1 /* 2 * Core code for QEMU igb emulation 3 * 4 * Datasheet: 5 * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf 6 * 7 * Copyright (c) 2020-2023 Red Hat, Inc. 8 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) 9 * Developed by Daynix Computing LTD (http://www.daynix.com) 10 * 11 * Authors: 12 * Akihiko Odaki <akihiko.odaki@daynix.com> 13 * Gal Hammmer <gal.hammer@sap.com> 14 * Marcel Apfelbaum <marcel.apfelbaum@gmail.com> 15 * Dmitry Fleytman <dmitry@daynix.com> 16 * Leonid Bloch <leonid@daynix.com> 17 * Yan Vugenfirer <yan@daynix.com> 18 * 19 * Based on work done by: 20 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 21 * Copyright (c) 2008 Qumranet 22 * Based on work done by: 23 * Copyright (c) 2007 Dan Aloni 24 * Copyright (c) 2004 Antony T Curtis 25 * 26 * This library is free software; you can redistribute it and/or 27 * modify it under the terms of the GNU Lesser General Public 28 * License as published by the Free Software Foundation; either 29 * version 2.1 of the License, or (at your option) any later version. 30 * 31 * This library is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 34 * Lesser General Public License for more details. 35 * 36 * You should have received a copy of the GNU Lesser General Public 37 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 38 */ 39 40 #include "qemu/osdep.h" 41 #include "qemu/log.h" 42 #include "net/net.h" 43 #include "net/tap.h" 44 #include "hw/net/mii.h" 45 #include "hw/pci/msi.h" 46 #include "hw/pci/msix.h" 47 #include "sysemu/runstate.h" 48 49 #include "net_tx_pkt.h" 50 #include "net_rx_pkt.h" 51 52 #include "igb_common.h" 53 #include "e1000x_common.h" 54 #include "igb_core.h" 55 56 #include "trace.h" 57 58 #define E1000E_MAX_TX_FRAGS (64) 59 60 union e1000_rx_desc_union { 61 struct e1000_rx_desc legacy; 62 union e1000_adv_rx_desc adv; 63 }; 64 65 typedef struct IGBTxPktVmdqCallbackContext { 66 IGBCore *core; 67 NetClientState *nc; 68 } IGBTxPktVmdqCallbackContext; 69 70 typedef struct L2Header { 71 struct eth_header eth; 72 struct vlan_header vlan[2]; 73 } L2Header; 74 75 typedef struct PTP2 { 76 uint8_t message_id_transport_specific; 77 uint8_t version_ptp; 78 uint16_t message_length; 79 uint8_t subdomain_number; 80 uint8_t reserved0; 81 uint16_t flags; 82 uint64_t correction; 83 uint8_t reserved1[5]; 84 uint8_t source_communication_technology; 85 uint32_t source_uuid_lo; 86 uint16_t source_uuid_hi; 87 uint16_t source_port_id; 88 uint16_t sequence_id; 89 uint8_t control; 90 uint8_t log_message_period; 91 } PTP2; 92 93 static ssize_t 94 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt, 95 bool has_vnet, bool *external_tx); 96 97 static void igb_raise_interrupts(IGBCore *core, size_t index, uint32_t causes); 98 static void igb_reset(IGBCore *core, bool sw); 99 100 static inline void 101 igb_raise_legacy_irq(IGBCore *core) 102 { 103 trace_e1000e_irq_legacy_notify(true); 104 e1000x_inc_reg_if_not_full(core->mac, IAC); 105 pci_set_irq(core->owner, 1); 106 } 107 108 static inline void 109 igb_lower_legacy_irq(IGBCore *core) 110 { 111 trace_e1000e_irq_legacy_notify(false); 112 pci_set_irq(core->owner, 0); 113 } 114 115 static void igb_msix_notify(IGBCore *core, unsigned int cause) 116 { 117 PCIDevice *dev = core->owner; 118 uint16_t vfn; 119 uint32_t effective_eiac; 120 unsigned int vector; 121 122 vfn = 8 - (cause + 2) / IGBVF_MSIX_VEC_NUM; 123 if (vfn < pcie_sriov_num_vfs(core->owner)) { 124 dev = pcie_sriov_get_vf_at_index(core->owner, vfn); 125 assert(dev); 126 vector = (cause + 2) % IGBVF_MSIX_VEC_NUM; 127 } else if (cause >= IGB_MSIX_VEC_NUM) { 128 qemu_log_mask(LOG_GUEST_ERROR, 129 "igb: Tried to use vector unavailable for PF"); 130 return; 131 } else { 132 vector = cause; 133 } 134 135 msix_notify(dev, vector); 136 137 trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]); 138 effective_eiac = core->mac[EIAC] & BIT(cause); 139 core->mac[EICR] &= ~effective_eiac; 140 } 141 142 static inline void 143 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer) 144 { 145 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] * 146 timer->delay_resolution_ns; 147 148 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns); 149 150 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns); 151 152 timer->running = true; 153 } 154 155 static void 156 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer) 157 { 158 if (timer->running) { 159 igb_intrmgr_rearm_timer(timer); 160 } 161 } 162 163 static void 164 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer) 165 { 166 if (timer->running) { 167 timer_del(timer->timer); 168 } 169 } 170 171 static void 172 igb_intrmgr_on_msix_throttling_timer(void *opaque) 173 { 174 IGBIntrDelayTimer *timer = opaque; 175 int idx = timer - &timer->core->eitr[0]; 176 177 timer->running = false; 178 179 trace_e1000e_irq_msix_notify_postponed_vec(idx); 180 igb_msix_notify(timer->core, idx); 181 } 182 183 static void 184 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create) 185 { 186 int i; 187 188 for (i = 0; i < IGB_INTR_NUM; i++) { 189 core->eitr[i].core = core; 190 core->eitr[i].delay_reg = EITR0 + i; 191 core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 192 } 193 194 if (!create) { 195 return; 196 } 197 198 for (i = 0; i < IGB_INTR_NUM; i++) { 199 core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 200 igb_intrmgr_on_msix_throttling_timer, 201 &core->eitr[i]); 202 } 203 } 204 205 static void 206 igb_intrmgr_resume(IGBCore *core) 207 { 208 int i; 209 210 for (i = 0; i < IGB_INTR_NUM; i++) { 211 igb_intmgr_timer_resume(&core->eitr[i]); 212 } 213 } 214 215 static void 216 igb_intrmgr_pause(IGBCore *core) 217 { 218 int i; 219 220 for (i = 0; i < IGB_INTR_NUM; i++) { 221 igb_intmgr_timer_pause(&core->eitr[i]); 222 } 223 } 224 225 static void 226 igb_intrmgr_reset(IGBCore *core) 227 { 228 int i; 229 230 for (i = 0; i < IGB_INTR_NUM; i++) { 231 if (core->eitr[i].running) { 232 timer_del(core->eitr[i].timer); 233 igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]); 234 } 235 } 236 } 237 238 static void 239 igb_intrmgr_pci_unint(IGBCore *core) 240 { 241 int i; 242 243 for (i = 0; i < IGB_INTR_NUM; i++) { 244 timer_free(core->eitr[i].timer); 245 } 246 } 247 248 static void 249 igb_intrmgr_pci_realize(IGBCore *core) 250 { 251 igb_intrmgr_initialize_all_timers(core, true); 252 } 253 254 static inline bool 255 igb_rx_csum_enabled(IGBCore *core) 256 { 257 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true; 258 } 259 260 static inline bool 261 igb_rx_use_legacy_descriptor(IGBCore *core) 262 { 263 /* 264 * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx 265 * descriptor. 266 */ 267 return false; 268 } 269 270 static inline bool 271 igb_rss_enabled(IGBCore *core) 272 { 273 return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ && 274 !igb_rx_csum_enabled(core) && 275 !igb_rx_use_legacy_descriptor(core); 276 } 277 278 typedef struct E1000E_RSSInfo_st { 279 bool enabled; 280 uint32_t hash; 281 uint32_t queue; 282 uint32_t type; 283 } E1000E_RSSInfo; 284 285 static uint32_t 286 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt) 287 { 288 bool hasip4, hasip6; 289 EthL4HdrProto l4hdr_proto; 290 291 assert(igb_rss_enabled(core)); 292 293 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); 294 295 if (hasip4) { 296 trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC], 297 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]), 298 E1000_MRQC_EN_IPV4(core->mac[MRQC])); 299 300 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && 301 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) { 302 return E1000_MRQ_RSS_TYPE_IPV4TCP; 303 } 304 305 if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP && 306 (core->mac[MRQC] & E1000_MRQC_RSS_FIELD_IPV4_UDP)) { 307 return E1000_MRQ_RSS_TYPE_IPV4UDP; 308 } 309 310 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) { 311 return E1000_MRQ_RSS_TYPE_IPV4; 312 } 313 } else if (hasip6) { 314 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt); 315 316 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS; 317 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS; 318 319 /* 320 * Following two traces must not be combined because resulting 321 * event will have 11 arguments totally and some trace backends 322 * (at least "ust") have limitation of maximum 10 arguments per 323 * event. Events with more arguments fail to compile for 324 * backends like these. 325 */ 326 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]); 327 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto, 328 ip6info->has_ext_hdrs, 329 ip6info->rss_ex_dst_valid, 330 ip6info->rss_ex_src_valid, 331 core->mac[MRQC], 332 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]), 333 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]), 334 E1000_MRQC_EN_IPV6(core->mac[MRQC])); 335 336 if ((!ex_dis || !ip6info->has_ext_hdrs) && 337 (!new_ex_dis || !(ip6info->rss_ex_dst_valid || 338 ip6info->rss_ex_src_valid))) { 339 340 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && 341 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) { 342 return E1000_MRQ_RSS_TYPE_IPV6TCPEX; 343 } 344 345 if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP && 346 (core->mac[MRQC] & E1000_MRQC_RSS_FIELD_IPV6_UDP)) { 347 return E1000_MRQ_RSS_TYPE_IPV6UDP; 348 } 349 350 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) { 351 return E1000_MRQ_RSS_TYPE_IPV6EX; 352 } 353 354 } 355 356 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) { 357 return E1000_MRQ_RSS_TYPE_IPV6; 358 } 359 360 } 361 362 return E1000_MRQ_RSS_TYPE_NONE; 363 } 364 365 static uint32_t 366 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info) 367 { 368 NetRxPktRssType type; 369 370 assert(igb_rss_enabled(core)); 371 372 switch (info->type) { 373 case E1000_MRQ_RSS_TYPE_IPV4: 374 type = NetPktRssIpV4; 375 break; 376 case E1000_MRQ_RSS_TYPE_IPV4TCP: 377 type = NetPktRssIpV4Tcp; 378 break; 379 case E1000_MRQ_RSS_TYPE_IPV6TCPEX: 380 type = NetPktRssIpV6TcpEx; 381 break; 382 case E1000_MRQ_RSS_TYPE_IPV6: 383 type = NetPktRssIpV6; 384 break; 385 case E1000_MRQ_RSS_TYPE_IPV6EX: 386 type = NetPktRssIpV6Ex; 387 break; 388 case E1000_MRQ_RSS_TYPE_IPV4UDP: 389 type = NetPktRssIpV4Udp; 390 break; 391 case E1000_MRQ_RSS_TYPE_IPV6UDP: 392 type = NetPktRssIpV6Udp; 393 break; 394 default: 395 assert(false); 396 return 0; 397 } 398 399 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]); 400 } 401 402 static void 403 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx, 404 E1000E_RSSInfo *info) 405 { 406 trace_e1000e_rx_rss_started(); 407 408 if (tx || !igb_rss_enabled(core)) { 409 info->enabled = false; 410 info->hash = 0; 411 info->queue = 0; 412 info->type = 0; 413 trace_e1000e_rx_rss_disabled(); 414 return; 415 } 416 417 info->enabled = true; 418 419 info->type = igb_rss_get_hash_type(core, pkt); 420 421 trace_e1000e_rx_rss_type(info->type); 422 423 if (info->type == E1000_MRQ_RSS_TYPE_NONE) { 424 info->hash = 0; 425 info->queue = 0; 426 return; 427 } 428 429 info->hash = igb_rss_calc_hash(core, pkt, info); 430 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash); 431 } 432 433 static void 434 igb_tx_insert_vlan(IGBCore *core, uint16_t qn, struct igb_tx *tx, 435 uint16_t vlan, bool insert_vlan) 436 { 437 if (core->mac[MRQC] & 1) { 438 uint16_t pool = qn % IGB_NUM_VM_POOLS; 439 440 if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_DEFAULT) { 441 /* always insert default VLAN */ 442 insert_vlan = true; 443 vlan = core->mac[VMVIR0 + pool] & 0xffff; 444 } else if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_NEVER) { 445 insert_vlan = false; 446 } 447 } 448 449 if (insert_vlan) { 450 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan, 451 core->mac[VET] & 0xffff); 452 } 453 } 454 455 static bool 456 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx) 457 { 458 uint32_t idx = (tx->first_olinfo_status >> 4) & 1; 459 460 if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) { 461 uint32_t mss = tx->ctx[idx].mss_l4len_idx >> E1000_ADVTXD_MSS_SHIFT; 462 if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) { 463 return false; 464 } 465 466 net_tx_pkt_update_ip_checksums(tx->tx_pkt); 467 e1000x_inc_reg_if_not_full(core->mac, TSCTC); 468 return true; 469 } 470 471 if ((tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) && 472 !((tx->ctx[idx].type_tucmd_mlhl & E1000_ADVTXD_TUCMD_L4T_SCTP) ? 473 net_tx_pkt_update_sctp_checksum(tx->tx_pkt) : 474 net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0))) { 475 return false; 476 } 477 478 if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) { 479 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); 480 } 481 482 return true; 483 } 484 485 static void igb_tx_pkt_mac_callback(void *core, 486 const struct iovec *iov, 487 int iovcnt, 488 const struct iovec *virt_iov, 489 int virt_iovcnt) 490 { 491 igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL); 492 } 493 494 static void igb_tx_pkt_vmdq_callback(void *opaque, 495 const struct iovec *iov, 496 int iovcnt, 497 const struct iovec *virt_iov, 498 int virt_iovcnt) 499 { 500 IGBTxPktVmdqCallbackContext *context = opaque; 501 bool external_tx; 502 503 igb_receive_internal(context->core, virt_iov, virt_iovcnt, true, 504 &external_tx); 505 506 if (external_tx) { 507 if (context->core->has_vnet) { 508 qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt); 509 } else { 510 qemu_sendv_packet(context->nc, iov, iovcnt); 511 } 512 } 513 } 514 515 /* TX Packets Switching (7.10.3.6) */ 516 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx, 517 NetClientState *nc) 518 { 519 IGBTxPktVmdqCallbackContext context; 520 521 /* TX switching is only used to serve VM to VM traffic. */ 522 if (!