xref: /openbmc/qemu/hw/net/igb_core.c (revision e9206163)
1 /*
2  * Core code for QEMU igb emulation
3  *
4  * Datasheet:
5  * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
6  *
7  * Copyright (c) 2020-2023 Red Hat, Inc.
8  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
9  * Developed by Daynix Computing LTD (http://www.daynix.com)
10  *
11  * Authors:
12  * Akihiko Odaki <akihiko.odaki@daynix.com>
13  * Gal Hammmer <gal.hammer@sap.com>
14  * Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
15  * Dmitry Fleytman <dmitry@daynix.com>
16  * Leonid Bloch <leonid@daynix.com>
17  * Yan Vugenfirer <yan@daynix.com>
18  *
19  * Based on work done by:
20  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
21  * Copyright (c) 2008 Qumranet
22  * Based on work done by:
23  * Copyright (c) 2007 Dan Aloni
24  * Copyright (c) 2004 Antony T Curtis
25  *
26  * This library is free software; you can redistribute it and/or
27  * modify it under the terms of the GNU Lesser General Public
28  * License as published by the Free Software Foundation; either
29  * version 2.1 of the License, or (at your option) any later version.
30  *
31  * This library is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34  * Lesser General Public License for more details.
35  *
36  * You should have received a copy of the GNU Lesser General Public
37  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/log.h"
42 #include "net/net.h"
43 #include "net/tap.h"
44 #include "hw/net/mii.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "sysemu/runstate.h"
48 
49 #include "net_tx_pkt.h"
50 #include "net_rx_pkt.h"
51 
52 #include "igb_common.h"
53 #include "e1000x_common.h"
54 #include "igb_core.h"
55 
56 #include "trace.h"
57 
58 #define E1000E_MAX_TX_FRAGS (64)
59 
60 union e1000_rx_desc_union {
61     struct e1000_rx_desc legacy;
62     union e1000_adv_rx_desc adv;
63 };
64 
65 typedef struct IGBTxPktVmdqCallbackContext {
66     IGBCore *core;
67     NetClientState *nc;
68 } IGBTxPktVmdqCallbackContext;
69 
70 typedef struct L2Header {
71     struct eth_header eth;
72     struct vlan_header vlan[2];
73 } L2Header;
74 
75 typedef struct PTP2 {
76     uint8_t message_id_transport_specific;
77     uint8_t version_ptp;
78     uint16_t message_length;
79     uint8_t subdomain_number;
80     uint8_t reserved0;
81     uint16_t flags;
82     uint64_t correction;
83     uint8_t reserved1[5];
84     uint8_t source_communication_technology;
85     uint32_t source_uuid_lo;
86     uint16_t source_uuid_hi;
87     uint16_t source_port_id;
88     uint16_t sequence_id;
89     uint8_t control;
90     uint8_t log_message_period;
91 } PTP2;
92 
93 static ssize_t
94 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
95                      bool has_vnet, bool *external_tx);
96 
97 static void igb_raise_interrupts(IGBCore *core, size_t index, uint32_t causes);
98 static void igb_reset(IGBCore *core, bool sw);
99 
100 static inline void
101 igb_raise_legacy_irq(IGBCore *core)
102 {
103     trace_e1000e_irq_legacy_notify(true);
104     e1000x_inc_reg_if_not_full(core->mac, IAC);
105     pci_set_irq(core->owner, 1);
106 }
107 
108 static inline void
109 igb_lower_legacy_irq(IGBCore *core)
110 {
111     trace_e1000e_irq_legacy_notify(false);
112     pci_set_irq(core->owner, 0);
113 }
114 
115 static void igb_msix_notify(IGBCore *core, unsigned int cause)
116 {
117     PCIDevice *dev = core->owner;
118     uint16_t vfn;
119     uint32_t effective_eiac;
120     unsigned int vector;
121 
122     vfn = 8 - (cause + 2) / IGBVF_MSIX_VEC_NUM;
123     if (vfn < pcie_sriov_num_vfs(core->owner)) {
124         dev = pcie_sriov_get_vf_at_index(core->owner, vfn);
125         assert(dev);
126         vector = (cause + 2) % IGBVF_MSIX_VEC_NUM;
127     } else if (cause >= IGB_MSIX_VEC_NUM) {
128         qemu_log_mask(LOG_GUEST_ERROR,
129                       "igb: Tried to use vector unavailable for PF");
130         return;
131     } else {
132         vector = cause;
133     }
134 
135     msix_notify(dev, vector);
136 
137     trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]);
138     effective_eiac = core->mac[EIAC] & BIT(cause);
139     core->mac[EICR] &= ~effective_eiac;
140 }
141 
142 static inline void
143 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer)
144 {
145     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
146                                  timer->delay_resolution_ns;
147 
148     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
149 
150     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
151 
152     timer->running = true;
153 }
154 
155 static void
156 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer)
157 {
158     if (timer->running) {
159         igb_intrmgr_rearm_timer(timer);
160     }
161 }
162 
163 static void
164 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer)
165 {
166     if (timer->running) {
167         timer_del(timer->timer);
168     }
169 }
170 
171 static void
172 igb_intrmgr_on_msix_throttling_timer(void *opaque)
173 {
174     IGBIntrDelayTimer *timer = opaque;
175     int idx = timer - &timer->core->eitr[0];
176 
177     timer->running = false;
178 
179     trace_e1000e_irq_msix_notify_postponed_vec(idx);
180     igb_msix_notify(timer->core, idx);
181 }
182 
183 static void
184 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create)
185 {
186     int i;
187 
188     for (i = 0; i < IGB_INTR_NUM; i++) {
189         core->eitr[i].core = core;
190         core->eitr[i].delay_reg = EITR0 + i;
191         core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
192     }
193 
194     if (!create) {
195         return;
196     }
197 
198     for (i = 0; i < IGB_INTR_NUM; i++) {
199         core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
200                                            igb_intrmgr_on_msix_throttling_timer,
201                                            &core->eitr[i]);
202     }
203 }
204 
205 static void
206 igb_intrmgr_resume(IGBCore *core)
207 {
208     int i;
209 
210     for (i = 0; i < IGB_INTR_NUM; i++) {
211         igb_intmgr_timer_resume(&core->eitr[i]);
212     }
213 }
214 
215 static void
216 igb_intrmgr_pause(IGBCore *core)
217 {
218     int i;
219 
220     for (i = 0; i < IGB_INTR_NUM; i++) {
221         igb_intmgr_timer_pause(&core->eitr[i]);
222     }
223 }
224 
225 static void
226 igb_intrmgr_reset(IGBCore *core)
227 {
228     int i;
229 
230     for (i = 0; i < IGB_INTR_NUM; i++) {
231         if (core->eitr[i].running) {
232             timer_del(core->eitr[i].timer);
233             igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
234         }
235     }
236 }
237 
238 static void
239 igb_intrmgr_pci_unint(IGBCore *core)
240 {
241     int i;
242 
243     for (i = 0; i < IGB_INTR_NUM; i++) {
244         timer_free(core->eitr[i].timer);
245     }
246 }
247 
248 static void
249 igb_intrmgr_pci_realize(IGBCore *core)
250 {
251     igb_intrmgr_initialize_all_timers(core, true);
252 }
253 
254 static inline bool
255 igb_rx_csum_enabled(IGBCore *core)
256 {
257     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
258 }
259 
260 static inline bool
261 igb_rx_use_legacy_descriptor(IGBCore *core)
262 {
263     /*
264      * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx
265      * descriptor.
266      */
267     return false;
268 }
269 
270 typedef struct E1000ERingInfo {
271     int dbah;
272     int dbal;
273     int dlen;
274     int dh;
275     int dt;
276     int idx;
277 } E1000ERingInfo;
278 
279 static uint32_t
280 igb_rx_queue_desctyp_get(IGBCore *core, const E1000ERingInfo *r)
281 {
282     return core->mac[E1000_SRRCTL(r->idx) >> 2] & E1000_SRRCTL_DESCTYPE_MASK;
283 }
284 
285 static bool
286 igb_rx_use_ps_descriptor(IGBCore *core, const E1000ERingInfo *r)
287 {
288     uint32_t desctyp = igb_rx_queue_desctyp_get(core, r);
289     return desctyp == E1000_SRRCTL_DESCTYPE_HDR_SPLIT ||
290            desctyp == E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
291 }
292 
293 static inline bool
294 igb_rss_enabled(IGBCore *core)
295 {
296     return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ &&
297            !igb_rx_csum_enabled(core) &&
298            !igb_rx_use_legacy_descriptor(core);
299 }
300 
301 typedef struct E1000E_RSSInfo_st {
302     bool enabled;
303     uint32_t hash;
304     uint32_t queue;
305     uint32_t type;
306 } E1000E_RSSInfo;
307 
308 static uint32_t
309 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt)
310 {
311     bool hasip4, hasip6;
312     EthL4HdrProto l4hdr_proto;
313 
314     assert(igb_rss_enabled(core));
315 
316     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
317 
318     if (hasip4) {
319         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
320                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
321                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
322 
323         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
324             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
325             return E1000_MRQ_RSS_TYPE_IPV4TCP;
326         }
327 
328         if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP &&
329             (core->mac[MRQC] & E1000_MRQC_RSS_FIELD_IPV4_UDP)) {
330             return E1000_MRQ_RSS_TYPE_IPV4UDP;
331         }
332 
333         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
334             return E1000_MRQ_RSS_TYPE_IPV4;
335         }
336     } else if (hasip6) {
337         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
338 
339         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
340         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
341 
342         /*
343          * Following two traces must not be combined because resulting
344          * event will have 11 arguments totally and some trace backends
345          * (at least "ust") have limitation of maximum 10 arguments per
346          * event. Events with more arguments fail to compile for
347          * backends like these.
348          */
349         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
350         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
351                                 ip6info->has_ext_hdrs,
352                                 ip6info->rss_ex_dst_valid,
353                                 ip6info->rss_ex_src_valid,
354                                 core->mac[MRQC],
355                                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]),
356                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
357                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
358 
359         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
360             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
361                               ip6info->rss_ex_src_valid))) {
362 
363             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
364                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) {
365                 return E1000_MRQ_RSS_TYPE_IPV6TCPEX;
366             }
367 
368             if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP &&
369                 (core->mac[MRQC] & E1000_MRQC_RSS_FIELD_IPV6_UDP)) {
370                 return E1000_MRQ_RSS_TYPE_IPV6UDP;
371             }
372 
373             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
374                 return E1000_MRQ_RSS_TYPE_IPV6EX;
375             }
376 
377         }
378 
379         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
380             return E1000_MRQ_RSS_TYPE_IPV6;
381         }
382 
383     }
384 
385     return E1000_MRQ_RSS_TYPE_NONE;
386 }
387 
388 static uint32_t
389 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info)
390 {
391     NetRxPktRssType type;
392 
393     assert(igb_rss_enabled(core));
394 
395     switch (info->type) {
396     case E1000_MRQ_RSS_TYPE_IPV4:
397         type = NetPktRssIpV4;
398         break;
399     case E1000_MRQ_RSS_TYPE_IPV4TCP:
400         type = NetPktRssIpV4Tcp;
401         break;
402     case E1000_MRQ_RSS_TYPE_IPV6TCPEX:
403         type = NetPktRssIpV6TcpEx;
404         break;
405     case E1000_MRQ_RSS_TYPE_IPV6:
406         type = NetPktRssIpV6;
407         break;
408     case E1000_MRQ_RSS_TYPE_IPV6EX:
409         type = NetPktRssIpV6Ex;
410         break;
411     case E1000_MRQ_RSS_TYPE_IPV4UDP:
412         type = NetPktRssIpV4Udp;
413         break;
414     case E1000_MRQ_RSS_TYPE_IPV6UDP:
415         type = NetPktRssIpV6Udp;
416         break;
417     default:
418         assert(false);
419         return 0;
420     }
421 
422     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
423 }
424 
425 static void
426 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx,
427                      E1000E_RSSInfo *info)
428 {
429     trace_e1000e_rx_rss_started();
430 
431     if (tx || !igb_rss_enabled(core)) {
432         info->enabled = false;
433         info->hash = 0;
434         info->queue = 0;
435         info->type = 0;
436         trace_e1000e_rx_rss_disabled();
437         return;
438     }
439 
440     info->enabled = true;
441 
442     info->type = igb_rss_get_hash_type(core, pkt);
443 
444     trace_e1000e_rx_rss_type(info->type);
445 
446     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
447         info->hash = 0;
448         info->queue = 0;
449         return;
450     }
451 
452     info->hash = igb_rss_calc_hash(core, pkt, info);
453     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
454 }
455 
456 static void
457 igb_tx_insert_vlan(IGBCore *core, uint16_t qn, struct igb_tx *tx,
458     uint16_t vlan, bool insert_vlan)
459 {
460     if (core->mac[MRQC] & 1) {
461         uint16_t pool = qn % IGB_NUM_VM_POOLS;
462 
463         if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_DEFAULT) {
464             /* always insert default VLAN */
465             insert_vlan = true;
466             vlan = core->mac[VMVIR0 + pool] & 0xffff;
467         } else if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_NEVER) {
468             insert_vlan = false;
469         }
470     }
471 
472     if (insert_vlan) {
473         net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan,
474             core->mac[VET] & 0xffff);
475     }
476 }
477 
478 static bool
479 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx)
480 {
481     uint32_t idx = (tx->first_olinfo_status >> 4) & 1;
482 
483     if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) {
484         uint32_t mss = tx->ctx[idx].mss_l4len_idx >> E1000_ADVTXD_MSS_SHIFT;
485         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) {
486             return false;
487         }
488 
489         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
490         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
491         return true;
492     }
493 
494     if ((tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) &&
495         !((tx->ctx[idx].type_tucmd_mlhl & E1000_ADVTXD_TUCMD_L4T_SCTP) ?
496           net_tx_pkt_update_sctp_checksum(tx->tx_pkt) :
497           net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0))) {
498         return false;
499     }
500 
501     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) {
502         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
503     }
504 
505     return true;
506 }
507 
508 static void igb_tx_pkt_mac_callback(void *core,
509                                     const struct iovec *iov,
510                                     int iovcnt,
511                                     const struct iovec *virt_iov,
512                                     int virt_iovcnt)
513 {
514     igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL);
515 }
516 
517 static void igb_tx_pkt_vmdq_callback(void *opaque,
518                                      const struct iovec *iov,
519                                      int iovcnt,
520                                      const struct iovec *virt_iov,
521                                      int virt_iovcnt)
522 {
523     IGBTxPktVmdqCallbackContext *context = opaque;
524     bool external_tx;
525 
526     igb_receive_internal(context->core, virt_iov, virt_iovcnt, true,
527                          &external_tx);
528 
529     if (external_tx) {
530         if (context->core->has_vnet) {
531             qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt);
532         } else {
533             qemu_sendv_packet(context->nc, iov, iovcnt);
534         }
535     }
536 }
537 
538 /* TX Packets Switching (7.10.3.6) */
539 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx,
540                               NetClientState *nc)
541 {
542     IGBTxPktVmdqCallbackContext context;
543 
544     /* TX switching is only used to serve VM to VM traffic. */
545     if (!(core->mac[MRQC] & 1)) {
546         goto send_out;
547     }
548 
549     /* TX switching requires DTXSWC.Loopback_en bit enabled. */
550     if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) {
551         goto send_out;
552     }
553 
554     context.core = core;
555     context.nc = nc;
556 
557     return net_tx_pkt_send_custom(tx->tx_pkt, false,
558                                   igb_tx_pkt_vmdq_callback, &context);
559 
560 send_out:
561     return net_tx_pkt_send(tx->tx_pkt, nc);
562 }
563 
564 static bool
565 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index)
566 {
567     int target_queue = MIN(core->max_queue_num, queue_index);
568     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
569 
570     if (!igb_setup_tx_offloads(core, tx)) {
571         return false;
572     }
573 
574     net_tx_pkt_dump(tx->tx_pkt);
575 
576     if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) ||
577         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
578         return net_tx_pkt_send_custom(tx->tx_pkt, false,
579                                       igb_tx_pkt_mac_callback, core);
580     } else {
581         return igb_tx_pkt_switch(core, tx, queue);
582     }
583 }
584 
585 static void
586 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt, int qn)
587 {
588     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
589                                     PTC1023, PTC1522 };
590 
591     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
592 
593     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
594     e1000x_inc_reg_if_not_full(core->mac, TPT);
595     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
596 
597     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
598     case ETH_PKT_BCAST:
599         e1000x_inc_reg_if_not_full(core->mac, BPTC);
600         break;
601     case ETH_PKT_MCAST:
602         e1000x_inc_reg_if_not_full(core->mac, MPTC);
603         break;
604     case ETH_PKT_UCAST:
605         break;
606     default:
607         g_assert_not_reached();
608     }
609 
610     e1000x_inc_reg_if_not_full(core->mac, GPTC);
611     e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
612 
613     if (core->mac[MRQC] & 1) {
614         uint16_t pool = qn % IGB_NUM_VM_POOLS;
615 
616         core->mac[PVFGOTC0 + (pool * 64)] += tot_len;
617         core->mac[PVFGPTC0 + (pool * 64)]++;
618     }
619 }
620 
621 static void
622 igb_process_tx_desc(IGBCore *core,
623                     PCIDevice *dev,
624                     struct igb_tx *tx,
625                     union e1000_adv_tx_desc *tx_desc,
626                     int queue_index)
627 {
628     struct e1000_adv_tx_context_desc *tx_ctx_desc;
629     uint32_t cmd_type_len;
630     uint32_t idx;
631     uint64_t buffer_addr;
632     uint16_t length;
633 
634     cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
635 
636     if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) {
637         if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) ==
638             E1000_ADVTXD_DTYP_DATA) {
639             /* advanced transmit data descriptor */
640             if (tx->first) {
641                 tx->first_cmd_type_len = cmd_type_len;
642                 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status);
643                 tx->first = false;
644             }
645         } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) ==
646                    E1000_ADVTXD_DTYP_CTXT) {
647             /* advanced transmit context descriptor */
648             tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc;
649             idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1;
650             tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens);
651             tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed);
652             tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl);
653             tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx);
654             return;
655         } else {
656             /* unknown descriptor type */
657             return;
658         }
659     } else {
660         /* legacy descriptor */
661 
662         /* TODO: Implement a support for legacy descriptors (7.2.2.1). */
663     }
664 
665     buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr);
666     length = cmd_type_len & 0xFFFF;
667 
668     if (!tx->skip_cp) {
669         if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, dev,
670                                              buffer_addr, length)) {
671             tx->skip_cp = true;
672         }
673     }
674 
675     if (cmd_type_len & E1000_TXD_CMD_EOP) {
676         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
677             idx = (tx->first_olinfo_status >> 4) & 1;
678             igb_tx_insert_vlan(core, queue_index, tx,
679                 tx->ctx[idx].vlan_macip_lens >> IGB_TX_FLAGS_VLAN_SHIFT,
680                 !!(tx->first_cmd_type_len & E1000_TXD_CMD_VLE));
681 
682             if ((tx->first_cmd_type_len & E1000_ADVTXD_MAC_TSTAMP) &&
683                 (core->mac[TSYNCTXCTL] & E1000_TSYNCTXCTL_ENABLED) &&
684                 !(core->mac[TSYNCTXCTL] & E1000_TSYNCTXCTL_VALID)) {
685                 core->mac[TSYNCTXCTL] |= E1000_TSYNCTXCTL_VALID;
686                 e1000x_timestamp(core->mac, core->timadj, TXSTMPL, TXSTMPH);
687             }
688 
689             if (igb_tx_pkt_send(core, tx, queue_index)) {
690                 igb_on_tx_done_update_stats(core, tx->tx_pkt, queue_index);
691             }
692         }
693 
694         tx->first = true;
695         tx->skip_cp = false;
696         net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, dev);
697     }
698 }
699 
700 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx)
701 {
702     uint32_t n, ent = 0;
703 
704     n = igb_ivar_entry_tx(queue_idx);
705     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
706 
707     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
708 }
709 
710 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx)
711 {
712     uint32_t n, ent = 0;
713 
714     n = igb_ivar_entry_rx(queue_idx);
715     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
716 
717     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
718 }
719 
720 static inline bool
721 igb_ring_empty(IGBCore *core, const E1000ERingInfo *r)
722 {
