set_timadjh, 3619 3620 [IP6AT ... IP6AT + 3] = igb_mac_writereg, 3621 [IP4AT ... IP4AT + 6] = igb_mac_writereg, 3622 [RA] = igb_mac_writereg, 3623 [RA + 1] = igb_mac_setmacaddr, 3624 [RA + 2 ... RA + 31] = igb_mac_writereg, 3625 [RA2 ... RA2 + 31] = igb_mac_writereg, 3626 [WUPM ... WUPM + 31] = igb_mac_writereg, 3627 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg, 3628 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg, 3629 [FFMT ... FFMT + 254] = igb_set_4bit, 3630 [MDEF ... MDEF + 7] = igb_mac_writereg, 3631 [FTFT ... FTFT + 254] = igb_mac_writereg, 3632 [RETA ... RETA + 31] = igb_mac_writereg, 3633 [RSSRK ... RSSRK + 9] = igb_mac_writereg, 3634 [MAVTV0 ... MAVTV3] = igb_mac_writereg, 3635 [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr, 3636 3637 /* IGB specific: */ 3638 [FWSM] = igb_mac_writereg, 3639 [SW_FW_SYNC] = igb_mac_writereg, 3640 [EICR] = igb_set_eicr, 3641 [EICS] = igb_set_eics, 3642 [EIAC] = igb_set_eiac, 3643 [EIAM] = igb_set_eiam, 3644 [EIMC] = igb_set_eimc, 3645 [EIMS] = igb_set_eims, 3646 [IVAR0 ... IVAR0 + 7] = igb_mac_writereg, 3647 igb_putreg(IVAR_MISC), 3648 igb_putreg(VT_CTL), 3649 [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox, 3650 [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox, 3651 [MBVFICR] = igb_w1c, 3652 [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg, 3653 igb_putreg(MBVFIMR), 3654 [VFLRE] = igb_w1c, 3655 igb_putreg(VFRE), 3656 igb_putreg(VFTE), 3657 igb_putreg(QDE), 3658 igb_putreg(DTXSWC), 3659 igb_putreg(RPLOLR), 3660 [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg, 3661 [VMVIR0 ... VMVIR7] = igb_mac_writereg, 3662 [VMOLR0 ... VMOLR7] = igb_mac_writereg, 3663 [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg, 3664 [PVTCTRL0] = igb_set_vtctrl, 3665 [PVTCTRL1] = igb_set_vtctrl, 3666 [PVTCTRL2] = igb_set_vtctrl, 3667 [PVTCTRL3] = igb_set_vtctrl, 3668 [PVTCTRL4] = igb_set_vtctrl, 3669 [PVTCTRL5] = igb_set_vtctrl, 3670 [PVTCTRL6] = igb_set_vtctrl, 3671 [PVTCTRL7] = igb_set_vtctrl, 3672 [PVTEICS0] = igb_set_vteics, 3673 [PVTEICS1] = igb_set_vteics, 3674 [PVTEICS2] = igb_set_vteics, 3675 [PVTEICS3] = igb_set_vteics, 3676 [PVTEICS4] = igb_set_vteics, 3677 [PVTEICS5] = igb_set_vteics, 3678 [PVTEICS6] = igb_set_vteics, 3679 [PVTEICS7] = igb_set_vteics, 3680 [PVTEIMS0] = igb_set_vteims, 3681 [PVTEIMS1] = igb_set_vteims, 3682 [PVTEIMS2] = igb_set_vteims, 3683 [PVTEIMS3] = igb_set_vteims, 3684 [PVTEIMS4] = igb_set_vteims, 3685 [PVTEIMS5] = igb_set_vteims, 3686 [PVTEIMS6] = igb_set_vteims, 3687 [PVTEIMS7] = igb_set_vteims, 3688 [PVTEIMC0] = igb_set_vteimc, 3689 [PVTEIMC1] = igb_set_vteimc, 3690 [PVTEIMC2] = igb_set_vteimc, 3691 [PVTEIMC3] = igb_set_vteimc, 3692 [PVTEIMC4] = igb_set_vteimc, 3693 [PVTEIMC5] = igb_set_vteimc, 3694 [PVTEIMC6] = igb_set_vteimc, 3695 [PVTEIMC7] = igb_set_vteimc, 3696 [PVTEIAC0] = igb_set_vteiac, 3697 [PVTEIAC1] = igb_set_vteiac, 3698 [PVTEIAC2] = igb_set_vteiac, 3699 [PVTEIAC3] = igb_set_vteiac, 3700 [PVTEIAC4] = igb_set_vteiac, 3701 [PVTEIAC5] = igb_set_vteiac, 3702 [PVTEIAC6] = igb_set_vteiac, 3703 [PVTEIAC7] = igb_set_vteiac, 3704 [PVTEIAM0] = igb_set_vteiam, 3705 [PVTEIAM1] = igb_set_vteiam, 3706 [PVTEIAM2] = igb_set_vteiam, 3707 [PVTEIAM3] = igb_set_vteiam, 3708 [PVTEIAM4] = igb_set_vteiam, 3709 [PVTEIAM5] = igb_set_vteiam, 3710 [PVTEIAM6] = igb_set_vteiam, 3711 [PVTEIAM7] = igb_set_vteiam, 3712 [PVTEICR0] = igb_set_vteicr, 3713 [PVTEICR1] = igb_set_vteicr, 3714 [PVTEICR2] = igb_set_vteicr, 3715 [PVTEICR3] = igb_set_vteicr, 3716 [PVTEICR4] = igb_set_vteicr, 3717 [PVTEICR5] = igb_set_vteicr, 3718 [PVTEICR6] = igb_set_vteicr, 3719 [PVTEICR7] = igb_set_vteicr, 