(core->mac[MRQC] & 1)) { 523 goto send_out; 524 } 525 526 /* TX switching requires DTXSWC.Loopback_en bit enabled. */ 527 if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) { 528 goto send_out; 529 } 530 531 context.core = core; 532 context.nc = nc; 533 534 return net_tx_pkt_send_custom(tx->tx_pkt, false, 535 igb_tx_pkt_vmdq_callback, &context); 536 537 send_out: 538 return net_tx_pkt_send(tx->tx_pkt, nc); 539 } 540 541 static bool 542 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index) 543 { 544 int target_queue = MIN(core->max_queue_num, queue_index); 545 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue); 546 547 if (!igb_setup_tx_offloads(core, tx)) { 548 return false; 549 } 550 551 net_tx_pkt_dump(tx->tx_pkt); 552 553 if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) || 554 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) { 555 return net_tx_pkt_send_custom(tx->tx_pkt, false, 556 igb_tx_pkt_mac_callback, core); 557 } else { 558 return igb_tx_pkt_switch(core, tx, queue); 559 } 560 } 561 562 static void 563 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt, int qn) 564 { 565 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 566 PTC1023, PTC1522 }; 567 568 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4; 569 570 e1000x_increase_size_stats(core->mac, PTCregs, tot_len); 571 e1000x_inc_reg_if_not_full(core->mac, TPT); 572 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len); 573 574 switch (net_tx_pkt_get_packet_type(tx_pkt)) { 575 case ETH_PKT_BCAST: 576 e1000x_inc_reg_if_not_full(core->mac, BPTC); 577 break; 578 case ETH_PKT_MCAST: 579 e1000x_inc_reg_if_not_full(core->mac, MPTC); 580 break; 581 case ETH_PKT_UCAST: 582 break; 583 default: 584 g_assert_not_reached(); 585 } 586 587 e1000x_inc_reg_if_not_full(core->mac, GPTC); 588 e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len); 589 590 if (core->mac[MRQC] & 1) { 591 uint16_t pool = qn % IGB_NUM_VM_POOLS; 592 593 core->mac[PVFGOTC0 + (pool * 64)] += tot_len; 594 core->mac[PVFGPTC0 + (pool * 64)]++; 595 } 596 } 597 598 static void 599 igb_process_tx_desc(IGBCore *core, 600 PCIDevice *dev, 601 struct igb_tx *tx, 602 union e1000_adv_tx_desc *tx_desc, 603 int queue_index) 604 { 605 struct e1000_adv_tx_context_desc *tx_ctx_desc; 606 uint32_t cmd_type_len; 607 uint32_t idx; 608 uint64_t buffer_addr; 609 uint16_t length; 610 611 cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len); 612 613 if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) { 614 if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) == 615 E1000_ADVTXD_DTYP_DATA) { 616 /* advanced transmit data descriptor */ 617 if (tx->first) { 618 tx->first_cmd_type_len = cmd_type_len; 619 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status); 620 tx->first = false; 621 } 622 } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) == 623 E1000_ADVTXD_DTYP_CTXT) { 624 /* advanced transmit context descriptor */ 625 tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc; 626 idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1; 627 tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens); 628 tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed); 629 tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl); 630 tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx); 631 return; 632 } else { 633 /* unknown descriptor type */ 634 return; 635 } 636 } else { 637 /* legacy descriptor */ 638 639 /* TODO: Implement a support for legacy descriptors (7.2.2.1). */ 640 } 641 642 buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr); 643 length = cmd_type_len & 0xFFFF; 644 645 if (!tx->skip_cp) { 646 if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, dev, 647 buffer_addr, length)) { 648 tx->skip_cp = true; 649 } 650 } 651 652 if (cmd_type_len & E1000_TXD_CMD_EOP) { 653 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) { 654 idx = (tx->first_olinfo_status >> 4) & 1; 655 igb_tx_insert_vlan(core, queue_index, tx, 656 tx->ctx[idx].vlan_macip_lens >> IGB_TX_FLAGS_VLAN_SHIFT, 657 !!(tx->first_cmd_type_len & E1000_TXD_CMD_VLE)); 658 659 if ((tx->first_cmd_type_len & E1000_ADVTXD_MAC_TSTAMP) && 660 (core->mac[TSYNCTXCTL] & E1000_TSYNCTXCTL_ENABLED) && 661 !(core->mac[TSYNCTXCTL] & E1000_TSYNCTXCTL_VALID)) { 662 core->mac[TSYNCTXCTL] |= E1000_TSYNCTXCTL_VALID; 663 e1000x_timestamp(core->mac, core->timadj, TXSTMPL, TXSTMPH); 664 } 665 666 if (igb_tx_pkt_send(core, tx, queue_index)) { 667 igb_on_tx_done_update_stats(core, tx->tx_pkt, queue_index); 668 } 669 } 670 671 tx->first = true; 672 tx->skip_cp = false; 673 net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, dev); 674 } 675 } 676 677 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx) 678 { 679 uint32_t n, ent = 0; 680 681 n = igb_ivar_entry_tx(queue_idx); 682 ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff; 683 684 return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0; 685 } 686 687 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx) 688 { 689 uint32_t n, ent = 0; 690 691 n = igb_ivar_entry_rx(queue_idx); 692 ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff; 693 694 return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0; 695 } 696 697 typedef struct E1000E_RingInfo_st { 698 int dbah; 699 int dbal; 700 int dlen; 701 int dh; 702 int dt; 703 int idx; 704 } E1000E_RingInfo; 705 706 static inline bool 707 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r) 708 { 709 return core->mac[r->dh] == core->mac[r->dt] || 710 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN; 711 } 712 713 static inline uint64_t 714 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r) 715 { 716 uint64_t bah = core->mac[r->dbah]; 717 uint64_t bal = core->mac[r->dbal]; 718 719 return (bah << 32) + bal; 720 } 721 722 static inline uint64_t 723 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r) 724 { 725 return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh]; 726 } 727 728 static inline void 729 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count) 730 { 731 core->mac[r->dh] += count; 732 733 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) { 734 core->mac[r->dh] = 0; 735 } 736 } 737 738 static inline uint32_t 739 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r) 740 { 741 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen], 742 core->mac[r->dh], core->mac[r->dt]); 743 744 if (core->mac[r->dh] <= core->mac[r->dt]) { 745 return core->mac[r->dt] - core->mac[r->dh]; 746 } 747 748 if (core->mac[r->dh] > core->mac[r->dt]) { 749 return core->mac[r->dlen] / E1000_RING_DESC_LEN + 750 core->mac[r->dt] - core->mac[r->dh]; 751 } 752 753 g_assert_not_reached(); 754 return 0; 755 } 756 757 static inline bool 758 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r) 759 { 760 return core->mac[r->dlen] > 0; 761 } 762 763 typedef struct IGB_TxRing_st { 764 const E1000E_RingInfo *i; 765 struct igb_tx *tx; 766 } IGB_TxRing; 767 768 static inline int 769 igb_mq_queue_idx(int base_reg_idx, int reg_idx) 770 { 771 return (reg_idx - base_reg_idx) / 16; 772 } 773 774 static inline void 775 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx) 776 { 777 static const E1000E_RingInfo i[IGB_NUM_QUEUES] = { 778 { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 }, 779 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }, 780 { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 }, 781 { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 }, 782 { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 }, 783 { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 }, 784 { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 }, 785 { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 }, 786 { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 }, 787 { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 }, 788 { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 }, 789 { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 }, 790 { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 }, 791 { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 }, 792 { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 }, 793 { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 } 794 }; 795 796 assert(idx < ARRAY_SIZE(i)); 797 798 txr->i = &i[idx]; 799 txr->tx = &core->tx[idx]; 800 } 801 802 typedef struct E1000E_RxRing_st { 803 const E1000E_RingInfo *i; 804 } E1000E_RxRing; 805 806 static inline void 807 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx) 808 { 809 static const E1000E_RingInfo i[IGB_NUM_QUEUES] = { 810 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 }, 811 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }, 812 { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 }, 813 { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 }, 814 { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 }, 815 { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 }, 816 { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 }, 817 { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 }, 818 { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 }, 819 { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 }, 820 { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 }, 821 { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 }, 822 { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 }, 823 { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 }, 824 { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 }, 825 { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 } 826 }; 827 828 assert(idx < ARRAY_SIZE(i)); 829 830 rxr->i = &i[idx]; 831 } 832 833 static uint32_t 834 igb_txdesc_writeback(IGBCore *core, dma_addr_t base, 835 union e1000_adv_tx_desc *tx_desc, 836 const E1000E_RingInfo *txi) 837 { 838 PCIDevice *d; 839 uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len); 840 uint64_t tdwba; 841 842 tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2]; 843 tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32; 844 845 if (!(cmd_type_len & E1000_TXD_CMD_RS)) { 846 return 0; 847 } 848 849 d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8); 850 if (!d) { 851 d = core->owner; 852 } 853 854 if (tdwba & 1) { 855 uint32_t buffer = cpu_to_le32(core->mac[txi->dh]); 856 pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer)); 857 } else { 858 uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD; 859 860 tx_desc->wb.status = cpu_to_le32(status); 861 pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb), 862 &tx_desc->wb, sizeof(tx_desc->wb)); 863 } 864 865 return igb_tx_wb_eic(core, txi->idx); 866 } 867 868 static inline bool 869 igb_tx_enabled(IGBCore *core, const E1000E_RingInfo *txi) 870 { 871 bool vmdq = core->mac[MRQC] & 1; 872 uint16_t qn = txi->idx; 873 uint16_t pool = qn % IGB_NUM_VM_POOLS; 874 875 return (core->mac[TCTL] & E1000_TCTL_EN) && 876 (!vmdq || core->mac[VFTE] & BIT(pool)) && 877 (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE); 878 } 879 880 static void 881 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr) 882 { 883 PCIDevice *d; 884 dma_addr_t base; 885 union e1000_adv_tx_desc desc; 886 const E1000E_RingInfo *txi = txr->i; 887 uint32_t eic = 0; 888 889 if (!igb_tx_enabled(core, txi)) { 890 trace_e1000e_tx_disabled(); 891 return; 892 } 893 894 d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8); 895 if (!d) { 896 d = core->owner; 897 } 898 899 while (!igb_ring_empty(core, txi)) { 900 base = igb_ring_head_descr(core, txi); 901 902 pci_dma_read(d, base, &desc, sizeof(desc)); 903 904 trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr, 905 desc.read.cmd_type_len, desc.wb.status); 906 907 igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx); 908 igb_ring_advance(core, txi, 1); 909 eic |= igb_txdesc_writeback(core, base, &desc, txi); 910 } 911 912 if (eic) { 913 igb_raise_interrupts(core, EICR, eic); 914 igb_raise_interrupts(core, ICR, E1000_ICR_TXDW); 915 } 916 917 net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, d); 918 } 919 920 static uint32_t 921 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r) 922 { 923 uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2]; 924 uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK; 925 if (bsizepkt) { 926 return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT; 927 } 928 929 return e1000x_rxbufsize(core->mac[RCTL]); 930 } 931 932 static bool 933 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size) 934 { 935 uint32_t bufs = igb_ring_free_descr_num(core, r); 936 uint32_t bufsize = igb_rxbufsize(core, r); 937 938 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize); 939 940 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) * 941 bufsize; 942 } 943 944 void 945 igb_start_recv(IGBCore *core) 946 { 947 int i; 948 949 trace_e1000e_rx_start_recv(); 950 951 for (i = 0; i <= core->max_queue_num; i++) { 952 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i)); 953 } 954 } 955 956 bool 957 igb_can_receive(IGBCore *core) 958 { 959 int i; 960 961 if (!e1000x_rx_ready(core->owner, core->mac)) { 962 return false; 963 } 964 965 for (i = 0; i < IGB_NUM_QUEUES; i++) { 966 E1000E_RxRing rxr; 967 if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) { 968 continue; 969 } 970 971 igb_rx_ring_init(core, &rxr, i); 972 if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) { 973 trace_e1000e_rx_can_recv(); 974 return true; 975 } 976 } 977 978 trace_e1000e_rx_can_recv_rings_full(); 979 return false; 980 } 981 982 ssize_t 983 igb_receive(IGBCore *core, const uint8_t *buf, size_t size) 984 { 985 const struct iovec iov = { 986 .iov_base = (uint8_t *)buf, 987 .iov_len = size 988 }; 989 990 return igb_receive_iov(core, &iov, 1); 991 } 992 993 static inline bool 994 igb_rx_l3_cso_enabled(IGBCore *core) 995 { 996 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD); 997 } 998 999 static inline bool 1000 igb_rx_l4_cso_enabled(IGBCore *core) 1001 { 1002 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD); 1003 } 1004 1005 static bool igb_rx_is_oversized(IGBCore *core, const struct eth_header *ehdr, 1006 size_t size, size_t vlan_num, 1007 bool lpe, uint16_t rlpml) 1008 { 1009 size_t vlan_header_size = sizeof(struct vlan_header) * vlan_num; 1010 size_t header_size = sizeof(struct eth_header) + vlan_header_size; 1011 return lpe ? size + ETH_FCS_LEN > rlpml : size > header_size + ETH_MTU; 1012 } 1013 1014 static uint16_t igb_receive_assign(IGBCore *core, const struct iovec *iov, 1015 size_t iovcnt, size_t iov_ofs, 1016 const L2Header *l2_header, size_t size, 1017 E1000E_RSSInfo *rss_info, 1018 uint16_t *etqf, bool *ts, bool *external_tx) 1019 { 1020 static const int ta_shift[] = { 4, 3, 2, 0 }; 1021 const struct eth_header *ehdr = &l2_header->eth; 1022 uint32_t f, ra[2], *macp, rctl = core->mac[RCTL]; 1023 uint16_t queues = 0; 1024 uint16_t oversized = 0; 1025 size_t vlan_num = 0; 1026 PTP2 ptp2; 1027 bool lpe; 1028 uint16_t rlpml; 1029 int i; 1030 1031 memset(rss_info, 0, sizeof(E1000E_RSSInfo)); 1032 *ts = false; 1033 1034 if (external_tx) { 1035 *external_tx = true; 1036 } 1037 1038 if (core->mac[CTRL_EXT] & BIT(26)) { 1039 if (be16_to_cpu(ehdr->h_proto) == core->mac[VET] >> 16 && 1040 be16_to_cpu(l2_header->vlan[0].h_proto) == (core->mac[VET] & 0xffff)) { 1041 vlan_num = 2; 1042 } 1043 } else { 1044 if (be16_to_cpu(ehdr->h_proto) == (core->mac[VET] & 0xffff)) { 1045 vlan_num = 1; 1046 } 1047 } 1048 1049 lpe = !!(core->mac[RCTL] & E1000_RCTL_LPE); 1050 rlpml = core->mac[RLPML]; 1051 if (!(core->mac[RCTL] & E1000_RCTL_SBP) && 1052 igb_rx_is_oversized(core, ehdr, size, vlan_num, lpe, rlpml)) { 1053 trace_e1000x_rx_oversized(size); 1054 return queues; 1055 } 1056 1057 for (*etqf = 0; *etqf < 8; (*etqf)++) { 1058 if ((core->mac[ETQF0 + *etqf] & E1000_ETQF_FILTER_ENABLE) && 1059 be16_to_cpu(ehdr->h_proto) == (core->mac[ETQF0 + *etqf] & E1000_ETQF_ETYPE_MASK)) { 1060 if ((core->mac[ETQF0 + *etqf] & E1000_ETQF_1588) && 1061 (core->mac[TSYNCRXCTL] & E1000_TSYNCRXCTL_ENABLED) && 1062 !(core->mac[TSYNCRXCTL] & E1000_TSYNCRXCTL_VALID) && 1063 iov_to_buf(iov, iovcnt, iov_ofs + ETH_HLEN, &ptp2, sizeof(ptp2)) >= sizeof(ptp2) && 1064 (ptp2.version_ptp & 15) == 2 && 1065 ptp2.message_id_transport_specific == ((core->mac[TSYNCRXCFG] >> 8) & 255)) { 1066 e1000x_timestamp(core->mac, core->timadj, RXSTMPL, RXSTMPH); 1067 *ts = true; 1068 core->mac[TSYNCRXCTL] |= E1000_TSYNCRXCTL_VALID; 1069 core->mac[RXSATRL] = le32_to_cpu(ptp2.source_uuid_lo); 1070 core->mac[RXSATRH] = le16_to_cpu(ptp2.source_uuid_hi) | 1071 (le16_to_cpu(ptp2.sequence_id) << 16); 1072 } 1073 break; 1074 } 1075 } 1076 1077 if (vlan_num && 1078 !e1000x_rx_vlan_filter(core->mac, l2_header->vlan + vlan_num - 1)) { 1079 return queues; 1080 } 1081 1082 if (core->mac[MRQC] & 1) { 1083 if (is_broadcast_ether_addr(ehdr->h_dest)) { 1084 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1085 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) { 1086 queues |= BIT(i); 1087 } 1088 } 1089 } else { 1090 for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) { 1091 if (!