xref: /openbmc/qemu/hw/net/igb_core.c (revision 3c2e0a68534da9ff9cc79866a20adb8ac78c424f)
1 /*
2  * Core code for QEMU igb emulation
3  *
4  * Datasheet:
5  * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
6  *
7  * Copyright (c) 2020-2023 Red Hat, Inc.
8  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
9  * Developed by Daynix Computing LTD (http://www.daynix.com)
10  *
11  * Authors:
12  * Akihiko Odaki <akihiko.odaki@daynix.com>
13  * Gal Hammmer <gal.hammer@sap.com>
14  * Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
15  * Dmitry Fleytman <dmitry@daynix.com>
16  * Leonid Bloch <leonid@daynix.com>
17  * Yan Vugenfirer <yan@daynix.com>
18  *
19  * Based on work done by:
20  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
21  * Copyright (c) 2008 Qumranet
22  * Based on work done by:
23  * Copyright (c) 2007 Dan Aloni
24  * Copyright (c) 2004 Antony T Curtis
25  *
26  * This library is free software; you can redistribute it and/or
27  * modify it under the terms of the GNU Lesser General Public
28  * License as published by the Free Software Foundation; either
29  * version 2.1 of the License, or (at your option) any later version.
30  *
31  * This library is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34  * Lesser General Public License for more details.
35  *
36  * You should have received a copy of the GNU Lesser General Public
37  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
38  */
39 
40 #include "qemu/osdep.h"
41 #include "qemu/log.h"
42 #include "net/net.h"
43 #include "net/tap.h"
44 #include "hw/net/mii.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "sysemu/runstate.h"
48 
49 #include "net_tx_pkt.h"
50 #include "net_rx_pkt.h"
51 
52 #include "igb_common.h"
53 #include "e1000x_common.h"
54 #include "igb_core.h"
55 
56 #include "trace.h"
57 
58 #define E1000E_MAX_TX_FRAGS (64)
59 
60 union e1000_rx_desc_union {
61     struct e1000_rx_desc legacy;
62     union e1000_adv_rx_desc adv;
63 };
64 
65 typedef struct IGBTxPktVmdqCallbackContext {
66     IGBCore *core;
67     NetClientState *nc;
68 } IGBTxPktVmdqCallbackContext;
69 
70 static ssize_t
71 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
72                      bool has_vnet, bool *external_tx);
73 
74 static inline void
75 igb_set_interrupt_cause(IGBCore *core, uint32_t val);
76 
77 static void igb_update_interrupt_state(IGBCore *core);
78 static void igb_reset(IGBCore *core, bool sw);
79 
80 static inline void
81 igb_raise_legacy_irq(IGBCore *core)
82 {
83     trace_e1000e_irq_legacy_notify(true);
84     e1000x_inc_reg_if_not_full(core->mac, IAC);
85     pci_set_irq(core->owner, 1);
86 }
87 
88 static inline void
89 igb_lower_legacy_irq(IGBCore *core)
90 {
91     trace_e1000e_irq_legacy_notify(false);
92     pci_set_irq(core->owner, 0);
93 }
94 
95 static void igb_msix_notify(IGBCore *core, unsigned int vector)
96 {
97     PCIDevice *dev = core->owner;
98     uint16_t vfn;
99 
100     vfn = 8 - (vector + 2) / IGBVF_MSIX_VEC_NUM;
101     if (vfn < pcie_sriov_num_vfs(core->owner)) {
102         dev = pcie_sriov_get_vf_at_index(core->owner, vfn);
103         assert(dev);
104         vector = (vector + 2) % IGBVF_MSIX_VEC_NUM;
105     } else if (vector >= IGB_MSIX_VEC_NUM) {
106         qemu_log_mask(LOG_GUEST_ERROR,
107                       "igb: Tried to use vector unavailable for PF");
108         return;
109     }
110 
111     msix_notify(dev, vector);
112 }
113 
114 static inline void
115 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer)
116 {
117     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
118                                  timer->delay_resolution_ns;
119 
120     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
121 
122     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
123 
124     timer->running = true;
125 }
126 
127 static void
128 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer)
129 {
130     if (timer->running) {
131         igb_intrmgr_rearm_timer(timer);
132     }
133 }
134 
135 static void
136 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer)
137 {
138     if (timer->running) {
139         timer_del(timer->timer);
140     }
141 }
142 
143 static void
144 igb_intrmgr_on_msix_throttling_timer(void *opaque)
145 {
146     IGBIntrDelayTimer *timer = opaque;
147     int idx = timer - &timer->core->eitr[0];
148 
149     timer->running = false;
150 
151     trace_e1000e_irq_msix_notify_postponed_vec(idx);
152     igb_msix_notify(timer->core, idx);
153 }
154 
155 static void
156 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create)
157 {
158     int i;
159 
160     for (i = 0; i < IGB_INTR_NUM; i++) {
161         core->eitr[i].core = core;
162         core->eitr[i].delay_reg = EITR0 + i;
163         core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
164     }
165 
166     if (!create) {
167         return;
168     }
169 
170     for (i = 0; i < IGB_INTR_NUM; i++) {
171         core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
172                                            igb_intrmgr_on_msix_throttling_timer,
173                                            &core->eitr[i]);
174     }
175 }
176 
177 static void
178 igb_intrmgr_resume(IGBCore *core)
179 {
180     int i;
181 
182     for (i = 0; i < IGB_INTR_NUM; i++) {
183         igb_intmgr_timer_resume(&core->eitr[i]);
184     }
185 }
186 
187 static void
188 igb_intrmgr_pause(IGBCore *core)
189 {
190     int i;
191 
192     for (i = 0; i < IGB_INTR_NUM; i++) {
193         igb_intmgr_timer_pause(&core->eitr[i]);
194     }
195 }
196 
197 static void
198 igb_intrmgr_reset(IGBCore *core)
199 {
200     int i;
201 
202     for (i = 0; i < IGB_INTR_NUM; i++) {
203         if (core->eitr[i].running) {
204             timer_del(core->eitr[i].timer);
205             igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
206         }
207     }
208 }
209 
210 static void
211 igb_intrmgr_pci_unint(IGBCore *core)
212 {
213     int i;
214 
215     for (i = 0; i < IGB_INTR_NUM; i++) {
216         timer_free(core->eitr[i].timer);
217     }
218 }
219 
220 static void
221 igb_intrmgr_pci_realize(IGBCore *core)
222 {
223     igb_intrmgr_initialize_all_timers(core, true);
224 }
225 
226 static inline bool
227 igb_rx_csum_enabled(IGBCore *core)
228 {
229     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
230 }
231 
232 static inline bool
233 igb_rx_use_legacy_descriptor(IGBCore *core)
234 {
235     /*
236      * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx
237      * descriptor.
238      */
239     return false;
240 }
241 
242 static inline bool
243 igb_rss_enabled(IGBCore *core)
244 {
245     return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ &&
246            !igb_rx_csum_enabled(core) &&
247            !igb_rx_use_legacy_descriptor(core);
248 }
249 
250 typedef struct E1000E_RSSInfo_st {
251     bool enabled;
252     uint32_t hash;
253     uint32_t queue;
254     uint32_t type;
255 } E1000E_RSSInfo;
256 
257 static uint32_t
258 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt)
259 {
260     bool hasip4, hasip6;
261     EthL4HdrProto l4hdr_proto;
262 
263     assert(igb_rss_enabled(core));
264 
265     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
266 
267     if (hasip4) {
268         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
269                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
270                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
271 
272         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
273             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
274             return E1000_MRQ_RSS_TYPE_IPV4TCP;
275         }
276 
277         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
278             return E1000_MRQ_RSS_TYPE_IPV4;
279         }
280     } else if (hasip6) {
281         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
282 
283         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
284         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
285 
286         /*
287          * Following two traces must not be combined because resulting
288          * event will have 11 arguments totally and some trace backends
289          * (at least "ust") have limitation of maximum 10 arguments per
290          * event. Events with more arguments fail to compile for
291          * backends like these.