723     return core->mac[r->dh] == core->mac[r->dt] ||
724                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
725 }
726 
727 static inline uint64_t
728 igb_ring_base(IGBCore *core, const E1000ERingInfo *r)
729 {
730     uint64_t bah = core->mac[r->dbah];
731     uint64_t bal = core->mac[r->dbal];
732 
733     return (bah << 32) + bal;
734 }
735 
736 static inline uint64_t
737 igb_ring_head_descr(IGBCore *core, const E1000ERingInfo *r)
738 {
739     return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
740 }
741 
742 static inline void
743 igb_ring_advance(IGBCore *core, const E1000ERingInfo *r, uint32_t count)
744 {
745     core->mac[r->dh] += count;
746 
747     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
748         core->mac[r->dh] = 0;
749     }
750 }
751 
752 static inline uint32_t
753 igb_ring_free_descr_num(IGBCore *core, const E1000ERingInfo *r)
754 {
755     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
756                                  core->mac[r->dh],  core->mac[r->dt]);
757 
758     if (core->mac[r->dh] <= core->mac[r->dt]) {
759         return core->mac[r->dt] - core->mac[r->dh];
760     }
761 
762     if (core->mac[r->dh] > core->mac[r->dt]) {
763         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
764                core->mac[r->dt] - core->mac[r->dh];
765     }
766 
767     g_assert_not_reached();
768     return 0;
769 }
770 
771 static inline bool
772 igb_ring_enabled(IGBCore *core, const E1000ERingInfo *r)
773 {
774     return core->mac[r->dlen] > 0;
775 }
776 
777 typedef struct IGB_TxRing_st {
778     const E1000ERingInfo *i;
779     struct igb_tx *tx;
780 } IGB_TxRing;
781 
782 static inline int
783 igb_mq_queue_idx(int base_reg_idx, int reg_idx)
784 {
785     return (reg_idx - base_reg_idx) / 16;
786 }
787 
788 static inline void
789 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx)
790 {
791     static const E1000ERingInfo i[IGB_NUM_QUEUES] = {
792         { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 },
793         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 },
794         { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 },
795         { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 },
796         { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 },
797         { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 },
798         { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 },
799         { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 },
800         { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 },
801         { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 },
802         { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 },
803         { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 },
804         { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 },
805         { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 },
806         { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 },
807         { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 }
808     };
809 
810     assert(idx < ARRAY_SIZE(i));
811 
812     txr->i     = &i[idx];
813     txr->tx    = &core->tx[idx];
814 }
815 
816 typedef struct E1000E_RxRing_st {
817     const E1000ERingInfo *i;
818 } E1000E_RxRing;
819 
820 static inline void
821 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx)
822 {
823     static const E1000ERingInfo i[IGB_NUM_QUEUES] = {
824         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
825         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 },
826         { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 },
827         { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 },
828         { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 },
829         { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 },
830         { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 },
831         { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 },
832         { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 },
833         { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 },
834         { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 },
835         { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 },
836         { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 },
837         { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 },
838         { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 },
839         { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 }
840     };
841 
842     assert(idx < ARRAY_SIZE(i));
843 
844     rxr->i      = &i[idx];
845 }
846 
847 static uint32_t
848 igb_txdesc_writeback(IGBCore *core, dma_addr_t base,
849                      union e1000_adv_tx_desc *tx_desc,
850                      const E1000ERingInfo *txi)
851 {
852     PCIDevice *d;
853     uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
854     uint64_t tdwba;
855 
856     tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2];
857     tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32;
858 
859     if (!(cmd_type_len & E1000_TXD_CMD_RS)) {
860         return 0;
861     }
862 
863     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
864     if (!d) {
865         d = core->owner;
866     }
867 
868     if (tdwba & 1) {
869         uint32_t buffer = cpu_to_le32(core->mac[txi->dh]);
870         pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer));
871     } else {
872         uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD;
873 
874         tx_desc->wb.status = cpu_to_le32(status);
875         pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb),
876             &tx_desc->wb, sizeof(tx_desc->wb));
877     }
878 
879     return igb_tx_wb_eic(core, txi->idx);
880 }
881 
882 static inline bool
883 igb_tx_enabled(IGBCore *core, const E1000ERingInfo *txi)
884 {
885     bool vmdq = core->mac[MRQC] & 1;
886     uint16_t qn = txi->idx;
887     uint16_t pool = qn % IGB_NUM_VM_POOLS;
888 
889     return (core->mac[TCTL] & E1000_TCTL_EN) &&
890         (!vmdq || core->mac[VFTE] & BIT(pool)) &&
891         (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE);
892 }
893 
894 static void
895 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr)
896 {
897     PCIDevice *d;
898     dma_addr_t base;
899     union e1000_adv_tx_desc desc;
900     const E1000ERingInfo *txi = txr->i;
901     uint32_t eic = 0;
902 
903     if (!igb_tx_enabled(core, txi)) {
904         trace_e1000e_tx_disabled();
905         return;
906     }
907 
908     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
909     if (!d) {
910         d = core->owner;
911     }
912 
913     while (!igb_ring_empty(core, txi)) {
914         base = igb_ring_head_descr(core, txi);
915 
916         pci_dma_read(d, base, &desc, sizeof(desc));
917 
918         trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr,
919                               desc.read.cmd_type_len, desc.wb.status);
920 
921         igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx);
922         igb_ring_advance(core, txi, 1);
923         eic |= igb_txdesc_writeback(core, base, &desc, txi);
924     }
925 
926     if (eic) {
927         igb_raise_interrupts(core, EICR, eic);
928         igb_raise_interrupts(core, ICR, E1000_ICR_TXDW);
929     }
930 
931     net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, d);
932 }
933 
934 static uint32_t
935 igb_rxbufsize(IGBCore *core, const E1000ERingInfo *r)
936 {
937     uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2];
938     uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK;
939     if (bsizepkt) {
940         return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT;
941     }
942 
943     return e1000x_rxbufsize(core->mac[RCTL]);
944 }
945 
946 static bool
947 igb_has_rxbufs(IGBCore *core, const E1000ERingInfo *r, size_t total_size)
948 {
949     uint32_t bufs = igb_ring_free_descr_num(core, r);
950     uint32_t bufsize = igb_rxbufsize(core, r);
951 
952     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize);
953 
954     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
955                          bufsize;
956 }
957 
958 static uint32_t
959 igb_rxhdrbufsize(IGBCore *core, const E1000ERingInfo *r)
960 {
961     uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2];
962     return (srrctl & E1000_SRRCTL_BSIZEHDRSIZE_MASK) >>
963            E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
964 }
965 
966 void
967 igb_start_recv(IGBCore *core)
968 {
969     int i;
970 
971     trace_e1000e_rx_start_recv();
972 
973     for (i = 0; i <= core->max_queue_num; i++) {
974         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
975     }
976 }
977 
978 bool
979 igb_can_receive(IGBCore *core)
980 {
981     int i;
982 
983     if (!e1000x_rx_ready(core->owner, core->mac)) {
984         return false;
985     }
986 
987     for (i = 0; i < IGB_NUM_QUEUES; i++) {
988         E1000E_RxRing rxr;
989         if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
990             continue;
991         }
992 
993         igb_rx_ring_init(core, &rxr, i);
994         if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) {
995             trace_e1000e_rx_can_recv();
996             return true;
997         }
998     }
999 
1000     trace_e1000e_rx_can_recv_rings_full();
1001     return false;
1002 }
1003 
1004 ssize_t
1005 igb_receive(IGBCore *core, const uint8_t *buf, size_t size)
1006 {
1007     const struct iovec iov = {
1008         .iov_base = (uint8_t *)buf,
1009         .iov_len = size
1010     };
1011 
1012     return igb_receive_iov(core, &iov, 1);
1013 }
1014 
1015 static inline bool
1016 igb_rx_l3_cso_enabled(IGBCore *core)
1017 {
1018     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1019 }
1020 
1021 static inline bool
1022 igb_rx_l4_cso_enabled(IGBCore *core)
1023 {
1024     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1025 }
1026 
1027 static bool igb_rx_is_oversized(IGBCore *core, const struct eth_header *ehdr,
1028                                 size_t size, size_t vlan_num,
1029                                 bool lpe, uint16_t rlpml)
1030 {
1031     size_t vlan_header_size = sizeof(struct vlan_header) * vlan_num;
1032     size_t header_size = sizeof(struct eth_header) + vlan_header_size;
1033     return lpe ? size + ETH_FCS_LEN > rlpml : size > header_size + ETH_MTU;
1034 }
1035 
1036 static uint16_t igb_receive_assign(IGBCore *core, const struct iovec *iov,
1037                                    size_t iovcnt, size_t iov_ofs,
1038                                    const L2Header *l2_header, size_t size,
1039                                    E1000E_RSSInfo *rss_info,
1040                                    uint16_t *etqf, bool *ts, bool *external_tx)
1041 {
1042     static const int ta_shift[] = { 4, 3, 2, 0 };
1043     const struct eth_header *ehdr = &l2_header->eth;
1044     uint32_t f, ra[2], *macp, rctl = core->mac[RCTL];
1045     uint16_t queues = 0;
1046     uint16_t oversized = 0;
1047     size_t vlan_num = 0;
1048     PTP2 ptp2;
1049     bool lpe;
1050     uint16_t rlpml;
1051     int i;
1052 
1053     memset(rss_info, 0, sizeof(E1000E_RSSInfo));
1054     *ts = false;
1055 
1056     if (external_tx) {
1057         *external_tx = true;
1058     }
1059 
1060     if (core->mac[CTRL_EXT] & BIT(26)) {
1061         if (be16_to_cpu(ehdr->h_proto) == core->mac[VET] >> 16 &&
1062             be16_to_cpu(l2_header->vlan[0].h_proto) == (core->mac[VET] & 0xffff)) {
1063             vlan_num = 2;
1064         }
1065     } else {
1066         if (be16_to_cpu(ehdr->h_proto) == (core->mac[VET] & 0xffff)) {
1067             vlan_num = 1;
1068         }
1069     }
1070 
1071     lpe = !!(core->mac[RCTL] & E1000_RCTL_LPE);
1072     rlpml = core->mac[RLPML];
1073     if (!(core->mac[RCTL] & E1000_RCTL_SBP) &&
1074         igb_rx_is_oversized(core, ehdr, size, vlan_num, lpe, rlpml)) {
1075         trace_e1000x_rx_oversized(size);
1076         return queues;
1077     }
1078 
1079     for (*etqf = 0; *etqf < 8; (*etqf)++) {
1080         if ((core->mac[ETQF0 + *etqf] & E1000_ETQF_FILTER_ENABLE) &&
1081             be16_to_cpu(ehdr->h_proto) == (core->mac[ETQF0 + *etqf] & E1000_ETQF_ETYPE_MASK)) {
1082             if ((core->mac[ETQF0 + *etqf] & E1000_ETQF_1588) &&
1083                 (core->mac[TSYNCRXCTL] & E1000_TSYNCRXCTL_ENABLED) &&
1084                 !(core->mac[TSYNCRXCTL] & E1000_TSYNCRXCTL_VALID) &&
1085                 iov_to_buf(iov, iovcnt, iov_ofs + ETH_HLEN, &ptp2, sizeof(ptp2)) >= sizeof(ptp2) &&
1086                 (ptp2.version_ptp & 15) == 2 &&
1087                 ptp2.message_id_transport_specific == ((core->mac[TSYNCRXCFG] >> 8) & 255)) {
1088                 e1000x_timestamp(core->mac, core->timadj, RXSTMPL, RXSTMPH);
1089                 *ts = true;
1090                 core->mac[TSYNCRXCTL] |= E1000_TSYNCRXCTL_VALID;
1091                 core->mac[RXSATRL] = le32_to_cpu(ptp2.source_uuid_lo);
1092                 core->mac[RXSATRH] = le16_to_cpu(ptp2.source_uuid_hi) |
1093                                      (le16_to_cpu(ptp2.sequence_id) << 16);
1094             }
1095             break;
1096         }
1097     }
1098 
1099     if (vlan_num &&
1100         !e1000x_rx_vlan_filter(core->mac, l2_header->vlan + vlan_num - 1)) {
1101         return queues;
1102     }
1103 
1104     if (core->mac[MRQC] & 1) {
1105         if (is_broadcast_ether_addr(ehdr->h_dest)) {
1106             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1107                 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) {
1108                     queues |= BIT(i);
1109                 }
1110             }
1111         } else {
1112             for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) {
1113                 if (!(macp[1] & E1000_RAH_AV)) {
1114                     continue;
1115                 }
1116                 ra[0] = cpu_to_le32(macp[0]);
1117                 ra[1] = cpu_to_le32(macp[1]);
1118                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1119                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
1120                 }
1121             }
1122 
1123             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1124                 if (!(macp[1] & E1000_RAH_AV)) {
1125                     continue;
1126                 }
1127                 ra[0] = cpu_to_le32(macp[0]);
1128                 ra[1] = cpu_to_le32(macp[1]);
1129                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1130                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
1131                 }
1132             }
1133 
1134             if (!queues) {
1135                 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA);
1136 
1137                 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
1138                 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
1139                 if (macp[f >> 5] & (1 << (f & 0x1f))) {
1140                     for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1141                         if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) {
1142                             queues |= BIT(i);
1143                         }
1144                     }
1145                 }
1146             } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) {
1147                 *external_tx = false;
1148             }
1149         }
1150 
1151         if (e1000x_vlan_rx_filter_enabled(core->mac)) {
1152             uint16_t mask = 0;
1153 
1154             if (vlan_num) {
1155                 uint16_t vid = be16_to_cpu(l2_header->vlan[vlan_num - 1].h_tci) & VLAN_VID_MASK;
1156 
1157                 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
1158                     if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid &&
1159                         (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) {
1160                         uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK;
1161                         mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT;
1162                     }
1163                 }
1164             } else {
1165                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1166                     if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) {
1167                         mask |= BIT(i);
1168                     }
1169                 }
1170             }
1171 
1172             queues &= mask;
1173         }
1174 
1175         if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx &&
1176             !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) {
1177             uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK;
1178             queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1179         }
1180 
1181         queues &= core->mac[VFRE];
1182         if (queues) {
1183             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1184                 lpe = !!(core->mac[VMOLR0 + i] & E1000_VMOLR_LPE);
1185                 rlpml = core->mac[VMOLR0 + i] & E1000_VMOLR_RLPML_MASK;
1186                 if ((queues & BIT(i)) &&
1187                     igb_rx_is_oversized(core, ehdr, size, vlan_num,
1188                                         lpe, rlpml)) {
1189                     oversized |= BIT(i);
1190                 }
1191             }
1192             /* 8.19.37 increment ROC if packet is oversized for all queues */
1193             if (oversized == queues) {
1194                 trace_e1000x_rx_oversized(size);
1195                 e1000x_inc_reg_if_not_full(core->mac, ROC);
1196             }
1197             queues &= ~oversized;
1198         }
1199 
1200         if (queues) {
1201             igb_rss_parse_packet(core, core->rx_pkt,
1202                                  external_tx != NULL, rss_info);
1203             /* Sec 8.26.1: PQn = VFn + VQn*8 */
1204             if (rss_info->queue & 1) {
1205                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1206                     if ((queues & BIT(i)) &&
1207                         (core->mac[VMOLR0 + i] & E1000_VMOLR_RSSE)) {
1208                         queues |= BIT(i + IGB_NUM_VM_POOLS);
1209                         queues &= ~BIT(i);
1210                     }
1211                 }
1212             }
1213         }
1214     } else {
1215         bool accepted = e1000x_rx_group_filter(core->mac, ehdr);
1216         if (!accepted) {
1217             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1218                 if (!(macp[1] & E1000_RAH_AV)) {
1219                     continue;
1220                 }
1221                 ra[0] = cpu_to_le32(macp[0]);
1222                 ra[1] = cpu_to_le32(macp[1]);
1223                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1224                     trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2,
1225                                                     MAC_ARG(ehdr->h_dest));
1226 
1227                     accepted = true;
1228                     break;
1229                 }
1230             }
1231         }
1232 
1233         if (accepted) {
1234             igb_rss_parse_packet(core, core->rx_pkt, false, rss_info);
1235             queues = BIT(rss_info->queue);
1236         }
1237     }
1238 
1239     return queues;
1240 }
1241 
1242 static inline void
1243 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1244                        hwaddr *buff_addr)
1245 {
1246     *buff_addr = le64_to_cpu(desc->buffer_addr);
1247 }
1248 
1249 static inline void
1250 igb_read_adv_rx_single_buf_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1251                                  hwaddr *buff_addr)
1252 {
1253     *buff_addr = le64_to_cpu(desc->read.pkt_addr);
1254 }
1255 
1256 static inline void
1257 igb_read_adv_rx_split_buf_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1258                                 hwaddr *buff_addr)
1259 {
1260     buff_addr[0] = le64_to_cpu(desc->read.hdr_addr);
1261     buff_addr[1] = le64_to_cpu(desc->read.pkt_addr);
1262 }
1263 
1264 typedef struct IGBBAState {
1265     uint16_t written[IGB_MAX_PS_BUFFERS];
1266     uint8_t cur_idx;
1267 } IGBBAState;
1268 
1269 typedef struct IGBSplitDescriptorData {
1270     bool sph;
1271     bool hbo;
1272     size_t hdr_len;
1273 } IGBSplitDescriptorData;
1274 
1275 typedef struct IGBPacketRxDMAState {
1276     size_t size;
1277     size_t total_size;
1278     size_t ps_hdr_len;
1279     size_t desc_size;
1280     size_t desc_offset;
1281     uint32_t rx_desc_packet_buf_size;
1282     uint32_t rx_desc_header_buf_size;
1283     struct iovec *iov;
1284     size_t iov_ofs;
1285     bool do_ps;
1286     bool is_first;
1287     IGBBAState bastate;
1288     hwaddr ba[IGB_MAX_PS_BUFFERS];
1289     IGBSplitDescriptorData ps_desc_data;
1290 } IGBPacketRxDMAState;
1291 
1292 static inline void
1293 igb_read_rx_descr(IGBCore *core,
1294                   union e1000_rx_desc_union *desc,
1295                   IGBPacketRxDMAState *pdma_st,
1296                   const E1000ERingInfo *r)
1297 {
1298     uint32_t desc_type;
1299 
1300     if (igb_rx_use_legacy_descriptor(core)) {
1301         igb_read_lgcy_rx_descr(core, &desc->legacy, &pdma_st->ba[1]);
1302         pdma_st->ba[0] = 0;
1303         return;
1304     }
1305 
1306     /* advanced header split descriptor */
1307     if (igb_rx_use_ps_descriptor(core, r)) {
1308         igb_read_adv_rx_split_buf_descr(core, &desc->adv, &pdma_st->ba[0]);
1309         return;
1310     }
1311 
1312     /* descriptor replication modes not supported */
1313     desc_type = igb_rx_queue_desctyp_get(core, r);
1314     if (desc_type != E1000_SRRCTL_DESCTYPE_ADV_ONEBUF) {
1315         trace_igb_wrn_rx_desc_modes_not_supp(desc_type);
1316     }
1317 
1318     /* advanced single buffer descriptor */
1319     igb_read_adv_rx_single_buf_descr(core, &desc->adv, &pdma_st->ba[1]);
1320     pdma_st->ba[0] = 0;
1321 }
1322 
1323 static void
1324 igb_verify_csum_in_sw(IGBCore *core,
1325                       struct NetRxPkt *pkt,
1326                       uint32_t *status_flags,
1327                       EthL4HdrProto l4hdr_proto)
1328 {
1329     bool csum_valid;
1330     uint32_t csum_error;
1331 
1332     if (igb_rx_l3_cso_enabled(core)) {
1333         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1334             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1335         } else {
1336             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1337             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1338         }
1339     } else {
1340         trace_e1000e_rx_metadata_l3_cso_disabled();
1341     }
1342 
1343     if (!igb_rx_l4_cso_enabled(core)) {
1344         trace_e1000e_rx_metadata_l4_cso_disabled();
1345         return;
1346     }
1347 
1348     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1349         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1350         return;
1351     }
1352 
1353     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1354     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1355 
1356     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1357         *status_flags |= E1000_RXD_STAT_UDPCS;
