1 /* 2 * Core code for QEMU igb emulation 3 * 4 * Datasheet: 5 * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf 6 * 7 * Copyright (c) 2020-2023 Red Hat, Inc. 8 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) 9 * Developed by Daynix Computing LTD (http://www.daynix.com) 10 * 11 * Authors: 12 * Akihiko Odaki <akihiko.odaki@daynix.com> 13 * Gal Hammmer <gal.hammer@sap.com> 14 * Marcel Apfelbaum <marcel.apfelbaum@gmail.com> 15 * Dmitry Fleytman <dmitry@daynix.com> 16 * Leonid Bloch <leonid@daynix.com> 17 * Yan Vugenfirer <yan@daynix.com> 18 * 19 * Based on work done by: 20 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 21 * Copyright (c) 2008 Qumranet 22 * Based on work done by: 23 * Copyright (c) 2007 Dan Aloni 24 * Copyright (c) 2004 Antony T Curtis 25 * 26 * This library is free software; you can redistribute it and/or 27 * modify it under the terms of the GNU Lesser General Public 28 * License as published by the Free Software Foundation; either 29 * version 2.1 of the License, or (at your option) any later version. 30 * 31 * This library is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 34 * Lesser General Public License for more details. 35 * 36 * You should have received a copy of the GNU Lesser General Public 37 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 38 */ 39 40 #include "qemu/osdep.h" 41 #include "qemu/log.h" 42 #include "net/net.h" 43 #include "net/tap.h" 44 #include "hw/net/mii.h" 45 #include "hw/pci/msi.h" 46 #include "hw/pci/msix.h" 47 #include "sysemu/runstate.h" 48 49 #include "net_tx_pkt.h" 50 #include "net_rx_pkt.h" 51 52 #include "igb_common.h" 53 #include "e1000x_common.h" 54 #include "igb_core.h" 55 56 #include "trace.h" 57 58 #define E1000E_MAX_TX_FRAGS (64) 59 60 union e1000_rx_desc_union { 61 struct e1000_rx_desc legacy; 62 union e1000_adv_rx_desc adv; 63 }; 64 65 typedef struct IGBTxPktVmdqCallbackContext { 66 IGBCore *core; 67 NetClientState *nc; 68 } IGBTxPktVmdqCallbackContext; 69 70 static ssize_t 71 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt, 72 bool has_vnet, bool *external_tx); 73 74 static inline void 75 igb_set_interrupt_cause(IGBCore *core, uint32_t val); 76 77 static void igb_update_interrupt_state(IGBCore *core); 78 static void igb_reset(IGBCore *core, bool sw); 79 80 static inline void 81 igb_raise_legacy_irq(IGBCore *core) 82 { 83 trace_e1000e_irq_legacy_notify(true); 84 e1000x_inc_reg_if_not_full(core->mac, IAC); 85 pci_set_irq(core->owner, 1); 86 } 87 88 static inline void 89 igb_lower_legacy_irq(IGBCore *core) 90 { 91 trace_e1000e_irq_legacy_notify(false); 92 pci_set_irq(core->owner, 0); 93 } 94 95 static void igb_msix_notify(IGBCore *core, unsigned int vector) 96 { 97 PCIDevice *dev = core->owner; 98 uint16_t vfn; 99 100 vfn = 8 - (vector + 2) / IGBVF_MSIX_VEC_NUM; 101 if (vfn < pcie_sriov_num_vfs(core->owner)) { 102 dev = pcie_sriov_get_vf_at_index(core->owner, vfn); 103 assert(dev); 104 vector = (vector + 2) % IGBVF_MSIX_VEC_NUM; 105 } else if (vector >= IGB_MSIX_VEC_NUM) { 106 qemu_log_mask(LOG_GUEST_ERROR, 107 "igb: Tried to use vector unavailable for PF"); 108 return; 109 } 110 111 msix_notify(dev, vector); 112 } 113 114 static inline void 115 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer) 116 { 117 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] * 118 timer->delay_resolution_ns; 119 120 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns); 121 122 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns); 123 124 timer->running = true; 125 } 126 127 static void 128 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer) 129 { 130 if (timer->running) { 131 igb_intrmgr_rearm_timer(timer); 132 } 133 } 134 135 static void 136 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer) 137 { 138 if (timer->running) { 139 timer_del(timer->timer); 140 } 141 } 142 143 static void 144 igb_intrmgr_on_msix_throttling_timer(void *opaque) 145 { 146 IGBIntrDelayTimer *timer = opaque; 147 int idx = timer - &timer->core->eitr[0]; 148 149 timer->running = false; 150 151 trace_e1000e_irq_msix_notify_postponed_vec(idx); 152 igb_msix_notify(timer->core, idx); 153 } 154 155 static void 156 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create) 157 { 158 int i; 159 160 for (i = 0; i < IGB_INTR_NUM; i++) { 161 core->eitr[i].core = core; 162 core->eitr[i].delay_reg = EITR0 + i; 163 core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 164 } 165 166 if (!create) { 167 return; 168 } 169 170 for (i = 0; i < IGB_INTR_NUM; i++) { 171 core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 172 igb_intrmgr_on_msix_throttling_timer, 173 &core->eitr[i]); 174 } 175 } 176 177 static void 178 igb_intrmgr_resume(IGBCore *core) 179 { 180 int i; 181 182 for (i = 0; i < IGB_INTR_NUM; i++) { 183 igb_intmgr_timer_resume(&core->eitr[i]); 184 } 185 } 186 187 static void 188 igb_intrmgr_pause(IGBCore *core) 189 { 190 int i; 191 192 for (i = 0; i < IGB_INTR_NUM; i++) { 193 igb_intmgr_timer_pause(&core->eitr[i]); 194 } 195 } 196 197 static void 198 igb_intrmgr_reset(IGBCore *core) 199 { 200 int i; 201 202 for (i = 0; i < IGB_INTR_NUM; i++) { 203 if (core->eitr[i].running) { 204 timer_del(core->eitr[i].timer); 205 igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]); 206 } 207 } 208 } 209 210 static void 211 igb_intrmgr_pci_unint(IGBCore *core) 212 { 213 int i; 214 215 for (i = 0; i < IGB_INTR_NUM; i++) { 216 timer_free(core->eitr[i].timer); 217 } 218 } 219 220 static void 221 igb_intrmgr_pci_realize(IGBCore *core) 222 { 223 igb_intrmgr_initialize_all_timers(core, true); 224 } 225 226 static inline bool 227 igb_rx_csum_enabled(IGBCore *core) 228 { 229 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true; 230 } 231 232 static inline bool 233 igb_rx_use_legacy_descriptor(IGBCore *core) 234 { 235 /* 236 * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx 237 * descriptor. 238 */ 239 return false; 240 } 241 242 static inline bool 243 igb_rss_enabled(IGBCore *core) 244 { 245 return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ && 246 !igb_rx_csum_enabled(core) && 247 !igb_rx_use_legacy_descriptor(core); 248 } 249 250 typedef struct E1000E_RSSInfo_st { 251 bool enabled; 252 uint32_t hash; 253 uint32_t queue; 254 uint32_t type; 255 } E1000E_RSSInfo; 256 257 static uint32_t 258 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt) 259 { 260 bool hasip4, hasip6; 261 EthL4HdrProto l4hdr_proto; 262 263 assert(igb_rss_enabled(core)); 264 265 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); 266 267 if (hasip4) { 268 trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC], 269 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]), 270 E1000_MRQC_EN_IPV4(core->mac[MRQC])); 271 272 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && 273 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) { 274 return E1000_MRQ_RSS_TYPE_IPV4TCP; 275 } 276 277 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) { 278 return E1000_MRQ_RSS_TYPE_IPV4; 279 } 280 } else if (hasip6) { 281 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt); 282 283 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS; 284 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS; 285 286 /* 287 * Following two traces must not be combined because resulting 288 * event will have 11 arguments totally and some trace backends 289 * (at least "ust") have limitation of maximum 10 arguments per 290 * event. Events with more arguments fail to compile for 291 * backends like these. 292 */ 293 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]); 294 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto, 295 ip6info->has_ext_hdrs, 296 ip6info->rss_ex_dst_valid, 297 ip6info->rss_ex_src_valid, 298 core->mac[MRQC], 299 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]), 300 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]), 301 E1000_MRQC_EN_IPV6(core->mac[MRQC])); 302 303 if ((!ex_dis || !ip6info->has_ext_hdrs) && 304 (!new_ex_dis || !(ip6info->rss_ex_dst_valid || 305 ip6info->rss_ex_src_valid))) { 306 307 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && 308 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) { 309 return E1000_MRQ_RSS_TYPE_IPV6TCP; 310 } 311 312 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) { 313 return E1000_MRQ_RSS_TYPE_IPV6EX; 314 } 315 316 } 317 318 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) { 319 return E1000_MRQ_RSS_TYPE_IPV6; 320 } 321 322 } 323 324 return E1000_MRQ_RSS_TYPE_NONE; 325 } 326 327 static uint32_t 328 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info) 329 { 330 NetRxPktRssType type; 331 332 assert(igb_rss_enabled(core)); 333 334 switch (info->type) { 335 case E1000_MRQ_RSS_TYPE_IPV4: 336 type = NetPktRssIpV4; 337 break; 338 case E1000_MRQ_RSS_TYPE_IPV4TCP: 339 type = NetPktRssIpV4Tcp; 340 break; 341 case E1000_MRQ_RSS_TYPE_IPV6TCP: 342 type = NetPktRssIpV6TcpEx; 343 break; 344 case E1000_MRQ_RSS_TYPE_IPV6: 345 type = NetPktRssIpV6; 346 break; 347 case E1000_MRQ_RSS_TYPE_IPV6EX: 348 type = NetPktRssIpV6Ex; 349 break; 350 default: 351 assert(false); 352 return 0; 353 } 354 355 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]); 356 } 357 358 static void 359 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx, 360 E1000E_RSSInfo *info) 361 { 362 trace_e1000e_rx_rss_started(); 363 364 if (tx || !igb_rss_enabled(core)) { 365 info->enabled = false; 366 info->hash = 0; 367 info->queue = 0; 368 info->type = 0; 369 trace_e1000e_rx_rss_disabled(); 370 return; 371 } 372 373 info->enabled = true; 374 375 info->type = igb_rss_get_hash_type(core, pkt); 376 377 trace_e1000e_rx_rss_type(info->type); 378 379 if (info->type == E1000_MRQ_RSS_TYPE_NONE) { 380 info->hash = 0; 381 info->queue = 0; 382 return; 383 } 384 385 info->hash = igb_rss_calc_hash(core, pkt, info); 386 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash); 387 } 388 389 static void 390 igb_tx_insert_vlan(IGBCore *core, uint16_t qn, struct igb_tx *tx, 391 uint16_t vlan, bool insert_vlan) 392 { 393 if (core->mac[MRQC] & 1) { 394 uint16_t pool = qn % IGB_NUM_VM_POOLS; 395 396 if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_DEFAULT) { 397 /* always insert default VLAN */ 398 insert_vlan = true; 399 vlan = core->mac[VMVIR0 + pool] & 0xffff; 400 } else if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_NEVER) { 401 insert_vlan = false; 402 } 403 } 404 405 if (insert_vlan && e1000x_vlan_enabled(core->mac)) { 406 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan, 407 core->mac[VET] & 0xffff); 408 } 409 } 410 411 static bool 412 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx) 413 { 414 if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) { 415 uint32_t idx = (tx->first_olinfo_status >> 4) & 1; 416 uint32_t mss = tx->ctx[idx].mss_l4len_idx >> 16; 417 if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) { 418 return false; 419 } 420 421 net_tx_pkt_update_ip_checksums(tx->tx_pkt); 422 e1000x_inc_reg_if_not_full(core->mac, TSCTC); 423 return true; 424 } 425 426 if (tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) { 427 if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) { 428 return false; 429 } 430 } 431 432 if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) { 433 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); 434 } 435 436 return true; 437 } 438 439 static void igb_tx_pkt_mac_callback(void *core, 440 const struct iovec *iov, 441 int iovcnt, 442 const struct iovec *virt_iov, 443 int virt_iovcnt) 444 { 445 igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL); 446 } 447 448 static void igb_tx_pkt_vmdq_callback(void *opaque, 449 const struct iovec *iov, 450 int iovcnt, 451 const struct iovec *virt_iov, 452 int virt_iovcnt) 453 { 454 IGBTxPktVmdqCallbackContext *context = opaque; 455 bool external_tx; 456 457 igb_receive_internal(context->core, virt_iov, virt_iovcnt, true, 458 &external_tx); 459 460 if (external_tx) { 461 if (context->core->has_vnet) { 462 qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt); 463 } else { 464 qemu_sendv_packet(context->nc, iov, iovcnt); 465 } 466 } 467 } 468 469 /* TX Packets Switching (7.10.3.6) */ 470 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx, 471 NetClientState *nc) 472 { 473 IGBTxPktVmdqCallbackContext context; 474 475 /* TX switching is only used to serve VM to VM traffic. */ 476 if (!(core->mac[MRQC] & 1)) { 477 goto send_out; 478 } 479 480 /* TX switching requires DTXSWC.Loopback_en bit enabled. */ 481 if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) { 482 goto send_out; 483 } 484 485 context.core = core; 486 context.nc = nc; 487 488 return net_tx_pkt_send_custom(tx->tx_pkt, false, 489 igb_tx_pkt_vmdq_callback, &context); 490 491 send_out: 492 return net_tx_pkt_send(tx->tx_pkt, nc); 493 } 494 495 static bool 496 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index) 497 { 498 int target_queue = MIN(core->max_queue_num, queue_index); 499 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue); 500 501 if (!igb_setup_tx_offloads(core, tx)) { 502 return false; 503 } 504 505 net_tx_pkt_dump(tx->tx_pkt); 506 507 if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) || 508 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) { 509 return net_tx_pkt_send_custom(tx->tx_pkt, false, 510 igb_tx_pkt_mac_callback, core); 511 } else { 512 return igb_tx_pkt_switch(core, tx, queue); 513 } 514 } 515 516 static void 517 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt, int qn) 518 { 519 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 520 PTC1023, PTC1522 }; 521 522 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4; 523 524 e1000x_increase_size_stats(core->mac, PTCregs, tot_len); 525 e1000x_inc_reg_if_not_full(core->mac, TPT); 526 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len); 527 528 switch (net_tx_pkt_get_packet_type(tx_pkt)) { 529 case ETH_PKT_BCAST: 530 e1000x_inc_reg_if_not_full(core->mac, BPTC); 531 break; 532 case ETH_PKT_MCAST: 533 e1000x_inc_reg_if_not_full(core->mac, MPTC); 534 break; 535 case ETH_PKT_UCAST: 536 break; 537 default: 538 g_assert_not_reached(); 539 } 540 541 e1000x_inc_reg_if_not_full(core->mac, GPTC); 542 e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len); 543 544 if (core->mac[MRQC] & 1) { 545 uint16_t pool = qn % IGB_NUM_VM_POOLS; 546 547 core->mac[PVFGOTC0 + (pool * 64)] += tot_len; 548 core->mac[PVFGPTC0 + (pool * 64)]++; 549 } 550 } 551 552 static void 553 igb_process_tx_desc(IGBCore *core, 554 PCIDevice *dev, 555 struct igb_tx *tx, 556 union e1000_adv_tx_desc *tx_desc, 557 int queue_index) 558 { 559 struct e1000_adv_tx_context_desc *tx_ctx_desc; 560 uint32_t cmd_type_len; 561 uint32_t idx; 562 uint64_t buffer_addr; 563 uint16_t length; 564 565 cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len); 566 567 if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) { 568 if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) == 569 E1000_ADVTXD_DTYP_DATA) { 570 /* advanced transmit data descriptor */ 571 if (tx->first) { 572 tx->first_cmd_type_len = cmd_type_len; 573 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status); 574 tx->first = false; 575 } 576 } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) == 577 E1000_ADVTXD_DTYP_CTXT) { 578 /* advanced transmit context descriptor */ 579 tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc; 580 idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1; 581 tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens); 582 tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed); 583 tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl); 584 tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx); 585 return; 586 } else { 587 /* unknown descriptor type */ 588 return; 589 } 590 } else { 591 /* legacy descriptor */ 592 593 /* TODO: Implement a support for legacy descriptors (7.2.2.1). */ 594 } 595 596 buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr); 597 length = cmd_type_len & 0xFFFF; 598 599 if (!tx->skip_cp) { 600 if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, buffer_addr, length)) { 601 tx->skip_cp = true; 602 } 603 } 604 605 if (cmd_type_len & E1000_TXD_CMD_EOP) { 606 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) { 607 idx = (tx->first_olinfo_status >> 4) & 1; 608 igb_tx_insert_vlan(core, queue_index, tx, 609 tx->ctx[idx].vlan_macip_lens >> 16, 610 !!