292          */
293         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
294         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
295                                 ip6info->has_ext_hdrs,
296                                 ip6info->rss_ex_dst_valid,
297                                 ip6info->rss_ex_src_valid,
298                                 core->mac[MRQC],
299                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
300                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
301                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
302 
303         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
304             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
305                               ip6info->rss_ex_src_valid))) {
306 
307             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
308                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
309                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
310             }
311 
312             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
313                 return E1000_MRQ_RSS_TYPE_IPV6EX;
314             }
315 
316         }
317 
318         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
319             return E1000_MRQ_RSS_TYPE_IPV6;
320         }
321 
322     }
323 
324     return E1000_MRQ_RSS_TYPE_NONE;
325 }
326 
327 static uint32_t
328 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info)
329 {
330     NetRxPktRssType type;
331 
332     assert(igb_rss_enabled(core));
333 
334     switch (info->type) {
335     case E1000_MRQ_RSS_TYPE_IPV4:
336         type = NetPktRssIpV4;
337         break;
338     case E1000_MRQ_RSS_TYPE_IPV4TCP:
339         type = NetPktRssIpV4Tcp;
340         break;
341     case E1000_MRQ_RSS_TYPE_IPV6TCP:
342         type = NetPktRssIpV6TcpEx;
343         break;
344     case E1000_MRQ_RSS_TYPE_IPV6:
345         type = NetPktRssIpV6;
346         break;
347     case E1000_MRQ_RSS_TYPE_IPV6EX:
348         type = NetPktRssIpV6Ex;
349         break;
350     default:
351         assert(false);
352         return 0;
353     }
354 
355     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
356 }
357 
358 static void
359 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx,
360                      E1000E_RSSInfo *info)
361 {
362     trace_e1000e_rx_rss_started();
363 
364     if (tx || !igb_rss_enabled(core)) {
365         info->enabled = false;
366         info->hash = 0;
367         info->queue = 0;
368         info->type = 0;
369         trace_e1000e_rx_rss_disabled();
370         return;
371     }
372 
373     info->enabled = true;
374 
375     info->type = igb_rss_get_hash_type(core, pkt);
376 
377     trace_e1000e_rx_rss_type(info->type);
378 
379     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
380         info->hash = 0;
381         info->queue = 0;
382         return;
383     }
384 
385     info->hash = igb_rss_calc_hash(core, pkt, info);
386     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
387 }
388 
389 static bool
390 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx)
391 {
392     if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) {
393         uint32_t idx = (tx->first_olinfo_status >> 4) & 1;
394         uint32_t mss = tx->ctx[idx].mss_l4len_idx >> 16;
395         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) {
396             return false;
397         }
398 
399         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
400         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
401         return true;
402     }
403 
404     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) {
405         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
406             return false;
407         }
408     }
409 
410     if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) {
411         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
412     }
413 
414     return true;
415 }
416 
417 static void igb_tx_pkt_mac_callback(void *core,
418                                     const struct iovec *iov,
419                                     int iovcnt,
420                                     const struct iovec *virt_iov,
421                                     int virt_iovcnt)
422 {
423     igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL);
424 }
425 
426 static void igb_tx_pkt_vmdq_callback(void *opaque,
427                                      const struct iovec *iov,
428                                      int iovcnt,
429                                      const struct iovec *virt_iov,
430                                      int virt_iovcnt)
431 {
432     IGBTxPktVmdqCallbackContext *context = opaque;
433     bool external_tx;
434 
435     igb_receive_internal(context->core, virt_iov, virt_iovcnt, true,
436                          &external_tx);
437 
438     if (external_tx) {
439         if (context->core->has_vnet) {
440             qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt);
441         } else {
442             qemu_sendv_packet(context->nc, iov, iovcnt);
443         }
444     }
445 }
446 
447 /* TX Packets Switching (7.10.3.6) */
448 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx,
449                               NetClientState *nc)
450 {
451     IGBTxPktVmdqCallbackContext context;
452 
453     /* TX switching is only used to serve VM to VM traffic. */
454     if (!(core->mac[MRQC] & 1)) {
455         goto send_out;
456     }
457 
458     /* TX switching requires DTXSWC.Loopback_en bit enabled. */
459     if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) {
460         goto send_out;
461     }
462 
463     context.core = core;
464     context.nc = nc;
465 
466     return net_tx_pkt_send_custom(tx->tx_pkt, false,
467                                   igb_tx_pkt_vmdq_callback, &context);
468 
469 send_out:
470     return net_tx_pkt_send(tx->tx_pkt, nc);
471 }
472 
473 static bool
474 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index)
475 {
476     int target_queue = MIN(core->max_queue_num, queue_index);
477     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
478 
479     if (!igb_setup_tx_offloads(core, tx)) {
480         return false;
481     }
482 
483     net_tx_pkt_dump(tx->tx_pkt);
484 
485     if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) ||
486         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
487         return net_tx_pkt_send_custom(tx->tx_pkt, false,
488                                       igb_tx_pkt_mac_callback, core);
489     } else {
490         return igb_tx_pkt_switch(core, tx, queue);
491     }
492 }
493 
494 static void
495 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt)
496 {
497     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
498                                     PTC1023, PTC1522 };
499 
500     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
501 
502     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
503     e1000x_inc_reg_if_not_full(core->mac, TPT);
504     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
505 
506     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
507     case ETH_PKT_BCAST:
508         e1000x_inc_reg_if_not_full(core->mac, BPTC);
509         break;
510     case ETH_PKT_MCAST:
511         e1000x_inc_reg_if_not_full(core->mac, MPTC);
512         break;
513     case ETH_PKT_UCAST:
514         break;
515     default:
516         g_assert_not_reached();
517     }
518 
519     core->mac[GPTC] = core->mac[TPT];
520     core->mac[GOTCL] = core->mac[TOTL];
521     core->mac[GOTCH] = core->mac[TOTH];
522 }
523 
524 static void
525 igb_process_tx_desc(IGBCore *core,
526                     PCIDevice *dev,
527                     struct igb_tx *tx,
528                     union e1000_adv_tx_desc *tx_desc,
529                     int queue_index)
530 {
531     struct e1000_adv_tx_context_desc *tx_ctx_desc;
532     uint32_t cmd_type_len;
533     uint32_t idx;
534     uint64_t buffer_addr;
535     uint16_t length;
536 
537     cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
538 
539     if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) {
540         if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) ==
541             E1000_ADVTXD_DTYP_DATA) {
542             /* advanced transmit data descriptor */
543             if (tx->first) {
544                 tx->first_cmd_type_len = cmd_type_len;
545                 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status);
546                 tx->first = false;
547             }
548         } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) ==
549                    E1000_ADVTXD_DTYP_CTXT) {
550             /* advanced transmit context descriptor */
551             tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc;
552             idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1;
553             tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens);
554             tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed);
555             tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl);
556             tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx);
557             return;
558         } else {
559             /* unknown descriptor type */
560             return;
561         }
562     } else {
563         /* legacy descriptor */