1358     }
1359 }
1360 
1361 static void
1362 igb_build_rx_metadata_common(IGBCore *core,
1363                              struct NetRxPkt *pkt,
1364                              bool is_eop,
1365                              uint32_t *status_flags,
1366                              uint16_t *vlan_tag)
1367 {
1368     struct virtio_net_hdr *vhdr;
1369     bool hasip4, hasip6, csum_valid;
1370     EthL4HdrProto l4hdr_proto;
1371 
1372     *status_flags = E1000_RXD_STAT_DD;
1373 
1374     /* No additional metadata needed for non-EOP descriptors */
1375     if (!is_eop) {
1376         goto func_exit;
1377     }
1378 
1379     *status_flags |= E1000_RXD_STAT_EOP;
1380 
1381     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1382     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1383 
1384     /* VLAN state */
1385     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1386         *status_flags |= E1000_RXD_STAT_VP;
1387         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1388         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1389     }
1390 
1391     /* RX CSO information */
1392     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1393         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1394         goto func_exit;
1395     }
1396 
1397     vhdr = net_rx_pkt_get_vhdr(pkt);
1398 
1399     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1400         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1401         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1402         igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1403         goto func_exit;
1404     }
1405 
1406     if (igb_rx_l3_cso_enabled(core)) {
1407         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1408     } else {
1409         trace_e1000e_rx_metadata_l3_cso_disabled();
1410     }
1411 
1412     if (igb_rx_l4_cso_enabled(core)) {
1413         switch (l4hdr_proto) {
1414         case ETH_L4_HDR_PROTO_SCTP:
1415             if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1416                 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1417                 goto func_exit;
1418             }
1419             if (!csum_valid) {
1420                 *status_flags |= E1000_RXDEXT_STATERR_TCPE;
1421             }
1422             /* fall through */
1423         case ETH_L4_HDR_PROTO_TCP:
1424             *status_flags |= E1000_RXD_STAT_TCPCS;
1425             break;
1426 
1427         case ETH_L4_HDR_PROTO_UDP:
1428             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1429             break;
1430 
1431         default:
1432             break;
1433         }
1434     } else {
1435         trace_e1000e_rx_metadata_l4_cso_disabled();
1436     }
1437 
1438 func_exit:
1439     trace_e1000e_rx_metadata_status_flags(*status_flags);
1440     *status_flags = cpu_to_le32(*status_flags);
1441 }
1442 
1443 static inline void
1444 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1445                         struct NetRxPkt *pkt,
1446                         const E1000E_RSSInfo *rss_info,
1447                         uint16_t length)
1448 {
1449     uint32_t status_flags;
1450 
1451     assert(!rss_info->enabled);
1452 
1453     memset(desc, 0, sizeof(*desc));
1454     desc->length = cpu_to_le16(length);
1455     igb_build_rx_metadata_common(core, pkt, pkt != NULL,
1456                                  &status_flags,
1457                                  &desc->special);
1458 
1459     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1460     desc->status = (uint8_t) le32_to_cpu(status_flags);
1461 }
1462 
1463 static bool
1464 igb_rx_ps_descriptor_split_always(IGBCore *core, const E1000ERingInfo *r)
1465 {
1466     uint32_t desctyp = igb_rx_queue_desctyp_get(core, r);
1467     return desctyp == E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1468 }
1469 
1470 static uint16_t
1471 igb_rx_desc_get_packet_type(IGBCore *core, struct NetRxPkt *pkt, uint16_t etqf)
1472 {
1473     uint16_t pkt_type;
1474     bool hasip4, hasip6;
1475     EthL4HdrProto l4hdr_proto;
1476 
1477     if (etqf < 8) {
1478         pkt_type = BIT(11) | etqf;
1479         return pkt_type;
1480     }
1481 
1482     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1483 
1484     if (hasip6 && !(core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1485         eth_ip6_hdr_info *ip6hdr_info = net_rx_pkt_get_ip6_info(pkt);
1486         pkt_type = ip6hdr_info->has_ext_hdrs ? E1000_ADVRXD_PKT_IP6E :
1487                                                E1000_ADVRXD_PKT_IP6;
1488     } else if (hasip4) {
1489         pkt_type = E1000_ADVRXD_PKT_IP4;
1490     } else {
1491         pkt_type = 0;
1492     }
1493 
1494     switch (l4hdr_proto) {
1495     case ETH_L4_HDR_PROTO_TCP:
1496         pkt_type |= E1000_ADVRXD_PKT_TCP;
1497         break;
1498     case ETH_L4_HDR_PROTO_UDP:
1499         pkt_type |= E1000_ADVRXD_PKT_UDP;
1500         break;
1501     case ETH_L4_HDR_PROTO_SCTP:
1502         pkt_type |= E1000_ADVRXD_PKT_SCTP;
1503         break;
1504     default:
1505         break;
1506     }
1507 
1508     return pkt_type;
1509 }
1510 
1511 static inline void
1512 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1513                        struct NetRxPkt *pkt,
1514                        const E1000E_RSSInfo *rss_info, uint16_t etqf, bool ts,
1515                        uint16_t length)
1516 {
1517     bool hasip4, hasip6;
1518     EthL4HdrProto l4hdr_proto;
1519     uint16_t rss_type = 0, pkt_type;
1520     bool eop = (pkt != NULL);
1521     uint32_t adv_desc_status_error = 0;
1522     memset(&desc->wb, 0, sizeof(desc->wb));
1523 
1524     desc->wb.upper.length = cpu_to_le16(length);
1525     igb_build_rx_metadata_common(core, pkt, eop,
1526                                  &desc->wb.upper.status_error,
1527                                  &desc->wb.upper.vlan);
1528 
1529     if (!eop) {
1530         return;
1531     }
1532 
1533     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1534 
1535     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1536         if (rss_info->enabled) {
1537             desc->wb.lower.hi_dword.rss = cpu_to_le32(rss_info->hash);
1538             rss_type = rss_info->type;
1539             trace_igb_rx_metadata_rss(desc->wb.lower.hi_dword.rss, rss_type);
1540         }
1541     } else if (hasip4) {
1542             adv_desc_status_error |= E1000_RXD_STAT_IPIDV;
1543             desc->wb.lower.hi_dword.csum_ip.ip_id =
1544                 cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1545             trace_e1000e_rx_metadata_ip_id(
1546                 desc->wb.lower.hi_dword.csum_ip.ip_id);
1547     }
1548 
1549     if (ts) {
1550         adv_desc_status_error |= BIT(16);
1551     }
1552 
1553     pkt_type = igb_rx_desc_get_packet_type(core, pkt, etqf);
1554     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1555     desc->wb.lower.lo_dword.pkt_info = cpu_to_le16(rss_type | (pkt_type << 4));
1556     desc->wb.upper.status_error |= cpu_to_le32(adv_desc_status_error);
1557 }
1558 
1559 static inline void
1560 igb_write_adv_ps_rx_descr(IGBCore *core,
1561                           union e1000_adv_rx_desc *desc,
1562                           struct NetRxPkt *pkt,
1563                           const E1000E_RSSInfo *rss_info,
1564                           const E1000ERingInfo *r,
1565                           uint16_t etqf,
1566                           bool ts,
1567                           IGBPacketRxDMAState *pdma_st)
1568 {
1569     size_t pkt_len;
1570     uint16_t hdr_info = 0;
1571 
1572     if (pdma_st->do_ps) {
1573         pkt_len = pdma_st->bastate.written[1];
1574     } else {
1575         pkt_len = pdma_st->bastate.written[0] + pdma_st->bastate.written[1];
1576     }
1577 
1578     igb_write_adv_rx_descr(core, desc, pkt, rss_info, etqf, ts, pkt_len);
1579 
1580     hdr_info = (pdma_st->ps_desc_data.hdr_len << E1000_ADVRXD_HDR_LEN_OFFSET) &
1581                E1000_ADVRXD_ADV_HDR_LEN_MASK;
1582     hdr_info |= pdma_st->ps_desc_data.sph ? E1000_ADVRXD_HDR_SPH : 0;
1583     desc->wb.lower.lo_dword.hdr_info = cpu_to_le16(hdr_info);
1584 
1585     desc->wb.upper.status_error |= cpu_to_le32(
1586         pdma_st->ps_desc_data.hbo ? E1000_ADVRXD_ST_ERR_HBO_OFFSET : 0);
1587 }
1588 
1589 static inline void
1590 igb_write_rx_descr(IGBCore *core,
1591                    union e1000_rx_desc_union *desc,
1592                    struct NetRxPkt *pkt,
1593                    const E1000E_RSSInfo *rss_info,
1594                    uint16_t etqf,
1595                    bool ts,
1596                    IGBPacketRxDMAState *pdma_st,
1597                    const E1000ERingInfo *r)
1598 {
1599     if (igb_rx_use_legacy_descriptor(core)) {
1600         igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1601                                 pdma_st->bastate.written[1]);
1602     } else if (igb_rx_use_ps_descriptor(core, r)) {
1603         igb_write_adv_ps_rx_descr(core, &desc->adv, pkt, rss_info, r, etqf, ts,
1604                                   pdma_st);
1605     } else {
1606         igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info,
1607                                etqf, ts, pdma_st->bastate.written[1]);
1608     }
1609 }
1610 
1611 static inline void
1612 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr,
1613                           union e1000_rx_desc_union *desc, dma_addr_t len)
1614 {
1615     if (igb_rx_use_legacy_descriptor(core)) {
1616         struct e1000_rx_desc *d = &desc->legacy;
1617         size_t offset = offsetof(struct e1000_rx_desc, status);
1618         uint8_t status = d->status;
1619 
1620         d->status &= ~E1000_RXD_STAT_DD;
1621         pci_dma_write(dev, addr, desc, len);
1622 
1623         if (status & E1000_RXD_STAT_DD) {
1624             d->status = status;
1625             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1626         }
1627     } else {
1628         union e1000_adv_rx_desc *d = &desc->adv;
1629         size_t offset =
1630             offsetof(union e1000_adv_rx_desc, wb.upper.status_error);
1631         uint32_t status = d->wb.upper.status_error;
1632 
1633         d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1634         pci_dma_write(dev, addr, desc, len);
1635 
1636         if (status & E1000_RXD_STAT_DD) {
1637             d->wb.upper.status_error = status;
1638             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1639         }
1640     }
1641 }
1642 
1643 static void
1644 igb_update_rx_stats(IGBCore *core, const E1000ERingInfo *rxi,
1645                     size_t pkt_size, size_t pkt_fcs_size)
1646 {
1647     eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1648     e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1649 
1650     if (core->mac[MRQC] & 1) {
1651         uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS;
1652 
1653         core->mac[PVFGORC0 + (pool * 64)] += pkt_size + 4;
1654         core->mac[PVFGPRC0 + (pool * 64)]++;
1655         if (pkt_type == ETH_PKT_MCAST) {
1656             core->mac[PVFMPRC0 + (pool * 64)]++;
1657         }
1658     }
1659 }
1660 
1661 static inline bool
1662 igb_rx_descr_threshold_hit(IGBCore *core, const E1000ERingInfo *rxi)
1663 {
1664     return igb_ring_free_descr_num(core, rxi) ==
1665            ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16;
1666 }
1667 
1668 static bool
1669 igb_do_ps(IGBCore *core,
1670           const E1000ERingInfo *r,
1671           struct NetRxPkt *pkt,
1672           IGBPacketRxDMAState *pdma_st)
1673 {
1674     bool hasip4, hasip6;
1675     EthL4HdrProto l4hdr_proto;
1676     bool fragment;
1677     bool split_always;
1678     size_t bheader_size;
1679     size_t total_pkt_len;
1680 
1681     if (!igb_rx_use_ps_descriptor(core, r)) {
1682         return false;
1683     }
1684 
1685     total_pkt_len = net_rx_pkt_get_total_len(pkt);
1686     bheader_size = igb_rxhdrbufsize(core, r);
1687     split_always = igb_rx_ps_descriptor_split_always(core, r);
1688     if (split_always && total_pkt_len <= bheader_size) {
1689         pdma_st->ps_hdr_len = total_pkt_len;
1690         pdma_st->ps_desc_data.hdr_len = total_pkt_len;
1691         return true;
1692     }
1693 
1694     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1695 
1696     if (hasip4) {
1697         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1698     } else if (hasip6) {
1699         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1700     } else {
1701         pdma_st->ps_desc_data.hdr_len = bheader_size;
1702         goto header_not_handled;
1703     }
1704 
1705     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1706         pdma_st->ps_desc_data.hdr_len = bheader_size;
1707         goto header_not_handled;
1708     }
1709 
1710     /* no header splitting for SCTP */
1711     if (!fragment && (l4hdr_proto == ETH_L4_HDR_PROTO_UDP ||
1712                       l4hdr_proto == ETH_L4_HDR_PROTO_TCP)) {
1713         pdma_st->ps_hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1714     } else {
1715         pdma_st->ps_hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1716     }
1717 
1718     pdma_st->ps_desc_data.sph = true;
1719     pdma_st->ps_desc_data.hdr_len = pdma_st->ps_hdr_len;
1720 
1721     if (pdma_st->ps_hdr_len > bheader_size) {
1722         pdma_st->ps_desc_data.hbo = true;
1723         goto header_not_handled;
1724     }
1725 
1726     return true;
1727 
1728 header_not_handled:
1729     if (split_always) {
1730         pdma_st->ps_hdr_len = bheader_size;
1731         return true;
1732     }
1733 
1734     return false;
1735 }
1736 
1737 static void
1738 igb_truncate_to_descriptor_size(IGBPacketRxDMAState *pdma_st, size_t *size)
1739 {
1740     if (pdma_st->do_ps && pdma_st->is_first) {
1741         if (*size > pdma_st->rx_desc_packet_buf_size + pdma_st->ps_hdr_len) {
1742             *size = pdma_st->rx_desc_packet_buf_size + pdma_st->ps_hdr_len;
1743         }
1744     } else {
1745         if (*size > pdma_st->rx_desc_packet_buf_size) {
1746             *size = pdma_st->rx_desc_packet_buf_size;
1747         }
1748     }
1749 }
1750 
1751 static inline void
1752 igb_write_hdr_frag_to_rx_buffers(IGBCore *core,
1753                                  PCIDevice *d,
1754                                  IGBPacketRxDMAState *pdma_st,
1755                                  const char *data,
1756                                  dma_addr_t data_len)
1757 {
1758     assert(data_len <= pdma_st->rx_desc_header_buf_size -
1759                        pdma_st->bastate.written[0]);
1760     pci_dma_write(d,
1761                   pdma_st->ba[0] + pdma_st->bastate.written[0],
1762                   data, data_len);
1763     pdma_st->bastate.written[0] += data_len;
1764     pdma_st->bastate.cur_idx = 1;
1765 }
1766 
1767 static void
1768 igb_write_header_to_rx_buffers(IGBCore *core,
1769                                struct NetRxPkt *pkt,
1770                                PCIDevice *d,
1771                                IGBPacketRxDMAState *pdma_st,
1772                                size_t *copy_size)
1773 {
1774     size_t iov_copy;
1775     size_t ps_hdr_copied = 0;
1776 
1777     if (!pdma_st->is_first) {
1778         /* Leave buffer 0 of each descriptor except first */
1779         /* empty                                          */
1780         pdma_st->bastate.cur_idx = 1;
1781         return;
1782     }
1783 
1784     do {
1785         iov_copy = MIN(pdma_st->ps_hdr_len - ps_hdr_copied,
1786                        pdma_st->iov->iov_len - pdma_st->iov_ofs);
1787 
1788         igb_write_hdr_frag_to_rx_buffers(core, d, pdma_st,
1789                                          pdma_st->iov->iov_base,
1790                                          iov_copy);
1791 
1792         *copy_size -= iov_copy;
1793         ps_hdr_copied += iov_copy;
1794 
1795         pdma_st->iov_ofs += iov_copy;
1796         if (pdma_st->iov_ofs == pdma_st->iov->iov_len) {
1797             pdma_st->iov++;
1798             pdma_st->iov_ofs = 0;
1799         }
1800     } while (ps_hdr_copied < pdma_st->ps_hdr_len);
1801 
1802     pdma_st->is_first = false;
1803 }
1804 
1805 static void
1806 igb_write_payload_frag_to_rx_buffers(IGBCore *core,
1807                                      PCIDevice *d,
1808                                      IGBPacketRxDMAState *pdma_st,
1809                                      const char *data,
1810                                      dma_addr_t data_len)
1811 {
1812     while (data_len > 0) {
1813         assert(pdma_st->bastate.cur_idx < IGB_MAX_PS_BUFFERS);
1814 
1815         uint32_t cur_buf_bytes_left =
1816             pdma_st->rx_desc_packet_buf_size -
1817             pdma_st->bastate.written[pdma_st->bastate.cur_idx];
1818         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1819 
1820         trace_igb_rx_desc_buff_write(
1821             pdma_st->bastate.cur_idx,
1822             pdma_st->ba[pdma_st->bastate.cur_idx],
1823             pdma_st->bastate.written[pdma_st->bastate.cur_idx],
1824             data,
1825             bytes_to_write);
1826 
1827         pci_dma_write(d,
1828                       pdma_st->ba[pdma_st->bastate.cur_idx] +
1829                       pdma_st->bastate.written[pdma_st->bastate.cur_idx],
1830                       data, bytes_to_write);
1831 
1832         pdma_st->bastate.written[pdma_st->bastate.cur_idx] += bytes_to_write;
1833         data += bytes_to_write;
1834         data_len -= bytes_to_write;
1835 
1836         if (pdma_st->bastate.written[pdma_st->bastate.cur_idx] ==
1837             pdma_st->rx_desc_packet_buf_size) {
1838             pdma_st->bastate.cur_idx++;
1839         }
1840     }
1841 }
1842 
1843 static void
1844 igb_write_payload_to_rx_buffers(IGBCore *core,
1845                                 struct NetRxPkt *pkt,
1846                                 PCIDevice *d,
1847                                 IGBPacketRxDMAState *pdma_st,
1848                                 size_t *copy_size)
1849 {
1850     static const uint32_t fcs_pad;
1851     size_t iov_copy;
1852 
1853     /* Copy packet payload */
1854     while (*copy_size) {
1855         iov_copy = MIN(*copy_size, pdma_st->iov->iov_len - pdma_st->iov_ofs);
1856         igb_write_payload_frag_to_rx_buffers(core, d,
1857                                              pdma_st,
1858                                              pdma_st->iov->iov_base +
1859                                              pdma_st->iov_ofs,
1860                                              iov_copy);
1861 
1862         *copy_size -= iov_copy;
1863         pdma_st->iov_ofs += iov_copy;
1864         if (pdma_st->iov_ofs == pdma_st->iov->iov_len) {
1865             pdma_st->iov++;
1866             pdma_st->iov_ofs = 0;
1867         }
1868     }
1869 
1870     if (pdma_st->desc_offset + pdma_st->desc_size >= pdma_st->total_size) {
1871         /* Simulate FCS checksum presence in the last descriptor */
1872         igb_write_payload_frag_to_rx_buffers(core, d,
1873                                              pdma_st,
1874                                              (const char *) &fcs_pad,
1875                                              e1000x_fcs_len(core->mac));
1876     }
1877 }
1878 
1879 static void
1880 igb_write_to_rx_buffers(IGBCore *core,
1881                         struct NetRxPkt *pkt,
1882                         PCIDevice *d,
1883                         IGBPacketRxDMAState *pdma_st)
1884 {
1885     size_t copy_size;
1886 
1887     if (!(pdma_st->ba)[1] || (pdma_st->do_ps && !(pdma_st->ba[0]))) {
1888         /* as per intel docs; skip descriptors with null buf addr */
1889         trace_e1000e_rx_null_descriptor();
1890         return;
1891     }
1892 
1893     if (pdma_st->desc_offset >= pdma_st->size) {
1894         return;
1895     }
1896 
1897     pdma_st->desc_size = pdma_st->total_size - pdma_st->desc_offset;
1898     igb_truncate_to_descriptor_size(pdma_st, &pdma_st->desc_size);
1899     copy_size = pdma_st->size - pdma_st->desc_offset;
1900     igb_truncate_to_descriptor_size(pdma_st, &copy_size);
1901 
1902     /* For PS mode copy the packet header first */
1903     if (pdma_st->do_ps) {
1904         igb_write_header_to_rx_buffers(core, pkt, d, pdma_st, &copy_size);
1905     } else {
1906         pdma_st->bastate.cur_idx = 1;
1907     }
1908 
1909     igb_write_payload_to_rx_buffers(core, pkt, d, pdma_st, &copy_size);
1910 }
1911 
1912 static void
1913 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt,
1914                           const E1000E_RxRing *rxr,
1915                           const E1000E_RSSInfo *rss_info,
1916                           uint16_t etqf, bool ts)
1917 {
1918     PCIDevice *d;
1919     dma_addr_t base;
1920     union e1000_rx_desc_union desc;
1921     const E1000ERingInfo *rxi;
1922     size_t rx_desc_len;
1923 
1924     IGBPacketRxDMAState pdma_st = {0};
1925     pdma_st.is_first = true;
1926     pdma_st.size = net_rx_pkt_get_total_len(pkt);
1927     pdma_st.total_size = pdma_st.size + e1000x_fcs_len(core->mac);
1928 
1929     rxi = rxr->i;
1930     rx_desc_len = core->rx_desc_len;
1931     pdma_st.rx_desc_packet_buf_size = igb_rxbufsize(core, rxi);
1932     pdma_st.rx_desc_header_buf_size = igb_rxhdrbufsize(core, rxi);
1933     pdma_st.iov = net_rx_pkt_get_iovec(pkt);
1934     d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8);
1935     if (!d) {
1936         d = core->owner;
1937     }
1938 
1939     pdma_st.do_ps = igb_do_ps(core, rxi, pkt, &pdma_st);
1940 
1941     do {
1942         memset(&pdma_st.bastate, 0, sizeof(IGBBAState));
1943         bool is_last = false;
1944 
1945         if (igb_ring_empty(core, rxi)) {
1946             return;
1947         }
1948 
1949         base = igb_ring_head_descr(core, rxi);
1950         pci_dma_read(d, base, &desc, rx_desc_len);
1951         trace_e1000e_rx_descr(rxi->idx, base, rx_desc_len);
1952 
1953         igb_read_rx_descr(core, &desc, &pdma_st, rxi);
1954 
1955         igb_write_to_rx_buffers(core, pkt, d, &pdma_st);
1956         pdma_st.desc_offset += pdma_st.desc_size;
1957         if (pdma_st.desc_offset >= pdma_st.total_size) {
1958             is_last = true;
1959         }
1960 
1961         igb_write_rx_descr(core, &desc,
1962                            is_last ? pkt : NULL,
1963                            rss_info,
1964                            etqf, ts,
1965                            &pdma_st,
1966                            rxi);
1967         igb_pci_dma_write_rx_desc(core, d, base, &desc, rx_desc_len);
1968         igb_ring_advance(core, rxi, rx_desc_len / E1000_MIN_RX_DESC_LEN);
1969     } while (pdma_st.desc_offset < pdma_st.total_size);
1970 
1971     igb_update_rx_stats(core, rxi, pdma_st.size, pdma_st.total_size);
1972 }
1973 
1974 static bool
1975 igb_rx_strip_vlan(IGBCore *core, const E1000ERingInfo *rxi)
1976 {
1977     if (core->mac[MRQC] & 1) {
1978         uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS;
1979         /* Sec 7.10.3.8: CTRL.VME is ignored, only VMOLR/RPLOLR is used */
1980         return (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) ?