(cmd_type_len & E1000_TXD_CMD_VLE)); 611 612 if (igb_tx_pkt_send(core, tx, queue_index)) { 613 igb_on_tx_done_update_stats(core, tx->tx_pkt, queue_index); 614 } 615 } 616 617 tx->first = true; 618 tx->skip_cp = false; 619 net_tx_pkt_reset(tx->tx_pkt, dev); 620 } 621 } 622 623 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx) 624 { 625 uint32_t n, ent = 0; 626 627 n = igb_ivar_entry_tx(queue_idx); 628 ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff; 629 630 return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0; 631 } 632 633 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx) 634 { 635 uint32_t n, ent = 0; 636 637 n = igb_ivar_entry_rx(queue_idx); 638 ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff; 639 640 return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0; 641 } 642 643 typedef struct E1000E_RingInfo_st { 644 int dbah; 645 int dbal; 646 int dlen; 647 int dh; 648 int dt; 649 int idx; 650 } E1000E_RingInfo; 651 652 static inline bool 653 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r) 654 { 655 return core->mac[r->dh] == core->mac[r->dt] || 656 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN; 657 } 658 659 static inline uint64_t 660 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r) 661 { 662 uint64_t bah = core->mac[r->dbah]; 663 uint64_t bal = core->mac[r->dbal]; 664 665 return (bah << 32) + bal; 666 } 667 668 static inline uint64_t 669 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r) 670 { 671 return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh]; 672 } 673 674 static inline void 675 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count) 676 { 677 core->mac[r->dh] += count; 678 679 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) { 680 core->mac[r->dh] = 0; 681 } 682 } 683 684 static inline uint32_t 685 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r) 686 { 687 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen], 688 core->mac[r->dh], core->mac[r->dt]); 689 690 if (core->mac[r->dh] <= core->mac[r->dt]) { 691 return core->mac[r->dt] - core->mac[r->dh]; 692 } 693 694 if (core->mac[r->dh] > core->mac[r->dt]) { 695 return core->mac[r->dlen] / E1000_RING_DESC_LEN + 696 core->mac[r->dt] - core->mac[r->dh]; 697 } 698 699 g_assert_not_reached(); 700 return 0; 701 } 702 703 static inline bool 704 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r) 705 { 706 return core->mac[r->dlen] > 0; 707 } 708 709 typedef struct IGB_TxRing_st { 710 const E1000E_RingInfo *i; 711 struct igb_tx *tx; 712 } IGB_TxRing; 713 714 static inline int 715 igb_mq_queue_idx(int base_reg_idx, int reg_idx) 716 { 717 return (reg_idx - base_reg_idx) / 16; 718 } 719 720 static inline void 721 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx) 722 { 723 static const E1000E_RingInfo i[IGB_NUM_QUEUES] = { 724 { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 }, 725 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }, 726 { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 }, 727 { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 }, 728 { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 }, 729 { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 }, 730 { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 }, 731 { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 }, 732 { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 }, 733 { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 }, 734 { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 }, 735 { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 }, 736 { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 }, 737 { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 }, 738 { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 }, 739 { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 } 740 }; 741 742 assert(idx < ARRAY_SIZE(i)); 743 744 txr->i = &i[idx]; 745 txr->tx = &core->tx[idx]; 746 } 747 748 typedef struct E1000E_RxRing_st { 749 const E1000E_RingInfo *i; 750 } E1000E_RxRing; 751 752 static inline void 753 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx) 754 { 755 static const E1000E_RingInfo i[IGB_NUM_QUEUES] = { 756 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 }, 757 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }, 758 { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 }, 759 { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 }, 760 { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 }, 761 { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 }, 762 { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 }, 763 { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 }, 764 { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 }, 765 { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 }, 766 { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 }, 767 { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 }, 768 { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 }, 769 { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 }, 770 { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 }, 771 { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 } 772 }; 773 774 assert(idx < ARRAY_SIZE(i)); 775 776 rxr->i = &i[idx]; 777 } 778 779 static uint32_t 780 igb_txdesc_writeback(IGBCore *core, dma_addr_t base, 781 union e1000_adv_tx_desc *tx_desc, 782 const E1000E_RingInfo *txi) 783 { 784 PCIDevice *d; 785 uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len); 786 uint64_t tdwba; 787 788 tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2]; 789 tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32; 790 791 if (!(cmd_type_len & E1000_TXD_CMD_RS)) { 792 return 0; 793 } 794 795 d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8); 796 if (!d) { 797 d = core->owner; 798 } 799 800 if (tdwba & 1) { 801 uint32_t buffer = cpu_to_le32(core->mac[txi->dh]); 802 pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer)); 803 } else { 804 uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD; 805 806 tx_desc->wb.status = cpu_to_le32(status); 807 pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb), 808 &tx_desc->wb, sizeof(tx_desc->wb)); 809 } 810 811 return igb_tx_wb_eic(core, txi->idx); 812 } 813 814 static inline bool 815 igb_tx_enabled(IGBCore *core, const E1000E_RingInfo *txi) 816 { 817 bool vmdq = core->mac[MRQC] & 1; 818 uint16_t qn = txi->idx; 819 uint16_t pool = qn % IGB_NUM_VM_POOLS; 820 821 return (core->mac[TCTL] & E1000_TCTL_EN) && 822 (!vmdq || core->mac[VFTE] & BIT(pool)) && 823 (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE); 824 } 825 826 static void 827 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr) 828 { 829 PCIDevice *d; 830 dma_addr_t base; 831 union e1000_adv_tx_desc desc; 832 const E1000E_RingInfo *txi = txr->i; 833 uint32_t eic = 0; 834 835 if (!igb_tx_enabled(core, txi)) { 836 trace_e1000e_tx_disabled(); 837 return; 838 } 839 840 d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8); 841 if (!d) { 842 d = core->owner; 843 } 844 845 net_tx_pkt_reset(txr->tx->tx_pkt, d); 846 847 while (!igb_ring_empty(core, txi)) { 848 base = igb_ring_head_descr(core, txi); 849 850 pci_dma_read(d, base, &desc, sizeof(desc)); 851 852 trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr, 853 desc.read.cmd_type_len, desc.wb.status); 854 855 igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx); 856 igb_ring_advance(core, txi, 1); 857 eic |= igb_txdesc_writeback(core, base, &desc, txi); 858 } 859 860 if (eic) { 861 core->mac[EICR] |= eic; 862 igb_set_interrupt_cause(core, E1000_ICR_TXDW); 863 } 864 } 865 866 static uint32_t 867 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r) 868 { 869 uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2]; 870 uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK; 871 if (bsizepkt) { 872 return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT; 873 } 874 875 return e1000x_rxbufsize(core->mac[RCTL]); 876 } 877 878 static bool 879 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size) 880 { 881 uint32_t bufs = igb_ring_free_descr_num(core, r); 882 uint32_t bufsize = igb_rxbufsize(core, r); 883 884 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize); 885 886 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) * 887 bufsize; 888 } 889 890 void 891 igb_start_recv(IGBCore *core) 892 { 893 int i; 894 895 trace_e1000e_rx_start_recv(); 896 897 for (i = 0; i <= core->max_queue_num; i++) { 898 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i)); 899 } 900 } 901 902 bool 903 igb_can_receive(IGBCore *core) 904 { 905 int i; 906 907 if (!e1000x_rx_ready(core->owner, core->mac)) { 908 return false; 909 } 910 911 for (i = 0; i < IGB_NUM_QUEUES; i++) { 912 E1000E_RxRing rxr; 913 if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) { 914 continue; 915 } 916 917 igb_rx_ring_init(core, &rxr, i); 918 if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) { 919 trace_e1000e_rx_can_recv(); 920 return true; 921 } 922 } 923 924 trace_e1000e_rx_can_recv_rings_full(); 925 return false; 926 } 927 928 ssize_t 929 igb_receive(IGBCore *core, const uint8_t *buf, size_t size) 930 { 931 const struct iovec iov = { 932 .iov_base = (uint8_t *)buf, 933 .iov_len = size 934 }; 935 936 return igb_receive_iov(core, &iov, 1); 937 } 938 939 static inline bool 940 igb_rx_l3_cso_enabled(IGBCore *core) 941 { 942 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD); 943 } 944 945 static inline bool 946 igb_rx_l4_cso_enabled(IGBCore *core) 947 { 948 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD); 949 } 950 951 static bool 952 igb_rx_is_oversized(IGBCore *core, uint16_t qn, size_t size) 953 { 954 uint16_t pool = qn % IGB_NUM_VM_POOLS; 955 bool lpe = !!(core->mac[VMOLR0 + pool] & E1000_VMOLR_LPE); 956 int max_ethernet_lpe_size = 957 core->mac[VMOLR0 + pool] & E1000_VMOLR_RLPML_MASK; 958 int max_ethernet_vlan_size = 1522; 959 960 return size > (lpe ? max_ethernet_lpe_size : max_ethernet_vlan_size); 961 } 962 963 static uint16_t igb_receive_assign(IGBCore *core, const struct eth_header *ehdr, 964 size_t size, E1000E_RSSInfo *rss_info, 965 bool *external_tx) 966 { 967 static const int ta_shift[] = { 4, 3, 2, 0 }; 968 uint32_t f, ra[2], *macp, rctl = core->mac[RCTL]; 969 uint16_t queues = 0; 970 uint16_t oversized = 0; 971 uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(ehdr)->h_tci) & VLAN_VID_MASK; 972 bool accepted = false; 973 int i; 974 975 memset(rss_info, 0, sizeof(E1000E_RSSInfo)); 976 977 if (external_tx) { 978 *external_tx = true; 979 } 980 981 if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff) && 982 e1000x_vlan_rx_filter_enabled(core->mac)) { 983 uint32_t vfta = 984 ldl_le_p((uint32_t *)(core->mac + VFTA) + 985 ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK)); 986 if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) { 987 trace_e1000e_rx_flt_vlan_mismatch(vid); 988 return queues; 989 } else { 990 trace_e1000e_rx_flt_vlan_match(vid); 991 } 992 } 993 994 if (core->mac[MRQC] & 1) { 995 if (is_broadcast_ether_addr(ehdr->h_dest)) { 996 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 997 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) { 998 queues |= BIT(i); 999 } 1000 } 1001 } else { 1002 for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) { 1003 if (!(macp[1] & E1000_RAH_AV)) { 1004 continue; 1005 } 1006 ra[0] = cpu_to_le32(macp[0]); 1007 ra[1] = cpu_to_le32(macp[1]); 1008 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1009 queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1; 1010 } 1011 } 1012 1013 for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) { 1014 if (!(macp[1] & E1000_RAH_AV)) { 1015 continue; 1016 } 1017 ra[0] = cpu_to_le32(macp[0]); 1018 ra[1] = cpu_to_le32(macp[1]); 1019 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1020 queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1; 1021 } 1022 } 1023 1024 if (!queues) { 1025 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA); 1026 1027 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3]; 1028 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff; 1029 if (macp[f >> 5] & (1 << (f & 0x1f))) { 1030 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1031 if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) { 1032 queues |= BIT(i); 1033 } 1034 } 1035 } 1036 } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) { 1037 *external_tx = false; 1038 } 1039 } 1040 1041 if (e1000x_vlan_rx_filter_enabled(core->mac)) { 1042 uint16_t mask = 0; 1043 1044 if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff)) { 1045 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 1046 if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid && 1047 (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) { 1048 uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK; 1049 mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT; 1050 } 1051 } 1052 } else { 1053 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1054 if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) { 1055 mask |= BIT(i); 1056 } 1057 } 1058 } 1059 1060 queues &= mask; 1061 } 1062 1063 if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx && 1064 !