3720 [VTIVAR ... VTIVAR + 7] = igb_set_vtivar, 3721 [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg 3722 }; 3723 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) }; 3724 3725 enum { MAC_ACCESS_PARTIAL = 1 }; 3726 3727 /* 3728 * The array below combines alias offsets of the index values for the 3729 * MAC registers that have aliases, with the indication of not fully 3730 * implemented registers (lowest bit). This combination is possible 3731 * because all of the offsets are even. 3732 */ 3733 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = { 3734 /* Alias index offsets */ 3735 [FCRTL_A] = 0x07fe, 3736 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904, 3737 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00, 3738 [RA_A ... RA_A + 31] = 0x14f0, 3739 [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400, 3740 3741 [RDBAL0_A] = 0x2600, 3742 [RDBAH0_A] = 0x2600, 3743 [RDLEN0_A] = 0x2600, 3744 [SRRCTL0_A] = 0x2600, 3745 [RDH0_A] = 0x2600, 3746 [RDT0_A] = 0x2600, 3747 [RXDCTL0_A] = 0x2600, 3748 [RXCTL0_A] = 0x2600, 3749 [RQDPC0_A] = 0x2600, 3750 [RDBAL1_A] = 0x25D0, 3751 [RDBAL2_A] = 0x25A0, 3752 [RDBAL3_A] = 0x2570, 3753 [RDBAH1_A] = 0x25D0, 3754 [RDBAH2_A] = 0x25A0, 3755 [RDBAH3_A] = 0x2570, 3756 [RDLEN1_A] = 0x25D0, 3757 [RDLEN2_A] = 0x25A0, 3758 [RDLEN3_A] = 0x2570, 3759 [SRRCTL1_A] = 0x25D0, 3760 [SRRCTL2_A] = 0x25A0, 3761 [SRRCTL3_A] = 0x2570, 3762 [RDH1_A] = 0x25D0, 3763 [RDH2_A] = 0x25A0, 3764 [RDH3_A] = 0x2570, 3765 [RDT1_A] = 0x25D0, 3766 [RDT2_A] = 0x25A0, 3767 [RDT3_A] = 0x2570, 3768 [RXDCTL1_A] = 0x25D0, 3769 [RXDCTL2_A] = 0x25A0, 3770 [RXDCTL3_A] = 0x2570, 3771 [RXCTL1_A] = 0x25D0, 3772 [RXCTL2_A] = 0x25A0, 3773 [RXCTL3_A] = 0x2570, 3774 [RQDPC1_A] = 0x25D0, 3775 [RQDPC2_A] = 0x25A0, 3776 [RQDPC3_A] = 0x2570, 3777 [TDBAL0_A] = 0x2A00, 3778 [TDBAH0_A] = 0x2A00, 3779 [TDLEN0_A] = 0x2A00, 3780 [TDH0_A] = 0x2A00, 3781 [TDT0_A] = 0x2A00, 3782 [TXCTL0_A] = 0x2A00, 3783 [TDWBAL0_A] = 0x2A00, 3784 [TDWBAH0_A] = 0x2A00, 3785 [TDBAL1_A] = 0x29D0, 3786 [TDBAL2_A] = 0x29A0, 3787 [TDBAL3_A] = 0x2970, 3788 [TDBAH1_A] = 0x29D0, 3789 [TDBAH2_A] = 0x29A0, 3790 [TDBAH3_A] = 0x2970, 3791 [TDLEN1_A] = 0x29D0, 3792 [TDLEN2_A] = 0x29A0, 3793 [TDLEN3_A] = 0x2970, 3794 [TDH1_A] = 0x29D0, 3795 [TDH2_A] = 0x29A0, 3796 [TDH3_A] = 0x2970, 3797 [TDT1_A] = 0x29D0, 3798 [TDT2_A] = 0x29A0, 3799 [TDT3_A] = 0x2970, 3800 [TXDCTL0_A] = 0x2A00, 3801 [TXDCTL1_A] = 0x29D0, 3802 [TXDCTL2_A] = 0x29A0, 3803 [TXDCTL3_A] = 0x2970, 3804 [TXCTL1_A] = 0x29D0, 3805 [TXCTL2_A] = 0x29A0, 3806 [TXCTL3_A] = 0x29D0, 3807 [TDWBAL1_A] = 0x29D0, 3808 [TDWBAL2_A] = 0x29A0, 3809 [TDWBAL3_A] = 0x2970, 3810 [TDWBAH1_A] = 0x29D0, 3811 [TDWBAH2_A] = 0x29A0, 3812 [TDWBAH3_A] = 0x2970, 3813 3814 /* Access options */ 3815 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL, 3816 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL, 3817 [RDFPC] = MAC_ACCESS_PARTIAL, 3818 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL, 3819 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL, 3820 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL, 3821 [FLA] = MAC_ACCESS_PARTIAL, 3822 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL, 3823 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL, 3824 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL, 3825 [FCRTH] = MAC_ACCESS_PARTIAL, 3826 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL 3827 }; 3828 3829 void 3830 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size) 3831 { 3832 uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr); 3833 3834 if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) { 3835 