1981                 core->mac[RPLOLR] & E1000_RPLOLR_STRVLAN :
1982                 core->mac[VMOLR0 + pool] & E1000_VMOLR_STRVLAN;
1983     }
1984 
1985     return e1000x_vlan_enabled(core->mac);
1986 }
1987 
1988 static inline void
1989 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt)
1990 {
1991     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1992 
1993     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1994         net_rx_pkt_fix_l4_csum(pkt);
1995     }
1996 }
1997 
1998 ssize_t
1999 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt)
2000 {
2001     return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL);
2002 }
2003 
2004 static ssize_t
2005 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
2006                      bool has_vnet, bool *external_tx)
2007 {
2008     uint16_t queues = 0;
2009     uint32_t causes = 0;
2010     uint32_t ecauses = 0;
2011     union {
2012         L2Header l2_header;
2013         uint8_t octets[ETH_ZLEN];
2014     } buf;
2015     struct iovec min_iov;
2016     size_t size, orig_size;
2017     size_t iov_ofs = 0;
2018     E1000E_RxRing rxr;
2019     E1000E_RSSInfo rss_info;
2020     uint16_t etqf;
2021     bool ts;
2022     size_t total_size;
2023     int strip_vlan_index;
2024     int i;
2025 
2026     trace_e1000e_rx_receive_iov(iovcnt);
2027 
2028     if (external_tx) {
2029         *external_tx = true;
2030     }
2031 
2032     if (!e1000x_hw_rx_enabled(core->mac)) {
2033         return -1;
2034     }
2035 
2036     /* Pull virtio header in */
2037     if (has_vnet) {
2038         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
2039         iov_ofs = sizeof(struct virtio_net_hdr);
2040     } else {
2041         net_rx_pkt_unset_vhdr(core->rx_pkt);
2042     }
2043 
2044     orig_size = iov_size(iov, iovcnt);
2045     size = orig_size - iov_ofs;
2046 
2047     /* Pad to minimum Ethernet frame length */
2048     if (size < sizeof(buf)) {
2049         iov_to_buf(iov, iovcnt, iov_ofs, &buf, size);
2050         memset(&buf.octets[size], 0, sizeof(buf) - size);
2051         e1000x_inc_reg_if_not_full(core->mac, RUC);
2052         min_iov.iov_base = &buf;
2053         min_iov.iov_len = size = sizeof(buf);
2054         iovcnt = 1;
2055         iov = &min_iov;
2056         iov_ofs = 0;
2057     } else {
2058         iov_to_buf(iov, iovcnt, iov_ofs, &buf, sizeof(buf.l2_header));
2059     }
2060 
2061     net_rx_pkt_set_packet_type(core->rx_pkt,
2062                                get_eth_packet_type(&buf.l2_header.eth));
2063     net_rx_pkt_set_protocols(core->rx_pkt, iov, iovcnt, iov_ofs);
2064 
2065     queues = igb_receive_assign(core, iov, iovcnt, iov_ofs,
2066                                 &buf.l2_header, size,
2067                                 &rss_info, &etqf, &ts, external_tx);
2068     if (!queues) {
2069         trace_e1000e_rx_flt_dropped();
2070         return orig_size;
2071     }
2072 
2073     for (i = 0; i < IGB_NUM_QUEUES; i++) {
2074         if (!(queues & BIT(i)) ||
2075             !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
2076             continue;
2077         }
2078 
2079         igb_rx_ring_init(core, &rxr, i);
2080 
2081         if (!igb_rx_strip_vlan(core, rxr.i)) {
2082             strip_vlan_index = -1;
2083         } else if (core->mac[CTRL_EXT] & BIT(26)) {
2084             strip_vlan_index = 1;
2085         } else {
2086             strip_vlan_index = 0;
2087         }
2088 
2089         net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
2090                                    strip_vlan_index,
2091                                    core->mac[VET] & 0xffff,
2092                                    core->mac[VET] >> 16);
2093 
2094         total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
2095             e1000x_fcs_len(core->mac);
2096 
2097         if (!igb_has_rxbufs(core, rxr.i, total_size)) {
2098             causes |= E1000_ICS_RXO;
2099             trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
2100             continue;
2101         }
2102 
2103         causes |= E1000_ICR_RXDW;
2104 
2105         igb_rx_fix_l4_csum(core, core->rx_pkt);
2106         igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info, etqf, ts);
2107 
2108         /* Check if receive descriptor minimum threshold hit */
2109         if (igb_rx_descr_threshold_hit(core, rxr.i)) {
2110             causes |= E1000_ICS_RXDMT0;
2111         }
2112 
2113         ecauses |= igb_rx_wb_eic(core, rxr.i->idx);
2114 
2115         trace_e1000e_rx_written_to_guest(rxr.i->idx);
2116     }
2117 
2118     trace_e1000e_rx_interrupt_set(causes);
2119     igb_raise_interrupts(core, EICR, ecauses);
2120     igb_raise_interrupts(core, ICR, causes);
2121 
2122     return orig_size;
2123 }
2124 
2125 static inline bool
2126 igb_have_autoneg(IGBCore *core)
2127 {
2128     return core->phy[MII_BMCR] & MII_BMCR_AUTOEN;
2129 }
2130 
2131 static void igb_update_flowctl_status(IGBCore *core)
2132 {
2133     if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) {
2134         trace_e1000e_link_autoneg_flowctl(true);
2135         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
2136     } else {
2137         trace_e1000e_link_autoneg_flowctl(false);
2138     }
2139 }
2140 
2141 static inline void
2142 igb_link_down(IGBCore *core)
2143 {
2144     e1000x_update_regs_on_link_down(core->mac, core->phy);
2145     igb_update_flowctl_status(core);
2146 }
2147 
2148 static inline void
2149 igb_set_phy_ctrl(IGBCore *core, uint16_t val)
2150 {
2151     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
2152     core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART);
2153 
2154     if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) {
2155         e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer);
2156     }
2157 }
2158 
2159 void igb_core_set_link_status(IGBCore *core)
2160 {
2161     NetClientState *nc = qemu_get_queue(core->owner_nic);
2162     uint32_t old_status = core->mac[STATUS];
2163 
2164     trace_e1000e_link_status_changed(nc->link_down ? false : true);
2165 
2166     if (nc->link_down) {
2167         e1000x_update_regs_on_link_down(core->mac, core->phy);
2168     } else {
2169         if (igb_have_autoneg(core) &&
2170             !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
2171             e1000x_restart_autoneg(core->mac, core->phy,
2172                                    core->autoneg_timer);
2173         } else {
2174             e1000x_update_regs_on_link_up(core->mac, core->phy);
2175             igb_start_recv(core);
2176         }
2177     }
2178 
2179     if (core->mac[STATUS] != old_status) {
2180         igb_raise_interrupts(core, ICR, E1000_ICR_LSC);
2181     }
2182 }
2183 
2184 static void
2185 igb_set_ctrl(IGBCore *core, int index, uint32_t val)
2186 {
2187     trace_e1000e_core_ctrl_write(index, val);
2188 
2189     /* RST is self clearing */
2190     core->mac[CTRL] = val & ~E1000_CTRL_RST;
2191     core->mac[CTRL_DUP] = core->mac[CTRL];
2192 
2193     trace_e1000e_link_set_params(
2194         !!(val & E1000_CTRL_ASDE),
2195         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2196         !!(val & E1000_CTRL_FRCSPD),
2197         !!(val & E1000_CTRL_FRCDPX),
2198         !!(val & E1000_CTRL_RFCE),
2199         !!(val & E1000_CTRL_TFCE));
2200 
2201     if (val & E1000_CTRL_RST) {
2202         trace_e1000e_core_ctrl_sw_reset();
2203         igb_reset(core, true);
2204     }
2205 
2206     if (val & E1000_CTRL_PHY_RST) {
2207         trace_e1000e_core_ctrl_phy_reset();
2208         core->mac[STATUS] |= E1000_STATUS_PHYRA;
2209     }
2210 }
2211 
2212 static void
2213 igb_set_rfctl(IGBCore *core, int index, uint32_t val)
2214 {
2215     trace_e1000e_rx_set_rfctl(val);
2216 
2217     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
2218         trace_e1000e_wrn_iscsi_filtering_not_supported();
2219     }
2220 
2221     if (!(val & E1000_RFCTL_NFSW_DIS)) {
2222         trace_e1000e_wrn_nfsw_filtering_not_supported();
2223     }
2224 
2225     if (!(val & E1000_RFCTL_NFSR_DIS)) {
2226         trace_e1000e_wrn_nfsr_filtering_not_supported();
2227     }
2228 
2229     core->mac[RFCTL] = val;
2230 }
2231 
2232 static void
2233 igb_calc_rxdesclen(IGBCore *core)
2234 {
2235     if (igb_rx_use_legacy_descriptor(core)) {
2236         core->rx_desc_len = sizeof(struct e1000_rx_desc);
2237     } else {
2238         core->rx_desc_len = sizeof(union e1000_adv_rx_desc);
2239     }
2240     trace_e1000e_rx_desc_len(core->rx_desc_len);
2241 }
2242 
2243 static void
2244 igb_set_rx_control(IGBCore *core, int index, uint32_t val)
2245 {
2246     core->mac[RCTL] = val;
2247     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
2248 
2249     if (val & E1000_RCTL_DTYP_MASK) {
2250         qemu_log_mask(LOG_GUEST_ERROR,
2251                       "igb: RCTL.DTYP must be zero for compatibility");
2252     }
2253 
2254     if (val & E1000_RCTL_EN) {
2255         igb_calc_rxdesclen(core);
2256         igb_start_recv(core);
2257     }
2258 }
2259 
2260 static inline bool
2261 igb_postpone_interrupt(IGBIntrDelayTimer *timer)
2262 {
2263     if (timer->running) {
2264         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
2265 
2266         return true;
2267     }
2268 
2269     if (timer->core->mac[timer->delay_reg] != 0) {
2270         igb_intrmgr_rearm_timer(timer);
2271     }
2272 
2273     return false;
2274 }
2275 
2276 static inline bool
2277 igb_eitr_should_postpone(IGBCore *core, int idx)
2278 {
2279     return igb_postpone_interrupt(&core->eitr[idx]);
2280 }
2281 
2282 static void igb_send_msix(IGBCore *core, uint32_t causes)
2283 {
2284     int vector;
2285 
2286     for (vector = 0; vector < IGB_INTR_NUM; ++vector) {
2287         if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) {
2288 
2289             trace_e1000e_irq_msix_notify_vec(vector);
2290             igb_msix_notify(core, vector);
2291         }
2292     }
2293 }
2294 
2295 static inline void
2296 igb_fix_icr_asserted(IGBCore *core)
2297 {
2298     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2299     if (core->mac[ICR]) {
2300         core->mac[ICR] |= E1000_ICR_ASSERTED;
2301     }
2302 
2303     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2304 }
2305 
2306 static void igb_raise_interrupts(IGBCore *core, size_t index, uint32_t causes)
2307 {
2308     uint32_t old_causes = core->mac[ICR] & core->mac[IMS];
2309     uint32_t old_ecauses = core->mac[EICR] & core->mac[EIMS];
2310     uint32_t raised_causes;
2311     uint32_t raised_ecauses;
2312     uint32_t int_alloc;
2313 
2314     trace_e1000e_irq_set(index << 2,
2315                          core->mac[index], core->mac[index] | causes);
2316 
2317     core->mac[index] |= causes;
2318 
2319     if (core->mac[GPIE] & E1000_GPIE_MSIX_MODE) {
2320         raised_causes = core->mac[ICR] & core->mac[IMS] & ~old_causes;
2321 
2322         if (raised_causes & E1000_ICR_DRSTA) {
2323             int_alloc = core->mac[IVAR_MISC] & 0xff;
2324             if (int_alloc & E1000_IVAR_VALID) {
2325                 core->mac[EICR] |= BIT(int_alloc & 0x1f);
2326             }
2327         }
2328         /* Check if other bits (excluding the TCP Timer) are enabled. */
2329         if (raised_causes & ~E1000_ICR_DRSTA) {
2330             int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff;
2331             if (int_alloc & E1000_IVAR_VALID) {
2332                 core->mac[EICR] |= BIT(int_alloc & 0x1f);
2333             }
2334         }
2335 
2336         raised_ecauses = core->mac[EICR] & core->mac[EIMS] & ~old_ecauses;
2337         if (!raised_ecauses) {
2338             return;
2339         }
2340 
2341         igb_send_msix(core, raised_ecauses);
2342     } else {
2343         igb_fix_icr_asserted(core);
2344 
2345         raised_causes = core->mac[ICR] & core->mac[IMS] & ~old_causes;
2346         if (!raised_causes) {
2347             return;
2348         }
2349 
2350         core->mac[EICR] |= (raised_causes & E1000_ICR_DRSTA) | E1000_EICR_OTHER;
2351 
2352         if (msix_enabled(core->owner)) {
2353             trace_e1000e_irq_msix_notify_vec(0);
2354             msix_notify(core->owner, 0);
2355         } else if (msi_enabled(core->owner)) {
2356             trace_e1000e_irq_msi_notify(raised_causes);
2357             msi_notify(core->owner, 0);
2358         } else {
2359             igb_raise_legacy_irq(core);
2360         }
2361     }
2362 }
2363 
2364 static void igb_lower_interrupts(IGBCore *core, size_t index, uint32_t causes)
2365 {
2366     trace_e1000e_irq_clear(index << 2,
2367                            core->mac[index], core->mac[index] & ~causes);
2368 
2369     core->mac[index] &= ~causes;
2370 
2371     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2372                                         core->mac[ICR], core->mac[IMS]);
2373 
2374     if (!(core->mac[ICR] & core->mac[IMS]) &&
2375         !(core->mac[GPIE] & E1000_GPIE_MSIX_MODE)) {
2376         core->mac[EICR] &= ~E1000_EICR_OTHER;
2377 
2378         if (!msix_enabled(core->owner) && !msi_enabled(core->owner)) {
2379             igb_lower_legacy_irq(core);
2380         }
2381     }
2382 }
2383 
2384 static void igb_set_eics(IGBCore *core, int index, uint32_t val)
2385 {
2386     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2387     uint32_t mask = msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK;
2388 
2389     trace_igb_irq_write_eics(val, msix);
2390     igb_raise_interrupts(core, EICR, val & mask);
2391 }
2392 
2393 static void igb_set_eims(IGBCore *core, int index, uint32_t val)
2394 {
2395     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2396     uint32_t mask = msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK;
2397 
2398     trace_igb_irq_write_eims(val, msix);
2399     igb_raise_interrupts(core, EIMS, val & mask);
2400 }
2401 
2402 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn)
2403 {
2404     uint32_t ent = core->mac[VTIVAR_MISC + vfn];
2405     uint32_t causes;
2406 
2407     if ((ent & E1000_IVAR_VALID)) {
2408         causes = (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM);
2409         igb_raise_interrupts(core, EICR, causes);
2410     }
2411 }
2412 
2413 static void mailbox_interrupt_to_pf(IGBCore *core)
2414 {
2415     igb_raise_interrupts(core, ICR, E1000_ICR_VMMB);
2416 }
2417 
2418 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val)
2419 {
2420     uint16_t vfn = index - P2VMAILBOX0;
2421 
2422     trace_igb_set_pfmailbox(vfn, val);
2423 
2424     if (val & E1000_P2VMAILBOX_STS) {
2425         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS;
2426         mailbox_interrupt_to_vf(core, vfn);
2427     }
2428 
2429     if (val & E1000_P2VMAILBOX_ACK) {
2430         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK;
2431         mailbox_interrupt_to_vf(core, vfn);
2432     }
2433 
2434     /* Buffer Taken by PF (can be set only if the VFU is cleared). */
2435     if (val & E1000_P2VMAILBOX_PFU) {
2436         if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) {
2437             core->mac[index] |= E1000_P2VMAILBOX_PFU;
2438             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU;
2439         }
2440     } else {
2441         core->mac[index] &= ~E1000_P2VMAILBOX_PFU;
2442         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU;
2443     }
2444 
2445     if (val & E1000_P2VMAILBOX_RVFU) {
2446         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU;
2447         core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) |
2448                                 (E1000_MBVFICR_VFREQ_VF1 << vfn));
2449     }
2450 }
2451 
2452 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val)
2453 {
2454     uint16_t vfn = index - V2PMAILBOX0;
2455 
2456     trace_igb_set_vfmailbox(vfn, val);
2457 
2458     if (val & E1000_V2PMAILBOX_REQ) {
2459         core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn;
2460         mailbox_interrupt_to_pf(core);
2461     }
2462 
2463     if (val & E1000_V2PMAILBOX_ACK) {
2464         core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn;
2465         mailbox_interrupt_to_pf(core);
2466     }
2467 
2468     /* Buffer Taken by VF (can be set only if the PFU is cleared). */
2469     if (val & E1000_V2PMAILBOX_VFU) {
2470         if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) {
2471             core->mac[index] |= E1000_V2PMAILBOX_VFU;
2472             core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU;
2473         }
2474     } else {
2475         core->mac[index] &= ~E1000_V2PMAILBOX_VFU;
2476         core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU;
2477     }
2478 }
2479 
2480 void igb_core_vf_reset(IGBCore *core, uint16_t vfn)
2481 {
2482     uint16_t qn0 = vfn;
2483     uint16_t qn1 = vfn + IGB_NUM_VM_POOLS;
2484 
2485     trace_igb_core_vf_reset(vfn);
2486 
2487     /* disable Rx and Tx for the VF*/
2488     core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2489     core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2490     core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2491     core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2492     core->mac[VFRE] &= ~BIT(vfn);
2493     core->mac[VFTE] &= ~BIT(vfn);
2494     /* indicate VF reset to PF */
2495     core->mac[VFLRE] |= BIT(vfn);
2496     /* VFLRE and mailbox use the same interrupt cause */
2497     mailbox_interrupt_to_pf(core);
2498 }
2499 
2500 static void igb_w1c(IGBCore *core, int index, uint32_t val)
2501 {
2502     core->mac[index] &= ~val;
2503 }
2504 
2505 static void igb_set_eimc(IGBCore *core, int index, uint32_t val)
2506 {
2507     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2508     uint32_t mask = msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK;
2509 
2510     trace_igb_irq_write_eimc(val, msix);
2511 
2512     /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */
2513     igb_lower_interrupts(core, EIMS, val & mask);
2514 }
2515 
2516 static void igb_set_eiac(IGBCore *core, int index, uint32_t val)
2517 {
2518     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2519 
2520     if (msix) {
2521         trace_igb_irq_write_eiac(val);
2522 
2523         /*
2524          * TODO: When using IOV, the bits that correspond to MSI-X vectors
2525          * that are assigned to a VF are read-only.
2526          */
2527         core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK);
2528     }
2529 }
2530 
2531 static void igb_set_eiam(IGBCore *core, int index, uint32_t val)
2532 {
2533     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2534 
2535     /*
2536      * TODO: When using IOV, the bits that correspond to MSI-X vectors that
2537      * are assigned to a VF are read-only.