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) { 1065 uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK; 1066 queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT); 1067 } 1068 1069 queues &= core->mac[VFRE]; 1070 if (queues) { 1071 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1072 if ((queues & BIT(i)) && igb_rx_is_oversized(core, i, size)) { 1073 oversized |= BIT(i); 1074 } 1075 } 1076 /* 8.19.37 increment ROC if packet is oversized for all queues */ 1077 if (oversized == queues) { 1078 trace_e1000x_rx_oversized(size); 1079 e1000x_inc_reg_if_not_full(core->mac, ROC); 1080 } 1081 queues &= ~oversized; 1082 } 1083 1084 if (queues) { 1085 igb_rss_parse_packet(core, core->rx_pkt, 1086 external_tx != NULL, rss_info); 1087 /* Sec 8.26.1: PQn = VFn + VQn*8 */ 1088 if (rss_info->queue & 1) { 1089 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1090 if ((queues & BIT(i)) && 1091 (core->mac[VMOLR0 + i] & E1000_VMOLR_RSSE)) { 1092 queues |= BIT(i + IGB_NUM_VM_POOLS); 1093 queues &= ~BIT(i); 1094 } 1095 } 1096 } 1097 } 1098 } else { 1099 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { 1100 case ETH_PKT_UCAST: 1101 if (rctl & E1000_RCTL_UPE) { 1102 accepted = true; /* promiscuous ucast */ 1103 } 1104 break; 1105 1106 case ETH_PKT_BCAST: 1107 if (rctl & E1000_RCTL_BAM) { 1108 accepted = true; /* broadcast enabled */ 1109 } 1110 break; 1111 1112 case ETH_PKT_MCAST: 1113 if (rctl & E1000_RCTL_MPE) { 1114 accepted = true; /* promiscuous mcast */ 1115 } 1116 break; 1117 1118 default: 1119 g_assert_not_reached(); 1120 } 1121 1122 if (!accepted) { 1123 accepted = e1000x_rx_group_filter(core->mac, ehdr->h_dest); 1124 } 1125 1126 if (!accepted) { 1127 for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) { 1128 if (!(macp[1] & E1000_RAH_AV)) { 1129 continue; 1130 } 1131 ra[0] = cpu_to_le32(macp[0]); 1132 ra[1] = cpu_to_le32(macp[1]); 1133 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1134 trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2, 1135 MAC_ARG(ehdr->h_dest)); 1136 1137 accepted = true; 1138 break; 1139 } 1140 } 1141 } 1142 1143 if (accepted) { 1144 igb_rss_parse_packet(core, core->rx_pkt, false, rss_info); 1145 queues = BIT(rss_info->queue); 1146 } 1147 } 1148 1149 return queues; 1150 } 1151 1152 static inline void 1153 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc, 1154 hwaddr *buff_addr) 1155 { 1156 *buff_addr = le64_to_cpu(desc->buffer_addr); 1157 } 1158 1159 static inline void 1160 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc, 1161 hwaddr *buff_addr) 1162 { 1163 *buff_addr = le64_to_cpu(desc->read.pkt_addr); 1164 } 1165 1166 static inline void 1167 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc, 1168 hwaddr *buff_addr) 1169 { 1170 if (igb_rx_use_legacy_descriptor(core)) { 1171 igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr); 1172 } else { 1173 igb_read_adv_rx_descr(core, &desc->adv, buff_addr); 1174 } 1175 } 1176 1177 static void 1178 igb_verify_csum_in_sw(IGBCore *core, 1179 struct NetRxPkt *pkt, 1180 uint32_t *status_flags, 1181 EthL4HdrProto l4hdr_proto) 1182 { 1183 bool csum_valid; 1184 uint32_t csum_error; 1185 1186 if (igb_rx_l3_cso_enabled(core)) { 1187 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) { 1188 trace_e1000e_rx_metadata_l3_csum_validation_failed(); 1189 } else { 1190 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE; 1191 *status_flags |= E1000_RXD_STAT_IPCS | csum_error; 1192 } 1193 } else { 1194 trace_e1000e_rx_metadata_l3_cso_disabled(); 1195 } 1196 1197 if (!igb_rx_l4_cso_enabled(core)) { 1198 trace_e1000e_rx_metadata_l4_cso_disabled(); 1199 return; 1200 } 1201 1202 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { 1203 trace_e1000e_rx_metadata_l4_csum_validation_failed(); 1204 return; 1205 } 1206 1207 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE; 1208 *status_flags |= E1000_RXD_STAT_TCPCS | csum_error; 1209 1210 if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) { 1211 *status_flags |= E1000_RXD_STAT_UDPCS; 1212 } 1213 } 1214 1215 static void 1216 igb_build_rx_metadata(IGBCore *core, 1217 struct NetRxPkt *pkt, 1218 bool is_eop, 1219 const E1000E_RSSInfo *rss_info, 1220 uint16_t *pkt_info, uint16_t *hdr_info, 1221 uint32_t *rss, 1222 uint32_t *status_flags, 1223 uint16_t *ip_id, 1224 uint16_t *vlan_tag) 1225 { 1226 struct virtio_net_hdr *vhdr; 1227 bool hasip4, hasip6; 1228 EthL4HdrProto l4hdr_proto; 1229 uint32_t pkt_type; 1230 1231 *status_flags = E1000_RXD_STAT_DD; 1232 1233 /* No additional metadata needed for non-EOP descriptors */ 1234 /* TODO: EOP apply only to status so don't skip whole function. */ 1235 if (!is_eop) { 1236 goto func_exit; 1237 } 1238 1239 *status_flags |= E1000_RXD_STAT_EOP; 1240 1241 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); 1242 trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto); 1243 1244 /* VLAN state */ 1245 if (net_rx_pkt_is_vlan_stripped(pkt)) { 1246 *status_flags |= E1000_RXD_STAT_VP; 1247 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt)); 1248 trace_e1000e_rx_metadata_vlan(*vlan_tag); 1249 } 1250 1251 /* Packet parsing results */ 1252 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) { 1253 if (rss_info->enabled) { 1254 *rss = cpu_to_le32(rss_info->hash); 1255 trace_igb_rx_metadata_rss(*rss); 1256 } 1257 } else if (hasip4) { 1258 *status_flags |= E1000_RXD_STAT_IPIDV; 1259 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt)); 1260 trace_e1000e_rx_metadata_ip_id(*ip_id); 1261 } 1262 1263 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) { 1264 *status_flags |= E1000_RXD_STAT_ACK; 1265 trace_e1000e_rx_metadata_ack(); 1266 } 1267 1268 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) { 1269 trace_e1000e_rx_metadata_ipv6_filtering_disabled(); 1270 pkt_type = E1000_RXD_PKT_MAC; 1271 } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP || 1272 l4hdr_proto == ETH_L4_HDR_PROTO_UDP) { 1273 pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP; 1274 } else if (hasip4 || hasip6) { 1275 pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6; 1276 } else { 1277 pkt_type = E1000_RXD_PKT_MAC; 1278 } 1279 1280 trace_e1000e_rx_metadata_pkt_type(pkt_type); 1281 1282 if (pkt_info) { 1283 if (rss_info->enabled) { 1284 *pkt_info = rss_info->type; 1285 } 1286 1287 *pkt_info |= (pkt_type << 4); 1288 } else { 1289 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type); 1290 } 1291 1292 if (hdr_info) { 1293 *hdr_info = 0; 1294 } 1295 1296 /* RX CSO information */ 1297 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) { 1298 trace_e1000e_rx_metadata_ipv6_sum_disabled(); 1299 goto func_exit; 1300 } 1301 1302 vhdr = net_rx_pkt_get_vhdr(pkt); 1303 1304 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) && 1305 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) { 1306 trace_e1000e_rx_metadata_virthdr_no_csum_info(); 1307 igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto); 1308 goto func_exit; 1309 } 1310 1311 if (igb_rx_l3_cso_enabled(core)) { 1312 *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0; 1313 } else { 1314 trace_e1000e_rx_metadata_l3_cso_disabled(); 1315 } 1316 1317 if (igb_rx_l4_cso_enabled(core)) { 1318 switch (l4hdr_proto) { 1319 case ETH_L4_HDR_PROTO_TCP: 1320 *status_flags |= E1000_RXD_STAT_TCPCS; 1321 break; 1322 1323 case ETH_L4_HDR_PROTO_UDP: 1324 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS; 1325 break; 1326 1327 default: 1328 goto func_exit; 1329 } 1330 } else { 1331 trace_e1000e_rx_metadata_l4_cso_disabled(); 1332 } 1333 1334 trace_e1000e_rx_metadata_status_flags(*status_flags); 1335 1336 func_exit: 1337 *status_flags = cpu_to_le32(*status_flags); 1338 } 1339 1340 static inline void 1341 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc, 1342 struct NetRxPkt *pkt, 1343 const E1000E_RSSInfo *rss_info, 1344 uint16_t length) 1345 { 1346 uint32_t status_flags, rss; 1347 uint16_t ip_id; 1348 1349 assert(!rss_info->enabled); 1350 desc->length = cpu_to_le16(length); 1351 desc->csum = 0; 1352 1353 igb_build_rx_metadata(core, pkt, pkt != NULL, 1354 rss_info, 1355 NULL, NULL, &rss, 1356 &status_flags, &ip_id, 1357 &desc->special); 1358 desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24); 1359 desc->status = (uint8_t) le32_to_cpu(status_flags); 1360 } 1361 1362 static inline void 1363 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc, 1364 struct NetRxPkt *pkt, 1365 const E1000E_RSSInfo *rss_info, 1366 uint16_t length) 1367 { 1368 memset(&desc->wb, 0, sizeof(desc->wb)); 1369 1370 desc->wb.upper.length = cpu_to_le16(length); 1371 1372 igb_build_rx_metadata(core, pkt, pkt != NULL, 1373 rss_info, 1374 &desc->wb.lower.lo_dword.pkt_info, 1375 &desc->wb.lower.lo_dword.hdr_info, 1376 &desc->wb.lower.hi_dword.rss, 1377 &desc->wb.upper.status_error, 1378 &desc->wb.lower.hi_dword.csum_ip.ip_id, 1379 &desc->wb.upper.vlan); 1380 } 1381 1382 static inline void 1383 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc, 1384 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length) 1385 { 1386 if (igb_rx_use_legacy_descriptor(core)) { 1387 igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, length); 1388 } else { 1389 igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, length); 1390 } 1391 } 1392 1393 static inline void 1394 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr, 1395 union e1000_rx_desc_union *desc, dma_addr_t len) 1396 { 1397 if (igb_rx_use_legacy_descriptor(core)) { 1398 struct e1000_rx_desc *d = &desc->legacy; 1399 size_t offset = offsetof(struct e1000_rx_desc, status); 1400 uint8_t status = d->status; 1401 1402 d->status &= ~E1000_RXD_STAT_DD; 1403 pci_dma_write(dev, addr, desc, len); 1404 1405 if (status & E1000_RXD_STAT_DD) { 1406 d->status = status; 1407 pci_dma_write(dev, addr + offset, &status, sizeof(status)); 1408 } 1409 } else { 1410 union e1000_adv_rx_desc *d = &desc->adv; 1411 size_t offset = 1412 offsetof(union e1000_adv_rx_desc, wb.upper.status_error); 1413 uint32_t status = d->wb.upper.status_error; 1414 1415 d->wb.upper.status_error &= ~E1000_RXD_STAT_DD; 1416 pci_dma_write(dev, addr, desc, len); 1417 1418 if (status & E1000_RXD_STAT_DD) { 1419 d->wb.upper.status_error = status; 1420 pci_dma_write(dev, addr + offset, &status, sizeof(status)); 1421 } 1422 } 1423 } 1424 1425 static void 1426 igb_write_to_rx_buffers(IGBCore *core, 1427 PCIDevice *d, 1428 hwaddr ba, 1429 uint16_t *written, 1430 const char *data, 1431 dma_addr_t data_len) 1432 { 1433 trace_igb_rx_desc_buff_write(ba, *written, data, data_len); 1434 pci_dma_write(d, ba + *written, data, data_len); 1435 *written += data_len; 1436 } 1437 1438 static void 1439 igb_update_rx_stats(IGBCore *core, const E1000E_RingInfo *rxi, 1440 size_t data_size, size_t data_fcs_size) 1441 { 1442 e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size); 1443 1444 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { 1445 case ETH_PKT_BCAST: 1446 e1000x_inc_reg_if_not_full(core->mac, BPRC); 1447 break; 1448 1449 case ETH_PKT_MCAST: 1450 e1000x_inc_reg_if_not_full(core->mac, MPRC); 1451 break; 1452 1453 default: 1454 break; 1455 } 1456 1457 if (core->mac[MRQC] & 1) { 1458 uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS; 1459 1460 core->mac[PVFGORC0 + (pool * 64)] += data_size + 4; 1461 core->mac[PVFGPRC0 + (pool * 64)]++; 1462 if (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) { 1463 core->mac[PVFMPRC0 + (pool * 64)]++; 1464 } 1465 } 1466 } 1467 1468 static inline bool 1469 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi) 1470 { 1471 return igb_ring_free_descr_num(core, rxi) == 1472 ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16; 1473 } 1474 1475 static void 1476 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt, 1477 const E1000E_RxRing *rxr, 1478 const E1000E_RSSInfo *rss_info) 1479 { 1480 PCIDevice *d; 1481 dma_addr_t base; 1482 union e1000_rx_desc_union desc; 1483 size_t desc_size; 1484 size_t desc_offset = 0; 1485 size_t iov_ofs = 0; 1486 1487 struct iovec *iov = net_rx_pkt_get_iovec(pkt); 1488 size_t size = net_rx_pkt_get_total_len(pkt); 1489 size_t total_size = size + e1000x_fcs_len(core->mac); 1490 const E1000E_RingInfo *rxi = rxr->i; 1491 size_t bufsize = igb_rxbufsize(core, rxi); 1492 1493 d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8); 1494 if (!d) { 1495 d = core->owner; 1496 } 1497 1498 do { 1499 hwaddr ba; 1500 uint16_t written = 0; 1501 bool is_last = false; 1502 1503 desc_size = total_size - desc_offset; 1504 1505 if (desc_size > bufsize) { 1506 desc_size = bufsize; 1507 } 1508 1509 if (igb_ring_empty(core, rxi)) { 1510 return; 1511 } 1512 1513 base = igb_ring_head_descr(core, rxi); 1514 1515 pci_dma_read(d, base, &desc, core->rx_desc_len); 1516 1517 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len); 1518 1519 igb_read_rx_descr(core, &desc, &ba); 1520 1521 if (ba) { 1522 if (desc_offset < size) { 1523 static const uint32_t fcs_pad; 1524 size_t iov_copy; 1525 size_t copy_size = size - desc_offset; 1526 if (copy_size > bufsize) { 1527 copy_size = bufsize; 1528 } 1529 1530 /* Copy packet payload */ 1531 while (copy_size) { 1532 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 1533 1534 igb_write_to_rx_buffers(core, d, ba, &written, 1535 iov->iov_base + iov_ofs, iov_copy); 1536 1537 copy_size -= iov_copy; 1538 iov_ofs += iov_copy; 1539 if (iov_ofs == iov->iov_len) { 1540 iov++; 1541 iov_ofs = 0; 1542 } 1543 } 1544 1545 if (desc_offset + desc_size >= total_size) { 1546 /* Simulate FCS checksum presence in the last descriptor */ 1547 igb_write_to_rx_buffers(core, d, ba, &written, 1548 (const char *) &fcs_pad, e1000x_fcs_len(core->mac)); 1549 } 1550 } 1551 } else { /* as per intel docs; skip descriptors with null buf addr */ 1552 trace_e1000e_rx_null_descriptor(); 1553 } 1554 desc_offset += desc_size; 1555 if (desc_offset >= total_size) { 1556 is_last = true; 1557 } 1558 1559 igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL, 1560 rss_info, written); 1561 igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len); 1562 1563 igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN); 1564 1565 } while (desc_offset < total_size); 1566 1567 igb_update_rx_stats(core, rxi, size, total_size); 1568 } 1569 1570 static bool 1571 igb_rx_strip_vlan(IGBCore *core, const E1000E_RingInfo *rxi) 1572 { 1573 if (core->mac[MRQC] & 1) { 1574 uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS; 1575 /* Sec 7.10.3.8: CTRL.VME is ignored, only VMOLR/RPLOLR is used */ 1576 return (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) ? 