(macp[1] & E1000_RAH_AV)) { 1092 continue; 1093 } 1094 ra[0] = cpu_to_le32(macp[0]); 1095 ra[1] = cpu_to_le32(macp[1]); 1096 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1097 queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1; 1098 } 1099 } 1100 1101 for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) { 1102 if (!(macp[1] & E1000_RAH_AV)) { 1103 continue; 1104 } 1105 ra[0] = cpu_to_le32(macp[0]); 1106 ra[1] = cpu_to_le32(macp[1]); 1107 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1108 queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1; 1109 } 1110 } 1111 1112 if (!queues) { 1113 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA); 1114 1115 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3]; 1116 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff; 1117 if (macp[f >> 5] & (1 << (f & 0x1f))) { 1118 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1119 if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) { 1120 queues |= BIT(i); 1121 } 1122 } 1123 } 1124 } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) { 1125 *external_tx = false; 1126 } 1127 } 1128 1129 if (e1000x_vlan_rx_filter_enabled(core->mac)) { 1130 uint16_t mask = 0; 1131 1132 if (vlan_num) { 1133 uint16_t vid = be16_to_cpu(l2_header->vlan[vlan_num - 1].h_tci) & VLAN_VID_MASK; 1134 1135 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 1136 if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid && 1137 (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) { 1138 uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK; 1139 mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT; 1140 } 1141 } 1142 } else { 1143 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1144 if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) { 1145 mask |= BIT(i); 1146 } 1147 } 1148 } 1149 1150 queues &= mask; 1151 } 1152 1153 if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx && 1154 !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) { 1155 uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK; 1156 queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT); 1157 } 1158 1159 queues &= core->mac[VFRE]; 1160 if (queues) { 1161 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1162 lpe = !!(core->mac[VMOLR0 + i] & E1000_VMOLR_LPE); 1163 rlpml = core->mac[VMOLR0 + i] & E1000_VMOLR_RLPML_MASK; 1164 if ((queues & BIT(i)) && 1165 igb_rx_is_oversized(core, ehdr, size, vlan_num, 1166 lpe, rlpml)) { 1167 oversized |= BIT(i); 1168 } 1169 } 1170 /* 8.19.37 increment ROC if packet is oversized for all queues */ 1171 if (oversized == queues) { 1172 trace_e1000x_rx_oversized(size); 1173 e1000x_inc_reg_if_not_full(core->mac, ROC); 1174 } 1175 queues &= ~oversized; 1176 } 1177 1178 if (queues) { 1179 igb_rss_parse_packet(core, core->rx_pkt, 1180 external_tx != NULL, rss_info); 1181 /* Sec 8.26.1: PQn = VFn + VQn*8 */ 1182 if (rss_info->queue & 1) { 1183 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1184 if ((queues & BIT(i)) && 1185 (core->mac[VMOLR0 + i] & E1000_VMOLR_RSSE)) { 1186 queues |= BIT(i + IGB_NUM_VM_POOLS); 1187 queues &= ~BIT(i); 1188 } 1189 } 1190 } 1191 } 1192 } else { 1193 bool accepted = e1000x_rx_group_filter(core->mac, ehdr); 1194 if (!accepted) { 1195 for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) { 1196 if (!(macp[1] & E1000_RAH_AV)) { 1197 continue; 1198 } 1199 ra[0] = cpu_to_le32(macp[0]); 1200 ra[1] = cpu_to_le32(macp[1]); 1201 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1202 trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2, 1203 MAC_ARG(ehdr->h_dest)); 1204 1205 accepted = true; 1206 break; 1207 } 1208 } 1209 } 1210 1211 if (accepted) { 1212 igb_rss_parse_packet(core, core->rx_pkt, false, rss_info); 1213 queues = BIT(rss_info->queue); 1214 } 1215 } 1216 1217 return queues; 1218 } 1219 1220 static inline void 1221 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc, 1222 hwaddr *buff_addr) 1223 { 1224 *buff_addr = le64_to_cpu(desc->buffer_addr); 1225 } 1226 1227 static inline void 1228 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc, 1229 hwaddr *buff_addr) 1230 { 1231 *buff_addr = le64_to_cpu(desc->read.pkt_addr); 1232 } 1233 1234 static inline void 1235 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc, 1236 hwaddr *buff_addr) 1237 { 1238 if (igb_rx_use_legacy_descriptor(core)) { 1239 igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr); 1240 } else { 1241 igb_read_adv_rx_descr(core, &desc->adv, buff_addr); 1242 } 1243 } 1244 1245 static void 1246 igb_verify_csum_in_sw(IGBCore *core, 1247 struct NetRxPkt *pkt, 1248 uint32_t *status_flags, 1249 EthL4HdrProto l4hdr_proto) 1250 { 1251 bool csum_valid; 1252 uint32_t csum_error; 1253 1254 if (igb_rx_l3_cso_enabled(core)) { 1255 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) { 1256 trace_e1000e_rx_metadata_l3_csum_validation_failed(); 1257 } else { 1258 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE; 1259 *status_flags |= E1000_RXD_STAT_IPCS | csum_error; 1260 } 1261 } else { 1262 trace_e1000e_rx_metadata_l3_cso_disabled(); 1263 } 1264 1265 if (!igb_rx_l4_cso_enabled(core)) { 1266 trace_e1000e_rx_metadata_l4_cso_disabled(); 1267 return; 1268 } 1269 1270 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { 1271 trace_e1000e_rx_metadata_l4_csum_validation_failed(); 1272 return; 1273 } 1274 1275 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE; 1276 *status_flags |= E1000_RXD_STAT_TCPCS | csum_error; 1277 1278 if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) { 1279 *status_flags |= E1000_RXD_STAT_UDPCS; 1280 } 1281 } 1282 1283 static void 1284 igb_build_rx_metadata(IGBCore *core, 1285 struct NetRxPkt *pkt, 1286 bool is_eop, 1287 const E1000E_RSSInfo *rss_info, uint16_t etqf, bool ts, 1288 uint16_t *pkt_info, uint16_t *hdr_info, 1289 uint32_t *rss, 1290 uint32_t *status_flags, 1291 uint16_t *ip_id, 1292 uint16_t *vlan_tag) 1293 { 1294 struct virtio_net_hdr *vhdr; 1295 bool hasip4, hasip6, csum_valid; 1296 EthL4HdrProto l4hdr_proto; 1297 1298 *status_flags = E1000_RXD_STAT_DD; 1299 1300 /* No additional metadata needed for non-EOP descriptors */ 1301 /* TODO: EOP apply only to status so don't skip whole function. */ 1302 if (!is_eop) { 1303 goto func_exit; 1304 } 1305 1306 *status_flags |= E1000_RXD_STAT_EOP; 1307 1308 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); 1309 trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto); 1310 1311 /* VLAN state */ 1312 if (net_rx_pkt_is_vlan_stripped(pkt)) { 1313 *status_flags |= E1000_RXD_STAT_VP; 1314 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt)); 1315 trace_e1000e_rx_metadata_vlan(*vlan_tag); 1316 } 1317 1318 /* Packet parsing results */ 1319 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) { 1320 if (rss_info->enabled) { 1321 *rss = cpu_to_le32(rss_info->hash); 1322 trace_igb_rx_metadata_rss(*rss); 1323 } 1324 } else if (hasip4) { 1325 *status_flags |= E1000_RXD_STAT_IPIDV; 1326 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt)); 1327 trace_e1000e_rx_metadata_ip_id(*ip_id); 1328 } 1329 1330 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) { 1331 *status_flags |= E1000_RXD_STAT_ACK; 1332 trace_e1000e_rx_metadata_ack(); 1333 } 1334 1335 if (pkt_info) { 1336 *pkt_info = rss_info->enabled ? rss_info->type : 0; 1337 1338 if (etqf < 8) { 1339 *pkt_info |= (BIT(11) | etqf) << 4; 1340 } else { 1341 if (hasip4) { 1342 *pkt_info |= E1000_ADVRXD_PKT_IP4; 1343 } 1344 1345 if (hasip6) { 1346 *pkt_info |= E1000_ADVRXD_PKT_IP6; 1347 } 1348 1349 switch (l4hdr_proto) { 1350 case ETH_L4_HDR_PROTO_TCP: 1351 *pkt_info |= E1000_ADVRXD_PKT_TCP; 1352 break; 1353 1354 case ETH_L4_HDR_PROTO_UDP: 1355 *pkt_info |= E1000_ADVRXD_PKT_UDP; 1356 break; 1357 1358 case ETH_L4_HDR_PROTO_SCTP: 1359 *pkt_info |= E1000_ADVRXD_PKT_SCTP; 1360 break; 1361 1362 default: 1363 break; 1364 } 1365 } 1366 } 1367 1368 if (hdr_info) { 1369 *hdr_info = 0; 1370 } 1371 1372 if (ts) { 1373 *status_flags |= BIT(16); 1374 } 1375 1376 /* RX CSO information */ 1377 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) { 1378 trace_e1000e_rx_metadata_ipv6_sum_disabled(); 1379 goto func_exit; 1380 } 1381 1382 vhdr = net_rx_pkt_get_vhdr(pkt); 1383 1384 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) && 1385 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) { 1386 trace_e1000e_rx_metadata_virthdr_no_csum_info(); 1387 igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto); 1388 goto func_exit; 1389 } 1390 1391 if (igb_rx_l3_cso_enabled(core)) { 1392 *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0; 1393 } else { 1394 trace_e1000e_rx_metadata_l3_cso_disabled(); 1395 } 1396 1397 if (igb_rx_l4_cso_enabled(core)) { 1398 switch (l4hdr_proto) { 1399 case ETH_L4_HDR_PROTO_SCTP: 1400 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { 1401 trace_e1000e_rx_metadata_l4_csum_validation_failed(); 1402 goto func_exit; 1403 } 1404 if (!csum_valid) { 1405 *status_flags |= E1000_RXDEXT_STATERR_TCPE; 1406 } 1407 /* fall through */ 1408 case ETH_L4_HDR_PROTO_TCP: 1409 *status_flags |= E1000_RXD_STAT_TCPCS; 1410 break; 1411 1412 case ETH_L4_HDR_PROTO_UDP: 1413 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS; 1414 break; 1415 1416 default: 1417 break; 1418 } 1419 } else { 1420 trace_e1000e_rx_metadata_l4_cso_disabled(); 1421 } 1422 1423 func_exit: 1424 trace_e1000e_rx_metadata_status_flags(*status_flags); 1425 *status_flags = cpu_to_le32(*status_flags); 1426 } 1427 1428 static inline void 1429 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc, 1430 struct NetRxPkt *pkt, 1431 const E1000E_RSSInfo *rss_info, uint16_t etqf, bool ts, 1432 uint16_t length) 1433 { 1434 uint32_t status_flags, rss; 1435 uint16_t ip_id; 1436 1437 assert(!rss_info->enabled); 1438 desc->length = cpu_to_le16(length); 1439 desc->csum = 0; 1440 1441 igb_build_rx_metadata(core, pkt, pkt != NULL, 1442 rss_info, etqf, ts, 1443 NULL, NULL, &rss, 1444 &status_flags, &ip_id, 1445 &desc->special); 1446 desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24); 1447 desc->status = (uint8_t) le32_to_cpu(status_flags); 1448 } 1449 1450 static inline void 1451 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc, 1452 struct NetRxPkt *pkt, 1453 const E1000E_RSSInfo *rss_info, uint16_t etqf, bool ts, 1454 uint16_t length) 1455 { 1456 memset(&desc->wb, 0, sizeof(desc->wb)); 1457 1458 desc->wb.upper.length = cpu_to_le16(length); 1459 1460 igb_build_rx_metadata(core, pkt, pkt != NULL, 1461 rss_info, etqf, ts, 1462 &desc->wb.lower.lo_dword.pkt_info, 1463 &desc->wb.lower.lo_dword.hdr_info, 1464 &desc->wb.lower.hi_dword.rss, 1465 &desc->wb.upper.status_error, 1466 &desc->wb.lower.hi_dword.csum_ip.ip_id, 1467 &desc->wb.upper.vlan); 1468 } 1469 1470 static inline void 1471 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc, 1472 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, 1473 uint16_t etqf, bool ts, uint16_t length) 1474 { 1475 if (igb_rx_use_legacy_descriptor(core)) { 1476 igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, 1477 etqf, ts, length); 1478 } else { 1479 igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, 1480 etqf, ts, length); 1481 } 1482 } 1483 1484 static inline void 1485 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr, 1486 union e1000_rx_desc_union *desc, dma_addr_t len) 1487 { 1488 if (igb_rx_use_legacy_descriptor(core)) { 1489 struct e1000_rx_desc *d = &desc->legacy; 1490 size_t offset = offsetof(struct e1000_rx_desc, status); 1491 uint8_t status = d->status; 1492 1493 d->status &= ~E1000_RXD_STAT_DD; 1494 pci_dma_write(dev, addr, desc, len); 1495 1496 if (status & E1000_RXD_STAT_DD) { 1497 d->status = status; 1498 pci_dma_write(dev, addr + offset, &status, sizeof(status)); 1499 } 1500 } else { 1501 union e1000_adv_rx_desc *d = &desc->adv; 1502 size_t offset = 1503 offsetof(union e1000_adv_rx_desc, wb.upper.status_error); 1504 uint32_t status = d->wb.upper.status_error; 1505 1506 d->wb.upper.status_error &= ~E1000_RXD_STAT_DD; 1507 pci_dma_write(dev, addr, desc, len); 1508 1509 if (status & E1000_RXD_STAT_DD) { 1510 d->wb.upper.status_error = status; 1511 pci_dma_write(dev, addr + offset, &status, sizeof(status)); 1512 } 1513 } 1514 } 1515 1516 static void 1517 igb_write_to_rx_buffers(IGBCore *core, 1518 PCIDevice *d, 1519 hwaddr ba, 1520 uint16_t *written, 1521 const char *data, 1522 dma_addr_t data_len) 1523 { 1524 trace_igb_rx_desc_buff_write(ba, *written, data, data_len); 1525 pci_dma_write(d, ba + *written, data, data_len); 1526 *written += data_len; 1527 } 1528 1529 static void 1530 igb_update_rx_stats(IGBCore *core, const E1000E_RingInfo *rxi, 1531 size_t pkt_size, size_t pkt_fcs_size) 1532 { 1533 eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt); 1534 e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size); 1535 1536 if (core->mac[MRQC] & 1) { 1537 uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS; 1538 1539 core->mac[PVFGORC0 + (pool * 64)] += pkt_size + 4; 1540 core->mac[PVFGPRC0 + (pool * 64)]++; 1541 if (pkt_type == ETH_PKT_MCAST) { 1542 core->mac[PVFMPRC0 + (pool * 64)]++; 1543 } 1544 } 1545 } 1546 1547 static inline bool 1548 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi) 1549 { 1550 return igb_ring_free_descr_num(core, rxi) == 1551 ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16; 1552 } 1553 1554 static void 1555 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt, 1556 const E1000E_RxRing *rxr, 1557 const E1000E_RSSInfo *rss_info, 1558 uint16_t etqf, bool ts) 1559 { 1560 PCIDevice *d; 1561 dma_addr_t base; 1562 union e1000_rx_desc_union desc; 1563 size_t desc_size; 1564 size_t desc_offset = 0; 1565 size_t iov_ofs = 0; 1566 1567 struct iovec *iov = net_rx_pkt_get_iovec(pkt); 1568 size_t size = net_rx_pkt_get_total_len(pkt); 1569 size_t total_size = size + e1000x_fcs_len(core->mac); 1570 const E1000E_RingInfo *rxi = rxr->i; 1571 size_t bufsize = igb_rxbufsize(core, rxi); 1572 1573 d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8); 1574 if (!d) { 1575 d = core->owner; 1576 } 1577 1578 do { 1579 hwaddr ba; 1580 uint16_t written = 0; 1581 bool is_last = false; 1582 1583 desc_size = total_size - desc_offset; 1584 1585 if (desc_size > bufsize) { 1586 desc_size = bufsize; 1587 } 1588 1589 if (igb_ring_empty(core, rxi)) { 1590 return; 1591 } 1592 1593 base = igb_ring_head_descr(core, rxi); 1594 1595 pci_dma_read(d, base, &desc, core->rx_desc_len); 1596 1597 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len); 1598 1599 igb_read_rx_descr(core, &desc, &ba); 1600 1601 if (ba) { 1602 if (desc_offset < size) { 1603 static const uint32_t fcs_pad; 1604 size_t iov_copy; 1605 size_t copy_size = size - desc_offset; 1606 if (copy_size > bufsize) { 1607 copy_size = bufsize; 1608 } 1609 1610 /* Copy packet payload */ 1611 while (copy_size) { 1612 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 1613 1614 igb_write_to_rx_buffers(core, d, ba, &written, 1615 iov->iov_base + iov_ofs, iov_copy); 1616 1617 copy_size -= iov_copy; 1618 iov_ofs += iov_copy; 1619 if (iov_ofs == iov->iov_len) { 1620 iov++; 1621 iov_ofs = 0; 1622 } 1623 } 1624 1625 if (desc_offset + desc_size >= total_size) { 1626 /* Simulate FCS checksum presence in the last descriptor */ 1627 igb_write_to_rx_buffers(core, d, ba, &written, 1628 (const char *) &fcs_pad, e1000x_fcs_len(core->mac)); 1629 } 1630 } 1631 } else { /* as per intel docs; skip descriptors with null buf addr */ 1632 trace_e1000e_rx_null_descriptor(); 1633 } 1634 desc_offset += desc_size; 1635 if (desc_offset >= total_size) { 1636 is_last = true; 1637 } 1638 1639 igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL, 1640 rss_info, etqf, ts, written); 1641 igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len); 1642 1643 igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN); 1644 1645 } while (desc_offset < total_size); 1646 1647 igb_update_rx_stats(core, rxi, size, total_size); 1648 } 1649 1650 static bool 1651 igb_rx_strip_vlan(IGBCore *core, const E1000E_RingInfo *rxi) 1652 { 1653 if (core->mac[MRQC] & 1) { 1654 uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS; 1655 /* Sec 7.10.3.8: CTRL.VME is ignored, only VMOLR/RPLOLR is used */ 1656 return (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) ? 