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3836 trace_e1000e_wrn_regs_write_trivial(index << 2); 3837 } 3838 trace_e1000e_core_write(index << 2, size, val); 3839 igb_macreg_writeops[index](core, index, val); 3840 } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) { 3841 trace_e1000e_wrn_regs_write_ro(index << 2, size, val); 3842 } else { 3843 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val); 3844 } 3845 } 3846 3847 uint64_t 3848 igb_core_read(IGBCore *core, hwaddr addr, unsigned size) 3849 { 3850 uint64_t val; 3851 uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr); 3852 3853 if (index < IGB_NREADOPS && igb_macreg_readops[index]) { 3854 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3855 trace_e1000e_wrn_regs_read_trivial(index << 2); 3856 } 3857 val = igb_macreg_readops[index](core, index); 3858 trace_e1000e_core_read(index << 2, size, val); 3859 return val; 3860 } else { 3861 trace_e1000e_wrn_regs_read_unknown(index << 2, size); 3862 } 3863 return 0; 3864 } 3865 3866 static inline void 3867 igb_autoneg_pause(IGBCore *core) 3868 { 3869 timer_del(core->autoneg_timer); 3870 } 3871 3872 static void 3873 igb_autoneg_resume(IGBCore *core) 3874 { 3875 if (igb_have_autoneg(core) && 3876 !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) { 3877 qemu_get_queue(core->owner_nic)->link_down = false; 3878 timer_mod(core->autoneg_timer, 3879 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 3880 } 3881 } 3882 3883 static void 3884 igb_vm_state_change(void *opaque, bool running, RunState state) 3885 { 3886 IGBCore *core = opaque; 3887 3888 if (running) { 3889 trace_e1000e_vm_state_running(); 3890 igb_intrmgr_resume(core); 3891 igb_autoneg_resume(core); 3892 } else { 3893 trace_e1000e_vm_state_stopped(); 3894 igb_autoneg_pause(core); 3895 igb_intrmgr_pause(core); 3896 } 3897 } 3898 3899 void 3900 igb_core_pci_realize(IGBCore *core, 3901 const uint16_t *eeprom_templ, 3902 uint32_t eeprom_size, 3903 const uint8_t *macaddr) 3904 { 3905 int i; 3906 3907 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 3908 igb_autoneg_timer, core); 3909 igb_intrmgr_pci_realize(core); 3910 3911 core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core); 3912 3913 for (i = 0; i < IGB_NUM_QUEUES; i++) { 3914 net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS); 3915 } 3916 3917 net_rx_pkt_init(&core->rx_pkt); 3918 3919 e1000x_core_prepare_eeprom(core->eeprom, 3920 eeprom_templ, 3921 eeprom_size, 3922 PCI_DEVICE_GET_CLASS(core->owner)->device_id, 3923 macaddr); 3924 igb_update_rx_offloads(core); 3925 } 3926 3927 void 3928 igb_core_pci_uninit(IGBCore *core) 3929 { 3930 int i; 3931 3932 timer_free(core->autoneg_timer); 3933 3934 igb_intrmgr_pci_unint(core); 3935 3936 qemu_del_vm_change_state_handler(core->vmstate); 3937 3938 for (i = 0; i < IGB_NUM_QUEUES; i++) { 3939 net_tx_pkt_uninit(core->tx[i].tx_pkt); 3940 } 3941 3942 net_rx_pkt_uninit(core->rx_pkt); 3943 } 3944 3945 static const uint16_t 3946 igb_phy_reg_init[] = { 3947 [MII_BMCR] = MII_BMCR_SPEED1000 | 3948 MII_BMCR_FD | 3949 MII_BMCR_AUTOEN, 3950 3951 [MII_BMSR] = MII_BMSR_EXTCAP | 3952 MII_BMSR_LINK_ST | 3953 MII_BMSR_AUTONEG | 3954 MII_BMSR_MFPS | 3955 MII_BMSR_EXTSTAT | 3956 MII_BMSR_10T_HD | 3957 MII_BMSR_10T_FD | 3958 MII_BMSR_100TX_HD | 3959 MII_BMSR_100TX_FD, 3960 3961 [MII_PHYID1] = IGP03E1000_E_PHY_ID >> 16, 3962 [MII_PHYID2] = (IGP03E1000_E_PHY_ID & 0xfff0) | 1, 3963 [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 | 3964 MII_ANAR_10FD | MII_ANAR_TX | 3965 MII_ANAR_TXFD | MII_ANAR_PAUSE | 3966 MII_ANAR_PAUSE_ASYM, 3967 [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD | 3968 