564 
565         /* TODO: Implement a support for legacy descriptors (7.2.2.1). */
566     }
567 
568     buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr);
569     length = cmd_type_len & 0xFFFF;
570 
571     if (!tx->skip_cp) {
572         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, buffer_addr, length)) {
573             tx->skip_cp = true;
574         }
575     }
576 
577     if (cmd_type_len & E1000_TXD_CMD_EOP) {
578         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
579             if (cmd_type_len & E1000_TXD_CMD_VLE) {
580                 idx = (tx->first_olinfo_status >> 4) & 1;
581                 uint16_t vlan = tx->ctx[idx].vlan_macip_lens >> 16;
582                 uint16_t vet = core->mac[VET] & 0xffff;
583                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan, vet);
584             }
585             if (igb_tx_pkt_send(core, tx, queue_index)) {
586                 igb_on_tx_done_update_stats(core, tx->tx_pkt);
587             }
588         }
589 
590         tx->first = true;
591         tx->skip_cp = false;
592         net_tx_pkt_reset(tx->tx_pkt, dev);
593     }
594 }
595 
596 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx)
597 {
598     uint32_t n, ent = 0;
599 
600     n = igb_ivar_entry_tx(queue_idx);
601     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
602 
603     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
604 }
605 
606 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx)
607 {
608     uint32_t n, ent = 0;
609 
610     n = igb_ivar_entry_rx(queue_idx);
611     ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff;
612 
613     return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0;
614 }
615 
616 typedef struct E1000E_RingInfo_st {
617     int dbah;
618     int dbal;
619     int dlen;
620     int dh;
621     int dt;
622     int idx;
623 } E1000E_RingInfo;
624 
625 static inline bool
626 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r)
627 {
628     return core->mac[r->dh] == core->mac[r->dt] ||
629                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
630 }
631 
632 static inline uint64_t
633 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r)
634 {
635     uint64_t bah = core->mac[r->dbah];
636     uint64_t bal = core->mac[r->dbal];
637 
638     return (bah << 32) + bal;
639 }
640 
641 static inline uint64_t
642 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r)
643 {
644     return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
645 }
646 
647 static inline void
648 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count)
649 {
650     core->mac[r->dh] += count;
651 
652     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
653         core->mac[r->dh] = 0;
654     }
655 }
656 
657 static inline uint32_t
658 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r)
659 {
660     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
661                                  core->mac[r->dh],  core->mac[r->dt]);
662 
663     if (core->mac[r->dh] <= core->mac[r->dt]) {
664         return core->mac[r->dt] - core->mac[r->dh];
665     }
666 
667     if (core->mac[r->dh] > core->mac[r->dt]) {
668         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
669                core->mac[r->dt] - core->mac[r->dh];
670     }
671 
672     g_assert_not_reached();
673     return 0;
674 }
675 
676 static inline bool
677 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r)
678 {
679     return core->mac[r->dlen] > 0;
680 }
681 
682 typedef struct IGB_TxRing_st {
683     const E1000E_RingInfo *i;
684     struct igb_tx *tx;
685 } IGB_TxRing;
686 
687 static inline int
688 igb_mq_queue_idx(int base_reg_idx, int reg_idx)
689 {
690     return (reg_idx - base_reg_idx) / 16;
691 }
692 
693 static inline void
694 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx)
695 {
696     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
697         { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 },
698         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 },
699         { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 },
700         { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 },
701         { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 },
702         { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 },
703         { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 },
704         { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 },
705         { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 },
706         { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 },
707         { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 },
708         { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 },
709         { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 },
710         { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 },
711         { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 },
712         { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 }
713     };
714 
715     assert(idx < ARRAY_SIZE(i));
716 
717     txr->i     = &i[idx];
718     txr->tx    = &core->tx[idx];
719 }
720 
721 typedef struct E1000E_RxRing_st {
722     const E1000E_RingInfo *i;
723 } E1000E_RxRing;
724 
725 static inline void
726 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx)
727 {
728     static const E1000E_RingInfo i[IGB_NUM_QUEUES] = {
729         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
730         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 },
731         { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 },
732         { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 },
733         { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 },
734         { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 },
735         { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 },
736         { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 },
737         { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 },
738         { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 },
739         { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 },
740         { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 },
741         { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 },
742         { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 },
743         { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 },
744         { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 }
745     };
746 
747     assert(idx < ARRAY_SIZE(i));
748 
749     rxr->i      = &i[idx];
750 }
751 
752 static uint32_t
753 igb_txdesc_writeback(IGBCore *core, dma_addr_t base,
754                      union e1000_adv_tx_desc *tx_desc,
755                      const E1000E_RingInfo *txi)
756 {
757     PCIDevice *d;
758     uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len);
759     uint64_t tdwba;
760 
761     tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2];
762     tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32;
763 
764     if (!(cmd_type_len & E1000_TXD_CMD_RS)) {
765         return 0;
766     }
767 
768     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
769     if (!d) {
770         d = core->owner;
771     }
772 
773     if (tdwba & 1) {
774         uint32_t buffer = cpu_to_le32(core->mac[txi->dh]);
775         pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer));
776     } else {
777         uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD;
778 
779         tx_desc->wb.status = cpu_to_le32(status);
780         pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb),
781             &tx_desc->wb, sizeof(tx_desc->wb));
782     }
783 
784     return igb_tx_wb_eic(core, txi->idx);
785 }
786 
787 static inline bool
788 igb_tx_enabled(IGBCore *core, const E1000E_RingInfo *txi)
789 {
790     bool vmdq = core->mac[MRQC] & 1;
791     uint16_t qn = txi->idx;
792     uint16_t pool = qn % IGB_NUM_VM_POOLS;
793 
794     return (core->mac[TCTL] & E1000_TCTL_EN) &&
795         (!vmdq || core->mac[VFTE] & BIT(pool)) &&
796         (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE);
797 }
798 
799 static void
800 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr)
801 {
802     PCIDevice *d;
803     dma_addr_t base;
804     union e1000_adv_tx_desc desc;
805     const E1000E_RingInfo *txi = txr->i;
806     uint32_t eic = 0;
807 
808     if (!igb_tx_enabled(core, txi)) {
809         trace_e1000e_tx_disabled();
810         return;
811     }
812 
813     d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8);
814     if (!d) {
815         d = core->owner;
816     }
817 
818     net_tx_pkt_reset(txr->tx->tx_pkt, d);
819 
820     while (!igb_ring_empty(core, txi)) {
821         base = igb_ring_head_descr(core, txi);
822 
823         pci_dma_read(d, base, &desc, sizeof(desc));
824 
825         trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr,
826                               desc.read.cmd_type_len, desc.wb.status);
827 
828         igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx);
829         igb_ring_advance(core, txi, 1);
830         eic |= igb_txdesc_writeback(core, base, &desc, txi);
831     }
832 
833     if (eic) {
834         core->mac[EICR] |= eic;
835         igb_set_interrupt_cause(core, E1000_ICR_TXDW);
836     }
837 }
838 
839 static uint32_t