1657 core->mac[RPLOLR] & E1000_RPLOLR_STRVLAN : 1658 core->mac[VMOLR0 + pool] & E1000_VMOLR_STRVLAN; 1659 } 1660 1661 return e1000x_vlan_enabled(core->mac); 1662 } 1663 1664 static inline void 1665 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt) 1666 { 1667 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt); 1668 1669 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 1670 net_rx_pkt_fix_l4_csum(pkt); 1671 } 1672 } 1673 1674 ssize_t 1675 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt) 1676 { 1677 return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL); 1678 } 1679 1680 static ssize_t 1681 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt, 1682 bool has_vnet, bool *external_tx) 1683 { 1684 uint16_t queues = 0; 1685 uint32_t causes = 0; 1686 uint32_t ecauses = 0; 1687 union { 1688 L2Header l2_header; 1689 uint8_t octets[ETH_ZLEN]; 1690 } buf; 1691 struct iovec min_iov; 1692 size_t size, orig_size; 1693 size_t iov_ofs = 0; 1694 E1000E_RxRing rxr; 1695 E1000E_RSSInfo rss_info; 1696 uint16_t etqf; 1697 bool ts; 1698 size_t total_size; 1699 int strip_vlan_index; 1700 int i; 1701 1702 trace_e1000e_rx_receive_iov(iovcnt); 1703 1704 if (external_tx) { 1705 *external_tx = true; 1706 } 1707 1708 if (!e1000x_hw_rx_enabled(core->mac)) { 1709 return -1; 1710 } 1711 1712 /* Pull virtio header in */ 1713 if (has_vnet) { 1714 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt); 1715 iov_ofs = sizeof(struct virtio_net_hdr); 1716 } else { 1717 net_rx_pkt_unset_vhdr(core->rx_pkt); 1718 } 1719 1720 orig_size = iov_size(iov, iovcnt); 1721 size = orig_size - iov_ofs; 1722 1723 /* Pad to minimum Ethernet frame length */ 1724 if (size < sizeof(buf)) { 1725 iov_to_buf(iov, iovcnt, iov_ofs, &buf, size); 1726 memset(&buf.octets[size], 0, sizeof(buf) - size); 1727 e1000x_inc_reg_if_not_full(core->mac, RUC); 1728 min_iov.iov_base = &buf; 1729 min_iov.iov_len = size = sizeof(buf); 1730 iovcnt = 1; 1731 iov = &min_iov; 1732 iov_ofs = 0; 1733 } else { 1734 iov_to_buf(iov, iovcnt, iov_ofs, &buf, sizeof(buf.l2_header)); 1735 } 1736 1737 net_rx_pkt_set_packet_type(core->rx_pkt, 1738 get_eth_packet_type(&buf.l2_header.eth)); 1739 net_rx_pkt_set_protocols(core->rx_pkt, iov, iovcnt, iov_ofs); 1740 1741 queues = igb_receive_assign(core, iov, iovcnt, iov_ofs, 1742 &buf.l2_header, size, 1743 &rss_info, &etqf, &ts, external_tx); 1744 if (!queues) { 1745 trace_e1000e_rx_flt_dropped(); 1746 return orig_size; 1747 } 1748 1749 for (i = 0; i < IGB_NUM_QUEUES; i++) { 1750 if (!(queues & BIT(i)) || 1751 !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) { 1752 continue; 1753 } 1754 1755 igb_rx_ring_init(core, &rxr, i); 1756 1757 if (!igb_rx_strip_vlan(core, rxr.i)) { 1758 strip_vlan_index = -1; 1759 } else if (core->mac[CTRL_EXT] & BIT(26)) { 1760 strip_vlan_index = 1; 1761 } else { 1762 strip_vlan_index = 0; 1763 } 1764 1765 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs, 1766 strip_vlan_index, 1767 core->mac[VET] & 0xffff, 1768 core->mac[VET] >> 16); 1769 1770 total_size = net_rx_pkt_get_total_len(core->rx_pkt) + 1771 e1000x_fcs_len(core->mac); 1772 1773 if (!igb_has_rxbufs(core, rxr.i, total_size)) { 1774 causes |= E1000_ICS_RXO; 1775 trace_e1000e_rx_not_written_to_guest(rxr.i->idx); 1776 continue; 1777 } 1778 1779 causes |= E1000_ICR_RXDW; 1780 1781 igb_rx_fix_l4_csum(core, core->rx_pkt); 1782 igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info, etqf, ts); 1783 1784 /* Check if receive descriptor minimum threshold hit */ 1785 if (igb_rx_descr_threshold_hit(core, rxr.i)) { 1786 causes |= E1000_ICS_RXDMT0; 1787 } 1788 1789 ecauses |= igb_rx_wb_eic(core, rxr.i->idx); 1790 1791 trace_e1000e_rx_written_to_guest(rxr.i->idx); 1792 } 1793 1794 trace_e1000e_rx_interrupt_set(causes); 1795 igb_raise_interrupts(core, EICR, ecauses); 1796 igb_raise_interrupts(core, ICR, causes); 1797 1798 return orig_size; 1799 } 1800 1801 static inline bool 1802 igb_have_autoneg(IGBCore *core) 1803 { 1804 return core->phy[MII_BMCR] & MII_BMCR_AUTOEN; 1805 } 1806 1807 static void igb_update_flowctl_status(IGBCore *core) 1808 { 1809 if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) { 1810 trace_e1000e_link_autoneg_flowctl(true); 1811 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE; 1812 } else { 1813 trace_e1000e_link_autoneg_flowctl(false); 1814 } 1815 } 1816 1817 static inline void 1818 igb_link_down(IGBCore *core) 1819 { 1820 e1000x_update_regs_on_link_down(core->mac, core->phy); 1821 igb_update_flowctl_status(core); 1822 } 1823 1824 static inline void 1825 igb_set_phy_ctrl(IGBCore *core, uint16_t val) 1826 { 1827 /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */ 1828 core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART); 1829 1830 if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) { 1831 e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer); 1832 } 1833 } 1834 1835 void igb_core_set_link_status(IGBCore *core) 1836 { 1837 NetClientState *nc = qemu_get_queue(core->owner_nic); 1838 uint32_t old_status = core->mac[STATUS]; 1839 1840 trace_e1000e_link_status_changed(nc->link_down ? false : true); 1841 1842 if (nc->link_down) { 1843 e1000x_update_regs_on_link_down(core->mac, core->phy); 1844 } else { 1845 if (igb_have_autoneg(core) && 1846 !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) { 1847 e1000x_restart_autoneg(core->mac, core->phy, 1848 core->autoneg_timer); 1849 } else { 1850 e1000x_update_regs_on_link_up(core->mac, core->phy); 1851 igb_start_recv(core); 1852 } 1853 } 1854 1855 if (core->mac[STATUS] != old_status) { 1856 igb_raise_interrupts(core, ICR, E1000_ICR_LSC); 1857 } 1858 } 1859 1860 static void 1861 igb_set_ctrl(IGBCore *core, int index, uint32_t val) 1862 { 1863 trace_e1000e_core_ctrl_write(index, val); 1864 1865 /* RST is self clearing */ 1866 core->mac[CTRL] = val & ~E1000_CTRL_RST; 1867 core->mac[CTRL_DUP] = core->mac[CTRL]; 1868 1869 trace_e1000e_link_set_params( 1870 !!(val & E1000_CTRL_ASDE), 1871 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 1872 !!(val & E1000_CTRL_FRCSPD), 1873 !!(val & E1000_CTRL_FRCDPX), 1874 !!(val & E1000_CTRL_RFCE), 1875 !!(val & E1000_CTRL_TFCE)); 1876 1877 if (val & E1000_CTRL_RST) { 1878 trace_e1000e_core_ctrl_sw_reset(); 1879 igb_reset(core, true); 1880 } 1881 1882 if (val & E1000_CTRL_PHY_RST) { 1883 trace_e1000e_core_ctrl_phy_reset(); 1884 core->mac[STATUS] |= E1000_STATUS_PHYRA; 1885 } 1886 } 1887 1888 static void 1889 igb_set_rfctl(IGBCore *core, int index, uint32_t val) 1890 { 1891 trace_e1000e_rx_set_rfctl(val); 1892 1893 if (!(val & E1000_RFCTL_ISCSI_DIS)) { 1894 trace_e1000e_wrn_iscsi_filtering_not_supported(); 1895 } 1896 1897 if (!(val & E1000_RFCTL_NFSW_DIS)) { 1898 trace_e1000e_wrn_nfsw_filtering_not_supported(); 1899 } 1900 1901 if (!(val & E1000_RFCTL_NFSR_DIS)) { 1902 trace_e1000e_wrn_nfsr_filtering_not_supported(); 1903 } 1904 1905 core->mac[RFCTL] = val; 1906 } 1907 1908 static void 1909 igb_calc_rxdesclen(IGBCore *core) 1910 { 1911 if (igb_rx_use_legacy_descriptor(core)) { 1912 core->rx_desc_len = sizeof(struct e1000_rx_desc); 1913 } else { 1914 core->rx_desc_len = sizeof(union e1000_adv_rx_desc); 1915 } 1916 trace_e1000e_rx_desc_len(core->rx_desc_len); 1917 } 1918 1919 static void 1920 igb_set_rx_control(IGBCore *core, int index, uint32_t val) 1921 { 1922 core->mac[RCTL] = val; 1923 trace_e1000e_rx_set_rctl(core->mac[RCTL]); 1924 1925 if (val & E1000_RCTL_DTYP_MASK) { 1926 qemu_log_mask(LOG_GUEST_ERROR, 1927 "igb: RCTL.DTYP must be zero for compatibility"); 1928 } 1929 1930 if (val & E1000_RCTL_EN) { 1931 igb_calc_rxdesclen(core); 1932 igb_start_recv(core); 1933 } 1934 } 1935 1936 static inline bool 1937 igb_postpone_interrupt(IGBIntrDelayTimer *timer) 1938 { 1939 if (timer->running) { 1940 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2); 1941 1942 return true; 1943 } 1944 1945 if (timer->core->mac[timer->delay_reg] != 0) { 1946 igb_intrmgr_rearm_timer(timer); 1947 } 1948 1949 return false; 1950 } 1951 1952 static inline bool 1953 igb_eitr_should_postpone(IGBCore *core, int idx) 1954 { 1955 return igb_postpone_interrupt(&core->eitr[idx]); 1956 } 1957 1958 static void igb_send_msix(IGBCore *core, uint32_t causes) 1959 { 1960 int vector; 1961 1962 for (vector = 0; vector < IGB_INTR_NUM; ++vector) { 1963 if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) { 1964 1965 trace_e1000e_irq_msix_notify_vec(vector); 1966 igb_msix_notify(core, vector); 1967 } 1968 } 1969 } 1970 1971 static inline void 1972 igb_fix_icr_asserted(IGBCore *core) 1973 { 1974 core->mac[ICR] &= ~E1000_ICR_ASSERTED; 1975 if (core->mac[ICR]) { 1976 core->mac[ICR] |= E1000_ICR_ASSERTED; 1977 } 1978 1979 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]); 1980 } 1981 1982 static void igb_raise_interrupts(IGBCore *core, size_t index, uint32_t causes) 1983 { 1984 uint32_t old_causes = core->mac[ICR] & core->mac[IMS]; 1985 uint32_t old_ecauses = core->mac[EICR] & core->mac[EIMS]; 1986 uint32_t raised_causes; 1987 uint32_t raised_ecauses; 1988 uint32_t int_alloc; 1989 1990 trace_e1000e_irq_set(index << 2, 1991 core->mac[index], core->mac[index] | causes); 1992 1993 core->mac[index] |= causes; 1994 1995 if (core->mac[GPIE] & E1000_GPIE_MSIX_MODE) { 1996 raised_causes = core->mac[ICR] & core->mac[IMS] & ~old_causes; 1997 1998 if (raised_causes & E1000_ICR_DRSTA) { 1999 int_alloc = core->mac[IVAR_MISC] & 0xff; 2000 if (int_alloc & E1000_IVAR_VALID) { 2001 core->mac[EICR] |= BIT(int_alloc & 0x1f); 2002 } 2003 } 2004 /* Check if other bits (excluding the TCP Timer) are enabled. */ 2005 if (raised_causes & ~E1000_ICR_DRSTA) { 2006 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff; 2007 if (int_alloc & E1000_IVAR_VALID) { 2008 core->mac[EICR] |= BIT(int_alloc & 0x1f); 2009 } 2010 } 2011 2012 raised_ecauses = core->mac[EICR] & core->mac[EIMS] & ~old_ecauses; 2013 if (!raised_ecauses) { 2014 return; 2015 } 2016 2017 igb_send_msix(core, raised_ecauses); 2018 } else { 2019 igb_fix_icr_asserted(core); 2020 2021 raised_causes = core->mac[ICR] & core->mac[IMS] & ~old_causes; 2022 if (!raised_causes) { 2023 return; 2024 } 2025 2026 core->mac[EICR] |= (raised_causes & E1000_ICR_DRSTA) | E1000_EICR_OTHER; 2027 2028 if (msix_enabled(core->owner)) { 2029 trace_e1000e_irq_msix_notify_vec(0); 2030 msix_notify(core->owner, 0); 2031 } else if (msi_enabled(core->owner)) { 2032 trace_e1000e_irq_msi_notify(raised_causes); 2033 msi_notify(core->owner, 0); 2034 } else { 2035 igb_raise_legacy_irq(core); 2036 } 2037 } 2038 } 2039 2040 static void igb_lower_interrupts(IGBCore *core, size_t index, uint32_t causes) 2041 { 2042 trace_e1000e_irq_clear(index << 2, 2043 core->mac[index], core->mac[index] & ~causes); 2044 2045 core->mac[index] &= ~causes; 2046 2047 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], 2048 core->mac[ICR], core->mac[IMS]); 2049 2050 if (!(core->mac[ICR] & core->mac[IMS]) && 2051 !(core->mac[GPIE] & E1000_GPIE_MSIX_MODE)) { 2052 core->mac[EICR] &= ~E1000_EICR_OTHER; 2053 2054 if (!msix_enabled(core->owner) && !msi_enabled(core->owner)) { 2055 igb_lower_legacy_irq(core); 2056 } 2057 } 2058 } 2059 2060 static void igb_set_eics(IGBCore *core, int index, uint32_t val) 2061 { 2062 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2063 uint32_t mask = msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK; 2064 2065 trace_igb_irq_write_eics(val, msix); 2066 igb_raise_interrupts(core, EICR, val & mask); 2067 } 2068 2069 static void igb_set_eims(IGBCore *core, int index, uint32_t val) 2070 { 2071 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2072 uint32_t mask = msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK; 2073 2074 trace_igb_irq_write_eims(val, msix); 2075 igb_raise_interrupts(core, EIMS, val & mask); 2076 } 2077 2078 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn) 2079 { 2080 uint32_t ent = core->mac[VTIVAR_MISC + vfn]; 2081 uint32_t causes; 2082 2083 if ((ent & E1000_IVAR_VALID)) { 2084 causes = (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM); 2085 igb_raise_interrupts(core, EICR, causes); 2086 } 2087 } 2088 2089 static void mailbox_interrupt_to_pf(IGBCore *core) 2090 { 2091 igb_raise_interrupts(core, ICR, E1000_ICR_VMMB); 2092 } 2093 2094 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val) 2095 { 2096 uint16_t vfn = index - P2VMAILBOX0; 2097 2098 trace_igb_set_pfmailbox(vfn, val); 2099 2100 if (val & E1000_P2VMAILBOX_STS) { 2101 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS; 2102 mailbox_interrupt_to_vf(core, vfn); 2103 } 2104 2105 if (val & E1000_P2VMAILBOX_ACK) { 2106 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK; 2107 mailbox_interrupt_to_vf(core, vfn); 2108 } 2109 2110 /* Buffer Taken by PF (can be set only if the VFU is cleared). */ 2111 if (val & E1000_P2VMAILBOX_PFU) { 2112 if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) { 2113 core->mac[index] |= E1000_P2VMAILBOX_PFU; 2114 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU; 2115 } 2116 } else { 2117 core->mac[index] &= ~E1000_P2VMAILBOX_PFU; 2118 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU; 2119 } 2120 2121 if (val & E1000_P2VMAILBOX_RVFU) { 2122 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU; 2123 core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) | 2124 (E1000_MBVFICR_VFREQ_VF1 << vfn)); 2125 } 2126 } 2127 2128 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val) 2129 { 2130 uint16_t vfn = index - V2PMAILBOX0; 2131 2132 trace_igb_set_vfmailbox(vfn, val); 2133 2134 if (val & E1000_V2PMAILBOX_REQ) { 2135 core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn; 2136 mailbox_interrupt_to_pf(core); 2137 } 2138 2139 if (val & E1000_V2PMAILBOX_ACK) { 2140 core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn; 2141 mailbox_interrupt_to_pf(core); 2142 } 2143 2144 /* Buffer Taken by VF (can be set only if the PFU is cleared). */ 2145 if (val & E1000_V2PMAILBOX_VFU) { 2146 if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) { 2147 core->mac[index] |= E1000_V2PMAILBOX_VFU; 2148 core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU; 2149 } 2150 } else { 2151 core->mac[index] &= ~E1000_V2PMAILBOX_VFU; 2152 core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU; 2153 } 2154 } 2155 2156 static void igb_vf_reset(IGBCore *core, uint16_t vfn) 2157 { 2158 uint16_t qn0 = vfn; 2159 uint16_t qn1 = vfn + IGB_NUM_VM_POOLS; 2160 2161 /* disable Rx and Tx for the VF*/ 2162 core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE; 2163 core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE; 2164 core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE; 2165 core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE; 2166 core->mac[VFRE] &= ~BIT(vfn); 2167 core->mac[VFTE] &= ~BIT(vfn); 2168 /* indicate VF reset to PF */ 2169 core->mac[VFLRE] |= BIT(vfn); 2170 /* VFLRE and mailbox use the same interrupt cause */ 2171 mailbox_interrupt_to_pf(core); 2172 } 2173 2174 static void igb_w1c(IGBCore *core, int index, uint32_t val) 2175 { 2176 core->mac[index] &= ~val; 2177 } 2178 2179 static void igb_set_eimc(IGBCore *core, int index, uint32_t val) 2180 { 2181 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2182 uint32_t mask = msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK; 2183 2184 trace_igb_irq_write_eimc(val, msix); 2185 2186 /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */ 2187 igb_lower_interrupts(core, EIMS, val & mask); 2188 } 2189 2190 static void igb_set_eiac(IGBCore *core, int index, uint32_t val) 2191 { 2192 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2193 2194 if (msix) { 2195 trace_igb_irq_write_eiac(val); 2196 2197 /* 2198 * TODO: When using IOV, the bits that correspond to MSI-X vectors 2199 * that are assigned to a VF are read-only. 2200 */ 2201 core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK); 2202 } 2203 } 2204 2205 static void igb_set_eiam(IGBCore *core, int index, uint32_t val) 2206 { 2207 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2208 2209 /* 2210 * TODO: When using IOV, the bits that correspond to MSI-X vectors that 2211 * are assigned to a VF are read-only. 2212 */ 2213 core->mac[EIAM] |= 2214 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2215 2216 trace_igb_irq_write_eiam(val, msix); 2217 } 2218 2219 static void igb_set_eicr(IGBCore *core, int index, uint32_t val) 2220 { 2221 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2222 2223 /* 2224 * TODO: In IOV mode, only bit zero of this vector is available for the PF 2225 * function. 