1577 core->mac[RPLOLR] & E1000_RPLOLR_STRVLAN : 1578 core->mac[VMOLR0 + pool] & E1000_VMOLR_STRVLAN; 1579 } 1580 1581 return e1000x_vlan_enabled(core->mac); 1582 } 1583 1584 static inline void 1585 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt) 1586 { 1587 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt); 1588 1589 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 1590 net_rx_pkt_fix_l4_csum(pkt); 1591 } 1592 } 1593 1594 ssize_t 1595 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt) 1596 { 1597 return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL); 1598 } 1599 1600 static ssize_t 1601 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt, 1602 bool has_vnet, bool *external_tx) 1603 { 1604 static const int maximum_ethernet_hdr_len = (ETH_HLEN + 4); 1605 1606 uint16_t queues = 0; 1607 uint32_t n = 0; 1608 uint8_t min_buf[ETH_ZLEN]; 1609 struct iovec min_iov; 1610 struct eth_header *ehdr; 1611 uint8_t *filter_buf; 1612 size_t size, orig_size; 1613 size_t iov_ofs = 0; 1614 E1000E_RxRing rxr; 1615 E1000E_RSSInfo rss_info; 1616 size_t total_size; 1617 int i; 1618 1619 trace_e1000e_rx_receive_iov(iovcnt); 1620 1621 if (external_tx) { 1622 *external_tx = true; 1623 } 1624 1625 if (!e1000x_hw_rx_enabled(core->mac)) { 1626 return -1; 1627 } 1628 1629 /* Pull virtio header in */ 1630 if (has_vnet) { 1631 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt); 1632 iov_ofs = sizeof(struct virtio_net_hdr); 1633 } else { 1634 net_rx_pkt_unset_vhdr(core->rx_pkt); 1635 } 1636 1637 filter_buf = iov->iov_base + iov_ofs; 1638 orig_size = iov_size(iov, iovcnt); 1639 size = orig_size - iov_ofs; 1640 1641 /* Pad to minimum Ethernet frame length */ 1642 if (size < sizeof(min_buf)) { 1643 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size); 1644 memset(&min_buf[size], 0, sizeof(min_buf) - size); 1645 e1000x_inc_reg_if_not_full(core->mac, RUC); 1646 min_iov.iov_base = filter_buf = min_buf; 1647 min_iov.iov_len = size = sizeof(min_buf); 1648 iovcnt = 1; 1649 iov = &min_iov; 1650 iov_ofs = 0; 1651 } else if (iov->iov_len < maximum_ethernet_hdr_len) { 1652 /* This is very unlikely, but may happen. */ 1653 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len); 1654 filter_buf = min_buf; 1655 } 1656 1657 /* Discard oversized packets if !LPE and !SBP. */ 1658 if (e1000x_is_oversized(core->mac, size)) { 1659 return orig_size; 1660 } 1661 1662 ehdr = PKT_GET_ETH_HDR(filter_buf); 1663 net_rx_pkt_set_packet_type(core->rx_pkt, get_eth_packet_type(ehdr)); 1664 net_rx_pkt_set_protocols(core->rx_pkt, filter_buf, size); 1665 1666 queues = igb_receive_assign(core, ehdr, size, &rss_info, external_tx); 1667 if (!queues) { 1668 trace_e1000e_rx_flt_dropped(); 1669 return orig_size; 1670 } 1671 1672 for (i = 0; i < IGB_NUM_QUEUES; i++) { 1673 if (!(queues & BIT(i)) || 1674 !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) { 1675 continue; 1676 } 1677 1678 igb_rx_ring_init(core, &rxr, i); 1679 1680 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs, 1681 igb_rx_strip_vlan(core, rxr.i), 1682 core->mac[VET] & 0xffff); 1683 1684 total_size = net_rx_pkt_get_total_len(core->rx_pkt) + 1685 e1000x_fcs_len(core->mac); 1686 1687 if (!igb_has_rxbufs(core, rxr.i, total_size)) { 1688 n |= E1000_ICS_RXO; 1689 trace_e1000e_rx_not_written_to_guest(rxr.i->idx); 1690 continue; 1691 } 1692 1693 n |= E1000_ICR_RXDW; 1694 1695 igb_rx_fix_l4_csum(core, core->rx_pkt); 1696 igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info); 1697 1698 /* Check if receive descriptor minimum threshold hit */ 1699 if (igb_rx_descr_threshold_hit(core, rxr.i)) { 1700 n |= E1000_ICS_RXDMT0; 1701 } 1702 1703 core->mac[EICR] |= igb_rx_wb_eic(core, rxr.i->idx); 1704 1705 trace_e1000e_rx_written_to_guest(rxr.i->idx); 1706 } 1707 1708 trace_e1000e_rx_interrupt_set(n); 1709 igb_set_interrupt_cause(core, n); 1710 1711 return orig_size; 1712 } 1713 1714 static inline bool 1715 igb_have_autoneg(IGBCore *core) 1716 { 1717 return core->phy[MII_BMCR] & MII_BMCR_AUTOEN; 1718 } 1719 1720 static void igb_update_flowctl_status(IGBCore *core) 1721 { 1722 if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) { 1723 trace_e1000e_link_autoneg_flowctl(true); 1724 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE; 1725 } else { 1726 trace_e1000e_link_autoneg_flowctl(false); 1727 } 1728 } 1729 1730 static inline void 1731 igb_link_down(IGBCore *core) 1732 { 1733 e1000x_update_regs_on_link_down(core->mac, core->phy); 1734 igb_update_flowctl_status(core); 1735 } 1736 1737 static inline void 1738 igb_set_phy_ctrl(IGBCore *core, uint16_t val) 1739 { 1740 /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */ 1741 core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART); 1742 1743 if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) { 1744 e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer); 1745 } 1746 } 1747 1748 void igb_core_set_link_status(IGBCore *core) 1749 { 1750 NetClientState *nc = qemu_get_queue(core->owner_nic); 1751 uint32_t old_status = core->mac[STATUS]; 1752 1753 trace_e1000e_link_status_changed(nc->link_down ? false : true); 1754 1755 if (nc->link_down) { 1756 e1000x_update_regs_on_link_down(core->mac, core->phy); 1757 } else { 1758 if (igb_have_autoneg(core) && 1759 !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) { 1760 e1000x_restart_autoneg(core->mac, core->phy, 1761 core->autoneg_timer); 1762 } else { 1763 e1000x_update_regs_on_link_up(core->mac, core->phy); 1764 igb_start_recv(core); 1765 } 1766 } 1767 1768 if (core->mac[STATUS] != old_status) { 1769 igb_set_interrupt_cause(core, E1000_ICR_LSC); 1770 } 1771 } 1772 1773 static void 1774 igb_set_ctrl(IGBCore *core, int index, uint32_t val) 1775 { 1776 trace_e1000e_core_ctrl_write(index, val); 1777 1778 /* RST is self clearing */ 1779 core->mac[CTRL] = val & ~E1000_CTRL_RST; 1780 core->mac[CTRL_DUP] = core->mac[CTRL]; 1781 1782 trace_e1000e_link_set_params( 1783 !!(val & E1000_CTRL_ASDE), 1784 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 1785 !!(val & E1000_CTRL_FRCSPD), 1786 !!(val & E1000_CTRL_FRCDPX), 1787 !!(val & E1000_CTRL_RFCE), 1788 !!(val & E1000_CTRL_TFCE)); 1789 1790 if (val & E1000_CTRL_RST) { 1791 trace_e1000e_core_ctrl_sw_reset(); 1792 igb_reset(core, true); 1793 } 1794 1795 if (val & E1000_CTRL_PHY_RST) { 1796 trace_e1000e_core_ctrl_phy_reset(); 1797 core->mac[STATUS] |= E1000_STATUS_PHYRA; 1798 } 1799 } 1800 1801 static void 1802 igb_set_rfctl(IGBCore *core, int index, uint32_t val) 1803 { 1804 trace_e1000e_rx_set_rfctl(val); 1805 1806 if (!(val & E1000_RFCTL_ISCSI_DIS)) { 1807 trace_e1000e_wrn_iscsi_filtering_not_supported(); 1808 } 1809 1810 if (!(val & E1000_RFCTL_NFSW_DIS)) { 1811 trace_e1000e_wrn_nfsw_filtering_not_supported(); 1812 } 1813 1814 if (!(val & E1000_RFCTL_NFSR_DIS)) { 1815 trace_e1000e_wrn_nfsr_filtering_not_supported(); 1816 } 1817 1818 core->mac[RFCTL] = val; 1819 } 1820 1821 static void 1822 igb_calc_rxdesclen(IGBCore *core) 1823 { 1824 if (igb_rx_use_legacy_descriptor(core)) { 1825 core->rx_desc_len = sizeof(struct e1000_rx_desc); 1826 } else { 1827 core->rx_desc_len = sizeof(union e1000_adv_rx_desc); 1828 } 1829 trace_e1000e_rx_desc_len(core->rx_desc_len); 1830 } 1831 1832 static void 1833 igb_set_rx_control(IGBCore *core, int index, uint32_t val) 1834 { 1835 core->mac[RCTL] = val; 1836 trace_e1000e_rx_set_rctl(core->mac[RCTL]); 1837 1838 if (val & E1000_RCTL_DTYP_MASK) { 1839 qemu_log_mask(LOG_GUEST_ERROR, 1840 "igb: RCTL.DTYP must be zero for compatibility"); 1841 } 1842 1843 if (val & E1000_RCTL_EN) { 1844 igb_calc_rxdesclen(core); 1845 igb_start_recv(core); 1846 } 1847 } 1848 1849 static inline void 1850 igb_clear_ims_bits(IGBCore *core, uint32_t bits) 1851 { 1852 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits); 1853 core->mac[IMS] &= ~bits; 1854 } 1855 1856 static inline bool 1857 igb_postpone_interrupt(IGBIntrDelayTimer *timer) 1858 { 1859 if (timer->running) { 1860 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2); 1861 1862 return true; 1863 } 1864 1865 if (timer->core->mac[timer->delay_reg] != 0) { 1866 igb_intrmgr_rearm_timer(timer); 1867 } 1868 1869 return false; 1870 } 1871 1872 static inline bool 1873 igb_eitr_should_postpone(IGBCore *core, int idx) 1874 { 1875 return igb_postpone_interrupt(&core->eitr[idx]); 1876 } 1877 1878 static void igb_send_msix(IGBCore *core) 1879 { 1880 uint32_t causes = core->mac[EICR] & core->mac[EIMS]; 1881 uint32_t effective_eiac; 1882 int vector; 1883 1884 for (vector = 0; vector < IGB_INTR_NUM; ++vector) { 1885 if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) { 1886 1887 trace_e1000e_irq_msix_notify_vec(vector); 1888 igb_msix_notify(core, vector); 1889 1890 trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]); 1891 effective_eiac = core->mac[EIAC] & BIT(vector); 1892 core->mac[EICR] &= ~effective_eiac; 1893 } 1894 } 1895 } 1896 1897 static inline void 1898 igb_fix_icr_asserted(IGBCore *core) 1899 { 1900 core->mac[ICR] &= ~E1000_ICR_ASSERTED; 1901 if (core->mac[ICR]) { 1902 core->mac[ICR] |= E1000_ICR_ASSERTED; 1903 } 1904 1905 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]); 1906 } 1907 1908 static void 1909 igb_update_interrupt_state(IGBCore *core) 1910 { 1911 uint32_t icr; 1912 uint32_t causes; 1913 uint32_t int_alloc; 1914 1915 icr = core->mac[ICR] & core->mac[IMS]; 1916 1917 if (msix_enabled(core->owner)) { 1918 if (icr) { 1919 causes = 0; 1920 if (icr & E1000_ICR_DRSTA) { 1921 int_alloc = core->mac[IVAR_MISC] & 0xff; 1922 if (int_alloc & E1000_IVAR_VALID) { 1923 causes |= BIT(int_alloc & 0x1f); 1924 } 1925 } 1926 /* Check if other bits (excluding the TCP Timer) are enabled. */ 1927 if (icr & ~E1000_ICR_DRSTA) { 1928 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff; 1929 if (int_alloc & E1000_IVAR_VALID) { 1930 causes |= BIT(int_alloc & 0x1f); 1931 } 1932 trace_e1000e_irq_add_msi_other(core->mac[EICR]); 1933 } 1934 core->mac[EICR] |= causes; 1935 } 1936 1937 if ((core->mac[EICR] & core->mac[EIMS])) { 1938 igb_send_msix(core); 1939 } 1940 } else { 1941 igb_fix_icr_asserted(core); 1942 1943 if (icr) { 1944 core->mac[EICR] |= (icr & E1000_ICR_DRSTA) | E1000_EICR_OTHER; 1945 } else { 1946 core->mac[EICR] &= ~E1000_EICR_OTHER; 1947 } 1948 1949 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], 1950 core->mac[ICR], core->mac[IMS]); 1951 1952 if (msi_enabled(core->owner)) { 1953 if (icr) { 1954 msi_notify(core->owner, 0); 1955 } 1956 } else { 1957 if (icr) { 1958 igb_raise_legacy_irq(core); 1959 } else { 1960 igb_lower_legacy_irq(core); 1961 } 1962 } 1963 } 1964 } 1965 1966 static void 1967 igb_set_interrupt_cause(IGBCore *core, uint32_t val) 1968 { 1969 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]); 1970 1971 core->mac[ICR] |= val; 1972 1973 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]); 1974 1975 igb_update_interrupt_state(core); 1976 } 1977 1978 static void igb_set_eics(IGBCore *core, int index, uint32_t val) 1979 { 1980 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 1981 1982 trace_igb_irq_write_eics(val, msix); 1983 1984 core->mac[EICS] |= 1985 val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK); 1986 1987 /* 1988 * TODO: Move to igb_update_interrupt_state if EICS is modified in other 1989 * places. 1990 */ 1991 core->mac[EICR] = core->mac[EICS]; 1992 1993 igb_update_interrupt_state(core); 1994 } 1995 1996 static void igb_set_eims(IGBCore *core, int index, uint32_t val) 1997 { 1998 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 1999 2000 trace_igb_irq_write_eims(val, msix); 2001 2002 core->mac[EIMS] |= 2003 val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK); 2004 2005 igb_update_interrupt_state(core); 2006 } 2007 2008 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn) 2009 { 2010 uint32_t ent = core->mac[VTIVAR_MISC + vfn]; 2011 2012 if ((ent & E1000_IVAR_VALID)) { 2013 core->mac[EICR] |= (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM); 2014 igb_update_interrupt_state(core); 2015 } 2016 } 2017 2018 static void mailbox_interrupt_to_pf(IGBCore *core) 2019 { 2020 igb_set_interrupt_cause(core, E1000_ICR_VMMB); 2021 } 2022 2023 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val) 2024 { 2025 uint16_t vfn = index - P2VMAILBOX0; 2026 2027 trace_igb_set_pfmailbox(vfn, val); 2028 2029 if (val & E1000_P2VMAILBOX_STS) { 2030 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS; 2031 mailbox_interrupt_to_vf(core, vfn); 2032 } 2033 2034 if (val & E1000_P2VMAILBOX_ACK) { 2035 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK; 2036 mailbox_interrupt_to_vf(core, vfn); 2037 } 2038 2039 /* Buffer Taken by PF (can be set only if the VFU is cleared). */ 2040 if (val & E1000_P2VMAILBOX_PFU) { 2041 if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) { 2042 core->mac[index] |= E1000_P2VMAILBOX_PFU; 2043 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU; 2044 } 2045 } else { 2046 core->mac[index] &= ~E1000_P2VMAILBOX_PFU; 2047 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU; 2048 } 2049 2050 if (val & E1000_P2VMAILBOX_RVFU) { 2051 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU; 2052 core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) | 2053 (E1000_MBVFICR_VFREQ_VF1 << vfn)); 2054 } 2055 } 2056 2057 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val) 2058 { 2059 uint16_t vfn = index - V2PMAILBOX0; 2060 2061 trace_igb_set_vfmailbox(vfn, val); 2062 2063 if (val & E1000_V2PMAILBOX_REQ) { 2064 core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn; 2065 mailbox_interrupt_to_pf(core); 2066 } 2067 2068 if (val & E1000_V2PMAILBOX_ACK) { 2069 core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn; 2070 mailbox_interrupt_to_pf(core); 2071 } 2072 2073 /* Buffer Taken by VF (can be set only if the PFU is cleared). */ 2074 if (val & E1000_V2PMAILBOX_VFU) { 2075 if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) { 2076 core->mac[index] |= E1000_V2PMAILBOX_VFU; 2077 core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU; 2078 } 2079 } else { 2080 core->mac[index] &= ~E1000_V2PMAILBOX_VFU; 2081 core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU; 2082 } 2083 } 2084 2085 static void igb_vf_reset(IGBCore *core, uint16_t vfn) 2086 { 2087 uint16_t qn0 = vfn; 2088 uint16_t qn1 = vfn + IGB_NUM_VM_POOLS; 2089 2090 /* disable Rx and Tx for the VF*/ 2091 core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE; 2092 core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE; 2093 core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE; 2094 core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE; 2095 core->mac[VFRE] &= ~BIT(vfn); 2096 core->mac[VFTE] &= ~BIT(vfn); 2097 /* indicate VF reset to PF */ 2098 core->mac[VFLRE] |= BIT(vfn); 2099 /* VFLRE and mailbox use the same interrupt cause */ 2100 mailbox_interrupt_to_pf(core); 2101 } 2102 2103 static void igb_w1c(IGBCore *core, int index, uint32_t val) 2104 { 2105 core->mac[index] &= ~val; 2106 } 2107 2108 static void igb_set_eimc(IGBCore *core, int index, uint32_t val) 2109 { 2110 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2111 2112 /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */ 2113 core->mac[EIMS] &= 2114 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2115 2116 trace_igb_irq_write_eimc(val, core->mac[EIMS], msix); 2117 igb_update_interrupt_state(core); 2118 } 2119 2120 static void igb_set_eiac(IGBCore *core, int index, uint32_t val) 2121 { 2122 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2123 2124 if (msix) { 2125 trace_igb_irq_write_eiac(val); 2126 2127 /* 2128 * TODO: When using IOV, the bits that correspond to MSI-X vectors 2129 * that are assigned to a VF are read-only. 2130 */ 2131 core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK); 2132 } 2133 } 2134 2135 static void igb_set_eiam(IGBCore *core, int index, uint32_t val) 2136 { 2137 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2138 2139 /* 2140 * TODO: When using IOV, the bits that correspond to MSI-X vectors that 2141 * are assigned to a VF are read-only. 2142 */ 2143 core->mac[EIAM] |= 2144 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2145 2146 trace_igb_irq_write_eiam(val, msix); 2147 } 2148 2149 static void igb_set_eicr(IGBCore *core, int index, uint32_t val) 2150 { 2151 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2152 2153 /* 2154 * TODO: In IOV mode, only bit zero of this vector is available for the PF 2155 * function. 