2538      */
2539     core->mac[EIAM] |=
2540         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2541 
2542     trace_igb_irq_write_eiam(val, msix);
2543 }
2544 
2545 static void igb_set_eicr(IGBCore *core, int index, uint32_t val)
2546 {
2547     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2548 
2549     /*
2550      * TODO: In IOV mode, only bit zero of this vector is available for the PF
2551      * function.
2552      */
2553     uint32_t mask = msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK;
2554 
2555     trace_igb_irq_write_eicr(val, msix);
2556     igb_lower_interrupts(core, EICR, val & mask);
2557 }
2558 
2559 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val)
2560 {
2561     uint16_t vfn;
2562 
2563     if (val & E1000_CTRL_RST) {
2564         vfn = (index - PVTCTRL0) / 0x40;
2565         igb_core_vf_reset(core, vfn);
2566     }
2567 }
2568 
2569 static void igb_set_vteics(IGBCore *core, int index, uint32_t val)
2570 {
2571     uint16_t vfn = (index - PVTEICS0) / 0x40;
2572 
2573     core->mac[index] = val;
2574     igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2575 }
2576 
2577 static void igb_set_vteims(IGBCore *core, int index, uint32_t val)
2578 {
2579     uint16_t vfn = (index - PVTEIMS0) / 0x40;
2580 
2581     core->mac[index] = val;
2582     igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2583 }
2584 
2585 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val)
2586 {
2587     uint16_t vfn = (index - PVTEIMC0) / 0x40;
2588 
2589     core->mac[index] = val;
2590     igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2591 }
2592 
2593 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val)
2594 {
2595     uint16_t vfn = (index - PVTEIAC0) / 0x40;
2596 
2597     core->mac[index] = val;
2598     igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2599 }
2600 
2601 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val)
2602 {
2603     uint16_t vfn = (index - PVTEIAM0) / 0x40;
2604 
2605     core->mac[index] = val;
2606     igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2607 }
2608 
2609 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val)
2610 {
2611     uint16_t vfn = (index - PVTEICR0) / 0x40;
2612 
2613     core->mac[index] = val;
2614     igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2615 }
2616 
2617 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val)
2618 {
2619     uint16_t vfn = (index - VTIVAR);
2620     uint16_t qn = vfn;
2621     uint8_t ent;
2622     int n;
2623 
2624     core->mac[index] = val;
2625 
2626     /* Get assigned vector associated with queue Rx#0. */
2627     if ((val & E1000_IVAR_VALID)) {
2628         n = igb_ivar_entry_rx(qn);
2629         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7)));
2630         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2631     }
2632 
2633     /* Get assigned vector associated with queue Tx#0 */
2634     ent = val >> 8;
2635     if ((ent & E1000_IVAR_VALID)) {
2636         n = igb_ivar_entry_tx(qn);
2637         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7)));
2638         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2639     }
2640 
2641     /*
2642      * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now.
2643      */
2644 }
2645 
2646 static inline void
2647 igb_autoneg_timer(void *opaque)
2648 {
2649     IGBCore *core = opaque;
2650     if (!qemu_get_queue(core->owner_nic)->link_down) {
2651         e1000x_update_regs_on_autoneg_done(core->mac, core->phy);
2652         igb_start_recv(core);
2653 
2654         igb_update_flowctl_status(core);
2655         /* signal link status change to the guest */
2656         igb_raise_interrupts(core, ICR, E1000_ICR_LSC);
2657     }
2658 }
2659 
2660 static inline uint16_t
2661 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2662 {
2663     uint16_t index = (addr & 0x1ffff) >> 2;
2664     return index + (mac_reg_access[index] & 0xfffe);
2665 }
2666 
2667 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = {
2668     [MII_BMCR]                   = PHY_RW,
2669     [MII_BMSR]                   = PHY_R,
2670     [MII_PHYID1]                 = PHY_R,
2671     [MII_PHYID2]                 = PHY_R,
2672     [MII_ANAR]                   = PHY_RW,
2673     [MII_ANLPAR]                 = PHY_R,
2674     [MII_ANER]                   = PHY_R,
2675     [MII_ANNP]                   = PHY_RW,
2676     [MII_ANLPRNP]                = PHY_R,
2677     [MII_CTRL1000]               = PHY_RW,
2678     [MII_STAT1000]               = PHY_R,
2679     [MII_EXTSTAT]                = PHY_R,
2680 
2681     [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW,
2682     [IGP01E1000_PHY_PORT_STATUS] = PHY_R,
2683     [IGP01E1000_PHY_PORT_CTRL]   = PHY_RW,
2684     [IGP01E1000_PHY_LINK_HEALTH] = PHY_R,
2685     [IGP02E1000_PHY_POWER_MGMT]  = PHY_RW,
2686     [IGP01E1000_PHY_PAGE_SELECT] = PHY_W
2687 };
2688 
2689 static void
2690 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data)
2691 {
2692     assert(addr <= MAX_PHY_REG_ADDRESS);
2693 
2694     if (addr == MII_BMCR) {
2695         igb_set_phy_ctrl(core, data);
2696     } else {
2697         core->phy[addr] = data;
2698     }
2699 }
2700 
2701 static void
2702 igb_set_mdic(IGBCore *core, int index, uint32_t val)
2703 {
2704     uint32_t data = val & E1000_MDIC_DATA_MASK;
2705     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2706 
2707     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2708         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2709     } else if (val & E1000_MDIC_OP_READ) {
2710         if (!(igb_phy_regcap[addr] & PHY_R)) {
2711             trace_igb_core_mdic_read_unhandled(addr);
2712             val |= E1000_MDIC_ERROR;
2713         } else {
2714             val = (val ^ data) | core->phy[addr];
2715             trace_igb_core_mdic_read(addr, val);
2716         }
2717     } else if (val & E1000_MDIC_OP_WRITE) {
2718         if (!(igb_phy_regcap[addr] & PHY_W)) {
2719             trace_igb_core_mdic_write_unhandled(addr);
2720             val |= E1000_MDIC_ERROR;
2721         } else {
2722             trace_igb_core_mdic_write(addr, data);
2723             igb_phy_reg_write(core, addr, data);
2724         }
2725     }
2726     core->mac[MDIC] = val | E1000_MDIC_READY;
2727 
2728     if (val & E1000_MDIC_INT_EN) {
2729         igb_raise_interrupts(core, ICR, E1000_ICR_MDAC);
2730     }
2731 }
2732 
2733 static void
2734 igb_set_rdt(IGBCore *core, int index, uint32_t val)
2735 {
2736     core->mac[index] = val & 0xffff;
2737     trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val);
2738     igb_start_recv(core);
2739 }
2740 
2741 static void
2742 igb_set_status(IGBCore *core, int index, uint32_t val)
2743 {
2744     if ((val & E1000_STATUS_PHYRA) == 0) {
2745         core->mac[index] &= ~E1000_STATUS_PHYRA;
2746     }
2747 }
2748 
2749 static void
2750 igb_set_ctrlext(IGBCore *core, int index, uint32_t val)
2751 {
2752     trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2753                                   !!(val & E1000_CTRL_EXT_SPD_BYPS),
2754                                   !!(val & E1000_CTRL_EXT_PFRSTD));
2755 
2756     /* Zero self-clearing bits */
2757     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2758     core->mac[CTRL_EXT] = val;
2759 
2760     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) {
2761         for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
2762             core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI;
2763             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD;
2764         }
2765     }
2766 }
2767 
2768 static void
2769 igb_set_pbaclr(IGBCore *core, int index, uint32_t val)
2770 {
2771     int i;
2772 
2773     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2774 
2775     if (!msix_enabled(core->owner)) {
2776         return;
2777     }
2778 
2779     for (i = 0; i < IGB_INTR_NUM; i++) {
2780         if (core->mac[PBACLR] & BIT(i)) {
2781             msix_clr_pending(core->owner, i);
2782         }
2783     }
2784 }
2785 
2786 static void
2787 igb_set_fcrth(IGBCore *core, int index, uint32_t val)
2788 {
2789     core->mac[FCRTH] = val & 0xFFF8;
2790 }
2791 
2792 static void
2793 igb_set_fcrtl(IGBCore *core, int index, uint32_t val)
2794 {
2795     core->mac[FCRTL] = val & 0x8000FFF8;
2796 }
2797 
2798 #define IGB_LOW_BITS_SET_FUNC(num)                             \
2799     static void                                                \
2800     igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \
2801     {                                                          \
2802         core->mac[index] = val & (BIT(num) - 1);               \
2803     }
2804 
2805 IGB_LOW_BITS_SET_FUNC(4)
2806 IGB_LOW_BITS_SET_FUNC(13)
2807 IGB_LOW_BITS_SET_FUNC(16)
2808 
2809 static void
2810 igb_set_dlen(IGBCore *core, int index, uint32_t val)
2811 {
2812     core->mac[index] = val & 0xffff0;
2813 }
2814 
2815 static void
2816 igb_set_dbal(IGBCore *core, int index, uint32_t val)
2817 {
2818     core->mac[index] = val & E1000_XDBAL_MASK;
2819 }
2820 
2821 static void
2822 igb_set_tdt(IGBCore *core, int index, uint32_t val)
2823 {
2824     IGB_TxRing txr;
2825     int qn = igb_mq_queue_idx(TDT0, index);
2826 
2827     core->mac[index] = val & 0xffff;
2828 
2829     igb_tx_ring_init(core, &txr, qn);
2830     igb_start_xmit(core, &txr);
2831 }
2832 
2833 static void
2834 igb_set_ics(IGBCore *core, int index, uint32_t val)
2835 {
2836     trace_e1000e_irq_write_ics(val);
2837     igb_raise_interrupts(core, ICR, val);
2838 }
2839 
2840 static void
2841 igb_set_imc(IGBCore *core, int index, uint32_t val)
2842 {
2843     trace_e1000e_irq_ims_clear_set_imc(val);
2844     igb_lower_interrupts(core, IMS, val);
2845 }
2846 
2847 static void
2848 igb_set_ims(IGBCore *core, int index, uint32_t val)
2849 {
2850     igb_raise_interrupts(core, IMS, val & 0x77D4FBFD);
2851 }
2852 
2853 static void igb_nsicr(IGBCore *core)
2854 {
2855     /*
2856      * If GPIE.NSICR = 0, then the clear of IMS will occur only if at
2857      * least one bit is set in the IMS and there is a true interrupt as
2858      * reflected in ICR.INTA.
2859      */
2860     if ((core->mac[GPIE] & E1000_GPIE_NSICR) ||
2861         (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) {
2862         igb_lower_interrupts(core, IMS, core->mac[IAM]);
2863     }
2864 }
2865 
2866 static void igb_set_icr(IGBCore *core, int index, uint32_t val)
2867 {
2868     igb_nsicr(core);
2869     igb_lower_interrupts(core, ICR, val);
2870 }
2871 
2872 static uint32_t
2873 igb_mac_readreg(IGBCore *core, int index)
2874 {
2875     return core->mac[index];
2876 }
2877 
2878 static uint32_t
2879 igb_mac_ics_read(IGBCore *core, int index)
2880 {
2881     trace_e1000e_irq_read_ics(core->mac[ICS]);
2882     return core->mac[ICS];
2883 }
2884 
2885 static uint32_t
2886 igb_mac_ims_read(IGBCore *core, int index)
2887 {
2888     trace_e1000e_irq_read_ims(core->mac[IMS]);
2889     return core->mac[IMS];
2890 }
2891 
2892 static uint32_t
2893 igb_mac_swsm_read(IGBCore *core, int index)
2894 {
2895     uint32_t val = core->mac[SWSM];
2896     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2897     return val;
2898 }
2899 
2900 static uint32_t
2901 igb_mac_eitr_read(IGBCore *core, int index)
2902 {
2903     return core->eitr_guest_value[index - EITR0];
2904 }
2905 
2906 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index)
2907 {
2908     uint32_t val = core->mac[index];
2909 
2910     core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK |
2911                           E1000_V2PMAILBOX_RSTD);
2912 
2913     return val;
2914 }
2915 
2916 static uint32_t
2917 igb_mac_icr_read(IGBCore *core, int index)
2918 {
2919     uint32_t ret = core->mac[ICR];
2920 
2921     if (core->mac[GPIE] & E1000_GPIE_NSICR) {
2922         trace_igb_irq_icr_clear_gpie_nsicr();
2923         igb_lower_interrupts(core, ICR, 0xffffffff);
2924     } else if (core->mac[IMS] == 0) {
2925         trace_e1000e_irq_icr_clear_zero_ims();
2926         igb_lower_interrupts(core, ICR, 0xffffffff);
2927     } else if (core->mac[ICR] & E1000_ICR_INT_ASSERTED) {
2928         igb_lower_interrupts(core, ICR, 0xffffffff);
2929     } else if (!msix_enabled(core->owner)) {
2930         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2931         igb_lower_interrupts(core, ICR, 0xffffffff);
2932     }
2933 
2934     igb_nsicr(core);
2935     return ret;
2936 }
2937 
2938 static uint32_t
2939 igb_mac_read_clr4(IGBCore *core, int index)
2940 {
2941     uint32_t ret = core->mac[index];
2942 
2943     core->mac[index] = 0;
2944     return ret;
2945 }
2946 
2947 static uint32_t
2948 igb_mac_read_clr8(IGBCore *core, int index)
2949 {
2950     uint32_t ret = core->mac[index];
2951 
2952     core->mac[index] = 0;
2953     core->mac[index - 1] = 0;
2954     return ret;
2955 }
2956 
2957 static uint32_t
2958 igb_get_ctrl(IGBCore *core, int index)
2959 {
2960     uint32_t val = core->mac[CTRL];
2961 
2962     trace_e1000e_link_read_params(
2963         !!(val & E1000_CTRL_ASDE),
2964         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2965         !!(val & E1000_CTRL_FRCSPD),
2966         !!(val & E1000_CTRL_FRCDPX),
2967         !!(val & E1000_CTRL_RFCE),
2968         !!(val & E1000_CTRL_TFCE));
2969 
2970     return val;
2971 }
2972 
2973 static uint32_t igb_get_status(IGBCore *core, int index)
2974 {
2975     uint32_t res = core->mac[STATUS];
2976     uint16_t num_vfs = pcie_sriov_num_vfs(core->owner);
2977 
2978     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2979         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2980     } else {
2981         res |= E1000_STATUS_FD;
2982     }
2983 
2984     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2985         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2986         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2987         case E1000_CTRL_SPD_10:
2988             res |= E1000_STATUS_SPEED_10;
2989             break;
2990         case E1000_CTRL_SPD_100:
2991             res |= E1000_STATUS_SPEED_100;
2992             break;
2993         case E1000_CTRL_SPD_1000:
2994         default:
2995             res |= E1000_STATUS_SPEED_1000;
2996             break;
2997         }
2998     } else {
2999         res |= E1000_STATUS_SPEED_1000;
3000     }
3001 
3002     if (num_vfs) {
3003         res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT;
3004         res |= E1000_STATUS_IOV_MODE;
3005     }
3006 
3007     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
3008         res |= E1000_STATUS_GIO_MASTER_ENABLE;
3009     }
3010 
3011     return res;
3012 }
3013 
3014 static void
3015 igb_mac_writereg(IGBCore *core, int index, uint32_t val)
3016 {
3017     core->mac[index] = val;
3018 }
3019 
3020 static void
3021 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val)
3022 {
3023     uint32_t macaddr[2];
3024 
3025     core->mac[index] = val;
3026 
3027     macaddr[0] = cpu_to_le32(core->mac[RA]);
3028     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
3029     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
3030         (uint8_t *) macaddr);
3031 
3032     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
3033 }
3034 
3035 static void
3036 igb_set_eecd(IGBCore *core, int index, uint32_t val)
3037 {
3038     static const uint32_t ro_bits = E1000_EECD_PRES          |
3039                                     E1000_EECD_AUTO_RD       |
3040                                     E1000_EECD_SIZE_EX_MASK;
3041 
3042     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
3043 }
3044 
3045 static void
3046 igb_set_eerd(IGBCore *core, int index, uint32_t val)
3047 {
3048     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
3049     uint32_t flags = 0;
3050     uint32_t data = 0;
3051 
3052     if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) {
3053         data = core->eeprom[addr];
3054         flags = E1000_EERW_DONE;
3055     }
3056 
3057     core->mac[EERD] = flags                           |
3058                       (addr << E1000_EERW_ADDR_SHIFT) |
3059                       (data << E1000_EERW_DATA_SHIFT);
3060 }
3061 
3062 static void
3063 igb_set_eitr(IGBCore *core, int index, uint32_t val)