2226 */ 2227 uint32_t mask = msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK; 2228 2229 trace_igb_irq_write_eicr(val, msix); 2230 igb_lower_interrupts(core, EICR, val & mask); 2231 } 2232 2233 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val) 2234 { 2235 uint16_t vfn; 2236 2237 if (val & E1000_CTRL_RST) { 2238 vfn = (index - PVTCTRL0) / 0x40; 2239 igb_vf_reset(core, vfn); 2240 } 2241 } 2242 2243 static void igb_set_vteics(IGBCore *core, int index, uint32_t val) 2244 { 2245 uint16_t vfn = (index - PVTEICS0) / 0x40; 2246 2247 core->mac[index] = val; 2248 igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2249 } 2250 2251 static void igb_set_vteims(IGBCore *core, int index, uint32_t val) 2252 { 2253 uint16_t vfn = (index - PVTEIMS0) / 0x40; 2254 2255 core->mac[index] = val; 2256 igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2257 } 2258 2259 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val) 2260 { 2261 uint16_t vfn = (index - PVTEIMC0) / 0x40; 2262 2263 core->mac[index] = val; 2264 igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2265 } 2266 2267 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val) 2268 { 2269 uint16_t vfn = (index - PVTEIAC0) / 0x40; 2270 2271 core->mac[index] = val; 2272 igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2273 } 2274 2275 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val) 2276 { 2277 uint16_t vfn = (index - PVTEIAM0) / 0x40; 2278 2279 core->mac[index] = val; 2280 igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2281 } 2282 2283 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val) 2284 { 2285 uint16_t vfn = (index - PVTEICR0) / 0x40; 2286 2287 core->mac[index] = val; 2288 igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2289 } 2290 2291 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val) 2292 { 2293 uint16_t vfn = (index - VTIVAR); 2294 uint16_t qn = vfn; 2295 uint8_t ent; 2296 int n; 2297 2298 core->mac[index] = val; 2299 2300 /* Get assigned vector associated with queue Rx#0. */ 2301 if ((val & E1000_IVAR_VALID)) { 2302 n = igb_ivar_entry_rx(qn); 2303 ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7))); 2304 core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4); 2305 } 2306 2307 /* Get assigned vector associated with queue Tx#0 */ 2308 ent = val >> 8; 2309 if ((ent & E1000_IVAR_VALID)) { 2310 n = igb_ivar_entry_tx(qn); 2311 ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7))); 2312 core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4); 2313 } 2314 2315 /* 2316 * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now. 2317 */ 2318 } 2319 2320 static inline void 2321 igb_autoneg_timer(void *opaque) 2322 { 2323 IGBCore *core = opaque; 2324 if (!qemu_get_queue(core->owner_nic)->link_down) { 2325 e1000x_update_regs_on_autoneg_done(core->mac, core->phy); 2326 igb_start_recv(core); 2327 2328 igb_update_flowctl_status(core); 2329 /* signal link status change to the guest */ 2330 igb_raise_interrupts(core, ICR, E1000_ICR_LSC); 2331 } 2332 } 2333 2334 static inline uint16_t 2335 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr) 2336 { 2337 uint16_t index = (addr & 0x1ffff) >> 2; 2338 return index + (mac_reg_access[index] & 0xfffe); 2339 } 2340 2341 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = { 2342 [MII_BMCR] = PHY_RW, 2343 [MII_BMSR] = PHY_R, 2344 [MII_PHYID1] = PHY_R, 2345 [MII_PHYID2] = PHY_R, 2346 [MII_ANAR] = PHY_RW, 2347 [MII_ANLPAR] = PHY_R, 2348 [MII_ANER] = PHY_R, 2349 [MII_ANNP] = PHY_RW, 2350 [MII_ANLPRNP] = PHY_R, 2351 [MII_CTRL1000] = PHY_RW, 2352 [MII_STAT1000] = PHY_R, 2353 [MII_EXTSTAT] = PHY_R, 2354 2355 [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW, 2356 [IGP01E1000_PHY_PORT_STATUS] = PHY_R, 2357 [IGP01E1000_PHY_PORT_CTRL] = PHY_RW, 2358 [IGP01E1000_PHY_LINK_HEALTH] = PHY_R, 2359 [IGP02E1000_PHY_POWER_MGMT] = PHY_RW, 2360 [IGP01E1000_PHY_PAGE_SELECT] = PHY_W 2361 }; 2362 2363 static void 2364 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data) 2365 { 2366 assert(addr <= MAX_PHY_REG_ADDRESS); 2367 2368 if (addr == MII_BMCR) { 2369 igb_set_phy_ctrl(core, data); 2370 } else { 2371 core->phy[addr] = data; 2372 } 2373 } 2374 2375 static void 2376 igb_set_mdic(IGBCore *core, int index, uint32_t val) 2377 { 2378 uint32_t data = val & E1000_MDIC_DATA_MASK; 2379 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 2380 2381 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */ 2382 val = core->mac[MDIC] | E1000_MDIC_ERROR; 2383 } else if (val & E1000_MDIC_OP_READ) { 2384 if (!(igb_phy_regcap[addr] & PHY_R)) { 2385 trace_igb_core_mdic_read_unhandled(addr); 2386 val |= E1000_MDIC_ERROR; 2387 } else { 2388 val = (val ^ data) | core->phy[addr]; 2389 trace_igb_core_mdic_read(addr, val); 2390 } 2391 } else if (val & E1000_MDIC_OP_WRITE) { 2392 if (!(igb_phy_regcap[addr] & PHY_W)) { 2393 trace_igb_core_mdic_write_unhandled(addr); 2394 val |= E1000_MDIC_ERROR; 2395 } else { 2396 trace_igb_core_mdic_write(addr, data); 2397 igb_phy_reg_write(core, addr, data); 2398 } 2399 } 2400 core->mac[MDIC] = val | E1000_MDIC_READY; 2401 2402 if (val & E1000_MDIC_INT_EN) { 2403 igb_raise_interrupts(core, ICR, E1000_ICR_MDAC); 2404 } 2405 } 2406 2407 static void 2408 igb_set_rdt(IGBCore *core, int index, uint32_t val) 2409 { 2410 core->mac[index] = val & 0xffff; 2411 trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val); 2412 igb_start_recv(core); 2413 } 2414 2415 static void 2416 igb_set_status(IGBCore *core, int index, uint32_t val) 2417 { 2418 if ((val & E1000_STATUS_PHYRA) == 0) { 2419 core->mac[index] &= ~E1000_STATUS_PHYRA; 2420 } 2421 } 2422 2423 static void 2424 igb_set_ctrlext(IGBCore *core, int index, uint32_t val) 2425 { 2426 trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK), 2427 !!(val & E1000_CTRL_EXT_SPD_BYPS), 2428 !!(val & E1000_CTRL_EXT_PFRSTD)); 2429 2430 /* Zero self-clearing bits */ 2431 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST); 2432 core->mac[CTRL_EXT] = val; 2433 2434 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) { 2435 for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) { 2436 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI; 2437 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD; 2438 } 2439 } 2440 } 2441 2442 static void 2443 igb_set_pbaclr(IGBCore *core, int index, uint32_t val) 2444 { 2445 int i; 2446 2447 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK; 2448 2449 if (!msix_enabled(core->owner)) { 2450 return; 2451 } 2452 2453 for (i = 0; i < IGB_INTR_NUM; i++) { 2454 if (core->mac[PBACLR] & BIT(i)) { 2455 msix_clr_pending(core->owner, i); 2456 } 2457 } 2458 } 2459 2460 static void 2461 igb_set_fcrth(IGBCore *core, int index, uint32_t val) 2462 { 2463 core->mac[FCRTH] = val & 0xFFF8; 2464 } 2465 2466 static void 2467 igb_set_fcrtl(IGBCore *core, int index, uint32_t val) 2468 { 2469 core->mac[FCRTL] = val & 0x8000FFF8; 2470 } 2471 2472 #define IGB_LOW_BITS_SET_FUNC(num) \ 2473 static void \ 2474 igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \ 2475 { \ 2476 core->mac[index] = val & (BIT(num) - 1); \ 2477 } 2478 2479 IGB_LOW_BITS_SET_FUNC(4) 2480 IGB_LOW_BITS_SET_FUNC(13) 2481 IGB_LOW_BITS_SET_FUNC(16) 2482 2483 static void 2484 igb_set_dlen(IGBCore *core, int index, uint32_t val) 2485 { 2486 core->mac[index] = val & 0xffff0; 2487 } 2488 2489 static void 2490 igb_set_dbal(IGBCore *core, int index, uint32_t val) 2491 { 2492 core->mac[index] = val & E1000_XDBAL_MASK; 2493 } 2494 2495 static void 2496 igb_set_tdt(IGBCore *core, int index, uint32_t val) 2497 { 2498 IGB_TxRing txr; 2499 int qn = igb_mq_queue_idx(TDT0, index); 2500 2501 core->mac[index] = val & 0xffff; 2502 2503 igb_tx_ring_init(core, &txr, qn); 2504 igb_start_xmit(core, &txr); 2505 } 2506 2507 static void 2508 igb_set_ics(IGBCore *core, int index, uint32_t val) 2509 { 2510 trace_e1000e_irq_write_ics(val); 2511 igb_raise_interrupts(core, ICR, val); 2512 } 2513 2514 static void 2515 igb_set_imc(IGBCore *core, int index, uint32_t val) 2516 { 2517 trace_e1000e_irq_ims_clear_set_imc(val); 2518 igb_lower_interrupts(core, IMS, val); 2519 } 2520 2521 static void 2522 igb_set_ims(IGBCore *core, int index, uint32_t val) 2523 { 2524 igb_raise_interrupts(core, IMS, val & 0x77D4FBFD); 2525 } 2526 2527 static void igb_nsicr(IGBCore *core) 2528 { 2529 /* 2530 * If GPIE.NSICR = 0, then the clear of IMS will occur only if at 2531 * least one bit is set in the IMS and there is a true interrupt as 2532 * reflected in ICR.INTA. 2533 */ 2534 if ((core->mac[GPIE] & E1000_GPIE_NSICR) || 2535 (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) { 2536 igb_lower_interrupts(core, IMS, core->mac[IAM]); 2537 } 2538 } 2539 2540 static void igb_set_icr(IGBCore *core, int index, uint32_t val) 2541 { 2542 igb_nsicr(core); 2543 igb_lower_interrupts(core, ICR, val); 2544 } 2545 2546 static uint32_t 2547 igb_mac_readreg(IGBCore *core, int index) 2548 { 2549 return core->mac[index]; 2550 } 2551 2552 static uint32_t 2553 igb_mac_ics_read(IGBCore *core, int index) 2554 { 2555 trace_e1000e_irq_read_ics(core->mac[ICS]); 2556 return core->mac[ICS]; 2557 } 2558 2559 static uint32_t 2560 igb_mac_ims_read(IGBCore *core, int index) 2561 { 2562 trace_e1000e_irq_read_ims(core->mac[IMS]); 2563 return core->mac[IMS]; 2564 } 2565 2566 static uint32_t 2567 igb_mac_swsm_read(IGBCore *core, int index) 2568 { 2569 uint32_t val = core->mac[SWSM]; 2570 core->mac[SWSM] = val | E1000_SWSM_SMBI; 2571 return val; 2572 } 2573 2574 static uint32_t 2575 igb_mac_eitr_read(IGBCore *core, int index) 2576 { 2577 return core->eitr_guest_value[index - EITR0]; 2578 } 2579 2580 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index) 2581 { 2582 uint32_t val = core->mac[index]; 2583 2584 core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK | 2585 E1000_V2PMAILBOX_RSTD); 2586 2587 return val; 2588 } 2589 2590 static uint32_t 2591 igb_mac_icr_read(IGBCore *core, int index) 2592 { 2593 uint32_t ret = core->mac[ICR]; 2594 2595 if (core->mac[GPIE] & E1000_GPIE_NSICR) { 2596 trace_igb_irq_icr_clear_gpie_nsicr(); 2597 igb_lower_interrupts(core, ICR, 0xffffffff); 2598 } else if (core->mac[IMS] == 0) { 2599 trace_e1000e_irq_icr_clear_zero_ims(); 2600 igb_lower_interrupts(core, ICR, 0xffffffff); 2601 } else if (core->mac[ICR] & E1000_ICR_INT_ASSERTED) { 2602 igb_lower_interrupts(core, ICR, 0xffffffff); 2603 } else if (!msix_enabled(core->owner)) { 2604 trace_e1000e_irq_icr_clear_nonmsix_icr_read(); 2605 igb_lower_interrupts(core, ICR, 0xffffffff); 2606 } 2607 2608 igb_nsicr(core); 2609 return ret; 2610 } 2611 2612 static uint32_t 2613 igb_mac_read_clr4(IGBCore *core, int index) 2614 { 2615 uint32_t ret = core->mac[index]; 2616 2617 core->mac[index] = 0; 2618 return ret; 2619 } 2620 2621 static uint32_t 2622 igb_mac_read_clr8(IGBCore *core, int index) 2623 { 2624 uint32_t ret = core->mac[index]; 2625 2626 core->mac[index] = 0; 2627 core->mac[index - 1] = 0; 2628 return ret; 2629 } 2630 2631 static uint32_t 2632 igb_get_ctrl(IGBCore *core, int index) 2633 { 2634 uint32_t val = core->mac[CTRL]; 2635 2636 trace_e1000e_link_read_params( 2637 !!(val & E1000_CTRL_ASDE), 2638 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 2639 !!(val & E1000_CTRL_FRCSPD), 2640 !!(val & E1000_CTRL_FRCDPX), 2641 !!(val & E1000_CTRL_RFCE), 2642 !!