840 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r)
841 {
842     uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2];
843     uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK;
844     if (bsizepkt) {
845         return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT;
846     }
847 
848     return e1000x_rxbufsize(core->mac[RCTL]);
849 }
850 
851 static bool
852 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size)
853 {
854     uint32_t bufs = igb_ring_free_descr_num(core, r);
855     uint32_t bufsize = igb_rxbufsize(core, r);
856 
857     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize);
858 
859     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
860                          bufsize;
861 }
862 
863 void
864 igb_start_recv(IGBCore *core)
865 {
866     int i;
867 
868     trace_e1000e_rx_start_recv();
869 
870     for (i = 0; i <= core->max_queue_num; i++) {
871         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
872     }
873 }
874 
875 bool
876 igb_can_receive(IGBCore *core)
877 {
878     int i;
879 
880     if (!e1000x_rx_ready(core->owner, core->mac)) {
881         return false;
882     }
883 
884     for (i = 0; i < IGB_NUM_QUEUES; i++) {
885         E1000E_RxRing rxr;
886         if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
887             continue;
888         }
889 
890         igb_rx_ring_init(core, &rxr, i);
891         if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) {
892             trace_e1000e_rx_can_recv();
893             return true;
894         }
895     }
896 
897     trace_e1000e_rx_can_recv_rings_full();
898     return false;
899 }
900 
901 ssize_t
902 igb_receive(IGBCore *core, const uint8_t *buf, size_t size)
903 {
904     const struct iovec iov = {
905         .iov_base = (uint8_t *)buf,
906         .iov_len = size
907     };
908 
909     return igb_receive_iov(core, &iov, 1);
910 }
911 
912 static inline bool
913 igb_rx_l3_cso_enabled(IGBCore *core)
914 {
915     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
916 }
917 
918 static inline bool
919 igb_rx_l4_cso_enabled(IGBCore *core)
920 {
921     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
922 }
923 
924 static bool
925 igb_rx_is_oversized(IGBCore *core, uint16_t qn, size_t size)
926 {
927     uint16_t pool = qn % IGB_NUM_VM_POOLS;
928     bool lpe = !!(core->mac[VMOLR0 + pool] & E1000_VMOLR_LPE);
929     int max_ethernet_lpe_size =
930         core->mac[VMOLR0 + pool] & E1000_VMOLR_RLPML_MASK;
931     int max_ethernet_vlan_size = 1522;
932 
933     return size > (lpe ? max_ethernet_lpe_size : max_ethernet_vlan_size);
934 }
935 
936 static uint16_t igb_receive_assign(IGBCore *core, const struct eth_header *ehdr,
937                                    size_t size, E1000E_RSSInfo *rss_info,
938                                    bool *external_tx)
939 {
940     static const int ta_shift[] = { 4, 3, 2, 0 };
941     uint32_t f, ra[2], *macp, rctl = core->mac[RCTL];
942     uint16_t queues = 0;
943     uint16_t oversized = 0;
944     uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(ehdr)->h_tci) & VLAN_VID_MASK;
945     bool accepted = false;
946     int i;
947 
948     memset(rss_info, 0, sizeof(E1000E_RSSInfo));
949 
950     if (external_tx) {
951         *external_tx = true;
952     }
953 
954     if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff) &&
955         e1000x_vlan_rx_filter_enabled(core->mac)) {
956         uint32_t vfta =
957             ldl_le_p((uint32_t *)(core->mac + VFTA) +
958                      ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
959         if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
960             trace_e1000e_rx_flt_vlan_mismatch(vid);
961             return queues;
962         } else {
963             trace_e1000e_rx_flt_vlan_match(vid);
964         }
965     }
966 
967     if (core->mac[MRQC] & 1) {
968         if (is_broadcast_ether_addr(ehdr->h_dest)) {
969             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
970                 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) {
971                     queues |= BIT(i);
972                 }
973             }
974         } else {
975             for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) {
976                 if (!(macp[1] & E1000_RAH_AV)) {
977                     continue;
978                 }
979                 ra[0] = cpu_to_le32(macp[0]);
980                 ra[1] = cpu_to_le32(macp[1]);
981                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
982                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
983                 }
984             }
985 
986             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
987                 if (!(macp[1] & E1000_RAH_AV)) {
988                     continue;
989                 }
990                 ra[0] = cpu_to_le32(macp[0]);
991                 ra[1] = cpu_to_le32(macp[1]);
992                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
993                     queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1;
994                 }
995             }
996 
997             if (!queues) {
998                 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA);
999 
1000                 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
1001                 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
1002                 if (macp[f >> 5] & (1 << (f & 0x1f))) {
1003                     for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1004                         if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) {
1005                             queues |= BIT(i);
1006                         }
1007                     }
1008                 }
1009             } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) {
1010                 *external_tx = false;
1011             }
1012         }
1013 
1014         if (e1000x_vlan_rx_filter_enabled(core->mac)) {
1015             uint16_t mask = 0;
1016 
1017             if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff)) {
1018                 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
1019                     if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid &&
1020                         (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) {
1021                         uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK;
1022                         mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT;
1023                     }
1024                 }
1025             } else {
1026                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1027                     if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) {
1028                         mask |= BIT(i);
1029                     }
1030                 }
1031             }
1032 
1033             queues &= mask;
1034         }
1035 
1036         if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx &&
1037             !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) {
1038             uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK;
1039             queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT);
1040         }
1041 
1042         queues &= core->mac[VFRE];
1043         if (queues) {
1044             for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1045                 if ((queues & BIT(i)) && igb_rx_is_oversized(core, i, size)) {
1046                     oversized |= BIT(i);
1047                 }
1048             }
1049             /* 8.19.37 increment ROC if packet is oversized for all queues */
1050             if (oversized == queues) {
1051                 trace_e1000x_rx_oversized(size);
1052                 e1000x_inc_reg_if_not_full(core->mac, ROC);
1053             }
1054             queues &= ~oversized;
1055         }
1056 
1057         if (queues) {
1058             igb_rss_parse_packet(core, core->rx_pkt,
1059                                  external_tx != NULL, rss_info);
1060             /* Sec 8.26.1: PQn = VFn + VQn*8 */
1061             if (rss_info->queue & 1) {
1062                 for (i = 0; i < IGB_NUM_VM_POOLS; i++) {
1063                     if ((queues & BIT(i)) &&
1064                         (core->mac[VMOLR0 + i] & E1000_VMOLR_RSSE)) {
1065                         queues |= BIT(i + IGB_NUM_VM_POOLS);
1066                         queues &= ~BIT(i);
1067                     }
1068                 }
1069             }
1070         }
1071     } else {
1072         switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1073         case ETH_PKT_UCAST:
1074             if (rctl & E1000_RCTL_UPE) {
1075                 accepted = true; /* promiscuous ucast */
1076             }
1077             break;
1078 
1079         case ETH_PKT_BCAST:
1080             if (rctl & E1000_RCTL_BAM) {
1081                 accepted = true; /* broadcast enabled */
1082             }
1083             break;
1084 
1085         case ETH_PKT_MCAST:
1086             if (rctl & E1000_RCTL_MPE) {
1087                 accepted = true; /* promiscuous mcast */
1088             }
1089             break;
1090 
1091         default:
1092             g_assert_not_reached();
1093         }
1094 
1095         if (!accepted) {
1096             accepted = e1000x_rx_group_filter(core->mac, ehdr->h_dest);
1097         }
1098 
1099         if (!accepted) {