3064 {
3065     uint32_t eitr_num = index - EITR0;
3066 
3067     trace_igb_irq_eitr_set(eitr_num, val);
3068 
3069     core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR;
3070     core->mac[index] = val & 0x7FFE;
3071 }
3072 
3073 static void
3074 igb_update_rx_offloads(IGBCore *core)
3075 {
3076     int cso_state = igb_rx_l4_cso_enabled(core);
3077 
3078     trace_e1000e_rx_set_cso(cso_state);
3079 
3080     if (core->has_vnet) {
3081         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
3082                          cso_state, 0, 0, 0, 0, 0, 0);
3083     }
3084 }
3085 
3086 static void
3087 igb_set_rxcsum(IGBCore *core, int index, uint32_t val)
3088 {
3089     core->mac[RXCSUM] = val;
3090     igb_update_rx_offloads(core);
3091 }
3092 
3093 static void
3094 igb_set_gcr(IGBCore *core, int index, uint32_t val)
3095 {
3096     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
3097     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
3098 }
3099 
3100 static uint32_t igb_get_systiml(IGBCore *core, int index)
3101 {
3102     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
3103     return core->mac[SYSTIML];
3104 }
3105 
3106 static uint32_t igb_get_rxsatrh(IGBCore *core, int index)
3107 {
3108     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
3109     return core->mac[RXSATRH];
3110 }
3111 
3112 static uint32_t igb_get_txstmph(IGBCore *core, int index)
3113 {
3114     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
3115     return core->mac[TXSTMPH];
3116 }
3117 
3118 static void igb_set_timinca(IGBCore *core, int index, uint32_t val)
3119 {
3120     e1000x_set_timinca(core->mac, &core->timadj, val);
3121 }
3122 
3123 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val)
3124 {
3125     core->mac[TIMADJH] = val;
3126     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
3127 }
3128 
3129 #define igb_getreg(x)    [x] = igb_mac_readreg
3130 typedef uint32_t (*readops)(IGBCore *, int);
3131 static const readops igb_macreg_readops[] = {
3132     igb_getreg(WUFC),
3133     igb_getreg(MANC),
3134     igb_getreg(TOTL),
3135     igb_getreg(RDT0),
3136     igb_getreg(RDT1),
3137     igb_getreg(RDT2),
3138     igb_getreg(RDT3),
3139     igb_getreg(RDT4),
3140     igb_getreg(RDT5),
3141     igb_getreg(RDT6),
3142     igb_getreg(RDT7),
3143     igb_getreg(RDT8),
3144     igb_getreg(RDT9),
3145     igb_getreg(RDT10),
3146     igb_getreg(RDT11),
3147     igb_getreg(RDT12),
3148     igb_getreg(RDT13),
3149     igb_getreg(RDT14),
3150     igb_getreg(RDT15),
3151     igb_getreg(RDBAH0),
3152     igb_getreg(RDBAH1),
3153     igb_getreg(RDBAH2),
3154     igb_getreg(RDBAH3),
3155     igb_getreg(RDBAH4),
3156     igb_getreg(RDBAH5),
3157     igb_getreg(RDBAH6),
3158     igb_getreg(RDBAH7),
3159     igb_getreg(RDBAH8),
3160     igb_getreg(RDBAH9),
3161     igb_getreg(RDBAH10),
3162     igb_getreg(RDBAH11),
3163     igb_getreg(RDBAH12),
3164     igb_getreg(RDBAH13),
3165     igb_getreg(RDBAH14),
3166     igb_getreg(RDBAH15),
3167     igb_getreg(TDBAL0),
3168     igb_getreg(TDBAL1),
3169     igb_getreg(TDBAL2),
3170     igb_getreg(TDBAL3),
3171     igb_getreg(TDBAL4),
3172     igb_getreg(TDBAL5),
3173     igb_getreg(TDBAL6),
3174     igb_getreg(TDBAL7),
3175     igb_getreg(TDBAL8),
3176     igb_getreg(TDBAL9),
3177     igb_getreg(TDBAL10),
3178     igb_getreg(TDBAL11),
3179     igb_getreg(TDBAL12),
3180     igb_getreg(TDBAL13),
3181     igb_getreg(TDBAL14),
3182     igb_getreg(TDBAL15),
3183     igb_getreg(RDLEN0),
3184     igb_getreg(RDLEN1),
3185     igb_getreg(RDLEN2),
3186     igb_getreg(RDLEN3),
3187     igb_getreg(RDLEN4),
3188     igb_getreg(RDLEN5),
3189     igb_getreg(RDLEN6),
3190     igb_getreg(RDLEN7),
3191     igb_getreg(RDLEN8),
3192     igb_getreg(RDLEN9),
3193     igb_getreg(RDLEN10),
3194     igb_getreg(RDLEN11),
3195     igb_getreg(RDLEN12),
3196     igb_getreg(RDLEN13),
3197     igb_getreg(RDLEN14),
3198     igb_getreg(RDLEN15),
3199     igb_getreg(SRRCTL0),
3200     igb_getreg(SRRCTL1),
3201     igb_getreg(SRRCTL2),
3202     igb_getreg(SRRCTL3),
3203     igb_getreg(SRRCTL4),
3204     igb_getreg(SRRCTL5),
3205     igb_getreg(SRRCTL6),
3206     igb_getreg(SRRCTL7),
3207     igb_getreg(SRRCTL8),
3208     igb_getreg(SRRCTL9),
3209     igb_getreg(SRRCTL10),
3210     igb_getreg(SRRCTL11),
3211     igb_getreg(SRRCTL12),
3212     igb_getreg(SRRCTL13),
3213     igb_getreg(SRRCTL14),
3214     igb_getreg(SRRCTL15),
3215     igb_getreg(LATECOL),
3216     igb_getreg(XONTXC),
3217     igb_getreg(TDFH),
3218     igb_getreg(TDFT),
3219     igb_getreg(TDFHS),
3220     igb_getreg(TDFTS),
3221     igb_getreg(TDFPC),
3222     igb_getreg(WUS),
3223     igb_getreg(RDFH),
3224     igb_getreg(RDFT),
3225     igb_getreg(RDFHS),
3226     igb_getreg(RDFTS),
3227     igb_getreg(RDFPC),
3228     igb_getreg(GORCL),
3229     igb_getreg(MGTPRC),
3230     igb_getreg(EERD),
3231     igb_getreg(EIAC),
3232     igb_getreg(MANC2H),
3233     igb_getreg(RXCSUM),
3234     igb_getreg(GSCL_3),
3235     igb_getreg(GSCN_2),
3236     igb_getreg(FCAH),
3237     igb_getreg(FCRTH),
3238     igb_getreg(FLOP),
3239     igb_getreg(RXSTMPH),
3240     igb_getreg(TXSTMPL),
3241     igb_getreg(TIMADJL),
3242     igb_getreg(RDH0),
3243     igb_getreg(RDH1),
3244     igb_getreg(RDH2),
3245     igb_getreg(RDH3),
3246     igb_getreg(RDH4),
3247     igb_getreg(RDH5),
3248     igb_getreg(RDH6),
3249     igb_getreg(RDH7),
3250     igb_getreg(RDH8),
3251     igb_getreg(RDH9),
3252     igb_getreg(RDH10),
3253     igb_getreg(RDH11),
3254     igb_getreg(RDH12),
3255     igb_getreg(RDH13),
3256     igb_getreg(RDH14),
3257     igb_getreg(RDH15),
3258     igb_getreg(TDT0),
3259     igb_getreg(TDT1),
3260     igb_getreg(TDT2),
3261     igb_getreg(TDT3),
3262     igb_getreg(TDT4),
3263     igb_getreg(TDT5),
3264     igb_getreg(TDT6),
3265     igb_getreg(TDT7),
3266     igb_getreg(TDT8),
3267     igb_getreg(TDT9),
3268     igb_getreg(TDT10),
3269     igb_getreg(TDT11),
3270     igb_getreg(TDT12),
3271     igb_getreg(TDT13),
3272     igb_getreg(TDT14),
3273     igb_getreg(TDT15),
3274     igb_getreg(TNCRS),
3275     igb_getreg(RJC),
3276     igb_getreg(IAM),
3277     igb_getreg(GSCL_2),
3278     igb_getreg(TIPG),
3279     igb_getreg(FLMNGCTL),
3280     igb_getreg(FLMNGCNT),
3281     igb_getreg(TSYNCTXCTL),
3282     igb_getreg(EEMNGDATA),
3283     igb_getreg(CTRL_EXT),
3284     igb_getreg(SYSTIMH),
3285     igb_getreg(EEMNGCTL),
3286     igb_getreg(FLMNGDATA),
3287     igb_getreg(TSYNCRXCTL),
3288     igb_getreg(LEDCTL),
3289     igb_getreg(TCTL),
3290     igb_getreg(TCTL_EXT),
3291     igb_getreg(DTXCTL),
3292     igb_getreg(RXPBS),
3293     igb_getreg(TDH0),
3294     igb_getreg(TDH1),
3295     igb_getreg(TDH2),
3296     igb_getreg(TDH3),
3297     igb_getreg(TDH4),
3298     igb_getreg(TDH5),
3299     igb_getreg(TDH6),
3300     igb_getreg(TDH7),
3301     igb_getreg(TDH8),
3302     igb_getreg(TDH9),
3303     igb_getreg(TDH10),
3304     igb_getreg(TDH11),
3305     igb_getreg(TDH12),
3306     igb_getreg(TDH13),
3307     igb_getreg(TDH14),
3308     igb_getreg(TDH15),
3309     igb_getreg(ECOL),
3310     igb_getreg(DC),
3311     igb_getreg(RLEC),
3312     igb_getreg(XOFFTXC),
3313     igb_getreg(RFC),
3314     igb_getreg(RNBC),
3315     igb_getreg(MGTPTC),
3316     igb_getreg(TIMINCA),
3317     igb_getreg(FACTPS),
3318     igb_getreg(GSCL_1),
3319     igb_getreg(GSCN_0),
3320     igb_getreg(PBACLR),
3321     igb_getreg(FCTTV),
3322     igb_getreg(RXSATRL),
3323     igb_getreg(TORL),
3324     igb_getreg(TDLEN0),
3325     igb_getreg(TDLEN1),
3326     igb_getreg(TDLEN2),
3327     igb_getreg(TDLEN3),
3328     igb_getreg(TDLEN4),
3329     igb_getreg(TDLEN5),
3330     igb_getreg(TDLEN6),
3331     igb_getreg(TDLEN7),
3332     igb_getreg(TDLEN8),
3333     igb_getreg(TDLEN9),
3334     igb_getreg(TDLEN10),
3335     igb_getreg(TDLEN11),
3336     igb_getreg(TDLEN12),
3337     igb_getreg(TDLEN13),
3338     igb_getreg(TDLEN14),
3339     igb_getreg(TDLEN15),
3340     igb_getreg(MCC),
3341     igb_getreg(WUC),
3342     igb_getreg(EECD),
3343     igb_getreg(FCRTV),
3344     igb_getreg(TXDCTL0),
3345     igb_getreg(TXDCTL1),
3346     igb_getreg(TXDCTL2),
3347     igb_getreg(TXDCTL3),
3348     igb_getreg(TXDCTL4),
3349     igb_getreg(TXDCTL5),
3350     igb_getreg(TXDCTL6),
3351     igb_getreg(TXDCTL7),
3352     igb_getreg(TXDCTL8),
3353     igb_getreg(TXDCTL9),
3354     igb_getreg(TXDCTL10),
3355     igb_getreg(TXDCTL11),
3356     igb_getreg(TXDCTL12),
3357     igb_getreg(TXDCTL13),
3358     igb_getreg(TXDCTL14),
3359     igb_getreg(TXDCTL15),
3360     igb_getreg(TXCTL0),
3361     igb_getreg(TXCTL1),
3362     igb_getreg(TXCTL2),
3363     igb_getreg(TXCTL3),
3364     igb_getreg(TXCTL4),
3365     igb_getreg(TXCTL5),
3366     igb_getreg(TXCTL6),
3367     igb_getreg(TXCTL7),
3368     igb_getreg(TXCTL8),
3369     igb_getreg(TXCTL9),
3370     igb_getreg(TXCTL10),
3371     igb_getreg(TXCTL11),
3372     igb_getreg(TXCTL12),
3373     igb_getreg(TXCTL13),
3374     igb_getreg(TXCTL14),
3375     igb_getreg(TXCTL15),
3376     igb_getreg(TDWBAL0),
3377     igb_getreg(TDWBAL1),
3378     igb_getreg(TDWBAL2),
3379     igb_getreg(TDWBAL3),
3380     igb_getreg(TDWBAL4),
3381     igb_getreg(TDWBAL5),
3382     igb_getreg(TDWBAL6),
3383     igb_getreg(TDWBAL7),
3384     igb_getreg(TDWBAL8),
3385     igb_getreg(TDWBAL9),
3386     igb_getreg(TDWBAL10),
3387     igb_getreg(TDWBAL11),
3388     igb_getreg(TDWBAL12),
3389     igb_getreg(TDWBAL13),
3390     igb_getreg(TDWBAL14),
3391     igb_getreg(TDWBAL15),
3392     igb_getreg(TDWBAH0),
3393     igb_getreg(TDWBAH1),
3394     igb_getreg(TDWBAH2),
3395     igb_getreg(TDWBAH3),
3396     igb_getreg(TDWBAH4),
3397     igb_getreg(TDWBAH5),
3398     igb_getreg(TDWBAH6),
3399     igb_getreg(TDWBAH7),
3400     igb_getreg(TDWBAH8),
3401     igb_getreg(TDWBAH9),
3402     igb_getreg(TDWBAH10),
3403     igb_getreg(TDWBAH11),
3404     igb_getreg(TDWBAH12),
3405     igb_getreg(TDWBAH13),
3406     igb_getreg(TDWBAH14),
3407     igb_getreg(TDWBAH15),
3408     igb_getreg(PVTCTRL0),
3409     igb_getreg(PVTCTRL1),
3410     igb_getreg(PVTCTRL2),
3411     igb_getreg(PVTCTRL3),
3412     igb_getreg(PVTCTRL4),
3413     igb_getreg(PVTCTRL5),
3414     igb_getreg(PVTCTRL6),
3415     igb_getreg(PVTCTRL7),
3416     igb_getreg(PVTEIMS0),
3417     igb_getreg(PVTEIMS1),
3418     igb_getreg(PVTEIMS2),
3419     igb_getreg(PVTEIMS3),
3420     igb_getreg(PVTEIMS4),
3421     igb_getreg(PVTEIMS5),
3422     igb_getreg(PVTEIMS6),
3423     igb_getreg(PVTEIMS7),
3424     igb_getreg(PVTEIAC0),
3425     igb_getreg(PVTEIAC1),
3426     igb_getreg(PVTEIAC2),
3427     igb_getreg(PVTEIAC3),
3428     igb_getreg(PVTEIAC4),
3429     igb_getreg(PVTEIAC5),
3430     igb_getreg(PVTEIAC6),
3431     igb_getreg(PVTEIAC7),
3432     igb_getreg(PVTEIAM0),
3433     igb_getreg(PVTEIAM1),
3434     igb_getreg(PVTEIAM2),
3435     igb_getreg(PVTEIAM3),
3436     igb_getreg(PVTEIAM4),
3437     igb_getreg(PVTEIAM5),
3438     igb_getreg(PVTEIAM6),
3439     igb_getreg(PVTEIAM7),
3440     igb_getreg(PVFGPRC0),
3441     igb_getreg(PVFGPRC1),
3442     igb_getreg(PVFGPRC2),
3443     igb_getreg(PVFGPRC3),
3444     igb_getreg(PVFGPRC4),
3445     igb_getreg(PVFGPRC5),
3446     igb_getreg(PVFGPRC6),
3447     igb_getreg(PVFGPRC7),
3448     igb_getreg(PVFGPTC0),
3449     igb_getreg(PVFGPTC1),
3450     igb_getreg(PVFGPTC2),
3451     igb_getreg(PVFGPTC3),
3452     igb_getreg(PVFGPTC4),
3453     igb_getreg(PVFGPTC5),
3454     igb_getreg(PVFGPTC6),
3455     igb_getreg(PVFGPTC7),
3456     igb_getreg(PVFGORC0),
3457     igb_getreg(PVFGORC1),
3458     igb_getreg(PVFGORC2),
3459     igb_getreg(PVFGORC3),
3460     igb_getreg(PVFGORC4),
3461     igb_getreg(PVFGORC5),
3462     igb_getreg(PVFGORC6),
3463     igb_getreg(PVFGORC7),
3464     igb_getreg(PVFGOTC0),
3465     igb_getreg(PVFGOTC1),
3466     igb_getreg(PVFGOTC2),
3467     igb_getreg(PVFGOTC3),
3468     igb_getreg(PVFGOTC4),
3469     igb_getreg(PVFGOTC5),
3470     igb_getreg(PVFGOTC6),
3471     igb_getreg(PVFGOTC7),
3472     igb_getreg(PVFMPRC0),
3473     igb_getreg(PVFMPRC1),
3474     igb_getreg(PVFMPRC2),
3475     igb_getreg(PVFMPRC3),
3476     igb_getreg(PVFMPRC4),
3477     igb_getreg(PVFMPRC5),
3478     igb_getreg(PVFMPRC6),
3479     igb_getreg(PVFMPRC7),
3480     igb_getreg(PVFGPRLBC0),
3481     igb_getreg(PVFGPRLBC1),
3482     igb_getreg(PVFGPRLBC2),
3483     igb_getreg(PVFGPRLBC3),
3484     igb_getreg(PVFGPRLBC4),
3485     igb_getreg(PVFGPRLBC5),
3486     igb_getreg(PVFGPRLBC6),
3487     igb_getreg(PVFGPRLBC7),
3488     igb_getreg(PVFGPTLBC0),
3489     igb_getreg(PVFGPTLBC1),
3490     igb_getreg(PVFGPTLBC2),
3491     igb_getreg(PVFGPTLBC3),
3492     igb_getreg(PVFGPTLBC4),
3493     igb_getreg(PVFGPTLBC5),
3494     igb_getreg(PVFGPTLBC6),
3495     igb_getreg(PVFGPTLBC7),
3496     igb_getreg(PVFGORLBC0),
3497     igb_getreg(PVFGORLBC1),
3498     igb_getreg(PVFGORLBC2),
3499     igb_getreg(PVFGORLBC3),
3500     igb_getreg(PVFGORLBC4),
3501     igb_getreg(PVFGORLBC5),
3502     igb_getreg(PVFGORLBC6),
3503     igb_getreg(PVFGORLBC7),
3504     igb_getreg(PVFGOTLBC0),
3505     igb_getreg(PVFGOTLBC1),
3506     igb_getreg(PVFGOTLBC2),
3507     igb_getreg(PVFGOTLBC3),
3508     igb_getreg(PVFGOTLBC4),
3509     igb_getreg(PVFGOTLBC5),
3510     igb_getreg(PVFGOTLBC6),
3511     igb_getreg(PVFGOTLBC7),
3512     igb_getreg(RCTL),
3513     igb_getreg(MDIC),
3514     igb_getreg(FCRUC),
3515     igb_getreg(VET),
3516     igb_getreg(RDBAL0),
3517     igb_getreg(RDBAL1),
3518     igb_getreg(RDBAL2),
3519     igb_getreg(RDBAL3),
3520     igb_getreg(RDBAL4),
3521     igb_getreg(RDBAL5),
3522     igb_getreg(RDBAL6),
3523     igb_getreg(RDBAL7),
3524     igb_getreg(RDBAL8),
3525     igb_getreg(RDBAL9),
3526     igb_getreg(RDBAL10),
3527     igb_getreg(RDBAL11),
3528     igb_getreg(RDBAL12),
3529     igb_getreg(RDBAL13),
3530     igb_getreg(RDBAL14),
3531     igb_getreg(RDBAL15),
3532     igb_getreg(TDBAH0),
3533     igb_getreg(TDBAH1),
3534     igb_getreg(TDBAH2),
3535     igb_getreg(TDBAH3),
3536     igb_getreg(TDBAH4),
3537     igb_getreg(TDBAH5),
3538     igb_getreg(TDBAH6),
3539     igb_getreg(TDBAH7),
3540     igb_getreg(TDBAH8),
3541     igb_getreg(TDBAH9),
3542     igb_getreg(TDBAH10),
3543     igb_getreg(TDBAH11),
3544     igb_getreg(TDBAH12),
3545     igb_getreg(TDBAH13),
3546     igb_getreg(TDBAH14),
3547     igb_getreg(TDBAH15),
3548     igb_getreg(SCC),
3549     igb_getreg(COLC),
3550     igb_getreg(XOFFRXC),
3551     igb_getreg(IPAV),
3552     igb_getreg(GOTCL),
3553     igb_getreg(MGTPDC),
3554     igb_getreg(GCR),
3555     igb_getreg(MFVAL),
3556     igb_getreg(FUNCTAG),
3557     igb_getreg(GSCL_4),
3558     igb_getreg(GSCN_3),
3559     igb_getreg(MRQC),
3560     igb_getreg(FCT),
3561     igb_getreg(FLA),
3562     igb_getreg(RXDCTL0),
3563     igb_getreg(RXDCTL1),
3564     igb_getreg(RXDCTL2),
3565     igb_getreg(RXDCTL3),
3566     igb_getreg(RXDCTL4),
3567     igb_getreg(RXDCTL5),
3568     igb_getreg(RXDCTL6),
3569     igb_getreg(RXDCTL7),
3570     igb_getreg(RXDCTL8),
3571     igb_getreg(RXDCTL9),
3572     igb_getreg(RXDCTL10),
3573     igb_getreg(RXDCTL11),
3574     igb_getreg(RXDCTL12),
3575     igb_getreg(RXDCTL13),
3576     igb_getreg(RXDCTL14),
3577     igb_getreg(RXDCTL15),
3578     igb_getreg(RXSTMPL),
3579     igb_getreg(TIMADJH),
3580     igb_getreg(FCRTL),
3581     igb_getreg(XONRXC),
3582     igb_getreg(RFCTL),
3583     igb_getreg(GSCN_1),
3584     igb_getreg(FCAL),
3585     igb_getreg(GPIE),
3586     igb_getreg(TXPBS),
3587     igb_getreg(RLPML),
3588 
3589     [TOTH]    = igb_mac_read_clr8,
3590     [GOTCH]   = igb_mac_read_clr8,
3591     [PRC64]   = igb_mac_read_clr4,
3592     [PRC255]  = igb_mac_read_clr4,
3593     [PRC1023] = igb_mac_read_clr4,
3594     [PTC64]   = igb_mac_read_clr4,
3595     [PTC255]  = igb_mac_read_clr4,
3596     [PTC1023] = igb_mac_read_clr4,
3597     [GPRC]    = igb_mac_read_clr4,
3598     [TPT]     = igb_mac_read_clr4,
3599     [RUC]     = igb_mac_read_clr4,
3600     [BPRC]    = igb_mac_read_clr4,
3601     [MPTC]    = igb_mac_read_clr4,
3602     [IAC]     = igb_mac_read_clr4,
3603     [ICR]     = igb_mac_icr_read,
3604     [STATUS]  = igb_get_status,
3605     [ICS]     = igb_mac_ics_read,
3606     /*
3607      * 8.8.10: Reading the IMC register returns the value of the IMS register.