(val & E1000_CTRL_TFCE)); 2643 2644 return val; 2645 } 2646 2647 static uint32_t igb_get_status(IGBCore *core, int index) 2648 { 2649 uint32_t res = core->mac[STATUS]; 2650 uint16_t num_vfs = pcie_sriov_num_vfs(core->owner); 2651 2652 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) { 2653 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0; 2654 } else { 2655 res |= E1000_STATUS_FD; 2656 } 2657 2658 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) || 2659 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) { 2660 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) { 2661 case E1000_CTRL_SPD_10: 2662 res |= E1000_STATUS_SPEED_10; 2663 break; 2664 case E1000_CTRL_SPD_100: 2665 res |= E1000_STATUS_SPEED_100; 2666 break; 2667 case E1000_CTRL_SPD_1000: 2668 default: 2669 res |= E1000_STATUS_SPEED_1000; 2670 break; 2671 } 2672 } else { 2673 res |= E1000_STATUS_SPEED_1000; 2674 } 2675 2676 if (num_vfs) { 2677 res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT; 2678 res |= E1000_STATUS_IOV_MODE; 2679 } 2680 2681 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) { 2682 res |= E1000_STATUS_GIO_MASTER_ENABLE; 2683 } 2684 2685 return res; 2686 } 2687 2688 static void 2689 igb_mac_writereg(IGBCore *core, int index, uint32_t val) 2690 { 2691 core->mac[index] = val; 2692 } 2693 2694 static void 2695 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val) 2696 { 2697 uint32_t macaddr[2]; 2698 2699 core->mac[index] = val; 2700 2701 macaddr[0] = cpu_to_le32(core->mac[RA]); 2702 macaddr[1] = cpu_to_le32(core->mac[RA + 1]); 2703 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic), 2704 (uint8_t *) macaddr); 2705 2706 trace_e1000e_mac_set_sw(MAC_ARG(macaddr)); 2707 } 2708 2709 static void 2710 igb_set_eecd(IGBCore *core, int index, uint32_t val) 2711 { 2712 static const uint32_t ro_bits = E1000_EECD_PRES | 2713 E1000_EECD_AUTO_RD | 2714 E1000_EECD_SIZE_EX_MASK; 2715 2716 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits); 2717 } 2718 2719 static void 2720 igb_set_eerd(IGBCore *core, int index, uint32_t val) 2721 { 2722 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; 2723 uint32_t flags = 0; 2724 uint32_t data = 0; 2725 2726 if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) { 2727 data = core->eeprom[addr]; 2728 flags = E1000_EERW_DONE; 2729 } 2730 2731 core->mac[EERD] = flags | 2732 (addr << E1000_EERW_ADDR_SHIFT) | 2733 (data << E1000_EERW_DATA_SHIFT); 2734 } 2735 2736 static void 2737 igb_set_eitr(IGBCore *core, int index, uint32_t val) 2738 { 2739 uint32_t eitr_num = index - EITR0; 2740 2741 trace_igb_irq_eitr_set(eitr_num, val); 2742 2743 core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR; 2744 core->mac[index] = val & 0x7FFE; 2745 } 2746 2747 static void 2748 igb_update_rx_offloads(IGBCore *core) 2749 { 2750 int cso_state = igb_rx_l4_cso_enabled(core); 2751 2752 trace_e1000e_rx_set_cso(cso_state); 2753 2754 if (core->has_vnet) { 2755 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer, 2756 cso_state, 0, 0, 0, 0); 2757 } 2758 } 2759 2760 static void 2761 igb_set_rxcsum(IGBCore *core, int index, uint32_t val) 2762 { 2763 core->mac[RXCSUM] = val; 2764 igb_update_rx_offloads(core); 2765 } 2766 2767 static void 2768 igb_set_gcr(IGBCore *core, int index, uint32_t val) 2769 { 2770 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS; 2771 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits; 2772 } 2773 2774 static uint32_t igb_get_systiml(IGBCore *core, int index) 2775 { 2776 e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH); 2777 return core->mac[SYSTIML]; 2778 } 2779 2780 static uint32_t igb_get_rxsatrh(IGBCore *core, int index) 2781 { 2782 core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID; 2783 return core->mac[RXSATRH]; 2784 } 2785 2786 static uint32_t igb_get_txstmph(IGBCore *core, int index) 2787 { 2788 core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID; 2789 return core->mac[TXSTMPH]; 2790 } 2791 2792 static void igb_set_timinca(IGBCore *core, int index, uint32_t val) 2793 { 2794 e1000x_set_timinca(core->mac, &core->timadj, val); 2795 } 2796 2797 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val) 2798 { 2799 core->mac[TIMADJH] = val; 2800 core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32); 2801 } 2802 2803 #define igb_getreg(x) [x] = igb_mac_readreg 2804 typedef uint32_t (*readops)(IGBCore *, int); 2805 static const readops igb_macreg_readops[] = { 2806 igb_getreg(WUFC), 2807 igb_getreg(MANC), 2808 igb_getreg(TOTL), 2809 igb_getreg(RDT0), 2810 igb_getreg(RDT1), 2811 igb_getreg(RDT2), 2812 igb_getreg(RDT3), 2813 igb_getreg(RDT4), 2814 igb_getreg(RDT5), 2815 igb_getreg(RDT6), 2816 igb_getreg(RDT7), 2817 igb_getreg(RDT8), 2818 igb_getreg(RDT9), 2819 igb_getreg(RDT10), 2820 igb_getreg(RDT11), 2821 igb_getreg(RDT12), 2822 igb_getreg(RDT13), 2823 igb_getreg(RDT14), 2824 igb_getreg(RDT15), 2825 igb_getreg(RDBAH0), 2826 igb_getreg(RDBAH1), 2827 igb_getreg(RDBAH2), 2828 igb_getreg(RDBAH3), 2829 igb_getreg(RDBAH4), 2830 igb_getreg(RDBAH5), 2831 igb_getreg(RDBAH6), 2832 igb_getreg(RDBAH7), 2833 igb_getreg(RDBAH8), 2834 igb_getreg(RDBAH9), 2835 igb_getreg(RDBAH10), 2836 igb_getreg(RDBAH11), 2837 igb_getreg(RDBAH12), 2838 igb_getreg(RDBAH13), 2839 igb_getreg(RDBAH14), 2840 igb_getreg(RDBAH15), 2841 igb_getreg(TDBAL0), 2842 igb_getreg(TDBAL1), 2843 igb_getreg(TDBAL2), 2844 igb_getreg(TDBAL3), 2845 igb_getreg(TDBAL4), 2846 igb_getreg(TDBAL5), 2847 igb_getreg(TDBAL6), 2848 igb_getreg(TDBAL7), 2849 igb_getreg(TDBAL8), 2850 igb_getreg(TDBAL9), 2851 igb_getreg(TDBAL10), 2852 igb_getreg(TDBAL11), 2853 igb_getreg(TDBAL12), 2854 igb_getreg(TDBAL13), 2855 igb_getreg(TDBAL14), 2856 igb_getreg(TDBAL15), 2857 igb_getreg(RDLEN0), 2858 igb_getreg(RDLEN1), 2859 igb_getreg(RDLEN2), 2860 igb_getreg(RDLEN3), 2861 igb_getreg(RDLEN4), 2862 igb_getreg(RDLEN5), 2863 igb_getreg(RDLEN6), 2864 igb_getreg(RDLEN7), 2865 igb_getreg(RDLEN8), 2866 igb_getreg(RDLEN9), 2867 igb_getreg(RDLEN10), 2868 igb_getreg(RDLEN11), 2869 igb_getreg(RDLEN12), 2870 igb_getreg(RDLEN13), 2871 igb_getreg(RDLEN14), 2872 igb_getreg(RDLEN15), 2873 igb_getreg(SRRCTL0), 2874 igb_getreg(SRRCTL1), 2875 igb_getreg(SRRCTL2), 2876 igb_getreg(SRRCTL3), 2877 igb_getreg(SRRCTL4), 2878 igb_getreg(SRRCTL5), 2879 igb_getreg(SRRCTL6), 2880 igb_getreg(SRRCTL7), 2881 igb_getreg(SRRCTL8), 2882 igb_getreg(SRRCTL9), 2883 igb_getreg(SRRCTL10), 2884 igb_getreg(SRRCTL11), 2885 igb_getreg(SRRCTL12), 2886 igb_getreg(SRRCTL13), 2887 igb_getreg(SRRCTL14), 2888 igb_getreg(SRRCTL15), 2889 igb_getreg(LATECOL), 2890 igb_getreg(XONTXC), 2891 igb_getreg(TDFH), 2892 igb_getreg(TDFT), 2893 igb_getreg(TDFHS), 2894 igb_getreg(TDFTS), 2895 igb_getreg(TDFPC), 2896 igb_getreg(WUS), 2897 igb_getreg(RDFH), 2898 igb_getreg(RDFT), 2899 igb_getreg(RDFHS), 2900 igb_getreg(RDFTS), 2901 igb_getreg(RDFPC), 2902 igb_getreg(GORCL), 2903 igb_getreg(MGTPRC), 2904 igb_getreg(EERD), 2905 igb_getreg(EIAC), 2906 igb_getreg(MANC2H), 2907 igb_getreg(RXCSUM), 2908 igb_getreg(GSCL_3), 2909 igb_getreg(GSCN_2), 2910 igb_getreg(FCAH), 2911 igb_getreg(FCRTH), 2912 igb_getreg(FLOP), 2913 igb_getreg(RXSTMPH), 2914 igb_getreg(TXSTMPL), 2915 igb_getreg(TIMADJL), 2916 igb_getreg(RDH0), 2917 igb_getreg(RDH1), 2918 igb_getreg(RDH2), 2919 igb_getreg(RDH3), 2920 igb_getreg(RDH4), 2921 igb_getreg(RDH5), 2922 igb_getreg(RDH6), 2923 igb_getreg(RDH7), 2924 igb_getreg(RDH8), 2925 igb_getreg(RDH9), 2926 igb_getreg(RDH10), 2927 igb_getreg(RDH11), 2928 igb_getreg(RDH12), 2929 igb_getreg(RDH13), 2930 igb_getreg(RDH14), 2931 igb_getreg(RDH15), 2932 igb_getreg(TDT0), 2933 igb_getreg(TDT1), 2934 igb_getreg(TDT2), 2935 igb_getreg(TDT3), 2936 igb_getreg(TDT4), 2937 igb_getreg(TDT5), 2938 igb_getreg(TDT6), 2939 igb_getreg(TDT7), 2940 igb_getreg(TDT8), 2941 igb_getreg(TDT9), 2942 igb_getreg(TDT10), 2943 igb_getreg(TDT11), 2944 igb_getreg(TDT12), 2945 igb_getreg(TDT13), 2946 igb_getreg(TDT14), 2947 igb_getreg(TDT15), 2948 igb_getreg(TNCRS), 2949 igb_getreg(RJC), 2950 igb_getreg(IAM), 2951 igb_getreg(GSCL_2), 2952 igb_getreg(TIPG), 2953 igb_getreg(FLMNGCTL), 2954 igb_getreg(FLMNGCNT), 2955 igb_getreg(TSYNCTXCTL), 2956 igb_getreg(EEMNGDATA), 2957 igb_getreg(CTRL_EXT), 2958 igb_getreg(SYSTIMH), 2959 igb_getreg(EEMNGCTL), 2960 igb_getreg(FLMNGDATA), 2961 igb_getreg(TSYNCRXCTL), 2962 igb_getreg(LEDCTL), 2963 igb_getreg(TCTL), 2964 igb_getreg(TCTL_EXT), 2965 igb_getreg(DTXCTL), 2966 igb_getreg(RXPBS), 2967 igb_getreg(TDH0), 2968 igb_getreg(TDH1), 2969 igb_getreg(TDH2), 2970 igb_getreg(TDH3), 2971 igb_getreg(TDH4), 2972 igb_getreg(TDH5), 2973 igb_getreg(TDH6), 2974 igb_getreg(TDH7), 2975 igb_getreg(TDH8), 2976 igb_getreg(TDH9), 2977 igb_getreg(TDH10), 2978 igb_getreg(TDH11), 2979 igb_getreg(TDH12), 2980 igb_getreg(TDH13), 2981 igb_getreg(TDH14), 2982 igb_getreg(TDH15), 2983 igb_getreg(ECOL), 2984 igb_getreg(DC), 2985 igb_getreg(RLEC), 2986 igb_getreg(XOFFTXC), 2987 igb_getreg(RFC), 2988 igb_getreg(RNBC), 2989 igb_getreg(MGTPTC), 2990 igb_getreg(TIMINCA), 2991 igb_getreg(FACTPS), 2992 igb_getreg(GSCL_1), 2993 igb_getreg(GSCN_0), 2994 igb_getreg(PBACLR), 2995 igb_getreg(FCTTV), 2996 igb_getreg(RXSATRL), 2997 igb_getreg(TORL), 2998 igb_getreg(TDLEN0), 2999 igb_getreg(TDLEN1), 3000 igb_getreg(TDLEN2), 3001 igb_getreg(TDLEN3), 3002 igb_getreg(TDLEN4), 3003 igb_getreg(TDLEN5), 3004 igb_getreg(TDLEN6), 3005 igb_getreg(TDLEN7), 3006 igb_getreg(TDLEN8), 3007 igb_getreg(TDLEN9), 3008 igb_getreg(TDLEN10), 3009 igb_getreg(TDLEN11), 3010 igb_getreg(TDLEN12), 3011 igb_getreg(TDLEN13), 3012 igb_getreg(TDLEN14), 3013 igb_getreg(TDLEN15), 3014 igb_getreg(MCC), 3015 igb_getreg(WUC), 3016 igb_getreg(EECD), 3017 igb_getreg(FCRTV), 3018 igb_getreg(TXDCTL0), 3019 igb_getreg(TXDCTL1), 3020 igb_getreg(TXDCTL2), 3021 igb_getreg(TXDCTL3), 3022 igb_getreg(TXDCTL4), 3023 igb_getreg(TXDCTL5), 3024 igb_getreg(TXDCTL6), 3025 igb_getreg(TXDCTL7), 3026 igb_getreg(TXDCTL8), 3027 igb_getreg(TXDCTL9), 3028 igb_getreg(TXDCTL10), 3029 igb_getreg(TXDCTL11), 3030 igb_getreg(TXDCTL12), 3031 igb_getreg(TXDCTL13), 3032 igb_getreg(TXDCTL14), 3033 igb_getreg(TXDCTL15), 3034 igb_getreg(TXCTL0), 3035 igb_getreg(TXCTL1), 3036 igb_getreg(TXCTL2), 3037 igb_getreg(TXCTL3), 3038 igb_getreg(TXCTL4), 3039 igb_getreg(TXCTL5), 3040 igb_getreg(TXCTL6), 3041 igb_getreg(TXCTL7), 3042 igb_getreg(TXCTL8), 3043 igb_getreg(TXCTL9), 3044 igb_getreg(TXCTL10), 3045 igb_getreg(TXCTL11), 3046 igb_getreg(TXCTL12), 3047 igb_getreg(TXCTL13), 3048 igb_getreg(TXCTL14), 3049 igb_getreg(TXCTL15), 3050 igb_getreg(TDWBAL0), 3051 igb_getreg(TDWBAL1), 3052 igb_getreg(TDWBAL2), 3053 igb_getreg(TDWBAL3), 3054 igb_getreg(TDWBAL4), 3055 igb_getreg(TDWBAL5), 3056 igb_getreg(TDWBAL6), 3057 igb_getreg(TDWBAL7), 3058 igb_getreg(TDWBAL8), 3059 igb_getreg(TDWBAL9), 3060 igb_getreg(TDWBAL10), 3061 igb_getreg(TDWBAL11), 3062 igb_getreg(TDWBAL12), 3063 igb_getreg(TDWBAL13), 3064 igb_getreg(TDWBAL14), 3065 igb_getreg(TDWBAL15), 3066 igb_getreg(TDWBAH0), 3067 igb_getreg(TDWBAH1), 3068 igb_getreg(TDWBAH2), 3069 igb_getreg(TDWBAH3), 3070 igb_getreg(TDWBAH4), 3071 igb_getreg(TDWBAH5), 3072 igb_getreg(TDWBAH6), 3073 igb_getreg(TDWBAH7), 3074 igb_getreg(TDWBAH8), 3075 igb_getreg(TDWBAH9), 3076 igb_getreg(TDWBAH10), 3077 igb_getreg(TDWBAH11), 3078 igb_getreg(TDWBAH12), 3079 igb_getreg(TDWBAH13), 3080 igb_getreg(TDWBAH14), 3081 igb_getreg(TDWBAH15), 3082 igb_getreg(PVTCTRL0), 3083 igb_getreg(PVTCTRL1), 3084 igb_getreg(PVTCTRL2), 3085 igb_getreg(PVTCTRL3), 3086 igb_getreg(PVTCTRL4), 3087 igb_getreg(PVTCTRL5), 3088 igb_getreg(PVTCTRL6), 3089 igb_getreg(PVTCTRL7), 3090 igb_getreg(PVTEIMS0), 3091 igb_getreg(PVTEIMS1), 3092 igb_getreg(PVTEIMS2), 3093 igb_getreg(PVTEIMS3), 3094 igb_getreg(PVTEIMS4), 3095 igb_getreg(PVTEIMS5), 3096 igb_getreg(PVTEIMS6), 3097 igb_getreg(PVTEIMS7), 3098 igb_getreg(PVTEIAC0), 3099 igb_getreg(PVTEIAC1), 3100 igb_getreg(PVTEIAC2), 3101 igb_getreg(PVTEIAC3), 3102 igb_getreg(PVTEIAC4), 3103 igb_getreg(PVTEIAC5), 3104 igb_getreg(PVTEIAC6), 3105 igb_getreg(PVTEIAC7), 3106 igb_getreg(PVTEIAM0), 3107 igb_getreg(PVTEIAM1), 3108 igb_getreg(PVTEIAM2), 3109 igb_getreg(PVTEIAM3), 3110 igb_getreg(PVTEIAM4), 3111 igb_getreg(PVTEIAM5), 3112 igb_getreg(PVTEIAM6), 3113 igb_getreg(PVTEIAM7), 3114 igb_getreg(PVFGPRC0), 3115 igb_getreg(PVFGPRC1), 3116 igb_getreg(PVFGPRC2), 3117 igb_getreg(PVFGPRC3), 3118 igb_getreg(PVFGPRC4), 3119 igb_getreg(PVFGPRC5), 3120 igb_getreg(PVFGPRC6), 3121 igb_getreg(PVFGPRC7), 3122 igb_getreg(PVFGPTC0), 3123 igb_getreg(PVFGPTC1), 3124 igb_getreg(PVFGPTC2), 3125 igb_getreg(PVFGPTC3), 3126 igb_getreg(PVFGPTC4), 3127 igb_getreg(PVFGPTC5), 3128 igb_getreg(PVFGPTC6), 3129 igb_getreg(PVFGPTC7), 3130 igb_getreg(PVFGORC0), 3131 igb_getreg(PVFGORC1), 3132 igb_getreg(PVFGORC2), 3133 igb_getreg(PVFGORC3), 3134 igb_getreg(PVFGORC4), 3135 igb_getreg(PVFGORC5), 3136 igb_getreg(PVFGORC6), 3137 igb_getreg(PVFGORC7), 3138 igb_getreg(PVFGOTC0), 3139 igb_getreg(PVFGOTC1), 3140 igb_getreg(PVFGOTC2), 3141 igb_getreg(PVFGOTC3), 3142 igb_getreg(PVFGOTC4), 3143 igb_getreg(PVFGOTC5), 3144 igb_getreg(PVFGOTC6), 3145 igb_getreg(PVFGOTC7), 3146 igb_getreg(PVFMPRC0), 3147 igb_getreg(PVFMPRC1), 3148 igb_getreg(PVFMPRC2), 3149 igb_getreg(PVFMPRC3), 3150 igb_getreg(PVFMPRC4), 3151 igb_getreg(PVFMPRC5), 3152 igb_getreg(PVFMPRC6), 3153 igb_getreg(PVFMPRC7), 3154 igb_getreg(PVFGPRLBC0), 3155 igb_getreg(PVFGPRLBC1), 3156 igb_getreg(PVFGPRLBC2), 3157 igb_getreg(PVFGPRLBC3), 3158 igb_getreg(PVFGPRLBC4), 3159 igb_getreg(PVFGPRLBC5), 3160 igb_getreg(PVFGPRLBC6), 3161 igb_getreg(PVFGPRLBC7), 3162 igb_getreg(PVFGPTLBC0), 3163 igb_getreg(PVFGPTLBC1), 3164 igb_getreg(PVFGPTLBC2), 3165 igb_getreg(PVFGPTLBC3), 3166 igb_getreg(PVFGPTLBC4), 3167 igb_getreg(PVFGPTLBC5), 3168 igb_getreg(PVFGPTLBC6), 3169 igb_getreg(PVFGPTLBC7), 3170 igb_getreg(PVFGORLBC0), 3171 igb_getreg(PVFGORLBC1), 3172 igb_getreg(PVFGORLBC2), 3173 igb_getreg(PVFGORLBC3), 3174 igb_getreg(PVFGORLBC4), 3175 igb_getreg(PVFGORLBC5), 3176 igb_getreg(PVFGORLBC6), 3177 igb_getreg(PVFGORLBC7), 3178 igb_getreg(PVFGOTLBC0), 3179 igb_getreg(PVFGOTLBC1), 3180 igb_getreg(PVFGOTLBC2), 3181 igb_getreg(PVFGOTLBC3), 3182 igb_getreg(PVFGOTLBC4), 3183 igb_getreg(PVFGOTLBC5), 3184 igb_getreg(PVFGOTLBC6), 3185 igb_getreg(PVFGOTLBC7), 3186 igb_getreg(RCTL), 3187 igb_getreg(MDIC), 3188 igb_getreg(FCRUC), 3189 igb_getreg(VET), 3190 igb_getreg(RDBAL0), 3191 igb_getreg(RDBAL1), 3192 igb_getreg(RDBAL2), 3193 igb_getreg(RDBAL3), 3194 igb_getreg(RDBAL4), 3195 igb_getreg(RDBAL5), 3196 igb_getreg(RDBAL6), 3197 igb_getreg(RDBAL7), 3198 igb_getreg(RDBAL8), 3199 igb_getreg(RDBAL9), 3200 igb_getreg(RDBAL10), 3201 igb_getreg(RDBAL11), 3202 igb_getreg(RDBAL12), 3203 igb_getreg(RDBAL13), 3204 igb_getreg(RDBAL14), 3205 igb_getreg(RDBAL15), 3206 igb_getreg(TDBAH0), 3207 igb_getreg(TDBAH1), 3208 igb_getreg(TDBAH2), 3209 igb_getreg(TDBAH3), 3210 igb_getreg(TDBAH4), 3211 igb_getreg(TDBAH5), 3212 igb_getreg(TDBAH6), 3213 igb_getreg(TDBAH7), 3214 igb_getreg(TDBAH8), 3215 igb_getreg(TDBAH9), 3216 igb_getreg(TDBAH10), 3217 igb_getreg(TDBAH11), 3218 igb_getreg(TDBAH12), 3219 igb_getreg(TDBAH13), 3220 igb_getreg(TDBAH14), 3221 igb_getreg(TDBAH15), 3222 igb_getreg(SCC), 3223 igb_getreg(COLC), 3224 igb_getreg(XOFFRXC), 3225 igb_getreg(IPAV), 3226 igb_getreg(GOTCL), 3227 igb_getreg(MGTPDC), 3228 igb_getreg(GCR), 3229 igb_getreg(MFVAL), 3230 igb_getreg(FUNCTAG), 3231 igb_getreg(GSCL_4), 3232 igb_getreg(GSCN_3), 3233 igb_getreg(MRQC), 3234 igb_getreg(FCT), 3235 igb_getreg(FLA), 3236 igb_getreg(RXDCTL0), 3237 igb_getreg(RXDCTL1), 3238 igb_getreg(RXDCTL2), 3239 igb_getreg(RXDCTL3), 3240 igb_getreg(RXDCTL4), 3241 igb_getreg(RXDCTL5), 3242 igb_getreg(RXDCTL6), 3243 igb_getreg(RXDCTL7), 3244 igb_getreg(RXDCTL8), 3245 igb_getreg(RXDCTL9), 3246 igb_getreg(RXDCTL10), 3247 igb_getreg(RXDCTL11), 3248 igb_getreg(RXDCTL12), 3249 igb_getreg(RXDCTL13), 3250 igb_getreg(RXDCTL14), 3251 igb_getreg(RXDCTL15), 3252 igb_getreg(RXSTMPL), 3253 igb_getreg(TIMADJH), 3254 igb_getreg(FCRTL), 3255 igb_getreg(XONRXC), 3256 igb_getreg(RFCTL), 3257 igb_getreg(GSCN_1), 3258 igb_getreg(FCAL), 3259 igb_getreg(GPIE), 3260 igb_getreg(TXPBS), 3261 igb_getreg(RLPML), 3262 3263 [TOTH] = igb_mac_read_clr8, 3264 [GOTCH] = igb_mac_read_clr8, 3265 [PRC64] = igb_mac_read_clr4, 3266 [PRC255] = igb_mac_read_clr4, 3267 [PRC1023] = igb_mac_read_clr4, 3268 [PTC64] = igb_mac_read_clr4, 3269 [PTC255] = igb_mac_read_clr4, 3270 [PTC1023] = igb_mac_read_clr4, 3271 [GPRC] = igb_mac_read_clr4, 3272 [TPT] = igb_mac_read_clr4, 3273 [RUC] = igb_mac_read_clr4, 3274 [BPRC] = igb_mac_read_clr4, 3275 [MPTC] = igb_mac_read_clr4, 3276 [IAC] = igb_mac_read_clr4, 3277 [ICR] = igb_mac_icr_read, 3278 [STATUS] = igb_get_status, 3279 [ICS] = igb_mac_ics_read, 3280 /* 3281 * 8.8.10: Reading the IMC register returns the value of the IMS register. 