1100             for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) {
1101                 if (!(macp[1] & E1000_RAH_AV)) {
1102                     continue;
1103                 }
1104                 ra[0] = cpu_to_le32(macp[0]);
1105                 ra[1] = cpu_to_le32(macp[1]);
1106                 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
1107                     trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2,
1108                                                     MAC_ARG(ehdr->h_dest));
1109 
1110                     accepted = true;
1111                     break;
1112                 }
1113             }
1114         }
1115 
1116         if (accepted) {
1117             igb_rss_parse_packet(core, core->rx_pkt, false, rss_info);
1118             queues = BIT(rss_info->queue);
1119         }
1120     }
1121 
1122     return queues;
1123 }
1124 
1125 static inline void
1126 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1127                        hwaddr *buff_addr)
1128 {
1129     *buff_addr = le64_to_cpu(desc->buffer_addr);
1130 }
1131 
1132 static inline void
1133 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1134                       hwaddr *buff_addr)
1135 {
1136     *buff_addr = le64_to_cpu(desc->read.pkt_addr);
1137 }
1138 
1139 static inline void
1140 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1141                   hwaddr *buff_addr)
1142 {
1143     if (igb_rx_use_legacy_descriptor(core)) {
1144         igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr);
1145     } else {
1146         igb_read_adv_rx_descr(core, &desc->adv, buff_addr);
1147     }
1148 }
1149 
1150 static void
1151 igb_verify_csum_in_sw(IGBCore *core,
1152                       struct NetRxPkt *pkt,
1153                       uint32_t *status_flags,
1154                       EthL4HdrProto l4hdr_proto)
1155 {
1156     bool csum_valid;
1157     uint32_t csum_error;
1158 
1159     if (igb_rx_l3_cso_enabled(core)) {
1160         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1161             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1162         } else {
1163             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1164             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1165         }
1166     } else {
1167         trace_e1000e_rx_metadata_l3_cso_disabled();
1168     }
1169 
1170     if (!igb_rx_l4_cso_enabled(core)) {
1171         trace_e1000e_rx_metadata_l4_cso_disabled();
1172         return;
1173     }
1174 
1175     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1176         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1177         return;
1178     }
1179 
1180     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1181     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1182 
1183     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1184         *status_flags |= E1000_RXD_STAT_UDPCS;
1185     }
1186 }
1187 
1188 static void
1189 igb_build_rx_metadata(IGBCore *core,
1190                       struct NetRxPkt *pkt,
1191                       bool is_eop,
1192                       const E1000E_RSSInfo *rss_info,
1193                       uint16_t *pkt_info, uint16_t *hdr_info,
1194                       uint32_t *rss,
1195                       uint32_t *status_flags,
1196                       uint16_t *ip_id,
1197                       uint16_t *vlan_tag)
1198 {
1199     struct virtio_net_hdr *vhdr;
1200     bool hasip4, hasip6;
1201     EthL4HdrProto l4hdr_proto;
1202     uint32_t pkt_type;
1203 
1204     *status_flags = E1000_RXD_STAT_DD;
1205 
1206     /* No additional metadata needed for non-EOP descriptors */
1207     /* TODO: EOP apply only to status so don't skip whole function. */
1208     if (!is_eop) {
1209         goto func_exit;
1210     }
1211 
1212     *status_flags |= E1000_RXD_STAT_EOP;
1213 
1214     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1215     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1216 
1217     /* VLAN state */
1218     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1219         *status_flags |= E1000_RXD_STAT_VP;
1220         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1221         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1222     }
1223 
1224     /* Packet parsing results */
1225     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1226         if (rss_info->enabled) {
1227             *rss = cpu_to_le32(rss_info->hash);
1228             trace_igb_rx_metadata_rss(*rss);
1229         }
1230     } else if (hasip4) {
1231             *status_flags |= E1000_RXD_STAT_IPIDV;
1232             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1233             trace_e1000e_rx_metadata_ip_id(*ip_id);
1234     }
1235 
1236     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) {
1237         *status_flags |= E1000_RXD_STAT_ACK;
1238         trace_e1000e_rx_metadata_ack();
1239     }
1240 
1241     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1242         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1243         pkt_type = E1000_RXD_PKT_MAC;
1244     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1245                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1246         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1247     } else if (hasip4 || hasip6) {
1248         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1249     } else {
1250         pkt_type = E1000_RXD_PKT_MAC;
1251     }
1252 
1253     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1254 
1255     if (pkt_info) {
1256         if (rss_info->enabled) {
1257             *pkt_info = rss_info->type;
1258         }
1259 
1260         *pkt_info |= (pkt_type << 4);
1261     } else {
1262         *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1263     }
1264 
1265     if (hdr_info) {
1266         *hdr_info = 0;
1267     }
1268 
1269     /* RX CSO information */
1270     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1271         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1272         goto func_exit;
1273     }
1274 
1275     vhdr = net_rx_pkt_get_vhdr(pkt);
1276 
1277     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1278         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1279         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1280         igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1281         goto func_exit;
1282     }
1283 
1284     if (igb_rx_l3_cso_enabled(core)) {
1285         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1286     } else {
1287         trace_e1000e_rx_metadata_l3_cso_disabled();
1288     }
1289 
1290     if (igb_rx_l4_cso_enabled(core)) {
1291         switch (l4hdr_proto) {
1292         case ETH_L4_HDR_PROTO_TCP:
1293             *status_flags |= E1000_RXD_STAT_TCPCS;
1294             break;
1295 
1296         case ETH_L4_HDR_PROTO_UDP:
1297             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1298             break;
1299 
1300         default:
1301             goto func_exit;
1302         }
1303     } else {
1304         trace_e1000e_rx_metadata_l4_cso_disabled();
1305     }
1306 
1307     trace_e1000e_rx_metadata_status_flags(*status_flags);
1308 
1309 func_exit:
1310     *status_flags = cpu_to_le32(*status_flags);
1311 }
1312 
1313 static inline void
1314 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc,
1315                         struct NetRxPkt *pkt,
1316                         const E1000E_RSSInfo *rss_info,
1317                         uint16_t length)
1318 {
1319     uint32_t status_flags, rss;
1320     uint16_t ip_id;
1321 
1322     assert(!rss_info->enabled);
1323     desc->length = cpu_to_le16(length);
1324     desc->csum = 0;
1325 
1326     igb_build_rx_metadata(core, pkt, pkt != NULL,
1327                           rss_info,
1328                           NULL, NULL, &rss,
1329                           &status_flags, &ip_id,
1330                           &desc->special);
1331     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1332     desc->status = (uint8_t) le32_to_cpu(status_flags);
1333 }
1334 
1335 static inline void
1336 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc,
1337                        struct NetRxPkt *pkt,
1338                        const E1000E_RSSInfo *rss_info,
1339                        uint16_t length)
1340 {
1341     memset(&desc->wb, 0, sizeof(desc->wb));
1342 
1343     desc->wb.upper.length = cpu_to_le16(length);
1344 
1345     igb_build_rx_metadata(core, pkt, pkt != NULL,
1346                           rss_info,
1347                           &desc->wb.lower.lo_dword.pkt_info,
1348                           &desc->wb.lower.lo_dword.hdr_info,
1349                           &desc->wb.lower.hi_dword.rss,
1350                           &desc->wb.upper.status_error,
1351                           &desc->wb.lower.hi_dword.csum_ip.ip_id,
1352                           &desc->wb.upper.vlan);
1353 }
1354 
1355 static inline void
1356 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc,
1357 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length)
1358 {
1359     if (igb_rx_use_legacy_descriptor(core)) {
1360         igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, length);
1361     } else {
1362         igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, length);
1363     }
1364 }
1365 