3608      */
3609     [IMC]     = igb_mac_ims_read,
3610     [TORH]    = igb_mac_read_clr8,
3611     [GORCH]   = igb_mac_read_clr8,
3612     [PRC127]  = igb_mac_read_clr4,
3613     [PRC511]  = igb_mac_read_clr4,
3614     [PRC1522] = igb_mac_read_clr4,
3615     [PTC127]  = igb_mac_read_clr4,
3616     [PTC511]  = igb_mac_read_clr4,
3617     [PTC1522] = igb_mac_read_clr4,
3618     [GPTC]    = igb_mac_read_clr4,
3619     [TPR]     = igb_mac_read_clr4,
3620     [ROC]     = igb_mac_read_clr4,
3621     [MPRC]    = igb_mac_read_clr4,
3622     [BPTC]    = igb_mac_read_clr4,
3623     [TSCTC]   = igb_mac_read_clr4,
3624     [CTRL]    = igb_get_ctrl,
3625     [SWSM]    = igb_mac_swsm_read,
3626     [IMS]     = igb_mac_ims_read,
3627     [SYSTIML] = igb_get_systiml,
3628     [RXSATRH] = igb_get_rxsatrh,
3629     [TXSTMPH] = igb_get_txstmph,
3630 
3631     [CRCERRS ... MPC]      = igb_mac_readreg,
3632     [IP6AT ... IP6AT + 3]  = igb_mac_readreg,
3633     [IP4AT ... IP4AT + 6]  = igb_mac_readreg,
3634     [RA ... RA + 31]       = igb_mac_readreg,
3635     [RA2 ... RA2 + 31]     = igb_mac_readreg,
3636     [WUPM ... WUPM + 31]   = igb_mac_readreg,
3637     [MTA ... MTA + E1000_MC_TBL_SIZE - 1]    = igb_mac_readreg,
3638     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = igb_mac_readreg,
3639     [FFMT ... FFMT + 254]  = igb_mac_readreg,
3640     [MDEF ... MDEF + 7]    = igb_mac_readreg,
3641     [FTFT ... FTFT + 254]  = igb_mac_readreg,
3642     [RETA ... RETA + 31]   = igb_mac_readreg,
3643     [RSSRK ... RSSRK + 9]  = igb_mac_readreg,
3644     [MAVTV0 ... MAVTV3]    = igb_mac_readreg,
3645     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read,
3646     [PVTEICR0] = igb_mac_read_clr4,
3647     [PVTEICR1] = igb_mac_read_clr4,
3648     [PVTEICR2] = igb_mac_read_clr4,
3649     [PVTEICR3] = igb_mac_read_clr4,
3650     [PVTEICR4] = igb_mac_read_clr4,
3651     [PVTEICR5] = igb_mac_read_clr4,
3652     [PVTEICR6] = igb_mac_read_clr4,
3653     [PVTEICR7] = igb_mac_read_clr4,
3654 
3655     /* IGB specific: */
3656     [FWSM]       = igb_mac_readreg,
3657     [SW_FW_SYNC] = igb_mac_readreg,
3658     [HTCBDPC]    = igb_mac_read_clr4,
3659     [EICR]       = igb_mac_read_clr4,
3660     [EIMS]       = igb_mac_readreg,
3661     [EIAM]       = igb_mac_readreg,
3662     [IVAR0 ... IVAR0 + 7] = igb_mac_readreg,
3663     igb_getreg(IVAR_MISC),
3664     igb_getreg(TSYNCRXCFG),
3665     [ETQF0 ... ETQF0 + 7] = igb_mac_readreg,
3666     igb_getreg(VT_CTL),
3667     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg,
3668     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read,
3669     igb_getreg(MBVFICR),
3670     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg,
3671     igb_getreg(MBVFIMR),
3672     igb_getreg(VFLRE),
3673     igb_getreg(VFRE),
3674     igb_getreg(VFTE),
3675     igb_getreg(QDE),
3676     igb_getreg(DTXSWC),
3677     igb_getreg(RPLOLR),
3678     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg,
3679     [VMVIR0 ... VMVIR7] = igb_mac_readreg,
3680     [VMOLR0 ... VMOLR7] = igb_mac_readreg,
3681     [WVBR] = igb_mac_read_clr4,
3682     [RQDPC0] = igb_mac_read_clr4,
3683     [RQDPC1] = igb_mac_read_clr4,
3684     [RQDPC2] = igb_mac_read_clr4,
3685     [RQDPC3] = igb_mac_read_clr4,
3686     [RQDPC4] = igb_mac_read_clr4,
3687     [RQDPC5] = igb_mac_read_clr4,
3688     [RQDPC6] = igb_mac_read_clr4,
3689     [RQDPC7] = igb_mac_read_clr4,
3690     [RQDPC8] = igb_mac_read_clr4,
3691     [RQDPC9] = igb_mac_read_clr4,
3692     [RQDPC10] = igb_mac_read_clr4,
3693     [RQDPC11] = igb_mac_read_clr4,
3694     [RQDPC12] = igb_mac_read_clr4,
3695     [RQDPC13] = igb_mac_read_clr4,
3696     [RQDPC14] = igb_mac_read_clr4,
3697     [RQDPC15] = igb_mac_read_clr4,
3698     [VTIVAR ... VTIVAR + 7] = igb_mac_readreg,
3699     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg,
3700 };
3701 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) };
3702 
3703 #define igb_putreg(x)    [x] = igb_mac_writereg
3704 typedef void (*writeops)(IGBCore *, int, uint32_t);
3705 static const writeops igb_macreg_writeops[] = {
3706     igb_putreg(SWSM),
3707     igb_putreg(WUFC),
3708     igb_putreg(RDBAH0),
3709     igb_putreg(RDBAH1),
3710     igb_putreg(RDBAH2),
3711     igb_putreg(RDBAH3),
3712     igb_putreg(RDBAH4),
3713     igb_putreg(RDBAH5),
3714     igb_putreg(RDBAH6),
3715     igb_putreg(RDBAH7),
3716     igb_putreg(RDBAH8),
3717     igb_putreg(RDBAH9),
3718     igb_putreg(RDBAH10),
3719     igb_putreg(RDBAH11),
3720     igb_putreg(RDBAH12),
3721     igb_putreg(RDBAH13),
3722     igb_putreg(RDBAH14),
3723     igb_putreg(RDBAH15),
3724     igb_putreg(SRRCTL0),
3725     igb_putreg(SRRCTL1),
3726     igb_putreg(SRRCTL2),
3727     igb_putreg(SRRCTL3),
3728     igb_putreg(SRRCTL4),
3729     igb_putreg(SRRCTL5),
3730     igb_putreg(SRRCTL6),
3731     igb_putreg(SRRCTL7),
3732     igb_putreg(SRRCTL8),
3733     igb_putreg(SRRCTL9),
3734     igb_putreg(SRRCTL10),
3735     igb_putreg(SRRCTL11),
3736     igb_putreg(SRRCTL12),
3737     igb_putreg(SRRCTL13),
3738     igb_putreg(SRRCTL14),
3739     igb_putreg(SRRCTL15),
3740     igb_putreg(RXDCTL0),
3741     igb_putreg(RXDCTL1),
3742     igb_putreg(RXDCTL2),
3743     igb_putreg(RXDCTL3),
3744     igb_putreg(RXDCTL4),
3745     igb_putreg(RXDCTL5),
3746     igb_putreg(RXDCTL6),
3747     igb_putreg(RXDCTL7),
3748     igb_putreg(RXDCTL8),
3749     igb_putreg(RXDCTL9),
3750     igb_putreg(RXDCTL10),
3751     igb_putreg(RXDCTL11),
3752     igb_putreg(RXDCTL12),
3753     igb_putreg(RXDCTL13),
3754     igb_putreg(RXDCTL14),
3755     igb_putreg(RXDCTL15),
3756     igb_putreg(LEDCTL),
3757     igb_putreg(TCTL),
3758     igb_putreg(TCTL_EXT),
3759     igb_putreg(DTXCTL),
3760     igb_putreg(RXPBS),
3761     igb_putreg(RQDPC0),
3762     igb_putreg(FCAL),
3763     igb_putreg(FCRUC),
3764     igb_putreg(WUC),
3765     igb_putreg(WUS),
3766     igb_putreg(IPAV),
3767     igb_putreg(TDBAH0),
3768     igb_putreg(TDBAH1),
3769     igb_putreg(TDBAH2),
3770     igb_putreg(TDBAH3),
3771     igb_putreg(TDBAH4),
3772     igb_putreg(TDBAH5),
3773     igb_putreg(TDBAH6),
3774     igb_putreg(TDBAH7),
3775     igb_putreg(TDBAH8),
3776     igb_putreg(TDBAH9),
3777     igb_putreg(TDBAH10),
3778     igb_putreg(TDBAH11),
3779     igb_putreg(TDBAH12),
3780     igb_putreg(TDBAH13),
3781     igb_putreg(TDBAH14),
3782     igb_putreg(TDBAH15),
3783     igb_putreg(IAM),
3784     igb_putreg(MANC),
3785     igb_putreg(MANC2H),
3786     igb_putreg(MFVAL),
3787     igb_putreg(FACTPS),
3788     igb_putreg(FUNCTAG),
3789     igb_putreg(GSCL_1),
3790     igb_putreg(GSCL_2),
3791     igb_putreg(GSCL_3),
3792     igb_putreg(GSCL_4),
3793     igb_putreg(GSCN_0),
3794     igb_putreg(GSCN_1),
3795     igb_putreg(GSCN_2),
3796     igb_putreg(GSCN_3),
3797     igb_putreg(MRQC),
3798     igb_putreg(FLOP),
3799     igb_putreg(FLA),
3800     igb_putreg(TXDCTL0),
3801     igb_putreg(TXDCTL1),
3802     igb_putreg(TXDCTL2),
3803     igb_putreg(TXDCTL3),
3804     igb_putreg(TXDCTL4),
3805     igb_putreg(TXDCTL5),
3806     igb_putreg(TXDCTL6),
3807     igb_putreg(TXDCTL7),
3808     igb_putreg(TXDCTL8),
3809     igb_putreg(TXDCTL9),
3810     igb_putreg(TXDCTL10),
3811     igb_putreg(TXDCTL11),
3812     igb_putreg(TXDCTL12),
3813     igb_putreg(TXDCTL13),
3814     igb_putreg(TXDCTL14),
3815     igb_putreg(TXDCTL15),
3816     igb_putreg(TXCTL0),
3817     igb_putreg(TXCTL1),
3818     igb_putreg(TXCTL2),
3819     igb_putreg(TXCTL3),
3820     igb_putreg(TXCTL4),
3821     igb_putreg(TXCTL5),
3822     igb_putreg(TXCTL6),
3823     igb_putreg(TXCTL7),
3824     igb_putreg(TXCTL8),
3825     igb_putreg(TXCTL9),
3826     igb_putreg(TXCTL10),
3827     igb_putreg(TXCTL11),
3828     igb_putreg(TXCTL12),
3829     igb_putreg(TXCTL13),
3830     igb_putreg(TXCTL14),
3831     igb_putreg(TXCTL15),
3832     igb_putreg(TDWBAL0),
3833     igb_putreg(TDWBAL1),
3834     igb_putreg(TDWBAL2),
3835     igb_putreg(TDWBAL3),
3836     igb_putreg(TDWBAL4),
3837     igb_putreg(TDWBAL5),
3838     igb_putreg(TDWBAL6),
3839     igb_putreg(TDWBAL7),
3840     igb_putreg(TDWBAL8),
3841     igb_putreg(TDWBAL9),
3842     igb_putreg(TDWBAL10),
3843     igb_putreg(TDWBAL11),
3844     igb_putreg(TDWBAL12),
3845     igb_putreg(TDWBAL13),
3846     igb_putreg(TDWBAL14),
3847     igb_putreg(TDWBAL15),
3848     igb_putreg(TDWBAH0),
3849     igb_putreg(TDWBAH1),
3850     igb_putreg(TDWBAH2),
3851     igb_putreg(TDWBAH3),
3852     igb_putreg(TDWBAH4),
3853     igb_putreg(TDWBAH5),
3854     igb_putreg(TDWBAH6),
3855     igb_putreg(TDWBAH7),
3856     igb_putreg(TDWBAH8),
3857     igb_putreg(TDWBAH9),
3858     igb_putreg(TDWBAH10),
3859     igb_putreg(TDWBAH11),
3860     igb_putreg(TDWBAH12),
3861     igb_putreg(TDWBAH13),
3862     igb_putreg(TDWBAH14),
3863     igb_putreg(TDWBAH15),
3864     igb_putreg(TIPG),
3865     igb_putreg(RXSTMPH),
3866     igb_putreg(RXSTMPL),
3867     igb_putreg(RXSATRL),
3868     igb_putreg(RXSATRH),
3869     igb_putreg(TXSTMPL),
3870     igb_putreg(TXSTMPH),
3871     igb_putreg(SYSTIML),
3872     igb_putreg(SYSTIMH),
3873     igb_putreg(TIMADJL),
3874     igb_putreg(TSYNCRXCTL),
3875     igb_putreg(TSYNCTXCTL),
3876     igb_putreg(EEMNGCTL),
3877     igb_putreg(GPIE),
3878     igb_putreg(TXPBS),
3879     igb_putreg(RLPML),
3880     igb_putreg(VET),
3881 
3882     [TDH0]     = igb_set_16bit,
3883     [TDH1]     = igb_set_16bit,
3884     [TDH2]     = igb_set_16bit,
3885     [TDH3]     = igb_set_16bit,
3886     [TDH4]     = igb_set_16bit,
3887     [TDH5]     = igb_set_16bit,
3888     [TDH6]     = igb_set_16bit,
3889     [TDH7]     = igb_set_16bit,
3890     [TDH8]     = igb_set_16bit,
3891     [TDH9]     = igb_set_16bit,
3892     [TDH10]    = igb_set_16bit,
3893     [TDH11]    = igb_set_16bit,
3894     [TDH12]    = igb_set_16bit,
3895     [TDH13]    = igb_set_16bit,
3896     [TDH14]    = igb_set_16bit,
3897     [TDH15]    = igb_set_16bit,
3898     [TDT0]     = igb_set_tdt,
3899     [TDT1]     = igb_set_tdt,
3900     [TDT2]     = igb_set_tdt,
3901     [TDT3]     = igb_set_tdt,
3902     [TDT4]     = igb_set_tdt,
3903     [TDT5]     = igb_set_tdt,
3904     [TDT6]     = igb_set_tdt,
3905     [TDT7]     = igb_set_tdt,
3906     [TDT8]     = igb_set_tdt,
3907     [TDT9]     = igb_set_tdt,
3908     [TDT10]    = igb_set_tdt,
3909     [TDT11]    = igb_set_tdt,
3910     [TDT12]    = igb_set_tdt,
3911     [TDT13]    = igb_set_tdt,
3912     [TDT14]    = igb_set_tdt,
3913     [TDT15]    = igb_set_tdt,
3914     [MDIC]     = igb_set_mdic,
3915     [ICS]      = igb_set_ics,
3916     [RDH0]     = igb_set_16bit,
3917     [RDH1]     = igb_set_16bit,
3918     [RDH2]     = igb_set_16bit,
3919     [RDH3]     = igb_set_16bit,
3920     [RDH4]     = igb_set_16bit,
3921     [RDH5]     = igb_set_16bit,
3922     [RDH6]     = igb_set_16bit,
3923     [RDH7]     = igb_set_16bit,
3924     [RDH8]     = igb_set_16bit,
3925     [RDH9]     = igb_set_16bit,
3926     [RDH10]    = igb_set_16bit,
3927     [RDH11]    = igb_set_16bit,
3928     [RDH12]    = igb_set_16bit,
3929     [RDH13]    = igb_set_16bit,
3930     [RDH14]    = igb_set_16bit,
3931     [RDH15]    = igb_set_16bit,
3932     [RDT0]     = igb_set_rdt,
3933     [RDT1]     = igb_set_rdt,
3934     [RDT2]     = igb_set_rdt,
3935     [RDT3]     = igb_set_rdt,
3936     [RDT4]     = igb_set_rdt,
3937     [RDT5]     = igb_set_rdt,
3938     [RDT6]     = igb_set_rdt,
3939     [RDT7]     = igb_set_rdt,
3940     [RDT8]     = igb_set_rdt,
3941     [RDT9]     = igb_set_rdt,
3942     [RDT10]    = igb_set_rdt,
3943     [RDT11]    = igb_set_rdt,
3944     [RDT12]    = igb_set_rdt,
3945     [RDT13]    = igb_set_rdt,
3946     [RDT14]    = igb_set_rdt,
3947     [RDT15]    = igb_set_rdt,
3948     [IMC]      = igb_set_imc,
3949     [IMS]      = igb_set_ims,
3950     [ICR]      = igb_set_icr,
3951     [EECD]     = igb_set_eecd,
3952     [RCTL]     = igb_set_rx_control,
3953     [CTRL]     = igb_set_ctrl,
3954     [EERD]     = igb_set_eerd,
3955     [TDFH]     = igb_set_13bit,
3956     [TDFT]     = igb_set_13bit,
3957     [TDFHS]    = igb_set_13bit,
3958     [TDFTS]    = igb_set_13bit,
3959     [TDFPC]    = igb_set_13bit,
3960     [RDFH]     = igb_set_13bit,
3961     [RDFT]     = igb_set_13bit,
3962     [RDFHS]    = igb_set_13bit,
3963     [RDFTS]    = igb_set_13bit,
3964     [RDFPC]    = igb_set_13bit,
3965     [GCR]      = igb_set_gcr,
3966     [RXCSUM]   = igb_set_rxcsum,
3967     [TDLEN0]   = igb_set_dlen,
3968     [TDLEN1]   = igb_set_dlen,
3969     [TDLEN2]   = igb_set_dlen,
3970     [TDLEN3]   = igb_set_dlen,
3971     [TDLEN4]   = igb_set_dlen,
3972     [TDLEN5]   = igb_set_dlen,
3973     [TDLEN6]   = igb_set_dlen,
3974     [TDLEN7]   = igb_set_dlen,
3975     [TDLEN8]   = igb_set_dlen,
3976     [TDLEN9]   = igb_set_dlen,
3977     [TDLEN10]  = igb_set_dlen,
3978     [TDLEN11]  = igb_set_dlen,
3979     [TDLEN12]  = igb_set_dlen,
3980     [TDLEN13]  = igb_set_dlen,
3981     [TDLEN14]  = igb_set_dlen,
3982     [TDLEN15]  = igb_set_dlen,
3983     [RDLEN0]   = igb_set_dlen,
3984     [RDLEN1]   = igb_set_dlen,
3985     [RDLEN2]   = igb_set_dlen,
3986     [RDLEN3]   = igb_set_dlen,
3987     [RDLEN4]   = igb_set_dlen,
3988     [RDLEN5]   = igb_set_dlen,
3989     [RDLEN6]   = igb_set_dlen,
3990     [RDLEN7]   = igb_set_dlen,
3991     [RDLEN8]   = igb_set_dlen,
3992     [RDLEN9]   = igb_set_dlen,
3993     [RDLEN10]  = igb_set_dlen,
3994     [RDLEN11]  = igb_set_dlen,
3995     [RDLEN12]  = igb_set_dlen,
3996     [RDLEN13]  = igb_set_dlen,
3997     [RDLEN14]  = igb_set_dlen,
3998     [RDLEN15]  = igb_set_dlen,
3999     [TDBAL0]   = igb_set_dbal,
4000     [TDBAL1]   = igb_set_dbal,
4001     [TDBAL2]   = igb_set_dbal,
4002     [TDBAL3]   = igb_set_dbal,
4003     [TDBAL4]   = igb_set_dbal,
4004     [TDBAL5]   = igb_set_dbal,
4005     [TDBAL6]   = igb_set_dbal,
4006     [TDBAL7]   = igb_set_dbal,
4007     [TDBAL8]   = igb_set_dbal,
4008     [TDBAL9]   = igb_set_dbal,
4009     [TDBAL10]  = igb_set_dbal,
4010     [TDBAL11]  = igb_set_dbal,
4011     [TDBAL12]  = igb_set_dbal,
4012     [TDBAL13]  = igb_set_dbal,
4013     [TDBAL14]  = igb_set_dbal,
4014     [TDBAL15]  = igb_set_dbal,
4015     [RDBAL0]   = igb_set_dbal,
4016     [RDBAL1]   = igb_set_dbal,
4017     [RDBAL2]   = igb_set_dbal,
4018     [RDBAL3]   = igb_set_dbal,
4019     [RDBAL4]   = igb_set_dbal,
4020     [RDBAL5]   = igb_set_dbal,
4021     [RDBAL6]   = igb_set_dbal,
4022     [RDBAL7]   = igb_set_dbal,
4023     [RDBAL8]   = igb_set_dbal,
4024     [RDBAL9]   = igb_set_dbal,
4025     [RDBAL10]  = igb_set_dbal,
4026     [RDBAL11]  = igb_set_dbal,
4027     [RDBAL12]  = igb_set_dbal,
4028     [RDBAL13]  = igb_set_dbal,
4029     [RDBAL14]  = igb_set_dbal,
4030     [RDBAL15]  = igb_set_dbal,
4031     [STATUS]   = igb_set_status,
4032     [PBACLR]   = igb_set_pbaclr,
4033     [CTRL_EXT] = igb_set_ctrlext,
4034     [FCAH]     = igb_set_16bit,
4035     [FCT]      = igb_set_16bit,
4036     [FCTTV]    = igb_set_16bit,
4037     [FCRTV]    = igb_set_16bit,
4038     [FCRTH]    = igb_set_fcrth,
4039     [FCRTL]    = igb_set_fcrtl,
4040     [CTRL_DUP] = igb_set_ctrl,
4041     [RFCTL]    = igb_set_rfctl,
4042     [TIMINCA]  = igb_set_timinca,
4043     [TIMADJH]  = igb_set_timadjh,
4044 
4045     [IP6AT ... IP6AT + 3]    = igb_mac_writereg,
4046     [IP4AT ... IP4AT + 6]    = igb_mac_writereg,
4047     [RA]                     = igb_mac_writereg,
4048     [RA + 1]                 = igb_mac_setmacaddr,
4049     [RA + 2 ... RA + 31]     = igb_mac_writereg,
4050     [RA2 ... RA2 + 31]       = igb_mac_writereg,
4051     [WUPM ... WUPM + 31]     = igb_mac_writereg,
4052     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
4053     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg,
4054     [FFMT ... FFMT + 254]    = igb_set_4bit,
4055     [MDEF ... MDEF + 7]      = igb_mac_writereg,
4056     [FTFT ... FTFT + 254]    = igb_mac_writereg,
4057     [RETA ... RETA + 31]     = igb_mac_writereg,
4058     [RSSRK ... RSSRK + 9]    = igb_mac_writereg,
4059     [MAVTV0 ... MAVTV3]      = igb_mac_writereg,
4060     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr,
4061 
4062     /* IGB specific: */
4063     [FWSM]     = igb_mac_writereg,
4064     [SW_FW_SYNC] = igb_mac_writereg,
4065     [EICR] = igb_set_eicr,
4066     [EICS] = igb_set_eics,
4067     [EIAC] = igb_set_eiac,
4068     [EIAM] = igb_set_eiam,
4069     [EIMC] = igb_set_eimc,
4070     [EIMS] = igb_set_eims,
4071     [IVAR0 ... IVAR0 + 7] = igb_mac_writereg,
4072     igb_putreg(IVAR_MISC),
4073     igb_putreg(TSYNCRXCFG),
4074     [ETQF0 ... ETQF0 + 7] = igb_mac_writereg,
4075     igb_putreg(VT_CTL),
4076     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox,
4077     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox,
4078     [MBVFICR] = igb_w1c,
4079     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg,
4080     igb_putreg(MBVFIMR),
4081     [VFLRE] = igb_w1c,
4082     igb_putreg(VFRE),
4083     igb_putreg(VFTE),
4084     igb_putreg(QDE),
4085     igb_putreg(DTXSWC),
4086     igb_putreg(RPLOLR),
4087     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg,
4088     [VMVIR0 ... VMVIR7] = igb_mac_writereg,
4089     [VMOLR0 ... VMOLR7] = igb_mac_writereg,
4090     [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
4091     [PVTCTRL0] = igb_set_vtctrl,
4092     [PVTCTRL1] = igb_set_vtctrl,
4093     [PVTCTRL2] = igb_set_vtctrl,
4094     [PVTCTRL3] = igb_set_vtctrl,
4095     [PVTCTRL4] = igb_set_vtctrl,
4096     [PVTCTRL5] = igb_set_vtctrl,
4097     [PVTCTRL6] = igb_set_vtctrl,
4098     [PVTCTRL7] = igb_set_vtctrl,
4099     [PVTEICS0] = igb_set_vteics,
4100     [PVTEICS1] = igb_set_vteics,
4101     [PVTEICS2] = igb_set_vteics,
4102     [PVTEICS3] = igb_set_vteics,
4103     [PVTEICS4] = igb_set_vteics,
4104     [PVTEICS5] = igb_set_vteics,
4105     [PVTEICS6] = igb_set_vteics,
4106     [PVTEICS7] = igb_set_vteics,
4107     [PVTEIMS0] = igb_set_vteims,
4108     [PVTEIMS1] = igb_set_vteims,
4109     [PVTEIMS2] = igb_set_vteims,
4110     [PVTEIMS3] = igb_set_vteims,
4111     [PVTEIMS4] = igb_set_vteims,
4112     [PVTEIMS5] = igb_set_vteims,
4113     [PVTEIMS6] = igb_set_vteims,
4114     [PVTEIMS7] = igb_set_vteims,
4115     [PVTEIMC0] = igb_set_vteimc,
4116     [PVTEIMC1] = igb_set_vteimc,
4117     [PVTEIMC2] = igb_set_vteimc,
4118     [PVTEIMC3] = igb_set_vteimc,
4119     [PVTEIMC4] = igb_set_vteimc,
4120     [PVTEIMC5] = igb_set_vteimc,
4121     [PVTEIMC6] = igb_set_vteimc,
4122     [PVTEIMC7] = igb_set_vteimc,
4123     [PVTEIAC0] = igb_set_vteiac,
4124     [PVTEIAC1] = igb_set_vteiac,
4125     [PVTEIAC2] = igb_set_vteiac,
4126     [PVTEIAC3] = igb_set_vteiac,
4127     [PVTEIAC4] = igb_set_vteiac,
4128     [PVTEIAC5] = igb_set_vteiac,
4129     [PVTEIAC6] = igb_set_vteiac,
4130     [PVTEIAC7] = igb_set_vteiac,
4131     [PVTEIAM0] = igb_set_vteiam,
4132     [PVTEIAM1] = igb_set_vteiam,
4133     [PVTEIAM2] = igb_set_vteiam,
4134     [PVTEIAM3] = igb_set_vteiam,
4135     [PVTEIAM4] = igb_set_vteiam,
4136     [PVTEIAM5] = igb_set_vteiam,
4137     [PVTEIAM6] = igb_set_vteiam,
4138     [PVTEIAM7] = igb_set_vteiam,
4139     [PVTEICR0] = igb_set_vteicr,
4140     [PVTEICR1] = igb_set_vteicr,
4141     [PVTEICR2] = igb_set_vteicr,
4142     [PVTEICR3] = igb_set_vteicr,
4143     [PVTEICR4] = igb_set_vteicr,
4144     [PVTEICR5] = igb_set_vteicr,
4145     [PVTEICR6] = igb_set_vteicr,
4146     [PVTEICR7] = igb_set_vteicr,
4147     [VTIVAR ... VTIVAR + 7] = igb_set_vtivar,
4148     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg
4149 };
4150 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) };
4151 
4152 enum { MAC_ACCESS_PARTIAL = 1 };
4153 
4154 /*
4155  * The array below combines alias offsets of the index values for the
4156  * MAC registers that have aliases, with the indication of not fully
4157  * implemented registers (lowest bit). This combination is possible
4158  * because all of the offsets are even.