2156 */ 2157 core->mac[EICR] &= 2158 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2159 2160 trace_igb_irq_write_eicr(val, msix); 2161 igb_update_interrupt_state(core); 2162 } 2163 2164 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val) 2165 { 2166 uint16_t vfn; 2167 2168 if (val & E1000_CTRL_RST) { 2169 vfn = (index - PVTCTRL0) / 0x40; 2170 igb_vf_reset(core, vfn); 2171 } 2172 } 2173 2174 static void igb_set_vteics(IGBCore *core, int index, uint32_t val) 2175 { 2176 uint16_t vfn = (index - PVTEICS0) / 0x40; 2177 2178 core->mac[index] = val; 2179 igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2180 } 2181 2182 static void igb_set_vteims(IGBCore *core, int index, uint32_t val) 2183 { 2184 uint16_t vfn = (index - PVTEIMS0) / 0x40; 2185 2186 core->mac[index] = val; 2187 igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2188 } 2189 2190 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val) 2191 { 2192 uint16_t vfn = (index - PVTEIMC0) / 0x40; 2193 2194 core->mac[index] = val; 2195 igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2196 } 2197 2198 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val) 2199 { 2200 uint16_t vfn = (index - PVTEIAC0) / 0x40; 2201 2202 core->mac[index] = val; 2203 igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2204 } 2205 2206 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val) 2207 { 2208 uint16_t vfn = (index - PVTEIAM0) / 0x40; 2209 2210 core->mac[index] = val; 2211 igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2212 } 2213 2214 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val) 2215 { 2216 uint16_t vfn = (index - PVTEICR0) / 0x40; 2217 2218 core->mac[index] = val; 2219 igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2220 } 2221 2222 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val) 2223 { 2224 uint16_t vfn = (index - VTIVAR); 2225 uint16_t qn = vfn; 2226 uint8_t ent; 2227 int n; 2228 2229 core->mac[index] = val; 2230 2231 /* Get assigned vector associated with queue Rx#0. */ 2232 if ((val & E1000_IVAR_VALID)) { 2233 n = igb_ivar_entry_rx(qn); 2234 ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7))); 2235 core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4); 2236 } 2237 2238 /* Get assigned vector associated with queue Tx#0 */ 2239 ent = val >> 8; 2240 if ((ent & E1000_IVAR_VALID)) { 2241 n = igb_ivar_entry_tx(qn); 2242 ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7))); 2243 core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4); 2244 } 2245 2246 /* 2247 * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now. 2248 */ 2249 } 2250 2251 static inline void 2252 igb_autoneg_timer(void *opaque) 2253 { 2254 IGBCore *core = opaque; 2255 if (!qemu_get_queue(core->owner_nic)->link_down) { 2256 e1000x_update_regs_on_autoneg_done(core->mac, core->phy); 2257 igb_start_recv(core); 2258 2259 igb_update_flowctl_status(core); 2260 /* signal link status change to the guest */ 2261 igb_set_interrupt_cause(core, E1000_ICR_LSC); 2262 } 2263 } 2264 2265 static inline uint16_t 2266 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr) 2267 { 2268 uint16_t index = (addr & 0x1ffff) >> 2; 2269 return index + (mac_reg_access[index] & 0xfffe); 2270 } 2271 2272 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = { 2273 [MII_BMCR] = PHY_RW, 2274 [MII_BMSR] = PHY_R, 2275 [MII_PHYID1] = PHY_R, 2276 [MII_PHYID2] = PHY_R, 2277 [MII_ANAR] = PHY_RW, 2278 [MII_ANLPAR] = PHY_R, 2279 [MII_ANER] = PHY_R, 2280 [MII_ANNP] = PHY_RW, 2281 [MII_ANLPRNP] = PHY_R, 2282 [MII_CTRL1000] = PHY_RW, 2283 [MII_STAT1000] = PHY_R, 2284 [MII_EXTSTAT] = PHY_R, 2285 2286 [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW, 2287 [IGP01E1000_PHY_PORT_STATUS] = PHY_R, 2288 [IGP01E1000_PHY_PORT_CTRL] = PHY_RW, 2289 [IGP01E1000_PHY_LINK_HEALTH] = PHY_R, 2290 [IGP02E1000_PHY_POWER_MGMT] = PHY_RW, 2291 [IGP01E1000_PHY_PAGE_SELECT] = PHY_W 2292 }; 2293 2294 static void 2295 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data) 2296 { 2297 assert(addr <= MAX_PHY_REG_ADDRESS); 2298 2299 if (addr == MII_BMCR) { 2300 igb_set_phy_ctrl(core, data); 2301 } else { 2302 core->phy[addr] = data; 2303 } 2304 } 2305 2306 static void 2307 igb_set_mdic(IGBCore *core, int index, uint32_t val) 2308 { 2309 uint32_t data = val & E1000_MDIC_DATA_MASK; 2310 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 2311 2312 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */ 2313 val = core->mac[MDIC] | E1000_MDIC_ERROR; 2314 } else if (val & E1000_MDIC_OP_READ) { 2315 if (!(igb_phy_regcap[addr] & PHY_R)) { 2316 trace_igb_core_mdic_read_unhandled(addr); 2317 val |= E1000_MDIC_ERROR; 2318 } else { 2319 val = (val ^ data) | core->phy[addr]; 2320 trace_igb_core_mdic_read(addr, val); 2321 } 2322 } else if (val & E1000_MDIC_OP_WRITE) { 2323 if (!(igb_phy_regcap[addr] & PHY_W)) { 2324 trace_igb_core_mdic_write_unhandled(addr); 2325 val |= E1000_MDIC_ERROR; 2326 } else { 2327 trace_igb_core_mdic_write(addr, data); 2328 igb_phy_reg_write(core, addr, data); 2329 } 2330 } 2331 core->mac[MDIC] = val | E1000_MDIC_READY; 2332 2333 if (val & E1000_MDIC_INT_EN) { 2334 igb_set_interrupt_cause(core, E1000_ICR_MDAC); 2335 } 2336 } 2337 2338 static void 2339 igb_set_rdt(IGBCore *core, int index, uint32_t val) 2340 { 2341 core->mac[index] = val & 0xffff; 2342 trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val); 2343 igb_start_recv(core); 2344 } 2345 2346 static void 2347 igb_set_status(IGBCore *core, int index, uint32_t val) 2348 { 2349 if ((val & E1000_STATUS_PHYRA) == 0) { 2350 core->mac[index] &= ~E1000_STATUS_PHYRA; 2351 } 2352 } 2353 2354 static void 2355 igb_set_ctrlext(IGBCore *core, int index, uint32_t val) 2356 { 2357 trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK), 2358 !!(val & E1000_CTRL_EXT_SPD_BYPS), 2359 !!(val & E1000_CTRL_EXT_PFRSTD)); 2360 2361 /* Zero self-clearing bits */ 2362 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST); 2363 core->mac[CTRL_EXT] = val; 2364 2365 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) { 2366 for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) { 2367 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI; 2368 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD; 2369 } 2370 } 2371 } 2372 2373 static void 2374 igb_set_pbaclr(IGBCore *core, int index, uint32_t val) 2375 { 2376 int i; 2377 2378 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK; 2379 2380 if (!msix_enabled(core->owner)) { 2381 return; 2382 } 2383 2384 for (i = 0; i < IGB_INTR_NUM; i++) { 2385 if (core->mac[PBACLR] & BIT(i)) { 2386 msix_clr_pending(core->owner, i); 2387 } 2388 } 2389 } 2390 2391 static void 2392 igb_set_fcrth(IGBCore *core, int index, uint32_t val) 2393 { 2394 core->mac[FCRTH] = val & 0xFFF8; 2395 } 2396 2397 static void 2398 igb_set_fcrtl(IGBCore *core, int index, uint32_t val) 2399 { 2400 core->mac[FCRTL] = val & 0x8000FFF8; 2401 } 2402 2403 #define IGB_LOW_BITS_SET_FUNC(num) \ 2404 static void \ 2405 igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \ 2406 { \ 2407 core->mac[index] = val & (BIT(num) - 1); \ 2408 } 2409 2410 IGB_LOW_BITS_SET_FUNC(4) 2411 IGB_LOW_BITS_SET_FUNC(13) 2412 IGB_LOW_BITS_SET_FUNC(16) 2413 2414 static void 2415 igb_set_dlen(IGBCore *core, int index, uint32_t val) 2416 { 2417 core->mac[index] = val & 0xffff0; 2418 } 2419 2420 static void 2421 igb_set_dbal(IGBCore *core, int index, uint32_t val) 2422 { 2423 core->mac[index] = val & E1000_XDBAL_MASK; 2424 } 2425 2426 static void 2427 igb_set_tdt(IGBCore *core, int index, uint32_t val) 2428 { 2429 IGB_TxRing txr; 2430 int qn = igb_mq_queue_idx(TDT0, index); 2431 2432 core->mac[index] = val & 0xffff; 2433 2434 igb_tx_ring_init(core, &txr, qn); 2435 igb_start_xmit(core, &txr); 2436 } 2437 2438 static void 2439 igb_set_ics(IGBCore *core, int index, uint32_t val) 2440 { 2441 trace_e1000e_irq_write_ics(val); 2442 igb_set_interrupt_cause(core, val); 2443 } 2444 2445 static void 2446 igb_set_imc(IGBCore *core, int index, uint32_t val) 2447 { 2448 trace_e1000e_irq_ims_clear_set_imc(val); 2449 igb_clear_ims_bits(core, val); 2450 igb_update_interrupt_state(core); 2451 } 2452 2453 static void 2454 igb_set_ims(IGBCore *core, int index, uint32_t val) 2455 { 2456 uint32_t valid_val = val & 0x77D4FBFD; 2457 2458 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val); 2459 core->mac[IMS] |= valid_val; 2460 igb_update_interrupt_state(core); 2461 } 2462 2463 static void igb_commit_icr(IGBCore *core) 2464 { 2465 /* 2466 * If GPIE.NSICR = 0, then the copy of IAM to IMS will occur only if at 2467 * least one bit is set in the IMS and there is a true interrupt as 2468 * reflected in ICR.INTA. 2469 */ 2470 if ((core->mac[GPIE] & E1000_GPIE_NSICR) || 2471 (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) { 2472 igb_set_ims(core, IMS, core->mac[IAM]); 2473 } else { 2474 igb_update_interrupt_state(core); 2475 } 2476 } 2477 2478 static void igb_set_icr(IGBCore *core, int index, uint32_t val) 2479 { 2480 uint32_t icr = core->mac[ICR] & ~val; 2481 2482 trace_igb_irq_icr_write(val, core->mac[ICR], icr); 2483 core->mac[ICR] = icr; 2484 igb_commit_icr(core); 2485 } 2486 2487 static uint32_t 2488 igb_mac_readreg(IGBCore *core, int index) 2489 { 2490 return core->mac[index]; 2491 } 2492 2493 static uint32_t 2494 igb_mac_ics_read(IGBCore *core, int index) 2495 { 2496 trace_e1000e_irq_read_ics(core->mac[ICS]); 2497 return core->mac[ICS]; 2498 } 2499 2500 static uint32_t 2501 igb_mac_ims_read(IGBCore *core, int index) 2502 { 2503 trace_e1000e_irq_read_ims(core->mac[IMS]); 2504 return core->mac[IMS]; 2505 } 2506 2507 static uint32_t 2508 igb_mac_swsm_read(IGBCore *core, int index) 2509 { 2510 uint32_t val = core->mac[SWSM]; 2511 core->mac[SWSM] = val | E1000_SWSM_SMBI; 2512 return val; 2513 } 2514 2515 static uint32_t 2516 igb_mac_eitr_read(IGBCore *core, int index) 2517 { 2518 return core->eitr_guest_value[index - EITR0]; 2519 } 2520 2521 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index) 2522 { 2523 uint32_t val = core->mac[index]; 2524 2525 core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK | 2526 E1000_V2PMAILBOX_RSTD); 2527 2528 return val; 2529 } 2530 2531 static uint32_t 2532 igb_mac_icr_read(IGBCore *core, int index) 2533 { 2534 uint32_t ret = core->mac[ICR]; 2535 trace_e1000e_irq_icr_read_entry(ret); 2536 2537 if (core->mac[GPIE] & E1000_GPIE_NSICR) { 2538 trace_igb_irq_icr_clear_gpie_nsicr(); 2539 core->mac[ICR] = 0; 2540 } else if (core->mac[IMS] == 0) { 2541 trace_e1000e_irq_icr_clear_zero_ims(); 2542 core->mac[ICR] = 0; 2543 } else if (!msix_enabled(core->owner)) { 2544 trace_e1000e_irq_icr_clear_nonmsix_icr_read(); 2545 core->mac[ICR] = 0; 2546 } 2547 2548 trace_e1000e_irq_icr_read_exit(core->mac[ICR]); 2549 igb_commit_icr(core); 2550 return ret; 2551 } 2552 2553 static uint32_t 2554 igb_mac_read_clr4(IGBCore *core, int index) 2555 { 2556 uint32_t ret = core->mac[index]; 2557 2558 core->mac[index] = 0; 2559 return ret; 2560 } 2561 2562 static uint32_t 2563 igb_mac_read_clr8(IGBCore *core, int index) 2564 { 2565 uint32_t ret = core->mac[index]; 2566 2567 core->mac[index] = 0; 2568 core->mac[index - 1] = 0; 2569 return ret; 2570 } 2571 2572 static uint32_t 2573 igb_get_ctrl(IGBCore *core, int index) 2574 { 2575 uint32_t val = core->mac[CTRL]; 2576 2577 trace_e1000e_link_read_params( 2578 !!(val & E1000_CTRL_ASDE), 2579 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 2580 !!(val & E1000_CTRL_FRCSPD), 2581 !!(val & E1000_CTRL_FRCDPX), 2582 !!(val & E1000_CTRL_RFCE), 2583 !!(val & E1000_CTRL_TFCE)); 2584 2585 return val; 2586 } 2587 2588 static uint32_t igb_get_status(IGBCore *core, int index) 2589 { 2590 uint32_t res = core->mac[STATUS]; 2591 uint16_t num_vfs = pcie_sriov_num_vfs(core->owner); 2592 2593 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) { 2594 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0; 2595 } else { 2596 res |= E1000_STATUS_FD; 2597 } 2598 2599 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) || 2600 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) { 2601 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) { 2602 case E1000_CTRL_SPD_10: 2603 res |= E1000_STATUS_SPEED_10; 2604 break; 2605 case E1000_CTRL_SPD_100: 2606 res |= E1000_STATUS_SPEED_100; 2607 break; 2608 case E1000_CTRL_SPD_1000: 2609 default: 2610 res |= E1000_STATUS_SPEED_1000; 2611 break; 2612 } 2613 } else { 2614 res |= E1000_STATUS_SPEED_1000; 2615 } 2616 2617 if (num_vfs) { 2618 res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT; 2619 res |= E1000_STATUS_IOV_MODE; 2620 } 2621 2622 /* 2623 * Windows driver 12.18.9.23 resets if E1000_STATUS_GIO_MASTER_ENABLE is 2624 * left set after E1000_CTRL_LRST is set. 2625 */ 2626 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE) && 2627 !