1366 static inline void
1367 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr,
1368                           union e1000_rx_desc_union *desc, dma_addr_t len)
1369 {
1370     if (igb_rx_use_legacy_descriptor(core)) {
1371         struct e1000_rx_desc *d = &desc->legacy;
1372         size_t offset = offsetof(struct e1000_rx_desc, status);
1373         uint8_t status = d->status;
1374 
1375         d->status &= ~E1000_RXD_STAT_DD;
1376         pci_dma_write(dev, addr, desc, len);
1377 
1378         if (status & E1000_RXD_STAT_DD) {
1379             d->status = status;
1380             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1381         }
1382     } else {
1383         union e1000_adv_rx_desc *d = &desc->adv;
1384         size_t offset =
1385             offsetof(union e1000_adv_rx_desc, wb.upper.status_error);
1386         uint32_t status = d->wb.upper.status_error;
1387 
1388         d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1389         pci_dma_write(dev, addr, desc, len);
1390 
1391         if (status & E1000_RXD_STAT_DD) {
1392             d->wb.upper.status_error = status;
1393             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1394         }
1395     }
1396 }
1397 
1398 static void
1399 igb_write_to_rx_buffers(IGBCore *core,
1400                         PCIDevice *d,
1401                         hwaddr ba,
1402                         uint16_t *written,
1403                         const char *data,
1404                         dma_addr_t data_len)
1405 {
1406     trace_igb_rx_desc_buff_write(ba, *written, data, data_len);
1407     pci_dma_write(d, ba + *written, data, data_len);
1408     *written += data_len;
1409 }
1410 
1411 static void
1412 igb_update_rx_stats(IGBCore *core, size_t data_size, size_t data_fcs_size)
1413 {
1414     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1415 
1416     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1417     case ETH_PKT_BCAST:
1418         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1419         break;
1420 
1421     case ETH_PKT_MCAST:
1422         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1423         break;
1424 
1425     default:
1426         break;
1427     }
1428 }
1429 
1430 static inline bool
1431 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi)
1432 {
1433     return igb_ring_free_descr_num(core, rxi) ==
1434            ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16;
1435 }
1436 
1437 static void
1438 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt,
1439                           const E1000E_RxRing *rxr,
1440                           const E1000E_RSSInfo *rss_info)
1441 {
1442     PCIDevice *d;
1443     dma_addr_t base;
1444     union e1000_rx_desc_union desc;
1445     size_t desc_size;
1446     size_t desc_offset = 0;
1447     size_t iov_ofs = 0;
1448 
1449     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1450     size_t size = net_rx_pkt_get_total_len(pkt);
1451     size_t total_size = size + e1000x_fcs_len(core->mac);
1452     const E1000E_RingInfo *rxi = rxr->i;
1453     size_t bufsize = igb_rxbufsize(core, rxi);
1454 
1455     d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8);
1456     if (!d) {
1457         d = core->owner;
1458     }
1459 
1460     do {
1461         hwaddr ba;
1462         uint16_t written = 0;
1463         bool is_last = false;
1464 
1465         desc_size = total_size - desc_offset;
1466 
1467         if (desc_size > bufsize) {
1468             desc_size = bufsize;
1469         }
1470 
1471         if (igb_ring_empty(core, rxi)) {
1472             return;
1473         }
1474 
1475         base = igb_ring_head_descr(core, rxi);
1476 
1477         pci_dma_read(d, base, &desc, core->rx_desc_len);
1478 
1479         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1480 
1481         igb_read_rx_descr(core, &desc, &ba);
1482 
1483         if (ba) {
1484             if (desc_offset < size) {
1485                 static const uint32_t fcs_pad;
1486                 size_t iov_copy;
1487                 size_t copy_size = size - desc_offset;
1488                 if (copy_size > bufsize) {
1489                     copy_size = bufsize;
1490                 }
1491 
1492                 /* Copy packet payload */
1493                 while (copy_size) {
1494                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1495 
1496                     igb_write_to_rx_buffers(core, d, ba, &written,
1497                                             iov->iov_base + iov_ofs, iov_copy);
1498 
1499                     copy_size -= iov_copy;
1500                     iov_ofs += iov_copy;
1501                     if (iov_ofs == iov->iov_len) {
1502                         iov++;
1503                         iov_ofs = 0;
1504                     }
1505                 }
1506 
1507                 if (desc_offset + desc_size >= total_size) {
1508                     /* Simulate FCS checksum presence in the last descriptor */
1509                     igb_write_to_rx_buffers(core, d, ba, &written,
1510                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1511                 }
1512             }
1513         } else { /* as per intel docs; skip descriptors with null buf addr */
1514             trace_e1000e_rx_null_descriptor();
1515         }
1516         desc_offset += desc_size;
1517         if (desc_offset >= total_size) {
1518             is_last = true;
1519         }
1520 
1521         igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1522                            rss_info, written);
1523         igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len);
1524 
1525         igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1526 
1527     } while (desc_offset < total_size);
1528 
1529     igb_update_rx_stats(core, size, total_size);
1530 }
1531 
1532 static inline void
1533 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt)
1534 {
1535     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1536 
1537     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1538         net_rx_pkt_fix_l4_csum(pkt);
1539     }
1540 }
1541 
1542 ssize_t
1543 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt)
1544 {
1545     return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL);
1546 }
1547 
1548 static ssize_t
1549 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt,
1550                      bool has_vnet, bool *external_tx)
1551 {
1552     static const int maximum_ethernet_hdr_len = (ETH_HLEN + 4);
1553 
1554     uint16_t queues = 0;
1555     uint32_t n = 0;
1556     uint8_t min_buf[ETH_ZLEN];
1557     struct iovec min_iov;
1558     struct eth_header *ehdr;
1559     uint8_t *filter_buf;
1560     size_t size, orig_size;
1561     size_t iov_ofs = 0;
1562     E1000E_RxRing rxr;
1563     E1000E_RSSInfo rss_info;
1564     size_t total_size;
1565     int i;
1566 
1567     trace_e1000e_rx_receive_iov(iovcnt);
1568 
1569     if (external_tx) {
1570         *external_tx = true;
1571     }
1572 
1573     if (!e1000x_hw_rx_enabled(core->mac)) {
1574         return -1;
1575     }
1576 
1577     /* Pull virtio header in */
1578     if (has_vnet) {
1579         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1580         iov_ofs = sizeof(struct virtio_net_hdr);
1581     } else {
1582         net_rx_pkt_unset_vhdr(core->rx_pkt);
1583     }
1584 
1585     filter_buf = iov->iov_base + iov_ofs;
1586     orig_size = iov_size(iov, iovcnt);
1587     size = orig_size - iov_ofs;
1588 
1589     /* Pad to minimum Ethernet frame length */
1590     if (size < sizeof(min_buf)) {
1591         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1592         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1593         e1000x_inc_reg_if_not_full(core->mac, RUC);
1594         min_iov.iov_base = filter_buf = min_buf;
1595         min_iov.iov_len = size = sizeof(min_buf);
1596         iovcnt = 1;
1597         iov = &min_iov;
1598         iov_ofs = 0;
1599     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1600         /* This is very unlikely, but may happen. */
1601         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1602         filter_buf = min_buf;
1603     }
1604 
1605     /* Discard oversized packets if !LPE and !SBP. */
1606     if (e1000x_is_oversized(core->mac, size)) {
1607         return orig_size;
1608     }
1609 
1610     ehdr = PKT_GET_ETH_HDR(filter_buf);
1611     net_rx_pkt_set_packet_type(core->rx_pkt, get_eth_packet_type(ehdr));
1612 
1613     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1614                                e1000x_vlan_enabled(core->mac),
1615                                core->mac[VET] & 0xffff);
1616 
1617     queues = igb_receive_assign(core, ehdr, size, &rss_info, external_tx);
1618     if (!queues) {
1619         trace_e1000e_rx_flt_dropped();
1620         return orig_size;
1621     }
1622 
1623     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1624         e1000x_fcs_len(core->mac);
1625 
1626     for (i = 0; i < IGB_NUM_QUEUES; i++) {
1627         if (!(queues & BIT(i)) ||
1628             !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) {
1629             continue;
1630         }
1631 
1632         igb_rx_ring_init(core, &rxr, i);
1633 
1634         if (!igb_has_rxbufs(core, rxr.i, total_size)) {
1635             n |= E1000_ICS_RXO;
1636             trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1637             continue;