4159  */
4160 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
4161     /* Alias index offsets */
4162     [FCRTL_A] = 0x07fe,
4163     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
4164     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
4165     [RA_A ... RA_A + 31]      = 0x14f0,
4166     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
4167 
4168     [RDBAL0_A] = 0x2600,
4169     [RDBAH0_A] = 0x2600,
4170     [RDLEN0_A] = 0x2600,
4171     [SRRCTL0_A] = 0x2600,
4172     [RDH0_A] = 0x2600,
4173     [RDT0_A] = 0x2600,
4174     [RXDCTL0_A] = 0x2600,
4175     [RXCTL0_A] = 0x2600,
4176     [RQDPC0_A] = 0x2600,
4177     [RDBAL1_A] = 0x25D0,
4178     [RDBAL2_A] = 0x25A0,
4179     [RDBAL3_A] = 0x2570,
4180     [RDBAH1_A] = 0x25D0,
4181     [RDBAH2_A] = 0x25A0,
4182     [RDBAH3_A] = 0x2570,
4183     [RDLEN1_A] = 0x25D0,
4184     [RDLEN2_A] = 0x25A0,
4185     [RDLEN3_A] = 0x2570,
4186     [SRRCTL1_A] = 0x25D0,
4187     [SRRCTL2_A] = 0x25A0,
4188     [SRRCTL3_A] = 0x2570,
4189     [RDH1_A] = 0x25D0,
4190     [RDH2_A] = 0x25A0,
4191     [RDH3_A] = 0x2570,
4192     [RDT1_A] = 0x25D0,
4193     [RDT2_A] = 0x25A0,
4194     [RDT3_A] = 0x2570,
4195     [RXDCTL1_A] = 0x25D0,
4196     [RXDCTL2_A] = 0x25A0,
4197     [RXDCTL3_A] = 0x2570,
4198     [RXCTL1_A] = 0x25D0,
4199     [RXCTL2_A] = 0x25A0,
4200     [RXCTL3_A] = 0x2570,
4201     [RQDPC1_A] = 0x25D0,
4202     [RQDPC2_A] = 0x25A0,
4203     [RQDPC3_A] = 0x2570,
4204     [TDBAL0_A] = 0x2A00,
4205     [TDBAH0_A] = 0x2A00,
4206     [TDLEN0_A] = 0x2A00,
4207     [TDH0_A] = 0x2A00,
4208     [TDT0_A] = 0x2A00,
4209     [TXCTL0_A] = 0x2A00,
4210     [TDWBAL0_A] = 0x2A00,
4211     [TDWBAH0_A] = 0x2A00,
4212     [TDBAL1_A] = 0x29D0,
4213     [TDBAL2_A] = 0x29A0,
4214     [TDBAL3_A] = 0x2970,
4215     [TDBAH1_A] = 0x29D0,
4216     [TDBAH2_A] = 0x29A0,
4217     [TDBAH3_A] = 0x2970,
4218     [TDLEN1_A] = 0x29D0,
4219     [TDLEN2_A] = 0x29A0,
4220     [TDLEN3_A] = 0x2970,
4221     [TDH1_A] = 0x29D0,
4222     [TDH2_A] = 0x29A0,
4223     [TDH3_A] = 0x2970,
4224     [TDT1_A] = 0x29D0,
4225     [TDT2_A] = 0x29A0,
4226     [TDT3_A] = 0x2970,
4227     [TXDCTL0_A] = 0x2A00,
4228     [TXDCTL1_A] = 0x29D0,
4229     [TXDCTL2_A] = 0x29A0,
4230     [TXDCTL3_A] = 0x2970,
4231     [TXCTL1_A] = 0x29D0,
4232     [TXCTL2_A] = 0x29A0,
4233     [TXCTL3_A] = 0x29D0,
4234     [TDWBAL1_A] = 0x29D0,
4235     [TDWBAL2_A] = 0x29A0,
4236     [TDWBAL3_A] = 0x2970,
4237     [TDWBAH1_A] = 0x29D0,
4238     [TDWBAH2_A] = 0x29A0,
4239     [TDWBAH3_A] = 0x2970,
4240 
4241     /* Access options */
4242     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
4243     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
4244     [RDFPC] = MAC_ACCESS_PARTIAL,
4245     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
4246     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
4247     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
4248     [FLA]   = MAC_ACCESS_PARTIAL,
4249     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
4250     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
4251     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
4252     [FCRTH] = MAC_ACCESS_PARTIAL,
4253     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
4254 };
4255 
4256 void
4257 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size)
4258 {
4259     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
4260 
4261     if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) {
4262         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
4263             trace_e1000e_wrn_regs_write_trivial(index << 2);
4264         }
4265         trace_e1000e_core_write(index << 2, size, val);
4266         igb_macreg_writeops[index](core, index, val);
4267     } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
4268         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
4269     } else {
4270         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
4271     }
4272 }
4273 
4274 uint64_t
4275 igb_core_read(IGBCore *core, hwaddr addr, unsigned size)
4276 {
4277     uint64_t val;
4278     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
4279 
4280     if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
4281         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
4282             trace_e1000e_wrn_regs_read_trivial(index << 2);
4283         }
4284         val = igb_macreg_readops[index](core, index);
4285         trace_e1000e_core_read(index << 2, size, val);
4286         return val;
4287     } else {
4288         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
4289     }
4290     return 0;
4291 }
4292 
4293 static inline void
4294 igb_autoneg_pause(IGBCore *core)
4295 {
4296     timer_del(core->autoneg_timer);
4297 }
4298 
4299 static void
4300 igb_autoneg_resume(IGBCore *core)
4301 {
4302     if (igb_have_autoneg(core) &&
4303         !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
4304         qemu_get_queue(core->owner_nic)->link_down = false;
4305         timer_mod(core->autoneg_timer,
4306                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
4307     }
4308 }
4309 
4310 static void
4311 igb_vm_state_change(void *opaque, bool running, RunState state)
4312 {
4313     IGBCore *core = opaque;
4314 
4315     if (running) {
4316         trace_e1000e_vm_state_running();
4317         igb_intrmgr_resume(core);
4318         igb_autoneg_resume(core);
4319     } else {
4320         trace_e1000e_vm_state_stopped();
4321         igb_autoneg_pause(core);
4322         igb_intrmgr_pause(core);
4323     }
4324 }
4325 
4326 void
4327 igb_core_pci_realize(IGBCore        *core,
4328                      const uint16_t *eeprom_templ,
4329                      uint32_t        eeprom_size,
4330                      const uint8_t  *macaddr)
4331 {
4332     int i;
4333 
4334     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
4335                                        igb_autoneg_timer, core);
4336     igb_intrmgr_pci_realize(core);
4337 
4338     core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core);
4339 
4340     for (i = 0; i < IGB_NUM_QUEUES; i++) {
4341         net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
4342     }
4343 
4344     net_rx_pkt_init(&core->rx_pkt);
4345 
4346     e1000x_core_prepare_eeprom(core->eeprom,
4347                                eeprom_templ,
4348                                eeprom_size,
4349                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
4350                                macaddr);
4351     igb_update_rx_offloads(core);
4352 }
4353 
4354 void
4355 igb_core_pci_uninit(IGBCore *core)
4356 {
4357     int i;
4358 
4359     timer_free(core->autoneg_timer);
4360 
4361     igb_intrmgr_pci_unint(core);
4362 
4363     qemu_del_vm_change_state_handler(core->vmstate);
4364 
4365     for (i = 0; i < IGB_NUM_QUEUES; i++) {
4366         net_tx_pkt_uninit(core->tx[i].tx_pkt);
4367     }
4368 
4369     net_rx_pkt_uninit(core->rx_pkt);
4370 }
4371 
4372 static const uint16_t
4373 igb_phy_reg_init[] = {
4374     [MII_BMCR] = MII_BMCR_SPEED1000 |
4375                  MII_BMCR_FD        |
4376                  MII_BMCR_AUTOEN,
4377 
4378     [MII_BMSR] = MII_BMSR_EXTCAP    |
4379                  MII_BMSR_LINK_ST   |
4380                  MII_BMSR_AUTONEG   |
4381                  MII_BMSR_MFPS      |
4382                  MII_BMSR_EXTSTAT   |
4383                  MII_BMSR_10T_HD    |
4384                  MII_BMSR_10T_FD    |
4385                  MII_BMSR_100TX_HD  |
4386                  MII_BMSR_100TX_FD,
4387 
4388     [MII_PHYID1]            = IGP03E1000_E_PHY_ID >> 16,
4389     [MII_PHYID2]            = (IGP03E1000_E_PHY_ID & 0xfff0) | 1,
4390     [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
4391                               MII_ANAR_10FD | MII_ANAR_TX |
4392                               MII_ANAR_TXFD | MII_ANAR_PAUSE |
4393                               MII_ANAR_PAUSE_ASYM,
4394     [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
4395                               MII_ANLPAR_TX | MII_ANLPAR_TXFD |
4396                               MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
4397     [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
4398     [MII_ANNP]              = 0x1 | MII_ANNP_MP,
4399     [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
4400                               MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
4401     [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
4402                               MII_STAT1000_ROK | MII_STAT1000_LOK,
4403     [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
4404 
4405     [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8),
4406     [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS,
4407     [IGP02E1000_PHY_POWER_MGMT]  = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU |
4408                                    IGP01E1000_PSCFR_SMART_SPEED
4409 };
4410 
4411 static const uint32_t igb_mac_reg_init[] = {
4412     [LEDCTL]        = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24),
4413     [EEMNGCTL]      = BIT(31),
4414     [TXDCTL0]       = E1000_TXDCTL_QUEUE_ENABLE,
4415     [RXDCTL0]       = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16),
4416     [RXDCTL1]       = 1 << 16,
4417     [RXDCTL2]       = 1 << 16,
4418     [RXDCTL3]       = 1 << 16,
4419     [RXDCTL4]       = 1 << 16,
4420     [RXDCTL5]       = 1 << 16,
4421     [RXDCTL6]       = 1 << 16,
4422     [RXDCTL7]       = 1 << 16,
4423     [RXDCTL8]       = 1 << 16,
4424     [RXDCTL9]       = 1 << 16,
4425     [RXDCTL10]      = 1 << 16,
4426     [RXDCTL11]      = 1 << 16,
4427     [RXDCTL12]      = 1 << 16,
4428     [RXDCTL13]      = 1 << 16,
4429     [RXDCTL14]      = 1 << 16,
4430     [RXDCTL15]      = 1 << 16,
4431     [TIPG]          = 0x08 | (0x04 << 10) | (0x06 << 20),
4432     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 |
4433                       E1000_CTRL_ADVD3WUC,
4434     [STATUS]        = E1000_STATUS_PHYRA | BIT(31),
4435     [EECD]          = E1000_EECD_FWE_DIS | E1000_EECD_PRES |
4436                       (2 << E1000_EECD_SIZE_EX_SHIFT),
4437     [GCR]           = E1000_L0S_ADJUST |
4438                       E1000_GCR_CMPL_TMOUT_RESEND |
4439                       E1000_GCR_CAP_VER2 |
4440                       E1000_L1_ENTRY_LATENCY_MSB |
4441                       E1000_L1_ENTRY_LATENCY_LSB,
4442     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
4443     [TXPBS]         = 0x28,
4444     [RXPBS]         = 0x40,
4445     [TCTL]          = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) |
4446                       (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28),
4447     [TCTL_EXT]      = 0x40 | (0x42 << 10),
4448     [DTXCTL]        = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT,
4449     [VET]           = ETH_P_VLAN | (ETH_P_VLAN << 16),
4450 
4451     [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI,
4452     [MBVFIMR]       = 0xFF,
4453     [VFRE]          = 0xFF,
4454     [VFTE]          = 0xFF,
4455     [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC,
4456     [RPLOLR]        = E1000_RPLOLR_STRCRC,
4457     [RLPML]         = 0x2600,
4458     [TXCTL0]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4459                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4460                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4461     [TXCTL1]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4462                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4463                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4464     [TXCTL2]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4465                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4466                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4467     [TXCTL3]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4468                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4469                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4470     [TXCTL4]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4471                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4472                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4473     [TXCTL5]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4474                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4475                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4476     [TXCTL6]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4477                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4478                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4479     [TXCTL7]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4480                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4481                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4482     [TXCTL8]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4483                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4484                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4485     [TXCTL9]        = E1000_DCA_TXCTRL_DATA_RRO_EN |
4486                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4487                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4488     [TXCTL10]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4489                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4490                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4491     [TXCTL11]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4492                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4493                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4494     [TXCTL12]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4495                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4496                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4497     [TXCTL13]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4498                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4499                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4500     [TXCTL14]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4501                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4502                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4503     [TXCTL15]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4504                       E1000_DCA_TXCTRL_TX_WB_RO_EN |
4505                       E1000_DCA_TXCTRL_DESC_RRO_EN,
4506 };
4507 
4508 static void igb_reset(IGBCore *core, bool sw)
4509 {
4510     struct igb_tx *tx;
4511     int i;
4512 
4513     timer_del(core->autoneg_timer);
4514 
4515     igb_intrmgr_reset(core);
4516 
4517     memset(core->phy, 0, sizeof core->phy);
4518     memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init);
4519 
4520     for (i = 0; i < E1000E_MAC_SIZE; i++) {
4521         if (sw &&
4522             (i == RXPBS || i == TXPBS ||
4523              (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) {
4524             continue;
4525         }
4526 
4527         core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ?
4528                        igb_mac_reg_init[i] : 0;
4529     }
4530 
4531     if (qemu_get_queue(core->owner_nic)->link_down) {
4532         igb_link_down(core);
4533     }
4534 
4535     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
4536 
4537     for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
4538         /* Set RSTI, so VF can identify a PF reset is in progress */
4539         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI;
4540     }
4541 
4542     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4543         tx = &core->tx[i];
4544         memset(tx->ctx, 0, sizeof(tx->ctx));
4545         tx->first = true;
4546         tx->skip_cp = false;
4547     }
4548 }
4549 
4550 void
4551 igb_core_reset(IGBCore *core)
4552 {
4553     igb_reset(core, false);
4554 }
4555 
4556 void igb_core_pre_save(IGBCore *core)
4557 {
4558     int i;
4559     NetClientState *nc = qemu_get_queue(core->owner_nic);
4560 
4561     /*
4562      * If link is down and auto-negotiation is supported and ongoing,
4563      * complete auto-negotiation immediately. This allows us to look
4564      * at MII_BMSR_AN_COMP to infer link status on load.
4565      */
4566     if (nc->link_down && igb_have_autoneg(core)) {
4567         core->phy[MII_BMSR] |= MII_BMSR_AN_COMP;
4568         igb_update_flowctl_status(core);
4569     }
4570 
4571     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4572         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
4573             core->tx[i].skip_cp = true;
4574         }
4575     }
4576 }
4577 
4578 int
4579 igb_core_post_load(IGBCore *core)
4580 {
4581     NetClientState *nc = qemu_get_queue(core->owner_nic);
4582 
4583     /*
4584      * nc.link_down can't be migrated, so infer link_down according
4585      * to link status bit in core.mac[STATUS].
4586      */
4587     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
4588 
4589     return 0;
4590 }
4591