MII_ANLPAR_TX | MII_ANLPAR_TXFD | 3969 MII_ANLPAR_T4 | MII_ANLPAR_PAUSE, 3970 [MII_ANER] = MII_ANER_NP | MII_ANER_NWAY, 3971 [MII_ANNP] = 0x1 | MII_ANNP_MP, 3972 [MII_CTRL1000] = MII_CTRL1000_HALF | MII_CTRL1000_FULL | 3973 MII_CTRL1000_PORT | MII_CTRL1000_MASTER, 3974 [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL | 3975 MII_STAT1000_ROK | MII_STAT1000_LOK, 3976 [MII_EXTSTAT] = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD, 3977 3978 [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8), 3979 [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS, 3980 [IGP02E1000_PHY_POWER_MGMT] = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU | 3981 IGP01E1000_PSCFR_SMART_SPEED 3982 }; 3983 3984 static const uint32_t igb_mac_reg_init[] = { 3985 [LEDCTL] = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24), 3986 [EEMNGCTL] = BIT(31), 3987 [TXDCTL0] = E1000_TXDCTL_QUEUE_ENABLE, 3988 [RXDCTL0] = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16), 3989 [RXDCTL1] = 1 << 16, 3990 [RXDCTL2] = 1 << 16, 3991 [RXDCTL3] = 1 << 16, 3992 [RXDCTL4] = 1 << 16, 3993 [RXDCTL5] = 1 << 16, 3994 [RXDCTL6] = 1 << 16, 3995 [RXDCTL7] = 1 << 16, 3996 [RXDCTL8] = 1 << 16, 3997 [RXDCTL9] = 1 << 16, 3998 [RXDCTL10] = 1 << 16, 3999 [RXDCTL11] = 1 << 16, 4000 [RXDCTL12] = 1 << 16, 4001 [RXDCTL13] = 1 << 16, 4002 [RXDCTL14] = 1 << 16, 4003 [RXDCTL15] = 1 << 16, 4004 [TIPG] = 0x08 | (0x04 << 10) | (0x06 << 20), 4005 [CTRL] = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 | 4006 E1000_CTRL_ADVD3WUC, 4007 [STATUS] = E1000_STATUS_PHYRA | BIT(31), 4008 [EECD] = E1000_EECD_FWE_DIS | E1000_EECD_PRES | 4009 (2 << E1000_EECD_SIZE_EX_SHIFT), 4010 [GCR] = E1000_L0S_ADJUST | 4011 E1000_GCR_CMPL_TMOUT_RESEND | 4012 E1000_GCR_CAP_VER2 | 4013 E1000_L1_ENTRY_LATENCY_MSB | 4014 E1000_L1_ENTRY_LATENCY_LSB, 4015 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD, 4016 [TXPBS] = 0x28, 4017 [RXPBS] = 0x40, 4018 [TCTL] = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) | 4019 (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28), 4020 [TCTL_EXT] = 0x40 | (0x42 << 10), 4021 [DTXCTL] = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT, 4022 [VET] = ETH_P_VLAN | (ETH_P_VLAN << 16), 4023 4024 [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI, 4025 [MBVFIMR] = 0xFF, 4026 [VFRE] = 0xFF, 4027 [VFTE] = 0xFF, 4028 [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC, 4029 [RPLOLR] = E1000_RPLOLR_STRCRC, 4030 [RLPML] = 0x2600, 4031 [TXCTL0] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4032 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4033 E1000_DCA_TXCTRL_DESC_RRO_EN, 4034 [TXCTL1] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4035 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4036 E1000_DCA_TXCTRL_DESC_RRO_EN, 4037 [TXCTL2] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4038 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4039 E1000_DCA_TXCTRL_DESC_RRO_EN, 4040 [TXCTL3] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4041 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4042 E1000_DCA_TXCTRL_DESC_RRO_EN, 4043 [TXCTL4] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4044 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4045 E1000_DCA_TXCTRL_DESC_RRO_EN, 4046 [TXCTL5] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4047 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4048 E1000_DCA_TXCTRL_DESC_RRO_EN, 4049 [TXCTL6] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4050 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4051 E1000_DCA_TXCTRL_DESC_RRO_EN, 4052 [TXCTL7] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4053 