1638         }
1639 
1640         n |= E1000_ICR_RXDW;
1641 
1642         igb_rx_fix_l4_csum(core, core->rx_pkt);
1643         igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1644 
1645         /* Check if receive descriptor minimum threshold hit */
1646         if (igb_rx_descr_threshold_hit(core, rxr.i)) {
1647             n |= E1000_ICS_RXDMT0;
1648         }
1649 
1650         core->mac[EICR] |= igb_rx_wb_eic(core, rxr.i->idx);
1651 
1652         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1653     }
1654 
1655     trace_e1000e_rx_interrupt_set(n);
1656     igb_set_interrupt_cause(core, n);
1657 
1658     return orig_size;
1659 }
1660 
1661 static inline bool
1662 igb_have_autoneg(IGBCore *core)
1663 {
1664     return core->phy[MII_BMCR] & MII_BMCR_AUTOEN;
1665 }
1666 
1667 static void igb_update_flowctl_status(IGBCore *core)
1668 {
1669     if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) {
1670         trace_e1000e_link_autoneg_flowctl(true);
1671         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1672     } else {
1673         trace_e1000e_link_autoneg_flowctl(false);
1674     }
1675 }
1676 
1677 static inline void
1678 igb_link_down(IGBCore *core)
1679 {
1680     e1000x_update_regs_on_link_down(core->mac, core->phy);
1681     igb_update_flowctl_status(core);
1682 }
1683 
1684 static inline void
1685 igb_set_phy_ctrl(IGBCore *core, uint16_t val)
1686 {
1687     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1688     core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART);
1689 
1690     if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) {
1691         e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer);
1692     }
1693 }
1694 
1695 void igb_core_set_link_status(IGBCore *core)
1696 {
1697     NetClientState *nc = qemu_get_queue(core->owner_nic);
1698     uint32_t old_status = core->mac[STATUS];
1699 
1700     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1701 
1702     if (nc->link_down) {
1703         e1000x_update_regs_on_link_down(core->mac, core->phy);
1704     } else {
1705         if (igb_have_autoneg(core) &&
1706             !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
1707             e1000x_restart_autoneg(core->mac, core->phy,
1708                                    core->autoneg_timer);
1709         } else {
1710             e1000x_update_regs_on_link_up(core->mac, core->phy);
1711             igb_start_recv(core);
1712         }
1713     }
1714 
1715     if (core->mac[STATUS] != old_status) {
1716         igb_set_interrupt_cause(core, E1000_ICR_LSC);
1717     }
1718 }
1719 
1720 static void
1721 igb_set_ctrl(IGBCore *core, int index, uint32_t val)
1722 {
1723     trace_e1000e_core_ctrl_write(index, val);
1724 
1725     /* RST is self clearing */
1726     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1727     core->mac[CTRL_DUP] = core->mac[CTRL];
1728 
1729     trace_e1000e_link_set_params(
1730         !!(val & E1000_CTRL_ASDE),
1731         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1732         !!(val & E1000_CTRL_FRCSPD),
1733         !!(val & E1000_CTRL_FRCDPX),
1734         !!(val & E1000_CTRL_RFCE),
1735         !!(val & E1000_CTRL_TFCE));
1736 
1737     if (val & E1000_CTRL_RST) {
1738         trace_e1000e_core_ctrl_sw_reset();
1739         igb_reset(core, true);
1740     }
1741 
1742     if (val & E1000_CTRL_PHY_RST) {
1743         trace_e1000e_core_ctrl_phy_reset();
1744         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1745     }
1746 }
1747 
1748 static void
1749 igb_set_rfctl(IGBCore *core, int index, uint32_t val)
1750 {
1751     trace_e1000e_rx_set_rfctl(val);
1752 
1753     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1754         trace_e1000e_wrn_iscsi_filtering_not_supported();
1755     }
1756 
1757     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1758         trace_e1000e_wrn_nfsw_filtering_not_supported();
1759     }
1760 
1761     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1762         trace_e1000e_wrn_nfsr_filtering_not_supported();
1763     }
1764 
1765     core->mac[RFCTL] = val;
1766 }
1767 
1768 static void
1769 igb_calc_rxdesclen(IGBCore *core)
1770 {
1771     if (igb_rx_use_legacy_descriptor(core)) {
1772         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1773     } else {
1774         core->rx_desc_len = sizeof(union e1000_adv_rx_desc);
1775     }
1776     trace_e1000e_rx_desc_len(core->rx_desc_len);
1777 }
1778 
1779 static void
1780 igb_set_rx_control(IGBCore *core, int index, uint32_t val)
1781 {
1782     core->mac[RCTL] = val;
1783     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1784 
1785     if (val & E1000_RCTL_DTYP_MASK) {
1786         qemu_log_mask(LOG_GUEST_ERROR,
1787                       "igb: RCTL.DTYP must be zero for compatibility");
1788     }
1789 
1790     if (val & E1000_RCTL_EN) {
1791         igb_calc_rxdesclen(core);
1792         igb_start_recv(core);
1793     }
1794 }
1795 
1796 static inline void
1797 igb_clear_ims_bits(IGBCore *core, uint32_t bits)
1798 {
1799     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1800     core->mac[IMS] &= ~bits;
1801 }
1802 
1803 static inline bool
1804 igb_postpone_interrupt(IGBIntrDelayTimer *timer)
1805 {
1806     if (timer->running) {
1807         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1808 
1809         return true;
1810     }
1811 
1812     if (timer->core->mac[timer->delay_reg] != 0) {
1813         igb_intrmgr_rearm_timer(timer);
1814     }
1815 
1816     return false;
1817 }
1818 
1819 static inline bool
1820 igb_eitr_should_postpone(IGBCore *core, int idx)
1821 {
1822     return igb_postpone_interrupt(&core->eitr[idx]);
1823 }
1824 
1825 static void igb_send_msix(IGBCore *core)
1826 {
1827     uint32_t causes = core->mac[EICR] & core->mac[EIMS];
1828     uint32_t effective_eiac;
1829     int vector;
1830 
1831     for (vector = 0; vector < IGB_INTR_NUM; ++vector) {
1832         if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) {
1833 
1834             trace_e1000e_irq_msix_notify_vec(vector);
1835             igb_msix_notify(core, vector);
1836 
1837             trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]);
1838             effective_eiac = core->mac[EIAC] & BIT(vector);
1839             core->mac[EICR] &= ~effective_eiac;
1840         }
1841     }
1842 }
1843 
1844 static inline void
1845 igb_fix_icr_asserted(IGBCore *core)
1846 {
1847     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
1848     if (core->mac[ICR]) {
1849         core->mac[ICR] |= E1000_ICR_ASSERTED;
1850     }
1851 
1852     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
1853 }
1854 
1855 static void
1856 igb_update_interrupt_state(IGBCore *core)
1857 {
1858     uint32_t icr;
1859     uint32_t causes;
1860     uint32_t int_alloc;
1861 
1862     icr = core->mac[ICR] & core->mac[IMS];
1863 
1864     if (msix_enabled(core->owner)) {
1865         if (icr) {
1866             causes = 0;
1867             if (icr & E1000_ICR_DRSTA) {
1868                 int_alloc = core->mac[IVAR_MISC] & 0xff;
1869                 if (int_alloc & E1000_IVAR_VALID) {
1870                     causes |= BIT(int_alloc & 0x1f);
1871                 }
1872             }
1873             /* Check if other bits (excluding the TCP Timer) are enabled. */
1874             if (icr & ~E1000_ICR_DRSTA) {
1875                 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff;
1876                 if (int_alloc & E1000_IVAR_VALID) {
1877                     causes |= BIT(int_alloc & 0x1f);
1878                 }
1879                 trace_e1000e_irq_add_msi_other(core->mac[EICR]);
1880             }
1881             core->mac[EICR] |= causes;
1882         }
1883 
1884         if ((core->mac[EICR] & core->mac[EIMS])) {
1885             igb_send_msix(core);
1886         }
1887     } else {
1888         igb_fix_icr_asserted(core);
1889 
1890         if (icr) {
1891             core->mac[EICR] |= (icr & E1000_ICR_DRSTA) | E1000_EICR_OTHER;
1892         } else {
1893             core->mac[EICR] &= ~E1000_EICR_OTHER;
1894         }
1895 
1896         trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
1897                                             core->mac[ICR], core->mac[IMS]);
1898 
1899         if (msi_enabled(core->owner)) {
1900             if (icr) {
1901                 msi_notify(core->owner, 0);
1902             }
1903         } else {
1904             if (icr) {
1905                 igb_raise_legacy_irq(core);
1906             } else {
1907                 igb_lower_legacy_irq(core);
1908             }
1909         }
1910     }
1911 }
1912 
1913 static void
1914 igb_set_interrupt_cause(IGBCore *core, uint32_t val)
1915 {
1916     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
1917 
1918     core->mac[ICR] |= val;
1919 
1920     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
1921 
1922     igb_update_interrupt_state(core);
1923 }
1924 
1925 static void igb_set_eics(IGBCore *core, int index, uint32_t val)
1926 {
1927     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1928 
1929     trace_igb_irq_write_eics(val, msix);
1930 
1931     core->mac[EICS] |=
1932         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1933 
1934     /*
1935      * TODO: Move to igb_update_interrupt_state if EICS is modified in other
1936      * places.