3282 */ 3283 [IMC] = igb_mac_ims_read, 3284 [TORH] = igb_mac_read_clr8, 3285 [GORCH] = igb_mac_read_clr8, 3286 [PRC127] = igb_mac_read_clr4, 3287 [PRC511] = igb_mac_read_clr4, 3288 [PRC1522] = igb_mac_read_clr4, 3289 [PTC127] = igb_mac_read_clr4, 3290 [PTC511] = igb_mac_read_clr4, 3291 [PTC1522] = igb_mac_read_clr4, 3292 [GPTC] = igb_mac_read_clr4, 3293 [TPR] = igb_mac_read_clr4, 3294 [ROC] = igb_mac_read_clr4, 3295 [MPRC] = igb_mac_read_clr4, 3296 [BPTC] = igb_mac_read_clr4, 3297 [TSCTC] = igb_mac_read_clr4, 3298 [CTRL] = igb_get_ctrl, 3299 [SWSM] = igb_mac_swsm_read, 3300 [IMS] = igb_mac_ims_read, 3301 [SYSTIML] = igb_get_systiml, 3302 [RXSATRH] = igb_get_rxsatrh, 3303 [TXSTMPH] = igb_get_txstmph, 3304 3305 [CRCERRS ... MPC] = igb_mac_readreg, 3306 [IP6AT ... IP6AT + 3] = igb_mac_readreg, 3307 [IP4AT ... IP4AT + 6] = igb_mac_readreg, 3308 [RA ... RA + 31] = igb_mac_readreg, 3309 [RA2 ... RA2 + 31] = igb_mac_readreg, 3310 [WUPM ... WUPM + 31] = igb_mac_readreg, 3311 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_readreg, 3312 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_readreg, 3313 [FFMT ... FFMT + 254] = igb_mac_readreg, 3314 [MDEF ... MDEF + 7] = igb_mac_readreg, 3315 [FTFT ... FTFT + 254] = igb_mac_readreg, 3316 [RETA ... RETA + 31] = igb_mac_readreg, 3317 [RSSRK ... RSSRK + 9] = igb_mac_readreg, 3318 [MAVTV0 ... MAVTV3] = igb_mac_readreg, 3319 [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read, 3320 [PVTEICR0] = igb_mac_read_clr4, 3321 [PVTEICR1] = igb_mac_read_clr4, 3322 [PVTEICR2] = igb_mac_read_clr4, 3323 [PVTEICR3] = igb_mac_read_clr4, 3324 [PVTEICR4] = igb_mac_read_clr4, 3325 [PVTEICR5] = igb_mac_read_clr4, 3326 [PVTEICR6] = igb_mac_read_clr4, 3327 [PVTEICR7] = igb_mac_read_clr4, 3328 3329 /* IGB specific: */ 3330 [FWSM] = igb_mac_readreg, 3331 [SW_FW_SYNC] = igb_mac_readreg, 3332 [HTCBDPC] = igb_mac_read_clr4, 3333 [EICR] = igb_mac_read_clr4, 3334 [EIMS] = igb_mac_readreg, 3335 [EIAM] = igb_mac_readreg, 3336 [IVAR0 ... IVAR0 + 7] = igb_mac_readreg, 3337 igb_getreg(IVAR_MISC), 3338 igb_getreg(TSYNCRXCFG), 3339 [ETQF0 ... ETQF0 + 7] = igb_mac_readreg, 3340 igb_getreg(VT_CTL), 3341 [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg, 3342 [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read, 3343 igb_getreg(MBVFICR), 3344 [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg, 3345 igb_getreg(MBVFIMR), 3346 igb_getreg(VFLRE), 3347 igb_getreg(VFRE), 3348 igb_getreg(VFTE), 3349 igb_getreg(QDE), 3350 igb_getreg(DTXSWC), 3351 igb_getreg(RPLOLR), 3352 [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg, 3353 [VMVIR0 ... VMVIR7] = igb_mac_readreg, 3354 [VMOLR0 ... VMOLR7] = igb_mac_readreg, 3355 [WVBR] = igb_mac_read_clr4, 3356 [RQDPC0] = igb_mac_read_clr4, 3357 [RQDPC1] = igb_mac_read_clr4, 3358 [RQDPC2] = igb_mac_read_clr4, 3359 [RQDPC3] = igb_mac_read_clr4, 3360 [RQDPC4] = igb_mac_read_clr4, 3361 [RQDPC5] = igb_mac_read_clr4, 3362 [RQDPC6] = igb_mac_read_clr4, 3363 [RQDPC7] = igb_mac_read_clr4, 3364 [RQDPC8] = igb_mac_read_clr4, 3365 [RQDPC9] = igb_mac_read_clr4, 3366 [RQDPC10] = igb_mac_read_clr4, 3367 [RQDPC11] = igb_mac_read_clr4, 3368 [RQDPC12] = igb_mac_read_clr4, 3369 [RQDPC13] = igb_mac_read_clr4, 3370 [RQDPC14] = igb_mac_read_clr4, 3371 [RQDPC15] = igb_mac_read_clr4, 3372 [VTIVAR ... VTIVAR + 7] = igb_mac_readreg, 3373 [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg, 3374 }; 3375 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) }; 3376 3377 #define igb_putreg(x) [x] = igb_mac_writereg 3378 typedef void (*writeops)(IGBCore *, int, uint32_t); 3379 static const writeops igb_macreg_writeops[] = { 3380 igb_putreg(SWSM), 3381 igb_putreg(WUFC), 3382 igb_putreg(RDBAH0), 3383 igb_putreg(RDBAH1), 3384 igb_putreg(RDBAH2), 3385 igb_putreg(RDBAH3), 3386 igb_putreg(RDBAH4), 3387 igb_putreg(RDBAH5), 3388 igb_putreg(RDBAH6), 3389 igb_putreg(RDBAH7), 3390 igb_putreg(RDBAH8), 3391 igb_putreg(RDBAH9), 3392 igb_putreg(RDBAH10), 3393 igb_putreg(RDBAH11), 3394 igb_putreg(RDBAH12), 3395 igb_putreg(RDBAH13), 3396 igb_putreg(RDBAH14), 3397 igb_putreg(RDBAH15), 3398 igb_putreg(SRRCTL0), 3399 igb_putreg(SRRCTL1), 3400 igb_putreg(SRRCTL2), 3401 igb_putreg(SRRCTL3), 3402 igb_putreg(SRRCTL4), 3403 igb_putreg(SRRCTL5), 3404 igb_putreg(SRRCTL6), 3405 igb_putreg(SRRCTL7), 3406 igb_putreg(SRRCTL8), 3407 igb_putreg(SRRCTL9), 3408 igb_putreg(SRRCTL10), 3409 igb_putreg(SRRCTL11), 3410 igb_putreg(SRRCTL12), 3411 igb_putreg(SRRCTL13), 3412 igb_putreg(SRRCTL14), 3413 igb_putreg(SRRCTL15), 3414 igb_putreg(RXDCTL0), 3415 igb_putreg(RXDCTL1), 3416 igb_putreg(RXDCTL2), 3417 igb_putreg(RXDCTL3), 3418 igb_putreg(RXDCTL4), 3419 igb_putreg(RXDCTL5), 3420 igb_putreg(RXDCTL6), 3421 igb_putreg(RXDCTL7), 3422 igb_putreg(RXDCTL8), 3423 igb_putreg(RXDCTL9), 3424 igb_putreg(RXDCTL10), 3425 igb_putreg(RXDCTL11), 3426 igb_putreg(RXDCTL12), 3427 igb_putreg(RXDCTL13), 3428 igb_putreg(RXDCTL14), 3429 igb_putreg(RXDCTL15), 3430 igb_putreg(LEDCTL), 3431 igb_putreg(TCTL), 3432 igb_putreg(TCTL_EXT), 3433 igb_putreg(DTXCTL), 3434 igb_putreg(RXPBS), 3435 igb_putreg(RQDPC0), 3436 igb_putreg(FCAL), 3437 igb_putreg(FCRUC), 3438 igb_putreg(WUC), 3439 igb_putreg(WUS), 3440 igb_putreg(IPAV), 3441 igb_putreg(TDBAH0), 3442 igb_putreg(TDBAH1), 3443 igb_putreg(TDBAH2), 3444 igb_putreg(TDBAH3), 3445 igb_putreg(TDBAH4), 3446 igb_putreg(TDBAH5), 3447 igb_putreg(TDBAH6), 3448 igb_putreg(TDBAH7), 3449 igb_putreg(TDBAH8), 3450 igb_putreg(TDBAH9), 3451 igb_putreg(TDBAH10), 3452 igb_putreg(TDBAH11), 3453 igb_putreg(TDBAH12), 3454 igb_putreg(TDBAH13), 3455 igb_putreg(TDBAH14), 3456 igb_putreg(TDBAH15), 3457 igb_putreg(IAM), 3458 igb_putreg(MANC), 3459 igb_putreg(MANC2H), 3460 igb_putreg(MFVAL), 3461 igb_putreg(FACTPS), 3462 igb_putreg(FUNCTAG), 3463 igb_putreg(GSCL_1), 3464 igb_putreg(GSCL_2), 3465 igb_putreg(GSCL_3), 3466 igb_putreg(GSCL_4), 3467 igb_putreg(GSCN_0), 3468 igb_putreg(GSCN_1), 3469 igb_putreg(GSCN_2), 3470 igb_putreg(GSCN_3), 3471 igb_putreg(MRQC), 3472 igb_putreg(FLOP), 3473 igb_putreg(FLA), 3474 igb_putreg(TXDCTL0), 3475 igb_putreg(TXDCTL1), 3476 igb_putreg(TXDCTL2), 3477 igb_putreg(TXDCTL3), 3478 igb_putreg(TXDCTL4), 3479 igb_putreg(TXDCTL5), 3480 igb_putreg(TXDCTL6), 3481 igb_putreg(TXDCTL7), 3482 igb_putreg(TXDCTL8), 3483 igb_putreg(TXDCTL9), 3484 igb_putreg(TXDCTL10), 3485 igb_putreg(TXDCTL11), 3486 igb_putreg(TXDCTL12), 3487 igb_putreg(TXDCTL13), 3488 igb_putreg(TXDCTL14), 3489 igb_putreg(TXDCTL15), 3490 igb_putreg(TXCTL0), 3491 igb_putreg(TXCTL1), 3492 igb_putreg(TXCTL2), 3493 igb_putreg(TXCTL3), 3494 igb_putreg(TXCTL4), 3495 igb_putreg(TXCTL5), 3496 igb_putreg(TXCTL6), 3497 igb_putreg(TXCTL7), 3498 igb_putreg(TXCTL8), 3499 igb_putreg(TXCTL9), 3500 igb_putreg(TXCTL10), 3501 igb_putreg(TXCTL11), 3502 igb_putreg(TXCTL12), 3503 igb_putreg(TXCTL13), 3504 igb_putreg(TXCTL14), 3505 igb_putreg(TXCTL15), 3506 igb_putreg(TDWBAL0), 3507 igb_putreg(TDWBAL1), 3508 igb_putreg(TDWBAL2), 3509 igb_putreg(TDWBAL3), 3510 igb_putreg(TDWBAL4), 3511 igb_putreg(TDWBAL5), 3512 igb_putreg(TDWBAL6), 3513 igb_putreg(TDWBAL7), 3514 igb_putreg(TDWBAL8), 3515 igb_putreg(TDWBAL9), 3516 igb_putreg(TDWBAL10), 3517 igb_putreg(TDWBAL11), 3518 igb_putreg(TDWBAL12), 3519 igb_putreg(TDWBAL13), 3520 igb_putreg(TDWBAL14), 3521 igb_putreg(TDWBAL15), 3522 igb_putreg(TDWBAH0), 3523 igb_putreg(TDWBAH1), 3524 igb_putreg(TDWBAH2), 3525 igb_putreg(TDWBAH3), 3526 igb_putreg(TDWBAH4), 3527 igb_putreg(TDWBAH5), 3528 igb_putreg(TDWBAH6), 3529 igb_putreg(TDWBAH7), 3530 igb_putreg(TDWBAH8), 3531 igb_putreg(TDWBAH9), 3532 igb_putreg(TDWBAH10), 3533 igb_putreg(TDWBAH11), 3534 igb_putreg(TDWBAH12), 3535 igb_putreg(TDWBAH13), 3536 igb_putreg(TDWBAH14), 3537 igb_putreg(TDWBAH15), 3538 igb_putreg(TIPG), 3539 igb_putreg(RXSTMPH), 3540 igb_putreg(RXSTMPL), 3541 igb_putreg(RXSATRL), 3542 igb_putreg(RXSATRH), 3543 igb_putreg(TXSTMPL), 3544 igb_putreg(TXSTMPH), 3545 igb_putreg(SYSTIML), 3546 igb_putreg(SYSTIMH), 3547 igb_putreg(TIMADJL), 3548 igb_putreg(TSYNCRXCTL), 3549 igb_putreg(TSYNCTXCTL), 3550 igb_putreg(EEMNGCTL), 3551 igb_putreg(GPIE), 3552 igb_putreg(TXPBS), 3553 igb_putreg(RLPML), 3554 igb_putreg(VET), 3555 3556 [TDH0] = igb_set_16bit, 3557 [TDH1] = igb_set_16bit, 3558 [TDH2] = igb_set_16bit, 3559 [TDH3] = igb_set_16bit, 3560 [TDH4] = igb_set_16bit, 3561 [TDH5] = igb_set_16bit, 3562 [TDH6] = igb_set_16bit, 3563 [TDH7] = igb_set_16bit, 3564 [TDH8] = igb_set_16bit, 3565 [TDH9] = igb_set_16bit, 3566 [TDH10] = igb_set_16bit, 3567 [TDH11] = igb_set_16bit, 3568 [TDH12] = igb_set_16bit, 3569 [TDH13] = igb_set_16bit, 3570 [TDH14] = igb_set_16bit, 3571 [TDH15] = igb_set_16bit, 3572 [TDT0] = igb_set_tdt, 3573 [TDT1] = igb_set_tdt, 3574 [TDT2] = igb_set_tdt, 3575 [TDT3] = igb_set_tdt, 3576 [TDT4] = igb_set_tdt, 3577 [TDT5] = igb_set_tdt, 3578 [TDT6] = igb_set_tdt, 3579 [TDT7] = igb_set_tdt, 3580 [TDT8] = igb_set_tdt, 3581 [TDT9] = igb_set_tdt, 3582 [TDT10] = igb_set_tdt, 3583 [TDT11] = igb_set_tdt, 3584 [TDT12] = igb_set_tdt, 3585 [TDT13] = igb_set_tdt, 3586 [TDT14] = igb_set_tdt, 3587 [TDT15] = igb_set_tdt, 3588 [MDIC] = igb_set_mdic, 3589 [ICS] = igb_set_ics, 3590 [RDH0] = igb_set_16bit, 3591 [RDH1] = igb_set_16bit, 3592 [RDH2] = igb_set_16bit, 3593 [RDH3] = igb_set_16bit, 3594 [RDH4] = igb_set_16bit, 3595 [RDH5] = igb_set_16bit, 3596 [RDH6] = igb_set_16bit, 3597 [RDH7] = igb_set_16bit, 3598 [RDH8] = igb_set_16bit, 3599 [RDH9] = igb_set_16bit, 3600 [RDH10] = igb_set_16bit, 3601 [RDH11] = igb_set_16bit, 3602 [RDH12] = igb_set_16bit, 3603 [RDH13] = igb_set_16bit, 3604 [RDH14] = igb_set_16bit, 3605 [RDH15] = igb_set_16bit, 3606 [RDT0] = igb_set_rdt, 3607 [RDT1] = igb_set_rdt, 3608 [RDT2] = igb_set_rdt, 3609 [RDT3] = igb_set_rdt, 3610 [RDT4] = igb_set_rdt, 3611 [RDT5] = igb_set_rdt, 3612 [RDT6] = igb_set_rdt, 3613 [RDT7] = igb_set_rdt, 3614 [RDT8] = igb_set_rdt, 3615 [RDT9] = igb_set_rdt, 3616 [RDT10] = igb_set_rdt, 3617 [RDT11] = igb_set_rdt, 3618 [RDT12] = igb_set_rdt, 3619 [RDT13] = igb_set_rdt, 3620 [RDT14] = igb_set_rdt, 3621 [RDT15] = igb_set_rdt, 3622 [IMC] = igb_set_imc, 3623 [IMS] = igb_set_ims, 3624 [ICR] = igb_set_icr, 3625 [EECD] = igb_set_eecd, 3626 [RCTL] = igb_set_rx_control, 3627 [CTRL] = igb_set_ctrl, 3628 [EERD] = igb_set_eerd, 3629 [TDFH] = igb_set_13bit, 3630 [TDFT] = igb_set_13bit, 3631 [TDFHS] = igb_set_13bit, 3632 [TDFTS] = igb_set_13bit, 3633 [TDFPC] = igb_set_13bit, 3634 [RDFH] = igb_set_13bit, 3635 [RDFT] = igb_set_13bit, 3636 [RDFHS] = igb_set_13bit, 3637 [RDFTS] = igb_set_13bit, 3638 [RDFPC] = igb_set_13bit, 3639 [GCR] = igb_set_gcr, 3640 [RXCSUM] = igb_set_rxcsum, 3641 [TDLEN0] = igb_set_dlen, 3642 [TDLEN1] = igb_set_dlen, 3643 [TDLEN2] = igb_set_dlen, 3644 [TDLEN3] = igb_set_dlen, 3645 [TDLEN4] = igb_set_dlen, 3646 [TDLEN5] = igb_set_dlen, 3647 [TDLEN6] = igb_set_dlen, 3648 [TDLEN7] = igb_set_dlen, 3649 [TDLEN8] = igb_set_dlen, 3650 [TDLEN9] = igb_set_dlen, 3651 [TDLEN10] = igb_set_dlen, 3652 [TDLEN11] = igb_set_dlen, 3653 [TDLEN12] = igb_set_dlen, 3654 [TDLEN13] = igb_set_dlen, 3655 [TDLEN14] = igb_set_dlen, 3656 [TDLEN15] = igb_set_dlen, 3657 [RDLEN0] = igb_set_dlen, 3658 [RDLEN1] = igb_set_dlen, 3659 [RDLEN2] = igb_set_dlen, 3660 [RDLEN3] = igb_set_dlen, 3661 [RDLEN4] = igb_set_dlen, 3662 [RDLEN5] = igb_set_dlen, 3663 [RDLEN6] = igb_set_dlen, 3664 [RDLEN7] = igb_set_dlen, 3665 [RDLEN8] = igb_set_dlen, 3666 [RDLEN9] = igb_set_dlen, 3667 [RDLEN10] = igb_set_dlen, 3668 [RDLEN11] = igb_set_dlen, 3669 [RDLEN12] = igb_set_dlen, 3670 [RDLEN13] = igb_set_dlen, 3671 [RDLEN14] = igb_set_dlen, 3672 [RDLEN15] = igb_set_dlen, 3673 [TDBAL0] = igb_set_dbal, 3674 [TDBAL1] = igb_set_dbal, 3675 [TDBAL2] = igb_set_dbal, 3676 [TDBAL3] = igb_set_dbal, 3677 [TDBAL4] = igb_set_dbal, 3678 [TDBAL5] = igb_set_dbal, 3679 [TDBAL6] = igb_set_dbal, 3680 [TDBAL7] = igb_set_dbal, 3681 [TDBAL8] = igb_set_dbal, 3682 [TDBAL9] = igb_set_dbal, 3683 [TDBAL10] = igb_set_dbal, 3684 [TDBAL11] = igb_set_dbal, 3685 [TDBAL12] = igb_set_dbal, 3686 [TDBAL13] = igb_set_dbal, 3687 [TDBAL14] = igb_set_dbal, 3688 [TDBAL15] = igb_set_dbal, 3689 [RDBAL0] = igb_set_dbal, 3690 [RDBAL1] = igb_set_dbal, 3691 [RDBAL2] = igb_set_dbal, 3692 [RDBAL3] = igb_set_dbal, 3693 [RDBAL4] = igb_set_dbal, 3694 [RDBAL5] = igb_set_dbal, 3695 [RDBAL6] = igb_set_dbal, 3696 [RDBAL7] = igb_set_dbal, 3697 [RDBAL8] = igb_set_dbal, 3698 [RDBAL9] = igb_set_dbal, 3699 [RDBAL10] = igb_set_dbal, 3700 [RDBAL11] = igb_set_dbal, 3701 [RDBAL12] = igb_set_dbal, 3702 [RDBAL13] = igb_set_dbal, 3703 [RDBAL14] = igb_set_dbal, 3704 [RDBAL15] = igb_set_dbal, 3705 [STATUS] = igb_set_status, 3706 [PBACLR] = igb_set_pbaclr, 3707 [CTRL_EXT] = igb_set_ctrlext, 3708 [FCAH] = igb_set_16bit, 3709 [FCT] = igb_set_16bit, 3710 [FCTTV] = igb_set_16bit, 3711 [FCRTV] = igb_set_16bit, 3712 [FCRTH] = igb_set_fcrth, 3713 [FCRTL] = igb_set_fcrtl, 3714 [CTRL_DUP] = igb_set_ctrl, 3715 [RFCTL] = igb_set_rfctl, 3716 [TIMINCA] = igb_set_timinca, 3717 [TIMADJH] = igb_set_timadjh, 3718 3719 [IP6AT ... IP6AT + 3] = igb_mac_writereg, 3720 [IP4AT ... IP4AT + 6] = igb_mac_writereg, 3721 [RA] = igb_mac_writereg, 3722 [RA + 1] = igb_mac_setmacaddr, 3723 [RA + 2 ... RA + 31] = igb_mac_writereg, 3724 [RA2 ... RA2 + 31] = igb_mac_writereg, 3725 [WUPM ... WUPM + 31] = igb_mac_writereg, 3726 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg, 3727 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg, 3728 [FFMT ... FFMT + 254] = igb_set_4bit, 3729 [MDEF ... MDEF + 7] = igb_mac_writereg, 3730 [FTFT ... FTFT + 254] = igb_mac_writereg, 3731 [RETA ... RETA + 31] = igb_mac_writereg, 3732 [RSSRK ... RSSRK + 9] = igb_mac_writereg, 3733 [MAVTV0 ... MAVTV3] = igb_mac_writereg, 3734 [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr, 3735 3736 /* IGB specific: */ 3737 [FWSM] = igb_mac_writereg, 3738 [SW_FW_SYNC] = igb_mac_writereg, 3739 [EICR] = igb_set_eicr, 3740 [EICS] = igb_set_eics, 3741 [EIAC] = igb_set_eiac, 3742 [EIAM] = igb_set_eiam, 3743 [EIMC] = igb_set_eimc, 3744 [EIMS] = igb_set_eims, 3745 [IVAR0 ... IVAR0 + 7] = igb_mac_writereg, 3746 igb_putreg(IVAR_MISC), 3747 igb_putreg(TSYNCRXCFG), 3748 [ETQF0 ... ETQF0 + 7] = igb_mac_writereg, 3749 igb_putreg(VT_CTL), 3750 [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox, 3751 [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox, 3752 [MBVFICR] = igb_w1c, 3753 [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg, 3754 igb_putreg(MBVFIMR), 3755 [VFLRE] = igb_w1c, 3756 igb_putreg(VFRE), 3757 igb_putreg(VFTE), 3758 igb_putreg(QDE), 3759 igb_putreg(DTXSWC), 3760 igb_putreg(RPLOLR), 3761 [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg, 3762 [VMVIR0 ... VMVIR7] = igb_mac_writereg, 3763 [VMOLR0 ... VMOLR7] = igb_mac_writereg, 3764 [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg, 3765 [PVTCTRL0] = igb_set_vtctrl, 3766 [PVTCTRL1] = igb_set_vtctrl, 3767 [PVTCTRL2] = igb_set_vtctrl, 3768 [PVTCTRL3] = igb_set_vtctrl, 3769 [PVTCTRL4] = igb_set_vtctrl, 3770 [PVTCTRL5] = igb_set_vtctrl, 3771 [PVTCTRL6] = igb_set_vtctrl, 3772 [PVTCTRL7] = igb_set_vtctrl, 3773 [PVTEICS0] = igb_set_vteics, 3774 [PVTEICS1] = igb_set_vteics, 3775 [PVTEICS2] = igb_set_vteics, 3776 [PVTEICS3] = igb_set_vteics, 3777 [PVTEICS4] = igb_set_vteics, 3778 [PVTEICS5] = igb_set_vteics, 3779 [PVTEICS6] = igb_set_vteics, 3780 [PVTEICS7] = igb_set_vteics, 3781 [PVTEIMS0] = igb_set_vteims, 3782 [PVTEIMS1] = igb_set_vteims, 3783 [PVTEIMS2] = igb_set_vteims, 3784 [PVTEIMS3] = igb_set_vteims, 3785 [PVTEIMS4] = igb_set_vteims, 3786 [PVTEIMS5] = igb_set_vteims, 3787 [PVTEIMS6] = igb_set_vteims, 3788 [PVTEIMS7] = igb_set_vteims, 3789 [PVTEIMC0] = igb_set_vteimc, 3790 [PVTEIMC1] = igb_set_vteimc, 3791 [PVTEIMC2] = igb_set_vteimc, 3792 [PVTEIMC3] = igb_set_vteimc, 3793 [PVTEIMC4] = igb_set_vteimc, 3794 [PVTEIMC5] = igb_set_vteimc, 3795 [PVTEIMC6] = igb_set_vteimc, 3796 [PVTEIMC7] = igb_set_vteimc, 3797 [PVTEIAC0] = igb_set_vteiac, 