(core->mac[CTRL] & E1000_CTRL_LRST)) { 2628 res |= E1000_STATUS_GIO_MASTER_ENABLE; 2629 } 2630 2631 return res; 2632 } 2633 2634 static void 2635 igb_mac_writereg(IGBCore *core, int index, uint32_t val) 2636 { 2637 core->mac[index] = val; 2638 } 2639 2640 static void 2641 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val) 2642 { 2643 uint32_t macaddr[2]; 2644 2645 core->mac[index] = val; 2646 2647 macaddr[0] = cpu_to_le32(core->mac[RA]); 2648 macaddr[1] = cpu_to_le32(core->mac[RA + 1]); 2649 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic), 2650 (uint8_t *) macaddr); 2651 2652 trace_e1000e_mac_set_sw(MAC_ARG(macaddr)); 2653 } 2654 2655 static void 2656 igb_set_eecd(IGBCore *core, int index, uint32_t val) 2657 { 2658 static const uint32_t ro_bits = E1000_EECD_PRES | 2659 E1000_EECD_AUTO_RD | 2660 E1000_EECD_SIZE_EX_MASK; 2661 2662 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits); 2663 } 2664 2665 static void 2666 igb_set_eerd(IGBCore *core, int index, uint32_t val) 2667 { 2668 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; 2669 uint32_t flags = 0; 2670 uint32_t data = 0; 2671 2672 if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) { 2673 data = core->eeprom[addr]; 2674 flags = E1000_EERW_DONE; 2675 } 2676 2677 core->mac[EERD] = flags | 2678 (addr << E1000_EERW_ADDR_SHIFT) | 2679 (data << E1000_EERW_DATA_SHIFT); 2680 } 2681 2682 static void 2683 igb_set_eitr(IGBCore *core, int index, uint32_t val) 2684 { 2685 uint32_t eitr_num = index - EITR0; 2686 2687 trace_igb_irq_eitr_set(eitr_num, val); 2688 2689 core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR; 2690 core->mac[index] = val & 0x7FFE; 2691 } 2692 2693 static void 2694 igb_update_rx_offloads(IGBCore *core) 2695 { 2696 int cso_state = igb_rx_l4_cso_enabled(core); 2697 2698 trace_e1000e_rx_set_cso(cso_state); 2699 2700 if (core->has_vnet) { 2701 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer, 2702 cso_state, 0, 0, 0, 0); 2703 } 2704 } 2705 2706 static void 2707 igb_set_rxcsum(IGBCore *core, int index, uint32_t val) 2708 { 2709 core->mac[RXCSUM] = val; 2710 igb_update_rx_offloads(core); 2711 } 2712 2713 static void 2714 igb_set_gcr(IGBCore *core, int index, uint32_t val) 2715 { 2716 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS; 2717 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits; 2718 } 2719 2720 static uint32_t igb_get_systiml(IGBCore *core, int index) 2721 { 2722 e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH); 2723 return core->mac[SYSTIML]; 2724 } 2725 2726 static uint32_t igb_get_rxsatrh(IGBCore *core, int index) 2727 { 2728 core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID; 2729 return core->mac[RXSATRH]; 2730 } 2731 2732 static uint32_t igb_get_txstmph(IGBCore *core, int index) 2733 { 2734 core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID; 2735 return core->mac[TXSTMPH]; 2736 } 2737 2738 static void igb_set_timinca(IGBCore *core, int index, uint32_t val) 2739 { 2740 e1000x_set_timinca(core->mac, &core->timadj, val); 2741 } 2742 2743 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val) 2744 { 2745 core->mac[TIMADJH] = val; 2746 core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32); 2747 } 2748 2749 #define igb_getreg(x) [x] = igb_mac_readreg 2750 typedef uint32_t (*readops)(IGBCore *, int); 2751 static const readops igb_macreg_readops[] = { 2752 igb_getreg(WUFC), 2753 igb_getreg(MANC), 2754 igb_getreg(TOTL), 2755 igb_getreg(RDT0), 2756 igb_getreg(RDT1), 2757 igb_getreg(RDT2), 2758 igb_getreg(RDT3), 2759 igb_getreg(RDT4), 2760 igb_getreg(RDT5), 2761 igb_getreg(RDT6), 2762 igb_getreg(RDT7), 2763 igb_getreg(RDT8), 2764 igb_getreg(RDT9), 2765 igb_getreg(RDT10), 2766 igb_getreg(RDT11), 2767 igb_getreg(RDT12), 2768 igb_getreg(RDT13), 2769 igb_getreg(RDT14), 2770 igb_getreg(RDT15), 2771 igb_getreg(RDBAH0), 2772 igb_getreg(RDBAH1), 2773 igb_getreg(RDBAH2), 2774 igb_getreg(RDBAH3), 2775 igb_getreg(RDBAH4), 2776 igb_getreg(RDBAH5), 2777 igb_getreg(RDBAH6), 2778 igb_getreg(RDBAH7), 2779 igb_getreg(RDBAH8), 2780 igb_getreg(RDBAH9), 2781 igb_getreg(RDBAH10), 2782 igb_getreg(RDBAH11), 2783 igb_getreg(RDBAH12), 2784 igb_getreg(RDBAH13), 2785 igb_getreg(RDBAH14), 2786 igb_getreg(RDBAH15), 2787 igb_getreg(TDBAL0), 2788 igb_getreg(TDBAL1), 2789 igb_getreg(TDBAL2), 2790 igb_getreg(TDBAL3), 2791 igb_getreg(TDBAL4), 2792 igb_getreg(TDBAL5), 2793 igb_getreg(TDBAL6), 2794 igb_getreg(TDBAL7), 2795 igb_getreg(TDBAL8), 2796 igb_getreg(TDBAL9), 2797 igb_getreg(TDBAL10), 2798 igb_getreg(TDBAL11), 2799 igb_getreg(TDBAL12), 2800 igb_getreg(TDBAL13), 2801 igb_getreg(TDBAL14), 2802 igb_getreg(TDBAL15), 2803 igb_getreg(RDLEN0), 2804 igb_getreg(RDLEN1), 2805 igb_getreg(RDLEN2), 2806 igb_getreg(RDLEN3), 2807 igb_getreg(RDLEN4), 2808 igb_getreg(RDLEN5), 2809 igb_getreg(RDLEN6), 2810 igb_getreg(RDLEN7), 2811 igb_getreg(RDLEN8), 2812 igb_getreg(RDLEN9), 2813 igb_getreg(RDLEN10), 2814 igb_getreg(RDLEN11), 2815 igb_getreg(RDLEN12), 2816 igb_getreg(RDLEN13), 2817 igb_getreg(RDLEN14), 2818 igb_getreg(RDLEN15), 2819 igb_getreg(SRRCTL0), 2820 igb_getreg(SRRCTL1), 2821 igb_getreg(SRRCTL2), 2822 igb_getreg(SRRCTL3), 2823 igb_getreg(SRRCTL4), 2824 igb_getreg(SRRCTL5), 2825 igb_getreg(SRRCTL6), 2826 igb_getreg(SRRCTL7), 2827 igb_getreg(SRRCTL8), 2828 igb_getreg(SRRCTL9), 2829 igb_getreg(SRRCTL10), 2830 igb_getreg(SRRCTL11), 2831 igb_getreg(SRRCTL12), 2832 igb_getreg(SRRCTL13), 2833 igb_getreg(SRRCTL14), 2834 igb_getreg(SRRCTL15), 2835 igb_getreg(LATECOL), 2836 igb_getreg(XONTXC), 2837 igb_getreg(TDFH), 2838 igb_getreg(TDFT), 2839 igb_getreg(TDFHS), 2840 igb_getreg(TDFTS), 2841 igb_getreg(TDFPC), 2842 igb_getreg(WUS), 2843 igb_getreg(RDFH), 2844 igb_getreg(RDFT), 2845 igb_getreg(RDFHS), 2846 igb_getreg(RDFTS), 2847 igb_getreg(RDFPC), 2848 igb_getreg(GORCL), 2849 igb_getreg(MGTPRC), 2850 igb_getreg(EERD), 2851 igb_getreg(EIAC), 2852 igb_getreg(MANC2H), 2853 igb_getreg(RXCSUM), 2854 igb_getreg(GSCL_3), 2855 igb_getreg(GSCN_2), 2856 igb_getreg(FCAH), 2857 igb_getreg(FCRTH), 2858 igb_getreg(FLOP), 2859 igb_getreg(RXSTMPH), 2860 igb_getreg(TXSTMPL), 2861 igb_getreg(TIMADJL), 2862 igb_getreg(RDH0), 2863 igb_getreg(RDH1), 2864 igb_getreg(RDH2), 2865 igb_getreg(RDH3), 2866 igb_getreg(RDH4), 2867 igb_getreg(RDH5), 2868 igb_getreg(RDH6), 2869 igb_getreg(RDH7), 2870 igb_getreg(RDH8), 2871 igb_getreg(RDH9), 2872 igb_getreg(RDH10), 2873 igb_getreg(RDH11), 2874 igb_getreg(RDH12), 2875 igb_getreg(RDH13), 2876 igb_getreg(RDH14), 2877 igb_getreg(RDH15), 2878 igb_getreg(TDT0), 2879 igb_getreg(TDT1), 2880 igb_getreg(TDT2), 2881 igb_getreg(TDT3), 2882 igb_getreg(TDT4), 2883 igb_getreg(TDT5), 2884 igb_getreg(TDT6), 2885 igb_getreg(TDT7), 2886 igb_getreg(TDT8), 2887 igb_getreg(TDT9), 2888 igb_getreg(TDT10), 2889 igb_getreg(TDT11), 2890 igb_getreg(TDT12), 2891 igb_getreg(TDT13), 2892 igb_getreg(TDT14), 2893 igb_getreg(TDT15), 2894 igb_getreg(TNCRS), 2895 igb_getreg(RJC), 2896 igb_getreg(IAM), 2897 igb_getreg(GSCL_2), 2898 igb_getreg(TIPG), 2899 igb_getreg(FLMNGCTL), 2900 igb_getreg(FLMNGCNT), 2901 igb_getreg(TSYNCTXCTL), 2902 igb_getreg(EEMNGDATA), 2903 igb_getreg(CTRL_EXT), 2904 igb_getreg(SYSTIMH), 2905 igb_getreg(EEMNGCTL), 2906 igb_getreg(FLMNGDATA), 2907 igb_getreg(TSYNCRXCTL), 2908 igb_getreg(LEDCTL), 2909 igb_getreg(TCTL), 2910 igb_getreg(TCTL_EXT), 2911 igb_getreg(DTXCTL), 2912 igb_getreg(RXPBS), 2913 igb_getreg(TDH0), 2914 igb_getreg(TDH1), 2915 igb_getreg(TDH2), 2916 igb_getreg(TDH3), 2917 igb_getreg(TDH4), 2918 igb_getreg(TDH5), 2919 igb_getreg(TDH6), 2920 igb_getreg(TDH7), 2921 igb_getreg(TDH8), 2922 igb_getreg(TDH9), 2923 igb_getreg(TDH10), 2924 igb_getreg(TDH11), 2925 igb_getreg(TDH12), 2926 igb_getreg(TDH13), 2927 igb_getreg(TDH14), 2928 igb_getreg(TDH15), 2929 igb_getreg(ECOL), 2930 igb_getreg(DC), 2931 igb_getreg(RLEC), 2932 igb_getreg(XOFFTXC), 2933 igb_getreg(RFC), 2934 igb_getreg(RNBC), 2935 igb_getreg(MGTPTC), 2936 igb_getreg(TIMINCA), 2937 igb_getreg(FACTPS), 2938 igb_getreg(GSCL_1), 2939 igb_getreg(GSCN_0), 2940 igb_getreg(PBACLR), 2941 igb_getreg(FCTTV), 2942 igb_getreg(RXSATRL), 2943 igb_getreg(TORL), 2944 igb_getreg(TDLEN0), 2945 igb_getreg(TDLEN1), 2946 igb_getreg(TDLEN2), 2947 igb_getreg(TDLEN3), 2948 igb_getreg(TDLEN4), 2949 igb_getreg(TDLEN5), 2950 igb_getreg(TDLEN6), 2951 igb_getreg(TDLEN7), 2952 igb_getreg(TDLEN8), 2953 igb_getreg(TDLEN9), 2954 igb_getreg(TDLEN10), 2955 igb_getreg(TDLEN11), 2956 igb_getreg(TDLEN12), 2957 igb_getreg(TDLEN13), 2958 igb_getreg(TDLEN14), 2959 igb_getreg(TDLEN15), 2960 igb_getreg(MCC), 2961 igb_getreg(WUC), 2962 igb_getreg(EECD), 2963 igb_getreg(FCRTV), 2964 igb_getreg(TXDCTL0), 2965 igb_getreg(TXDCTL1), 2966 igb_getreg(TXDCTL2), 2967 igb_getreg(TXDCTL3), 2968 igb_getreg(TXDCTL4), 2969 igb_getreg(TXDCTL5), 2970 igb_getreg(TXDCTL6), 2971 igb_getreg(TXDCTL7), 2972 igb_getreg(TXDCTL8), 2973 igb_getreg(TXDCTL9), 2974 igb_getreg(TXDCTL10), 2975 igb_getreg(TXDCTL11), 2976 igb_getreg(TXDCTL12), 2977 igb_getreg(TXDCTL13), 2978 igb_getreg(TXDCTL14), 2979 igb_getreg(TXDCTL15), 2980 igb_getreg(TXCTL0), 2981 igb_getreg(TXCTL1), 2982 igb_getreg(TXCTL2), 2983 igb_getreg(TXCTL3), 2984 igb_getreg(TXCTL4), 2985 igb_getreg(TXCTL5), 2986 igb_getreg(TXCTL6), 2987 igb_getreg(TXCTL7), 2988 igb_getreg(TXCTL8), 2989 igb_getreg(TXCTL9), 2990 igb_getreg(TXCTL10), 2991 igb_getreg(TXCTL11), 2992 igb_getreg(TXCTL12), 2993 igb_getreg(TXCTL13), 2994 igb_getreg(TXCTL14), 2995 igb_getreg(TXCTL15), 2996 igb_getreg(TDWBAL0), 2997 igb_getreg(TDWBAL1), 2998 igb_getreg(TDWBAL2), 2999 igb_getreg(TDWBAL3), 3000 igb_getreg(TDWBAL4), 3001 igb_getreg(TDWBAL5), 3002 igb_getreg(TDWBAL6), 3003 igb_getreg(TDWBAL7), 3004 igb_getreg(TDWBAL8), 3005 igb_getreg(TDWBAL9), 3006 igb_getreg(TDWBAL10), 3007 igb_getreg(TDWBAL11), 3008 igb_getreg(TDWBAL12), 3009 igb_getreg(TDWBAL13), 3010 igb_getreg(TDWBAL14), 3011 igb_getreg(TDWBAL15), 3012 igb_getreg(TDWBAH0), 3013 igb_getreg(TDWBAH1), 3014 igb_getreg(TDWBAH2), 3015 igb_getreg(TDWBAH3), 3016 igb_getreg(TDWBAH4), 3017 igb_getreg(TDWBAH5), 3018 igb_getreg(TDWBAH6), 3019 igb_getreg(TDWBAH7), 3020 igb_getreg(TDWBAH8), 3021 igb_getreg(TDWBAH9), 3022 igb_getreg(TDWBAH10), 3023 igb_getreg(TDWBAH11), 3024 igb_getreg(TDWBAH12), 3025 igb_getreg(TDWBAH13), 3026 igb_getreg(TDWBAH14), 3027 igb_getreg(TDWBAH15), 3028 igb_getreg(PVTCTRL0), 3029 igb_getreg(PVTCTRL1), 3030 igb_getreg(PVTCTRL2), 3031 igb_getreg(PVTCTRL3), 3032 igb_getreg(PVTCTRL4), 3033 igb_getreg(PVTCTRL5), 3034 igb_getreg(PVTCTRL6), 3035 igb_getreg(PVTCTRL7), 3036 igb_getreg(PVTEIMS0), 3037 igb_getreg(PVTEIMS1), 3038 igb_getreg(PVTEIMS2), 3039 igb_getreg(PVTEIMS3), 3040 igb_getreg(PVTEIMS4), 3041 igb_getreg(PVTEIMS5), 3042 igb_getreg(PVTEIMS6), 3043 igb_getreg(PVTEIMS7), 3044 igb_getreg(PVTEIAC0), 3045 igb_getreg(PVTEIAC1), 3046 igb_getreg(PVTEIAC2), 3047 igb_getreg(PVTEIAC3), 3048 igb_getreg(PVTEIAC4), 3049 igb_getreg(PVTEIAC5), 3050 igb_getreg(PVTEIAC6), 3051 igb_getreg(PVTEIAC7), 3052 igb_getreg(PVTEIAM0), 3053 igb_getreg(PVTEIAM1), 3054 igb_getreg(PVTEIAM2), 3055 igb_getreg(PVTEIAM3), 3056 igb_getreg(PVTEIAM4), 3057 igb_getreg(PVTEIAM5), 3058 igb_getreg(PVTEIAM6), 3059 igb_getreg(PVTEIAM7), 3060 igb_getreg(PVFGPRC0), 3061 igb_getreg(PVFGPRC1), 3062 igb_getreg(PVFGPRC2), 3063 igb_getreg(PVFGPRC3), 3064 igb_getreg(PVFGPRC4), 3065 igb_getreg(PVFGPRC5), 3066 igb_getreg(PVFGPRC6), 3067 igb_getreg(PVFGPRC7), 3068 igb_getreg(PVFGPTC0), 3069 igb_getreg(PVFGPTC1), 3070 igb_getreg(PVFGPTC2), 3071 igb_getreg(PVFGPTC3), 3072 igb_getreg(PVFGPTC4), 3073 igb_getreg(PVFGPTC5), 3074 igb_getreg(PVFGPTC6), 3075 igb_getreg(PVFGPTC7), 3076 igb_getreg(PVFGORC0), 3077 igb_getreg(PVFGORC1), 3078 igb_getreg(PVFGORC2), 3079 igb_getreg(PVFGORC3), 3080 igb_getreg(PVFGORC4), 3081 igb_getreg(PVFGORC5), 3082 igb_getreg(PVFGORC6), 3083 igb_getreg(PVFGORC7), 3084 igb_getreg(PVFGOTC0), 3085 igb_getreg(PVFGOTC1), 3086 igb_getreg(PVFGOTC2), 3087 igb_getreg(PVFGOTC3), 3088 igb_getreg(PVFGOTC4), 3089 igb_getreg(PVFGOTC5), 3090 igb_getreg(PVFGOTC6), 3091 igb_getreg(PVFGOTC7), 3092 igb_getreg(PVFMPRC0), 3093 igb_getreg(PVFMPRC1), 3094 igb_getreg(PVFMPRC2), 3095 igb_getreg(PVFMPRC3), 3096 igb_getreg(PVFMPRC4), 3097 igb_getreg(PVFMPRC5), 3098 igb_getreg(PVFMPRC6), 3099 igb_getreg(PVFMPRC7), 3100 igb_getreg(PVFGPRLBC0), 3101 igb_getreg(PVFGPRLBC1), 3102 igb_getreg(PVFGPRLBC2), 3103 igb_getreg(PVFGPRLBC3), 3104 igb_getreg(PVFGPRLBC4), 3105 igb_getreg(PVFGPRLBC5), 3106 igb_getreg(PVFGPRLBC6), 3107 igb_getreg(PVFGPRLBC7), 3108 igb_getreg(PVFGPTLBC0), 3109 igb_getreg(PVFGPTLBC1), 3110 igb_getreg(PVFGPTLBC2), 3111 igb_getreg(PVFGPTLBC3), 3112 igb_getreg(PVFGPTLBC4), 3113 igb_getreg(PVFGPTLBC5), 3114 igb_getreg(PVFGPTLBC6), 3115 igb_getreg(PVFGPTLBC7), 3116 igb_getreg(PVFGORLBC0), 3117 igb_getreg(PVFGORLBC1), 3118 igb_getreg(PVFGORLBC2), 3119 igb_getreg(PVFGORLBC3), 3120 igb_getreg(PVFGORLBC4), 3121 igb_getreg(PVFGORLBC5), 3122 igb_getreg(PVFGORLBC6), 3123 igb_getreg(PVFGORLBC7), 3124 igb_getreg(PVFGOTLBC0), 3125 igb_getreg(PVFGOTLBC1), 3126 igb_getreg(PVFGOTLBC2), 3127 igb_getreg(PVFGOTLBC3), 3128 igb_getreg(PVFGOTLBC4), 3129 igb_getreg(PVFGOTLBC5), 3130 igb_getreg(PVFGOTLBC6), 3131 igb_getreg(PVFGOTLBC7), 3132 igb_getreg(RCTL), 3133 igb_getreg(MDIC), 3134 igb_getreg(FCRUC), 3135 igb_getreg(VET), 3136 igb_getreg(RDBAL0), 3137 igb_getreg(RDBAL1), 3138 igb_getreg(RDBAL2), 3139 igb_getreg(RDBAL3), 3140 igb_getreg(RDBAL4), 3141 igb_getreg(RDBAL5), 3142 igb_getreg(RDBAL6), 3143 igb_getreg(RDBAL7), 3144 igb_getreg(RDBAL8), 3145 igb_getreg(RDBAL9), 3146 igb_getreg(RDBAL10), 3147 igb_getreg(RDBAL11), 3148 igb_getreg(RDBAL12), 3149 igb_getreg(RDBAL13), 3150 igb_getreg(RDBAL14), 3151 igb_getreg(RDBAL15), 3152 igb_getreg(TDBAH0), 3153 igb_getreg(TDBAH1), 3154 igb_getreg(TDBAH2), 3155 igb_getreg(TDBAH3), 3156 igb_getreg(TDBAH4), 3157 igb_getreg(TDBAH5), 3158 igb_getreg(TDBAH6), 3159 igb_getreg(TDBAH7), 3160 igb_getreg(TDBAH8), 3161 igb_getreg(TDBAH9), 3162 igb_getreg(TDBAH10), 3163 igb_getreg(TDBAH11), 3164 igb_getreg(TDBAH12), 3165 igb_getreg(TDBAH13), 3166 igb_getreg(TDBAH14), 3167 igb_getreg(TDBAH15), 3168 igb_getreg(SCC), 3169 igb_getreg(COLC), 3170 igb_getreg(XOFFRXC), 3171 igb_getreg(IPAV), 3172 igb_getreg(GOTCL), 3173 igb_getreg(MGTPDC), 3174 igb_getreg(GCR), 3175 igb_getreg(MFVAL), 3176 igb_getreg(FUNCTAG), 3177 igb_getreg(GSCL_4), 3178 igb_getreg(GSCN_3), 3179 igb_getreg(MRQC), 3180 igb_getreg(FCT), 3181 igb_getreg(FLA), 3182 igb_getreg(RXDCTL0), 3183 igb_getreg(RXDCTL1), 3184 igb_getreg(RXDCTL2), 3185 igb_getreg(RXDCTL3), 3186 igb_getreg(RXDCTL4), 3187 igb_getreg(RXDCTL5), 3188 igb_getreg(RXDCTL6), 3189 igb_getreg(RXDCTL7), 3190 igb_getreg(RXDCTL8), 3191 igb_getreg(RXDCTL9), 3192 igb_getreg(RXDCTL10), 3193 igb_getreg(RXDCTL11), 3194 igb_getreg(RXDCTL12), 3195 igb_getreg(RXDCTL13), 3196 igb_getreg(RXDCTL14), 3197 igb_getreg(RXDCTL15), 3198 igb_getreg(RXSTMPL), 3199 igb_getreg(TIMADJH), 3200 igb_getreg(FCRTL), 3201 igb_getreg(XONRXC), 3202 igb_getreg(RFCTL), 3203 igb_getreg(GSCN_1), 3204 igb_getreg(FCAL), 3205 igb_getreg(GPIE), 3206 igb_getreg(TXPBS), 3207 igb_getreg(RLPML), 3208 3209 [TOTH] = igb_mac_read_clr8, 3210 [GOTCH] = igb_mac_read_clr8, 3211 [PRC64] = igb_mac_read_clr4, 3212 [PRC255] = igb_mac_read_clr4, 3213 [PRC1023] = igb_mac_read_clr4, 3214 [PTC64] = igb_mac_read_clr4, 3215 [PTC255] = igb_mac_read_clr4, 3216 [PTC1023] = igb_mac_read_clr4, 3217 [GPRC] = igb_mac_read_clr4, 3218 [TPT] = igb_mac_read_clr4, 3219 [RUC] = igb_mac_read_clr4, 3220 [BPRC] = igb_mac_read_clr4, 3221 [MPTC] = igb_mac_read_clr4, 3222 [IAC] = igb_mac_read_clr4, 3223 [ICR] = igb_mac_icr_read, 3224 [STATUS] = igb_get_status, 3225 [ICS] = igb_mac_ics_read, 3226 /* 3227 * 8.8.10: Reading the IMC register returns the value of the IMS register. 