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4054 E1000_DCA_TXCTRL_DESC_RRO_EN, 4055 [TXCTL8] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4056 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4057 E1000_DCA_TXCTRL_DESC_RRO_EN, 4058 [TXCTL9] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4059 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4060 E1000_DCA_TXCTRL_DESC_RRO_EN, 4061 [TXCTL10] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4062 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4063 E1000_DCA_TXCTRL_DESC_RRO_EN, 4064 [TXCTL11] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4065 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4066 E1000_DCA_TXCTRL_DESC_RRO_EN, 4067 [TXCTL12] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4068 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4069 E1000_DCA_TXCTRL_DESC_RRO_EN, 4070 [TXCTL13] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4071 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4072 E1000_DCA_TXCTRL_DESC_RRO_EN, 4073 [TXCTL14] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4074 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4075 E1000_DCA_TXCTRL_DESC_RRO_EN, 4076 [TXCTL15] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4077 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4078 E1000_DCA_TXCTRL_DESC_RRO_EN, 4079 }; 4080 4081 static void igb_reset(IGBCore *core, bool sw) 4082 { 4083 struct igb_tx *tx; 4084 int i; 4085 4086 timer_del(core->autoneg_timer); 4087 4088 igb_intrmgr_reset(core); 4089 4090 memset(core->phy, 0, sizeof core->phy); 4091 memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init); 4092 4093 for (i = 0; i < E1000E_MAC_SIZE; i++) { 4094 if (sw && 4095 (i == RXPBS || i == TXPBS || 4096 (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) { 4097 continue; 4098 } 4099 4100 core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ? 4101 igb_mac_reg_init[i] : 0; 4102 } 4103 4104 if (qemu_get_queue(core->owner_nic)->link_down) { 4105 igb_link_down(core); 4106 } 4107 4108 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); 4109 4110 for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) { 4111 /* Set RSTI, so VF can identify a PF reset is in progress */ 4112 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI; 4113 } 4114 4115 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 4116 tx = &core->tx[i]; 4117 memset(tx->ctx, 0, sizeof(tx->ctx)); 4118 tx->first = true; 4119 tx->skip_cp = false; 4120 } 4121 } 4122 4123 void 4124 igb_core_reset(IGBCore *core) 4125 { 4126 igb_reset(core, false); 4127 } 4128 4129 void igb_core_pre_save(IGBCore *core) 4130 { 4131 int i; 4132 NetClientState *nc = qemu_get_queue(core->owner_nic); 4133 4134 /* 4135 * If link is down and auto-negotiation is supported and ongoing, 4136 * complete auto-negotiation immediately. This allows us to look 4137 * at MII_BMSR_AN_COMP to infer link status on load. 4138 */ 4139 if (nc->link_down && igb_have_autoneg(core)) { 4140 core->phy[MII_BMSR] |= MII_BMSR_AN_COMP; 4141 igb_update_flowctl_status(core); 4142 } 4143 4144 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 4145 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) { 4146 core->tx[i].skip_cp = true; 4147 } 4148 } 4149 } 4150 4151 int 4152 igb_core_post_load(IGBCore *core) 4153 { 4154 NetClientState *nc = qemu_get_queue(core->owner_nic); 4155 4156 /* 4157 * nc.link_down can't be migrated, so infer link_down according 4158 * to link status bit in core.mac[STATUS]. 4159 */ 4160 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0; 4161 4162 return 0; 4163 } 4164