3798 [PVTEIAC1] = igb_set_vteiac, 3799 [PVTEIAC2] = igb_set_vteiac, 3800 [PVTEIAC3] = igb_set_vteiac, 3801 [PVTEIAC4] = igb_set_vteiac, 3802 [PVTEIAC5] = igb_set_vteiac, 3803 [PVTEIAC6] = igb_set_vteiac, 3804 [PVTEIAC7] = igb_set_vteiac, 3805 [PVTEIAM0] = igb_set_vteiam, 3806 [PVTEIAM1] = igb_set_vteiam, 3807 [PVTEIAM2] = igb_set_vteiam, 3808 [PVTEIAM3] = igb_set_vteiam, 3809 [PVTEIAM4] = igb_set_vteiam, 3810 [PVTEIAM5] = igb_set_vteiam, 3811 [PVTEIAM6] = igb_set_vteiam, 3812 [PVTEIAM7] = igb_set_vteiam, 3813 [PVTEICR0] = igb_set_vteicr, 3814 [PVTEICR1] = igb_set_vteicr, 3815 [PVTEICR2] = igb_set_vteicr, 3816 [PVTEICR3] = igb_set_vteicr, 3817 [PVTEICR4] = igb_set_vteicr, 3818 [PVTEICR5] = igb_set_vteicr, 3819 [PVTEICR6] = igb_set_vteicr, 3820 [PVTEICR7] = igb_set_vteicr, 3821 [VTIVAR ... VTIVAR + 7] = igb_set_vtivar, 3822 [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg 3823 }; 3824 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) }; 3825 3826 enum { MAC_ACCESS_PARTIAL = 1 }; 3827 3828 /* 3829 * The array below combines alias offsets of the index values for the 3830 * MAC registers that have aliases, with the indication of not fully 3831 * implemented registers (lowest bit). This combination is possible 3832 * because all of the offsets are even. 3833 */ 3834 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = { 3835 /* Alias index offsets */ 3836 [FCRTL_A] = 0x07fe, 3837 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904, 3838 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00, 3839 [RA_A ... RA_A + 31] = 0x14f0, 3840 [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400, 3841 3842 [RDBAL0_A] = 0x2600, 3843 [RDBAH0_A] = 0x2600, 3844 [RDLEN0_A] = 0x2600, 3845 [SRRCTL0_A] = 0x2600, 3846 [RDH0_A] = 0x2600, 3847 [RDT0_A] = 0x2600, 3848 [RXDCTL0_A] = 0x2600, 3849 [RXCTL0_A] = 0x2600, 3850 [RQDPC0_A] = 0x2600, 3851 [RDBAL1_A] = 0x25D0, 3852 [RDBAL2_A] = 0x25A0, 3853 [RDBAL3_A] = 0x2570, 3854 [RDBAH1_A] = 0x25D0, 3855 [RDBAH2_A] = 0x25A0, 3856 [RDBAH3_A] = 0x2570, 3857 [RDLEN1_A] = 0x25D0, 3858 [RDLEN2_A] = 0x25A0, 3859 [RDLEN3_A] = 0x2570, 3860 [SRRCTL1_A] = 0x25D0, 3861 [SRRCTL2_A] = 0x25A0, 3862 [SRRCTL3_A] = 0x2570, 3863 [RDH1_A] = 0x25D0, 3864 [RDH2_A] = 0x25A0, 3865 [RDH3_A] = 0x2570, 3866 [RDT1_A] = 0x25D0, 3867 [RDT2_A] = 0x25A0, 3868 [RDT3_A] = 0x2570, 3869 [RXDCTL1_A] = 0x25D0, 3870 [RXDCTL2_A] = 0x25A0, 3871 [RXDCTL3_A] = 0x2570, 3872 [RXCTL1_A] = 0x25D0, 3873 [RXCTL2_A] = 0x25A0, 3874 [RXCTL3_A] = 0x2570, 3875 [RQDPC1_A] = 0x25D0, 3876 [RQDPC2_A] = 0x25A0, 3877 [RQDPC3_A] = 0x2570, 3878 [TDBAL0_A] = 0x2A00, 3879 [TDBAH0_A] = 0x2A00, 3880 [TDLEN0_A] = 0x2A00, 3881 [TDH0_A] = 0x2A00, 3882 [TDT0_A] = 0x2A00, 3883 [TXCTL0_A] = 0x2A00, 3884 [TDWBAL0_A] = 0x2A00, 3885 [TDWBAH0_A] = 0x2A00, 3886 [TDBAL1_A] = 0x29D0, 3887 [TDBAL2_A] = 0x29A0, 3888 [TDBAL3_A] = 0x2970, 3889 [TDBAH1_A] = 0x29D0, 3890 [TDBAH2_A] = 0x29A0, 3891 [TDBAH3_A] = 0x2970, 3892 [TDLEN1_A] = 0x29D0, 3893 [TDLEN2_A] = 0x29A0, 3894 [TDLEN3_A] = 0x2970, 3895 [TDH1_A] = 0x29D0, 3896 [TDH2_A] = 0x29A0, 3897 [TDH3_A] = 0x2970, 3898 [TDT1_A] = 0x29D0, 3899 [TDT2_A] = 0x29A0, 3900 [TDT3_A] = 0x2970, 3901 [TXDCTL0_A] = 0x2A00, 3902 [TXDCTL1_A] = 0x29D0, 3903 [TXDCTL2_A] = 0x29A0, 3904 [TXDCTL3_A] = 0x2970, 3905 [TXCTL1_A] = 0x29D0, 3906 [TXCTL2_A] = 0x29A0, 3907 [TXCTL3_A] = 0x29D0, 3908 [TDWBAL1_A] = 0x29D0, 3909 [TDWBAL2_A] = 0x29A0, 3910 [TDWBAL3_A] = 0x2970, 3911 [TDWBAH1_A] = 0x29D0, 3912 [TDWBAH2_A] = 0x29A0, 3913 [TDWBAH3_A] = 0x2970, 3914 3915 /* Access options */ 3916 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL, 3917 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL, 3918 [RDFPC] = MAC_ACCESS_PARTIAL, 3919 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL, 3920 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL, 3921 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL, 3922 [FLA] = MAC_ACCESS_PARTIAL, 3923 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL, 3924 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL, 3925 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL, 3926 [FCRTH] = MAC_ACCESS_PARTIAL, 3927 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL 3928 }; 3929 3930 void 3931 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size) 3932 { 3933 uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr); 3934 3935 if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) { 3936 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3937 trace_e1000e_wrn_regs_write_trivial(index << 2); 3938 } 3939 trace_e1000e_core_write(index << 2, size, val); 3940 igb_macreg_writeops[index](core, index, val); 3941 } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) { 3942 trace_e1000e_wrn_regs_write_ro(index << 2, size, val); 3943 } else { 3944 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val); 3945 } 3946 } 3947 3948 uint64_t 3949 igb_core_read(IGBCore *core, hwaddr addr, unsigned size) 3950 { 3951 uint64_t val; 3952 uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr); 3953 3954 if (index < IGB_NREADOPS && igb_macreg_readops[index]) { 3955 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3956 trace_e1000e_wrn_regs_read_trivial(index << 2); 3957 } 3958 val = igb_macreg_readops[index](core, index); 3959 trace_e1000e_core_read(index << 2, size, val); 3960 return val; 3961 } else { 3962 trace_e1000e_wrn_regs_read_unknown(index << 2, size); 3963 } 3964 return 0; 3965 } 3966 3967 static inline void 3968 igb_autoneg_pause(IGBCore *core) 3969 { 3970 timer_del(core->autoneg_timer); 3971 } 3972 3973 static void 3974 igb_autoneg_resume(IGBCore *core) 3975 { 3976 if (igb_have_autoneg(core) && 3977 !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) { 3978 qemu_get_queue(core->owner_nic)->link_down = false; 3979 timer_mod(core->autoneg_timer, 3980 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 3981 } 3982 } 3983 3984 static void 3985 igb_vm_state_change(void *opaque, bool running, RunState state) 3986 { 3987 IGBCore *core = opaque; 3988 3989 if (running) { 3990 trace_e1000e_vm_state_running(); 3991 igb_intrmgr_resume(core); 3992 igb_autoneg_resume(core); 3993 } else { 3994 trace_e1000e_vm_state_stopped(); 3995 igb_autoneg_pause(core); 3996 igb_intrmgr_pause(core); 3997 } 3998 } 3999 4000 void 4001 igb_core_pci_realize(IGBCore *core, 4002 const uint16_t *eeprom_templ, 4003 uint32_t eeprom_size, 4004 const uint8_t *macaddr) 4005 { 4006 int i; 4007 4008 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 4009 igb_autoneg_timer, core); 4010 igb_intrmgr_pci_realize(core); 4011 4012 core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core); 4013 4014 for (i = 0; i < IGB_NUM_QUEUES; i++) { 4015 net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS); 4016 } 4017 4018 net_rx_pkt_init(&core->rx_pkt); 4019 4020 e1000x_core_prepare_eeprom(core->eeprom, 4021 eeprom_templ, 4022 eeprom_size, 4023 PCI_DEVICE_GET_CLASS(core->owner)->device_id, 4024 macaddr); 4025 igb_update_rx_offloads(core); 4026 } 4027 4028 void 4029 igb_core_pci_uninit(IGBCore *core) 4030 { 4031 int i; 4032 4033 timer_free(core->autoneg_timer); 4034 4035 igb_intrmgr_pci_unint(core); 4036 4037 qemu_del_vm_change_state_handler(core->vmstate); 4038 4039 for (i = 0; i < IGB_NUM_QUEUES; i++) { 4040 net_tx_pkt_uninit(core->tx[i].tx_pkt); 4041 } 4042 4043 net_rx_pkt_uninit(core->rx_pkt); 4044 } 4045 4046 static const uint16_t 4047 igb_phy_reg_init[] = { 4048 [MII_BMCR] = MII_BMCR_SPEED1000 | 4049 MII_BMCR_FD | 4050 MII_BMCR_AUTOEN, 4051 4052 [MII_BMSR] = MII_BMSR_EXTCAP | 4053 MII_BMSR_LINK_ST | 4054 MII_BMSR_AUTONEG | 4055 MII_BMSR_MFPS | 4056 MII_BMSR_EXTSTAT | 4057 MII_BMSR_10T_HD | 4058 MII_BMSR_10T_FD | 4059 MII_BMSR_100TX_HD | 4060 MII_BMSR_100TX_FD, 4061 4062 [MII_PHYID1] = IGP03E1000_E_PHY_ID >> 16, 4063 [MII_PHYID2] = (IGP03E1000_E_PHY_ID & 0xfff0) | 1, 4064 [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 | 4065 MII_ANAR_10FD | MII_ANAR_TX | 4066 MII_ANAR_TXFD | MII_ANAR_PAUSE | 4067 MII_ANAR_PAUSE_ASYM, 4068 [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD | 4069 MII_ANLPAR_TX | MII_ANLPAR_TXFD | 4070 MII_ANLPAR_T4 | MII_ANLPAR_PAUSE, 4071 [MII_ANER] = MII_ANER_NP | MII_ANER_NWAY, 4072 [MII_ANNP] = 0x1 | MII_ANNP_MP, 4073 [MII_CTRL1000] = MII_CTRL1000_HALF | MII_CTRL1000_FULL | 4074 MII_CTRL1000_PORT | MII_CTRL1000_MASTER, 4075 [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL | 4076 MII_STAT1000_ROK | MII_STAT1000_LOK, 4077 [MII_EXTSTAT] = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD, 4078 4079 [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8), 4080 [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS, 4081 [IGP02E1000_PHY_POWER_MGMT] = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU | 4082 IGP01E1000_PSCFR_SMART_SPEED 4083 }; 4084 4085 static const uint32_t igb_mac_reg_init[] = { 4086 [LEDCTL] = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24), 4087 [EEMNGCTL] = BIT(31), 4088 [TXDCTL0] = E1000_TXDCTL_QUEUE_ENABLE, 4089 [RXDCTL0] = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16), 4090 [RXDCTL1] = 1 << 16, 4091 [RXDCTL2] = 1 << 16, 4092 [RXDCTL3] = 1 << 16, 4093 [RXDCTL4] = 1 << 16, 4094 [RXDCTL5] = 1 << 16, 4095 [RXDCTL6] = 1 << 16, 4096 [RXDCTL7] = 1 << 16, 4097 [RXDCTL8] = 1 << 16, 4098 [RXDCTL9] = 1 << 16, 4099 [RXDCTL10] = 1 << 16, 4100 [RXDCTL11] = 1 << 16, 4101 [RXDCTL12] = 1 << 16, 4102 [RXDCTL13] = 1 << 16, 4103 [RXDCTL14] = 1 << 16, 4104 [RXDCTL15] = 1 << 16, 4105 [TIPG] = 0x08 | (0x04 << 10) | (0x06 << 20), 4106 [CTRL] = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 | 4107 E1000_CTRL_ADVD3WUC, 4108 [STATUS] = E1000_STATUS_PHYRA | BIT(31), 4109 [EECD] = E1000_EECD_FWE_DIS | E1000_EECD_PRES | 4110 (2 << E1000_EECD_SIZE_EX_SHIFT), 4111 [GCR] = E1000_L0S_ADJUST | 4112 E1000_GCR_CMPL_TMOUT_RESEND | 4113 E1000_GCR_CAP_VER2 | 4114 E1000_L1_ENTRY_LATENCY_MSB | 4115 E1000_L1_ENTRY_LATENCY_LSB, 4116 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD, 4117 [TXPBS] = 0x28, 4118 [RXPBS] = 0x40, 4119 [TCTL] = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) | 4120 (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28), 4121 [TCTL_EXT] = 0x40 | (0x42 << 10), 4122 [DTXCTL] = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT, 4123 [VET] = ETH_P_VLAN | (ETH_P_VLAN << 16), 4124 4125 [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI, 4126 [MBVFIMR] = 0xFF, 4127 [VFRE] = 0xFF, 4128 [VFTE] = 0xFF, 4129 [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC, 4130 [RPLOLR] = E1000_RPLOLR_STRCRC, 4131 [RLPML] = 0x2600, 4132 [TXCTL0] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4133 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4134 E1000_DCA_TXCTRL_DESC_RRO_EN, 4135 [TXCTL1] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4136 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4137 E1000_DCA_TXCTRL_DESC_RRO_EN, 4138 [TXCTL2] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4139 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4140 E1000_DCA_TXCTRL_DESC_RRO_EN, 4141 [TXCTL3] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4142 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4143 E1000_DCA_TXCTRL_DESC_RRO_EN, 4144 [TXCTL4] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4145 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4146 E1000_DCA_TXCTRL_DESC_RRO_EN, 4147 [TXCTL5] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4148 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4149 E1000_DCA_TXCTRL_DESC_RRO_EN, 4150 [TXCTL6] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4151 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4152 E1000_DCA_TXCTRL_DESC_RRO_EN, 4153 [TXCTL7] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4154 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4155 E1000_DCA_TXCTRL_DESC_RRO_EN, 4156 [TXCTL8] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4157 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4158 E1000_DCA_TXCTRL_DESC_RRO_EN, 4159 [TXCTL9] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4160 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4161 E1000_DCA_TXCTRL_DESC_RRO_EN, 4162 [TXCTL10] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4163 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4164 E1000_DCA_TXCTRL_DESC_RRO_EN, 4165 [TXCTL11] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4166 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4167 E1000_DCA_TXCTRL_DESC_RRO_EN, 4168 [TXCTL12] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4169 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4170 E1000_DCA_TXCTRL_DESC_RRO_EN, 4171 [TXCTL13] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4172 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4173 E1000_DCA_TXCTRL_DESC_RRO_EN, 4174 [TXCTL14] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4175 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4176 E1000_DCA_TXCTRL_DESC_RRO_EN, 4177 [TXCTL15] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4178 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4179 E1000_DCA_TXCTRL_DESC_RRO_EN, 4180 }; 4181 4182 static void igb_reset(IGBCore *core, bool sw) 4183 { 4184 struct igb_tx *tx; 4185 int i; 4186 4187 timer_del(core->autoneg_timer); 4188 4189 igb_intrmgr_reset(core); 4190 4191 memset(core->phy, 0, sizeof core->phy); 4192 memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init); 4193 4194 for (i = 0; i < E1000E_MAC_SIZE; i++) { 4195 if (sw && 4196 (i == RXPBS || i == TXPBS || 4197 (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) { 4198 continue; 4199 } 4200 4201 core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ? 4202 igb_mac_reg_init[i] : 0; 4203 } 4204 4205 if (qemu_get_queue(core->owner_nic)->link_down) { 4206 igb_link_down(core); 4207 } 4208 4209 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); 4210 4211 for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) { 4212 /* Set RSTI, so VF can identify a PF reset is in progress */ 4213 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI; 4214 } 4215 4216 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 4217 tx = &core->tx[i]; 4218 memset(tx->ctx, 0, sizeof(tx->ctx)); 4219 tx->first = true; 4220 tx->skip_cp = false; 4221 } 4222 } 4223 4224 void 4225 igb_core_reset(IGBCore *core) 4226 { 4227 igb_reset(core, false); 4228 } 4229 4230 void igb_core_pre_save(IGBCore *core) 4231 { 4232 int i; 4233 NetClientState *nc = qemu_get_queue(core->owner_nic); 4234 4235 /* 4236 * If link is down and auto-negotiation is supported and ongoing, 4237 * complete auto-negotiation immediately. This allows us to look 4238 * at MII_BMSR_AN_COMP to infer link status on load. 4239 */ 4240 if (nc->link_down && igb_have_autoneg(core)) { 4241 core->phy[MII_BMSR] |= MII_BMSR_AN_COMP; 4242 igb_update_flowctl_status(core); 4243 } 4244 4245 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 4246 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) { 4247 core->tx[i].skip_cp = true; 4248 } 4249 } 4250 } 4251 4252 int 4253 igb_core_post_load(IGBCore *core) 4254 { 4255 NetClientState *nc = qemu_get_queue(core->owner_nic); 4256 4257 /* 4258 * nc.link_down can't be migrated, so infer link_down according 4259 * to link status bit in core.mac[STATUS]. 4260 */ 4261 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0; 4262 4263 return 0; 4264 } 4265