3228 */ 3229 [IMC] = igb_mac_ims_read, 3230 [TORH] = igb_mac_read_clr8, 3231 [GORCH] = igb_mac_read_clr8, 3232 [PRC127] = igb_mac_read_clr4, 3233 [PRC511] = igb_mac_read_clr4, 3234 [PRC1522] = igb_mac_read_clr4, 3235 [PTC127] = igb_mac_read_clr4, 3236 [PTC511] = igb_mac_read_clr4, 3237 [PTC1522] = igb_mac_read_clr4, 3238 [GPTC] = igb_mac_read_clr4, 3239 [TPR] = igb_mac_read_clr4, 3240 [ROC] = igb_mac_read_clr4, 3241 [MPRC] = igb_mac_read_clr4, 3242 [BPTC] = igb_mac_read_clr4, 3243 [TSCTC] = igb_mac_read_clr4, 3244 [CTRL] = igb_get_ctrl, 3245 [SWSM] = igb_mac_swsm_read, 3246 [IMS] = igb_mac_ims_read, 3247 [SYSTIML] = igb_get_systiml, 3248 [RXSATRH] = igb_get_rxsatrh, 3249 [TXSTMPH] = igb_get_txstmph, 3250 3251 [CRCERRS ... MPC] = igb_mac_readreg, 3252 [IP6AT ... IP6AT + 3] = igb_mac_readreg, 3253 [IP4AT ... IP4AT + 6] = igb_mac_readreg, 3254 [RA ... RA + 31] = igb_mac_readreg, 3255 [RA2 ... RA2 + 31] = igb_mac_readreg, 3256 [WUPM ... WUPM + 31] = igb_mac_readreg, 3257 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_readreg, 3258 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_readreg, 3259 [FFMT ... FFMT + 254] = igb_mac_readreg, 3260 [MDEF ... MDEF + 7] = igb_mac_readreg, 3261 [FTFT ... FTFT + 254] = igb_mac_readreg, 3262 [RETA ... RETA + 31] = igb_mac_readreg, 3263 [RSSRK ... RSSRK + 9] = igb_mac_readreg, 3264 [MAVTV0 ... MAVTV3] = igb_mac_readreg, 3265 [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read, 3266 [PVTEICR0] = igb_mac_read_clr4, 3267 [PVTEICR1] = igb_mac_read_clr4, 3268 [PVTEICR2] = igb_mac_read_clr4, 3269 [PVTEICR3] = igb_mac_read_clr4, 3270 [PVTEICR4] = igb_mac_read_clr4, 3271 [PVTEICR5] = igb_mac_read_clr4, 3272 [PVTEICR6] = igb_mac_read_clr4, 3273 [PVTEICR7] = igb_mac_read_clr4, 3274 3275 /* IGB specific: */ 3276 [FWSM] = igb_mac_readreg, 3277 [SW_FW_SYNC] = igb_mac_readreg, 3278 [HTCBDPC] = igb_mac_read_clr4, 3279 [EICR] = igb_mac_read_clr4, 3280 [EIMS] = igb_mac_readreg, 3281 [EIAM] = igb_mac_readreg, 3282 [IVAR0 ... IVAR0 + 7] = igb_mac_readreg, 3283 igb_getreg(IVAR_MISC), 3284 igb_getreg(VT_CTL), 3285 [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg, 3286 [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read, 3287 igb_getreg(MBVFICR), 3288 [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg, 3289 igb_getreg(MBVFIMR), 3290 igb_getreg(VFLRE), 3291 igb_getreg(VFRE), 3292 igb_getreg(VFTE), 3293 igb_getreg(QDE), 3294 igb_getreg(DTXSWC), 3295 igb_getreg(RPLOLR), 3296 [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg, 3297 [VMVIR0 ... VMVIR7] = igb_mac_readreg, 3298 [VMOLR0 ... VMOLR7] = igb_mac_readreg, 3299 [WVBR] = igb_mac_read_clr4, 3300 [RQDPC0] = igb_mac_read_clr4, 3301 [RQDPC1] = igb_mac_read_clr4, 3302 [RQDPC2] = igb_mac_read_clr4, 3303 [RQDPC3] = igb_mac_read_clr4, 3304 [RQDPC4] = igb_mac_read_clr4, 3305 [RQDPC5] = igb_mac_read_clr4, 3306 [RQDPC6] = igb_mac_read_clr4, 3307 [RQDPC7] = igb_mac_read_clr4, 3308 [RQDPC8] = igb_mac_read_clr4, 3309 [RQDPC9] = igb_mac_read_clr4, 3310 [RQDPC10] = igb_mac_read_clr4, 3311 [RQDPC11] = igb_mac_read_clr4, 3312 [RQDPC12] = igb_mac_read_clr4, 3313 [RQDPC13] = igb_mac_read_clr4, 3314 [RQDPC14] = igb_mac_read_clr4, 3315 [RQDPC15] = igb_mac_read_clr4, 3316 [VTIVAR ... VTIVAR + 7] = igb_mac_readreg, 3317 [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg, 3318 }; 3319 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) }; 3320 3321 #define igb_putreg(x) [x] = igb_mac_writereg 3322 typedef void (*writeops)(IGBCore *, int, uint32_t); 3323 static const writeops igb_macreg_writeops[] = { 3324 igb_putreg(SWSM), 3325 igb_putreg(WUFC), 3326 igb_putreg(RDBAH0), 3327 igb_putreg(RDBAH1), 3328 igb_putreg(RDBAH2), 3329 igb_putreg(RDBAH3), 3330 igb_putreg(RDBAH4), 3331 igb_putreg(RDBAH5), 3332 igb_putreg(RDBAH6), 3333 igb_putreg(RDBAH7), 3334 igb_putreg(RDBAH8), 3335 igb_putreg(RDBAH9), 3336 igb_putreg(RDBAH10), 3337 igb_putreg(RDBAH11), 3338 igb_putreg(RDBAH12), 3339 igb_putreg(RDBAH13), 3340 igb_putreg(RDBAH14), 3341 igb_putreg(RDBAH15), 3342 igb_putreg(SRRCTL0), 3343 igb_putreg(SRRCTL1), 3344 igb_putreg(SRRCTL2), 3345 igb_putreg(SRRCTL3), 3346 igb_putreg(SRRCTL4), 3347 igb_putreg(SRRCTL5), 3348 igb_putreg(SRRCTL6), 3349 igb_putreg(SRRCTL7), 3350 igb_putreg(SRRCTL8), 3351 igb_putreg(SRRCTL9), 3352 igb_putreg(SRRCTL10), 3353 igb_putreg(SRRCTL11), 3354 igb_putreg(SRRCTL12), 3355 igb_putreg(SRRCTL13), 3356 igb_putreg(SRRCTL14), 3357 igb_putreg(SRRCTL15), 3358 igb_putreg(RXDCTL0), 3359 igb_putreg(RXDCTL1), 3360 igb_putreg(RXDCTL2), 3361 igb_putreg(RXDCTL3), 3362 igb_putreg(RXDCTL4), 3363 igb_putreg(RXDCTL5), 3364 igb_putreg(RXDCTL6), 3365 igb_putreg(RXDCTL7), 3366 igb_putreg(RXDCTL8), 3367 igb_putreg(RXDCTL9), 3368 igb_putreg(RXDCTL10), 3369 igb_putreg(RXDCTL11), 3370 igb_putreg(RXDCTL12), 3371 igb_putreg(RXDCTL13), 3372 igb_putreg(RXDCTL14), 3373 igb_putreg(RXDCTL15), 3374 igb_putreg(LEDCTL), 3375 igb_putreg(TCTL), 3376 igb_putreg(TCTL_EXT), 3377 igb_putreg(DTXCTL), 3378 igb_putreg(RXPBS), 3379 igb_putreg(RQDPC0), 3380 igb_putreg(FCAL), 3381 igb_putreg(FCRUC), 3382 igb_putreg(WUC), 3383 igb_putreg(WUS), 3384 igb_putreg(IPAV), 3385 igb_putreg(TDBAH0), 3386 igb_putreg(TDBAH1), 3387 igb_putreg(TDBAH2), 3388 igb_putreg(TDBAH3), 3389 igb_putreg(TDBAH4), 3390 igb_putreg(TDBAH5), 3391 igb_putreg(TDBAH6), 3392 igb_putreg(TDBAH7), 3393 igb_putreg(TDBAH8), 3394 igb_putreg(TDBAH9), 3395 igb_putreg(TDBAH10), 3396 igb_putreg(TDBAH11), 3397 igb_putreg(TDBAH12), 3398 igb_putreg(TDBAH13), 3399 igb_putreg(TDBAH14), 3400 igb_putreg(TDBAH15), 3401 igb_putreg(IAM), 3402 igb_putreg(MANC), 3403 igb_putreg(MANC2H), 3404 igb_putreg(MFVAL), 3405 igb_putreg(FACTPS), 3406 igb_putreg(FUNCTAG), 3407 igb_putreg(GSCL_1), 3408 igb_putreg(GSCL_2), 3409 igb_putreg(GSCL_3), 3410 igb_putreg(GSCL_4), 3411 igb_putreg(GSCN_0), 3412 igb_putreg(GSCN_1), 3413 igb_putreg(GSCN_2), 3414 igb_putreg(GSCN_3), 3415 igb_putreg(MRQC), 3416 igb_putreg(FLOP), 3417 igb_putreg(FLA), 3418 igb_putreg(TXDCTL0), 3419 igb_putreg(TXDCTL1), 3420 igb_putreg(TXDCTL2), 3421 igb_putreg(TXDCTL3), 3422 igb_putreg(TXDCTL4), 3423 igb_putreg(TXDCTL5), 3424 igb_putreg(TXDCTL6), 3425 igb_putreg(TXDCTL7), 3426 igb_putreg(TXDCTL8), 3427 igb_putreg(TXDCTL9), 3428 igb_putreg(TXDCTL10), 3429 igb_putreg(TXDCTL11), 3430 igb_putreg(TXDCTL12), 3431 igb_putreg(TXDCTL13), 3432 igb_putreg(TXDCTL14), 3433 igb_putreg(TXDCTL15), 3434 igb_putreg(TXCTL0), 3435 igb_putreg(TXCTL1), 3436 igb_putreg(TXCTL2), 3437 igb_putreg(TXCTL3), 3438 igb_putreg(TXCTL4), 3439 igb_putreg(TXCTL5), 3440 igb_putreg(TXCTL6), 3441 igb_putreg(TXCTL7), 3442 igb_putreg(TXCTL8), 3443 igb_putreg(TXCTL9), 3444 igb_putreg(TXCTL10), 3445 igb_putreg(TXCTL11), 3446 igb_putreg(TXCTL12), 3447 igb_putreg(TXCTL13), 3448 igb_putreg(TXCTL14), 3449 igb_putreg(TXCTL15), 3450 igb_putreg(TDWBAL0), 3451 igb_putreg(TDWBAL1), 3452 igb_putreg(TDWBAL2), 3453 igb_putreg(TDWBAL3), 3454 igb_putreg(TDWBAL4), 3455 igb_putreg(TDWBAL5), 3456 igb_putreg(TDWBAL6), 3457 igb_putreg(TDWBAL7), 3458 igb_putreg(TDWBAL8), 3459 igb_putreg(TDWBAL9), 3460 igb_putreg(TDWBAL10), 3461 igb_putreg(TDWBAL11), 3462 igb_putreg(TDWBAL12), 3463 igb_putreg(TDWBAL13), 3464 igb_putreg(TDWBAL14), 3465 igb_putreg(TDWBAL15), 3466 igb_putreg(TDWBAH0), 3467 igb_putreg(TDWBAH1), 3468 igb_putreg(TDWBAH2), 3469 igb_putreg(TDWBAH3), 3470 igb_putreg(TDWBAH4), 3471 igb_putreg(TDWBAH5), 3472 igb_putreg(TDWBAH6), 3473 igb_putreg(TDWBAH7), 3474 igb_putreg(TDWBAH8), 3475 igb_putreg(TDWBAH9), 3476 igb_putreg(TDWBAH10), 3477 igb_putreg(TDWBAH11), 3478 igb_putreg(TDWBAH12), 3479 igb_putreg(TDWBAH13), 3480 igb_putreg(TDWBAH14), 3481 igb_putreg(TDWBAH15), 3482 igb_putreg(TIPG), 3483 igb_putreg(RXSTMPH), 3484 igb_putreg(RXSTMPL), 3485 igb_putreg(RXSATRL), 3486 igb_putreg(RXSATRH), 3487 igb_putreg(TXSTMPL), 3488 igb_putreg(TXSTMPH), 3489 igb_putreg(SYSTIML), 3490 igb_putreg(SYSTIMH), 3491 igb_putreg(TIMADJL), 3492 igb_putreg(TSYNCRXCTL), 3493 igb_putreg(TSYNCTXCTL), 3494 igb_putreg(EEMNGCTL), 3495 igb_putreg(GPIE), 3496 igb_putreg(TXPBS), 3497 igb_putreg(RLPML), 3498 igb_putreg(VET), 3499 3500 [TDH0] = igb_set_16bit, 3501 [TDH1] = igb_set_16bit, 3502 [TDH2] = igb_set_16bit, 3503 [TDH3] = igb_set_16bit, 3504 [TDH4] = igb_set_16bit, 3505 [TDH5] = igb_set_16bit, 3506 [TDH6] = igb_set_16bit, 3507 [TDH7] = igb_set_16bit, 3508 [TDH8] = igb_set_16bit, 3509 [TDH9] = igb_set_16bit, 3510 [TDH10] = igb_set_16bit, 3511 [TDH11] = igb_set_16bit, 3512 [TDH12] = igb_set_16bit, 3513 [TDH13] = igb_set_16bit, 3514 [TDH14] = igb_set_16bit, 3515 [TDH15] = igb_set_16bit, 3516 [TDT0] = igb_set_tdt, 3517 [TDT1] = igb_set_tdt, 3518 [TDT2] = igb_set_tdt, 3519 [TDT3] = igb_set_tdt, 3520 [TDT4] = igb_set_tdt, 3521 [TDT5] = igb_set_tdt, 3522 [TDT6] = igb_set_tdt, 3523 [TDT7] = igb_set_tdt, 3524 [TDT8] = igb_set_tdt, 3525 [TDT9] = igb_set_tdt, 3526 [TDT10] = igb_set_tdt, 3527 [TDT11] = igb_set_tdt, 3528 [TDT12] = igb_set_tdt, 3529 [TDT13] = igb_set_tdt, 3530 [TDT14] = igb_set_tdt, 3531 [TDT15] = igb_set_tdt, 3532 [MDIC] = igb_set_mdic, 3533 [ICS] = igb_set_ics, 3534 [RDH0] = igb_set_16bit, 3535 [RDH1] = igb_set_16bit, 3536 [RDH2] = igb_set_16bit, 3537 [RDH3] = igb_set_16bit, 3538 [RDH4] = igb_set_16bit, 3539 [RDH5] = igb_set_16bit, 3540 [RDH6] = igb_set_16bit, 3541 [RDH7] = igb_set_16bit, 3542 [RDH8] = igb_set_16bit, 3543 [RDH9] = igb_set_16bit, 3544 [RDH10] = igb_set_16bit, 3545 [RDH11] = igb_set_16bit, 3546 [RDH12] = igb_set_16bit, 3547 [RDH13] = igb_set_16bit, 3548 [RDH14] = igb_set_16bit, 3549 [RDH15] = igb_set_16bit, 3550 [RDT0] = igb_set_rdt, 3551 [RDT1] = igb_set_rdt, 3552 [RDT2] = igb_set_rdt, 3553 [RDT3] = igb_set_rdt, 3554 [RDT4] = igb_set_rdt, 3555 [RDT5] = igb_set_rdt, 3556 [RDT6] = igb_set_rdt, 3557 [RDT7] = igb_set_rdt, 3558 [RDT8] = igb_set_rdt, 3559 [RDT9] = igb_set_rdt, 3560 [RDT10] = igb_set_rdt, 3561 [RDT11] = igb_set_rdt, 3562 [RDT12] = igb_set_rdt, 3563 [RDT13] = igb_set_rdt, 3564 [RDT14] = igb_set_rdt, 3565 [RDT15] = igb_set_rdt, 3566 [IMC] = igb_set_imc, 3567 [IMS] = igb_set_ims, 3568 [ICR] = igb_set_icr, 3569 [EECD] = igb_set_eecd, 3570 [RCTL] = igb_set_rx_control, 3571 [CTRL] = igb_set_ctrl, 3572 [EERD] = igb_set_eerd, 3573 [TDFH] = igb_set_13bit, 3574 [TDFT] = igb_set_13bit, 3575 [TDFHS] = igb_set_13bit, 3576 [TDFTS] = igb_set_13bit, 3577 [TDFPC] = igb_set_13bit, 3578 [RDFH] = igb_set_13bit, 3579 [RDFT] = igb_set_13bit, 3580 [RDFHS] = igb_set_13bit, 3581 [RDFTS] = igb_set_13bit, 3582 [RDFPC] = igb_set_13bit, 3583 [GCR] = igb_set_gcr, 3584 [RXCSUM] = igb_set_rxcsum, 3585 [TDLEN0] = igb_set_dlen, 3586 [TDLEN1] = igb_set_dlen, 3587 [TDLEN2] = igb_set_dlen, 3588 [TDLEN3] = igb_set_dlen, 3589 [TDLEN4] = igb_set_dlen, 3590 [TDLEN5] = igb_set_dlen, 3591 [TDLEN6] = igb_set_dlen, 3592 [TDLEN7] = igb_set_dlen, 3593 [TDLEN8] = igb_set_dlen, 3594 [TDLEN9] = igb_set_dlen, 3595 [TDLEN10] = igb_set_dlen, 3596 [TDLEN11] = igb_set_dlen, 3597 [TDLEN12] = igb_set_dlen, 3598 [TDLEN13] = igb_set_dlen, 3599 [TDLEN14] = igb_set_dlen, 3600 [TDLEN15] = igb_set_dlen, 3601 [RDLEN0] = igb_set_dlen, 3602 [RDLEN1] = igb_set_dlen, 3603 [RDLEN2] = igb_set_dlen, 3604 [RDLEN3] = igb_set_dlen, 3605 [RDLEN4] = igb_set_dlen, 3606 [RDLEN5] = igb_set_dlen, 3607 [RDLEN6] = igb_set_dlen, 3608 [RDLEN7] = igb_set_dlen, 3609 [RDLEN8] = igb_set_dlen, 3610 [RDLEN9] = igb_set_dlen, 3611 [RDLEN10] = igb_set_dlen, 3612 [RDLEN11] = igb_set_dlen, 3613 [RDLEN12] = igb_set_dlen, 3614 [RDLEN13] = igb_set_dlen, 3615 [RDLEN14] = igb_set_dlen, 3616 [RDLEN15] = igb_set_dlen, 3617 [TDBAL0] = igb_set_dbal, 3618 [TDBAL1] = igb_set_dbal, 3619 [TDBAL2] = igb_set_dbal, 3620 [TDBAL3] = igb_set_dbal, 3621 [TDBAL4] = igb_set_dbal, 3622 [TDBAL5] = igb_set_dbal, 3623 [TDBAL6] = igb_set_dbal, 3624 [TDBAL7] = igb_set_dbal, 3625 [TDBAL8] = igb_set_dbal, 3626 [TDBAL9] = igb_set_dbal, 3627 [TDBAL10] = igb_set_dbal, 3628 [TDBAL11] = igb_set_dbal, 3629 [TDBAL12] = igb_set_dbal, 3630 [TDBAL13] = igb_set_dbal, 3631 [TDBAL14] = igb_set_dbal, 3632 [TDBAL15] = igb_set_dbal, 3633 [RDBAL0] = igb_set_dbal, 3634 [RDBAL1] = igb_set_dbal, 3635 [RDBAL2] = igb_set_dbal, 3636 [RDBAL3] = igb_set_dbal, 3637 [RDBAL4] = igb_set_dbal, 3638 [RDBAL5] = igb_set_dbal, 3639 [RDBAL6] = igb_set_dbal, 3640 [RDBAL7] = igb_set_dbal, 3641 [RDBAL8] = igb_set_dbal, 3642 [RDBAL9] = igb_set_dbal, 3643 [RDBAL10] = igb_set_dbal, 3644 [RDBAL11] = igb_set_dbal, 3645 [RDBAL12] = igb_set_dbal, 3646 [RDBAL13] = igb_set_dbal, 3647 [RDBAL14] = igb_set_dbal, 3648 [RDBAL15] = igb_set_dbal, 3649 [STATUS] = igb_set_status, 3650 [PBACLR] = igb_set_pbaclr, 3651 [CTRL_EXT] = igb_set_ctrlext, 3652 [FCAH] = igb_set_16bit, 3653 [FCT] = igb_set_16bit, 3654 [FCTTV] = igb_set_16bit, 3655 [FCRTV] = igb_set_16bit, 3656 [FCRTH] = igb_set_fcrth, 3657 [FCRTL] = igb_set_fcrtl, 3658 [CTRL_DUP] = igb_set_ctrl, 3659 [RFCTL] = igb_set_rfctl, 3660 [TIMINCA] = igb_set_timinca, 3661 [TIMADJH] = igb_set_timadjh, 3662 3663 [IP6AT ... IP6AT + 3] = igb_mac_writereg, 3664 [IP4AT ... IP4AT + 6] = igb_mac_writereg, 3665 [RA] = igb_mac_writereg, 3666 [RA + 1] = igb_mac_setmacaddr, 3667 [RA + 2 ... RA + 31] = igb_mac_writereg, 3668 [RA2 ... RA2 + 31] = igb_mac_writereg, 3669 [WUPM ... WUPM + 31] = igb_mac_writereg, 3670 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg, 3671 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg, 3672 [FFMT ... FFMT + 254] = igb_set_4bit, 3673 [MDEF ... MDEF + 7] = igb_mac_writereg, 3674 [FTFT ... FTFT + 254] = igb_mac_writereg, 3675 [RETA ... RETA + 31] = igb_mac_writereg, 3676 [RSSRK ... RSSRK + 9] = igb_mac_writereg, 3677 [MAVTV0 ... MAVTV3] = igb_mac_writereg, 3678 [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr, 3679 3680 /* IGB specific: */ 3681 [FWSM] = igb_mac_writereg, 3682 [SW_FW_SYNC] = igb_mac_writereg, 3683 [EICR] = igb_set_eicr, 3684 [EICS] = igb_set_eics, 3685 [EIAC] = igb_set_eiac, 3686 [EIAM] = igb_set_eiam, 3687 [EIMC] = igb_set_eimc, 3688 [EIMS] = igb_set_eims, 3689 [IVAR0 ... IVAR0 + 7] = igb_mac_writereg, 3690 igb_putreg(IVAR_MISC), 3691 igb_putreg(VT_CTL), 3692 [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox, 3693 [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox, 3694 [MBVFICR] = igb_w1c, 3695 [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg, 3696 igb_putreg(MBVFIMR), 3697 [VFLRE] = igb_w1c, 3698 igb_putreg(VFRE), 3699 igb_putreg(VFTE), 3700 igb_putreg(QDE), 3701 igb_putreg(DTXSWC), 3702 igb_putreg(RPLOLR), 3703 [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg, 3704 [VMVIR0 ... VMVIR7] = igb_mac_writereg, 3705 [VMOLR0 ... VMOLR7] = igb_mac_writereg, 3706 [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg, 3707 [PVTCTRL0] = igb_set_vtctrl, 3708 [PVTCTRL1] = igb_set_vtctrl, 3709 [PVTCTRL2] = igb_set_vtctrl, 3710 [PVTCTRL3] = igb_set_vtctrl, 3711 [PVTCTRL4] = igb_set_vtctrl, 3712 [PVTCTRL5] = igb_set_vtctrl, 3713 [PVTCTRL6] = igb_set_vtctrl, 3714 [PVTCTRL7] = igb_set_vtctrl, 3715 [PVTEICS0] = igb_set_vteics, 3716 [PVTEICS1] = igb_set_vteics, 3717 [PVTEICS2] = igb_set_vteics, 3718 [PVTEICS3] = igb_set_vteics, 3719 [PVTEICS4] = igb_set_vteics, 3720 [PVTEICS5] = igb_set_vteics, 3721 [PVTEICS6] = igb_set_vteics, 3722 [PVTEICS7] = igb_set_vteics, 3723 [PVTEIMS0] = igb_set_vteims, 3724 [PVTEIMS1] = igb_set_vteims, 3725 [PVTEIMS2] = igb_set_vteims, 3726 [PVTEIMS3] = igb_set_vteims, 3727 [PVTEIMS4] = igb_set_vteims, 3728 [PVTEIMS5] = igb_set_vteims, 3729 [PVTEIMS6] = igb_set_vteims, 3730 [PVTEIMS7] = igb_set_vteims, 3731 [PVTEIMC0] = igb_set_vteimc, 3732 [PVTEIMC1] = igb_set_vteimc, 3733 [PVTEIMC2] = igb_set_vteimc, 3734 [PVTEIMC3] = igb_set_vteimc, 3735 [PVTEIMC4] = igb_set_vteimc, 3736 [PVTEIMC5] = igb_set_vteimc, 3737 [PVTEIMC6] = igb_set_vteimc, 3738 [PVTEIMC7] = igb_set_vteimc, 3739 [PVTEIAC0] = igb_set_vteiac, 3740 [PVTEIAC1] = igb_set_vteiac, 3741 [PVTEIAC2] = igb_set_vteiac, 3742 [PVTEIAC3] = igb_set_vteiac, 3743 [PVTEIAC4] = igb_set_vteiac, 3744 [PVTEIAC5] = igb_set_vteiac, 3745 [PVTEIAC6] = igb_set_vteiac, 3746 [PVTEIAC7] = igb_set_vteiac, 3747 [PVTEIAM0] = igb_set_vteiam, 3748 [PVTEIAM1] = igb_set_vteiam, 3749 [PVTEIAM2] = igb_set_vteiam, 3750 [PVTEIAM3] = igb_set_vteiam, 3751 [PVTEIAM4] = igb_set_vteiam, 3752 [PVTEIAM5] = igb_set_vteiam, 3753 [PVTEIAM6] = igb_set_vteiam, 3754 [PVTEIAM7] = igb_set_vteiam, 3755 [PVTEICR0] = igb_set_vteicr, 3756 [PVTEICR1] = igb_set_vteicr, 3757 [PVTEICR2] = igb_set_vteicr, 3758 [PVTEICR3] = igb_set_vteicr, 3759 [PVTEICR4] = igb_set_vteicr, 3760 [PVTEICR5] = igb_set_vteicr, 3761 [PVTEICR6] = igb_set_vteicr, 3762 [PVTEICR7] = igb_set_vteicr, 3763 [VTIVAR ... VTIVAR + 7] = igb_set_vtivar, 3764 [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg 3765 }; 3766 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) }; 3767 3768 enum { MAC_ACCESS_PARTIAL = 1 }; 3769 3770 /* 3771 * The array below combines alias offsets of the index values for the 3772 * MAC registers that have aliases, with the indication of not fully 3773 * implemented registers (lowest bit). This combination is possible 3774 * because all of the offsets are even. 3775 */ 3776 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = { 3777 /* Alias index offsets */ 3778 [FCRTL_A] = 0x07fe, 3779 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904, 3780 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00, 3781 [RA_A ... RA_A + 31] = 0x14f0, 3782 [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400, 3783 3784 [RDBAL0_A] = 0x2600, 3785 [RDBAH0_A] = 0x2600, 3786 [RDLEN0_A] = 0x2600, 3787 [SRRCTL0_A] = 0x2600, 3788 [RDH0_A] = 0x2600, 3789 [RDT0_A] = 0x2600, 3790 [RXDCTL0_A] = 0x2600, 3791 [RXCTL0_A] = 0x2600, 3792 [RQDPC0_A] = 0x2600, 3793 [RDBAL1_A] = 0x25D0, 3794 [RDBAL2_A] = 0x25A0, 3795 [RDBAL3_A] = 0x2570, 3796 [RDBAH1_A] = 0x25D0, 3797 [RDBAH2_A] = 0x25A0, 3798 [RDBAH3_A] = 0x2570, 3799 [RDLEN1_A] = 0x25D0, 3800 [RDLEN2_A] = 0x25A0, 3801 [RDLEN3_A] = 0x2570, 3802 [SRRCTL1_A] = 0x25D0, 3803 [SRRCTL2_A] = 0x25A0, 3804 [SRRCTL3_A] = 0x2570, 3805 [RDH1_A] = 0x25D0, 3806 [RDH2_A] = 0x25A0, 3807 [RDH3_A] = 0x2570, 3808 [RDT1_A] = 0x25D0, 3809 [RDT2_A] = 0x25A0, 3810 [RDT3_A] = 0x2570, 3811 [RXDCTL1_A] = 0x25D0, 3812 [RXDCTL2_A] = 0x25A0, 3813 [RXDCTL3_A] = 0x2570, 3814 [RXCTL1_A] = 0x25D0, 3815 [RXCTL2_A] = 0x25A0, 3816 [RXCTL3_A] = 0x2570, 3817 [RQDPC1_A] = 0x25D0, 3818 [RQDPC2_A] = 0x25A0, 3819 [RQDPC3_A] = 0x2570, 3820 [TDBAL0_A] = 0x2A00, 3821 [TDBAH0_A] = 0x2A00, 3822 [TDLEN0_A] = 0x2A00, 3823 [TDH0_A] = 0x2A00, 3824 [TDT0_A] = 0x2A00, 3825 [TXCTL0_A] = 0x2A00, 3826 [TDWBAL0_A] = 0x2A00, 3827 [TDWBAH0_A] = 0x2A00, 3828 [TDBAL1_A] = 0x29D0, 3829 [TDBAL2_A] = 0x29A0, 3830 [TDBAL3_A] = 0x2970, 3831 [TDBAH1_A] = 0x29D0, 3832 [TDBAH2_A] = 0x29A0, 3833 [TDBAH3_A] = 0x2970, 3834 [TDLEN1_A] = 0x29D0, 3835 [TDLEN2_A] = 0x29A0, 3836 [TDLEN3_A] = 0x2970, 3837 [TDH1_A] = 0x29D0, 3838 [TDH2_A] = 0x29A0, 3839 [TDH3_A] = 0x2970, 3840 [TDT1_A] = 0x29D0, 3841 [TDT2_A] = 0x29A0, 3842 [TDT3_A] = 0x2970, 3843 [TXDCTL0_A] = 0x2A00, 3844 [TXDCTL1_A] = 0x29D0, 3845 [TXDCTL2_A] = 0x29A0, 3846 [TXDCTL3_A] = 0x2970, 3847 [TXCTL1_A] = 0x29D0, 3848 [TXCTL2_A] = 0x29A0, 3849 [TXCTL3_A] = 0x29D0, 3850 [TDWBAL1_A] = 0x29D0, 3851 [TDWBAL2_A] = 0x29A0, 3852 [TDWBAL3_A] = 0x2970, 3853 [TDWBAH1_A] = 0x29D0, 3854 [TDWBAH2_A] = 0x29A0, 3855 [TDWBAH3_A] = 0x2970, 3856 3857 /* Access options */ 3858 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL, 3859 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL, 3860 [RDFPC] = MAC_ACCESS_PARTIAL, 3861 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL, 3862 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL, 3863 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL, 3864 [FLA] = MAC_ACCESS_PARTIAL, 3865 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL, 3866 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL, 3867 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL, 3868 [FCRTH] = MAC_ACCESS_PARTIAL, 3869 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL 3870 }; 3871 3872 void 3873 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size) 3874 { 3875 uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr); 3876 3877 if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) { 3878 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3879 trace_e1000e_wrn_regs_write_trivial(index << 2); 3880 } 3881 trace_e1000e_core_write(index << 2, size, val); 3882 igb_macreg_writeops[index](core, index, val); 3883 } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) { 3884 trace_e1000e_wrn_regs_write_ro(index << 2, size, val); 3885 } else { 3886 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val); 3887 } 3888 } 3889 3890 uint64_t 3891 igb_core_read(IGBCore *core, hwaddr addr, unsigned size) 3892 { 3893 uint64_t val; 3894 uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr); 3895 3896 if (index < IGB_NREADOPS && igb_macreg_readops[index]) { 3897 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3898 trace_e1000e_wrn_regs_read_trivial(index << 2); 3899 } 3900 val = igb_macreg_readops[index](core, index); 3901 trace_e1000e_core_read(index << 2, size, val); 3902 return val; 3903 } else { 3904 trace_e1000e_wrn_regs_read_unknown(index << 2, size); 3905 } 3906 return 0; 3907 } 3908 3909 static inline void 3910 igb_autoneg_pause(IGBCore *core) 3911 { 3912 timer_del(core->autoneg_timer); 3913 } 3914 3915 static void 3916 igb_autoneg_resume(IGBCore *core) 3917 { 3918 if (igb_have_autoneg(core) && 3919 !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) { 3920 qemu_get_queue(core->owner_nic)->link_down = false; 3921 timer_mod(core->autoneg_timer, 3922 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 3923 } 3924 } 3925 3926 static void 3927 igb_vm_state_change(void *opaque, bool running, RunState state) 3928 { 3929 IGBCore *core = opaque; 3930 3931 if (running) { 3932 trace_e1000e_vm_state_running(); 3933 igb_intrmgr_resume(core); 3934 igb_autoneg_resume(core); 3935 } else { 3936 trace_e1000e_vm_state_stopped(); 3937 igb_autoneg_pause(core); 3938 igb_intrmgr_pause(core); 3939 } 3940 } 3941 3942 void 3943 igb_core_pci_realize(IGBCore *core, 3944 const uint16_t *eeprom_templ, 3945 uint32_t eeprom_size, 3946 const uint8_t *macaddr) 3947 { 3948 int i; 3949 3950 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 3951 igb_autoneg_timer, core); 3952 igb_intrmgr_pci_realize(core); 3953 3954 core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core); 3955 3956 for (i = 0; i < IGB_NUM_QUEUES; i++) { 3957 net_tx_pkt_init(&core->tx[i].tx_pkt, NULL, E1000E_MAX_TX_FRAGS); 3958 } 3959 3960 net_rx_pkt_init(&core->rx_pkt); 3961 3962 e1000x_core_prepare_eeprom(core->eeprom, 3963 eeprom_templ, 3964 eeprom_size, 3965 PCI_DEVICE_GET_CLASS(core->owner)->device_id, 3966 macaddr); 3967 igb_update_rx_offloads(core); 3968 } 3969 3970 void 3971 igb_core_pci_uninit(IGBCore *core) 3972 { 3973 int i; 3974 3975 timer_free(core->autoneg_timer); 3976 3977 igb_intrmgr_pci_unint(core); 3978 3979 qemu_del_vm_change_state_handler(core->vmstate); 3980 3981 for (i = 0; i < IGB_NUM_QUEUES; i++) { 3982 net_tx_pkt_reset(core->tx[i].tx_pkt, NULL); 3983 net_tx_pkt_uninit(core->tx[i].tx_pkt); 3984 } 3985 3986 net_rx_pkt_uninit(core->rx_pkt); 3987 } 3988 3989 static const uint16_t 3990 igb_phy_reg_init[] = { 3991 [MII_BMCR] = MII_BMCR_SPEED1000 | 3992 MII_BMCR_FD | 3993 MII_BMCR_AUTOEN, 3994 3995 [MII_BMSR] = MII_BMSR_EXTCAP | 3996 MII_BMSR_LINK_ST | 3997 MII_BMSR_AUTONEG | 3998 MII_BMSR_MFPS | 3999 MII_BMSR_EXTSTAT | 4000 MII_BMSR_10T_HD | 4001 MII_BMSR_10T_FD | 4002 MII_BMSR_100TX_HD | 4003 MII_BMSR_100TX_FD, 4004 4005 [MII_PHYID1] = IGP03E1000_E_PHY_ID >> 16, 4006 [MII_PHYID2] = (IGP03E1000_E_PHY_ID & 0xfff0) | 1, 4007 [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 | 4008 MII_ANAR_10FD | MII_ANAR_TX | 4009 MII_ANAR_TXFD | MII_ANAR_PAUSE | 4010 MII_ANAR_PAUSE_ASYM, 4011 [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD | 4012 MII_ANLPAR_TX | MII_ANLPAR_TXFD | 4013 MII_ANLPAR_T4 | MII_ANLPAR_PAUSE, 4014 [MII_ANER] = MII_ANER_NP | MII_ANER_NWAY, 4015 [MII_ANNP] = 0x1 | MII_ANNP_MP, 4016 [MII_CTRL1000] = MII_CTRL1000_HALF | MII_CTRL1000_FULL | 4017 MII_CTRL1000_PORT | MII_CTRL1000_MASTER, 4018 [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL | 4019 MII_STAT1000_ROK | MII_STAT1000_LOK, 4020 [MII_EXTSTAT] = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD, 4021 4022 [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8), 4023 [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS, 4024 [IGP02E1000_PHY_POWER_MGMT] = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU | 4025 IGP01E1000_PSCFR_SMART_SPEED 4026 }; 4027 4028 static const uint32_t igb_mac_reg_init[] = { 4029 [LEDCTL] = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24), 4030 [EEMNGCTL] = BIT(31), 4031 [TXDCTL0] = E1000_TXDCTL_QUEUE_ENABLE, 4032 [RXDCTL0] = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16), 4033 [RXDCTL1] = 1 << 16, 4034 [RXDCTL2] = 1 << 16, 4035 [RXDCTL3] = 1 << 16, 4036 [RXDCTL4] = 1 << 16, 4037 [RXDCTL5] = 1 << 16, 4038 [RXDCTL6] = 1 << 16, 4039 [RXDCTL7] = 1 << 16, 4040 [RXDCTL8] = 1 << 16, 4041 [RXDCTL9] = 1 << 16, 4042 [RXDCTL10] = 1 << 16, 4043 [RXDCTL11] = 1 << 16, 4044 [RXDCTL12] = 1 << 16, 4045 [RXDCTL13] = 1 << 16, 4046 [RXDCTL14] = 1 << 16, 4047 [RXDCTL15] = 1 << 16, 4048 [TIPG] = 0x08 | (0x04 << 10) | (0x06 << 20), 4049 [CTRL] = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 | 4050 E1000_CTRL_ADVD3WUC, 4051 [STATUS] = E1000_STATUS_PHYRA | BIT(31), 4052 [EECD] = E1000_EECD_FWE_DIS | E1000_EECD_PRES | 4053 (2 << E1000_EECD_SIZE_EX_SHIFT), 4054 [GCR] = E1000_L0S_ADJUST | 4055 E1000_GCR_CMPL_TMOUT_RESEND | 4056 E1000_GCR_CAP_VER2 | 4057 E1000_L1_ENTRY_LATENCY_MSB | 4058 E1000_L1_ENTRY_LATENCY_LSB, 4059 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD, 4060 [TXPBS] = 0x28, 4061 [RXPBS] = 0x40, 4062 [TCTL] = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) | 4063 (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28), 4064 [TCTL_EXT] = 0x40 | (0x42 << 10), 4065 [DTXCTL] = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT, 4066 [VET] = ETH_P_VLAN | (ETH_P_VLAN << 16), 4067 4068 [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI, 4069 [MBVFIMR] = 0xFF, 4070 [VFRE] = 0xFF, 4071 [VFTE] = 0xFF, 4072 [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC, 4073 [RPLOLR] = E1000_RPLOLR_STRCRC, 4074 [RLPML] = 0x2600, 4075 [TXCTL0] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4076 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4077 E1000_DCA_TXCTRL_DESC_RRO_EN, 4078 [TXCTL1] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4079 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4080 E1000_DCA_TXCTRL_DESC_RRO_EN, 4081 [TXCTL2] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4082 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4083 E1000_DCA_TXCTRL_DESC_RRO_EN, 4084 [TXCTL3] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4085 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4086 E1000_DCA_TXCTRL_DESC_RRO_EN, 4087 [TXCTL4] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4088 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4089 E1000_DCA_TXCTRL_DESC_RRO_EN, 4090 [TXCTL5] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4091 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4092 E1000_DCA_TXCTRL_DESC_RRO_EN, 4093 [TXCTL6] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4094 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4095 E1000_DCA_TXCTRL_DESC_RRO_EN, 4096 [TXCTL7] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4097 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4098 E1000_DCA_TXCTRL_DESC_RRO_EN, 4099 [TXCTL8] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4100 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4101 E1000_DCA_TXCTRL_DESC_RRO_EN, 4102 [TXCTL9] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4103 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4104 E1000_DCA_TXCTRL_DESC_RRO_EN, 4105 [TXCTL10] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4106 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4107 E1000_DCA_TXCTRL_DESC_RRO_EN, 4108 [TXCTL11] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4109 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4110 E1000_DCA_TXCTRL_DESC_RRO_EN, 4111 [TXCTL12] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4112 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4113 E1000_DCA_TXCTRL_DESC_RRO_EN, 4114 [TXCTL13] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4115 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4116 E1000_DCA_TXCTRL_DESC_RRO_EN, 4117 [TXCTL14] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4118 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4119 E1000_DCA_TXCTRL_DESC_RRO_EN, 4120 [TXCTL15] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4121 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4122 E1000_DCA_TXCTRL_DESC_RRO_EN, 4123 }; 4124 4125 static void igb_reset(IGBCore *core, bool sw) 4126 { 4127 struct igb_tx *tx; 4128 int i; 4129 4130 timer_del(core->autoneg_timer); 4131 4132 igb_intrmgr_reset(core); 4133 4134 memset(core->phy, 0, sizeof core->phy); 4135 memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init); 4136 4137 for (i = 0; i < E1000E_MAC_SIZE; i++) { 4138 if (sw && 4139 (i == RXPBS || i == TXPBS || 4140 (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) { 4141 continue; 4142 } 4143 4144 core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ? 4145 igb_mac_reg_init[i] : 0; 4146 } 4147 4148 if (qemu_get_queue(core->owner_nic)->link_down) { 4149 igb_link_down(core); 4150 } 4151 4152 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); 4153 4154 for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) { 4155 /* Set RSTI, so VF can identify a PF reset is in progress */ 4156 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI; 4157 } 4158 4159 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 4160 tx = &core->tx[i]; 4161 net_tx_pkt_reset(tx->tx_pkt, NULL); 4162 memset(tx->ctx, 0, sizeof(tx->ctx)); 4163 tx->first = true; 4164 tx->skip_cp = false; 4165 } 4166 } 4167 4168 void 4169 igb_core_reset(IGBCore *core) 4170 { 4171 igb_reset(core, false); 4172 } 4173 4174 void igb_core_pre_save(IGBCore *core) 4175 { 4176 int i; 4177 NetClientState *nc = qemu_get_queue(core->owner_nic); 4178 4179 /* 4180 * If link is down and auto-negotiation is supported and ongoing, 4181 * complete auto-negotiation immediately. This allows us to look 4182 * at MII_BMSR_AN_COMP to infer link status on load. 4183 */ 4184 if (nc->link_down && igb_have_autoneg(core)) { 4185 core->phy[MII_BMSR] |= MII_BMSR_AN_COMP; 4186 igb_update_flowctl_status(core); 4187 } 4188 4189 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 4190 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) { 4191 core->tx[i].skip_cp = true; 4192 } 4193 } 4194 } 4195 4196 int 4197 igb_core_post_load(IGBCore *core) 4198 { 4199 NetClientState *nc = qemu_get_queue(core->owner_nic); 4200 4201 /* 4202 * nc.link_down can't be migrated, so infer link_down according 4203 * to link status bit in core.mac[STATUS]. 4204 */ 4205 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0; 4206 4207 return 0; 4208 } 4209