1937      */
1938     core->mac[EICR] = core->mac[EICS];
1939 
1940     igb_update_interrupt_state(core);
1941 }
1942 
1943 static void igb_set_eims(IGBCore *core, int index, uint32_t val)
1944 {
1945     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
1946 
1947     trace_igb_irq_write_eims(val, msix);
1948 
1949     core->mac[EIMS] |=
1950         val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK);
1951 
1952     igb_update_interrupt_state(core);
1953 }
1954 
1955 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn)
1956 {
1957     uint32_t ent = core->mac[VTIVAR_MISC + vfn];
1958 
1959     if ((ent & E1000_IVAR_VALID)) {
1960         core->mac[EICR] |= (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM);
1961         igb_update_interrupt_state(core);
1962     }
1963 }
1964 
1965 static void mailbox_interrupt_to_pf(IGBCore *core)
1966 {
1967     igb_set_interrupt_cause(core, E1000_ICR_VMMB);
1968 }
1969 
1970 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val)
1971 {
1972     uint16_t vfn = index - P2VMAILBOX0;
1973 
1974     trace_igb_set_pfmailbox(vfn, val);
1975 
1976     if (val & E1000_P2VMAILBOX_STS) {
1977         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS;
1978         mailbox_interrupt_to_vf(core, vfn);
1979     }
1980 
1981     if (val & E1000_P2VMAILBOX_ACK) {
1982         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK;
1983         mailbox_interrupt_to_vf(core, vfn);
1984     }
1985 
1986     /* Buffer Taken by PF (can be set only if the VFU is cleared). */
1987     if (val & E1000_P2VMAILBOX_PFU) {
1988         if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) {
1989             core->mac[index] |= E1000_P2VMAILBOX_PFU;
1990             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU;
1991         }
1992     } else {
1993         core->mac[index] &= ~E1000_P2VMAILBOX_PFU;
1994         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU;
1995     }
1996 
1997     if (val & E1000_P2VMAILBOX_RVFU) {
1998         core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU;
1999         core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) |
2000                                 (E1000_MBVFICR_VFREQ_VF1 << vfn));
2001     }
2002 }
2003 
2004 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val)
2005 {
2006     uint16_t vfn = index - V2PMAILBOX0;
2007 
2008     trace_igb_set_vfmailbox(vfn, val);
2009 
2010     if (val & E1000_V2PMAILBOX_REQ) {
2011         core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn;
2012         mailbox_interrupt_to_pf(core);
2013     }
2014 
2015     if (val & E1000_V2PMAILBOX_ACK) {
2016         core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn;
2017         mailbox_interrupt_to_pf(core);
2018     }
2019 
2020     /* Buffer Taken by VF (can be set only if the PFU is cleared). */
2021     if (val & E1000_V2PMAILBOX_VFU) {
2022         if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) {
2023             core->mac[index] |= E1000_V2PMAILBOX_VFU;
2024             core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU;
2025         }
2026     } else {
2027         core->mac[index] &= ~E1000_V2PMAILBOX_VFU;
2028         core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU;
2029     }
2030 }
2031 
2032 static void igb_vf_reset(IGBCore *core, uint16_t vfn)
2033 {
2034     uint16_t qn0 = vfn;
2035     uint16_t qn1 = vfn + IGB_NUM_VM_POOLS;
2036 
2037     /* disable Rx and Tx for the VF*/
2038     core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2039     core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE;
2040     core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2041     core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE;
2042     core->mac[VFRE] &= ~BIT(vfn);
2043     core->mac[VFTE] &= ~BIT(vfn);
2044     /* indicate VF reset to PF */
2045     core->mac[VFLRE] |= BIT(vfn);
2046     /* VFLRE and mailbox use the same interrupt cause */
2047     mailbox_interrupt_to_pf(core);
2048 }
2049 
2050 static void igb_w1c(IGBCore *core, int index, uint32_t val)
2051 {
2052     core->mac[index] &= ~val;
2053 }
2054 
2055 static void igb_set_eimc(IGBCore *core, int index, uint32_t val)
2056 {
2057     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2058 
2059     /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */
2060     core->mac[EIMS] &=
2061         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2062 
2063     trace_igb_irq_write_eimc(val, core->mac[EIMS], msix);
2064     igb_update_interrupt_state(core);
2065 }
2066 
2067 static void igb_set_eiac(IGBCore *core, int index, uint32_t val)
2068 {
2069     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2070 
2071     if (msix) {
2072         trace_igb_irq_write_eiac(val);
2073 
2074         /*
2075          * TODO: When using IOV, the bits that correspond to MSI-X vectors
2076          * that are assigned to a VF are read-only.
2077          */
2078         core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK);
2079     }
2080 }
2081 
2082 static void igb_set_eiam(IGBCore *core, int index, uint32_t val)
2083 {
2084     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2085 
2086     /*
2087      * TODO: When using IOV, the bits that correspond to MSI-X vectors that
2088      * are assigned to a VF are read-only.
2089      */
2090     core->mac[EIAM] |=
2091         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2092 
2093     trace_igb_irq_write_eiam(val, msix);
2094 }
2095 
2096 static void igb_set_eicr(IGBCore *core, int index, uint32_t val)
2097 {
2098     bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE);
2099 
2100     /*
2101      * TODO: In IOV mode, only bit zero of this vector is available for the PF
2102      * function.
2103      */
2104     core->mac[EICR] &=
2105         ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK));
2106 
2107     trace_igb_irq_write_eicr(val, msix);
2108     igb_update_interrupt_state(core);
2109 }
2110 
2111 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val)
2112 {
2113     uint16_t vfn;
2114 
2115     if (val & E1000_CTRL_RST) {
2116         vfn = (index - PVTCTRL0) / 0x40;
2117         igb_vf_reset(core, vfn);
2118     }
2119 }
2120 
2121 static void igb_set_vteics(IGBCore *core, int index, uint32_t val)
2122 {
2123     uint16_t vfn = (index - PVTEICS0) / 0x40;
2124 
2125     core->mac[index] = val;
2126     igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2127 }
2128 
2129 static void igb_set_vteims(IGBCore *core, int index, uint32_t val)
2130 {
2131     uint16_t vfn = (index - PVTEIMS0) / 0x40;
2132 
2133     core->mac[index] = val;
2134     igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2135 }
2136 
2137 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val)
2138 {
2139     uint16_t vfn = (index - PVTEIMC0) / 0x40;
2140 
2141     core->mac[index] = val;
2142     igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2143 }
2144 
2145 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val)
2146 {
2147     uint16_t vfn = (index - PVTEIAC0) / 0x40;
2148 
2149     core->mac[index] = val;
2150     igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2151 }
2152 
2153 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val)
2154 {
2155     uint16_t vfn = (index - PVTEIAM0) / 0x40;
2156 
2157     core->mac[index] = val;
2158     igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2159 }
2160 
2161 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val)
2162 {
2163     uint16_t vfn = (index - PVTEICR0) / 0x40;
2164 
2165     core->mac[index] = val;
2166     igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM));
2167 }
2168 
2169 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val)
2170 {
2171     uint16_t vfn = (index - VTIVAR);
2172     uint16_t qn = vfn;
2173     uint8_t ent;
2174     int n;
2175 
2176     core->mac[index] = val;
2177 
2178     /* Get assigned vector associated with queue Rx#0. */
2179     if ((val & E1000_IVAR_VALID)) {
2180         n = igb_ivar_entry_rx(qn);
2181         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7)));
2182         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2183     }
2184 
2185     /* Get assigned vector associated with queue Tx#0 */
2186     ent = val >> 8;
2187     if ((ent & E1000_IVAR_VALID)) {
2188         n = igb_ivar_entry_tx(qn);
2189         ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7)));
2190         core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4);
2191     }
2192 
2193     /*
2194      * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now.
2195      */
2196 }
2197 
2198 static inline void
2199 igb_autoneg_timer(void *opaque)
2200 {
2201     IGBCore *core = opaque;
2202     if (!qemu_get_queue(core->owner_nic)->link_down) {
2203         e1000x_update_regs_on_autoneg_done(core->mac, core->phy);
2204         igb_start_recv(core);
2205 
2206         igb_update_flowctl_status(core);
2207         /* signal link status change to the guest */
2208         igb_set_interrupt_cause(core, E1000_ICR_LSC);
2209     }
2210 }
2211 
2212 static inline uint16_t
2213 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2214 {
2215     uint16_t index = (addr & 0x1ffff) >> 2;
2216     return index + (mac_reg_access[index] & 0xfffe);
2217 }
2218 
2219 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = {
2220     [MII_BMCR]                   = PHY_RW,
2221     [MII_BMSR]                   = PHY_R,
2222     [MII_PHYID1]                 = PHY_R,
2223     [MII_PHYID2]                 = PHY_R,
2224     [MII_ANAR]                   = PHY_RW,
2225     [MII_ANLPAR]                 = PHY_R,
2226     [MII_ANER]                   = PHY_R,
2227     [MII_ANNP]                   = PHY_RW,
2228     [MII_ANLPRNP]                = PHY_R,
2229     [MII_CTRL1000]               = PHY_RW,
2230     [MII_STAT1000]               = PHY_R,
2231     [MII_EXTSTAT]                = PHY_R,
2232 
2233     [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW,
2234     [IGP01E1000_PHY_PORT_STATUS] = PHY_R,
2235     [IGP01E1000_PHY_PORT_CTRL]   = PHY_RW,
2236     [IGP01E1000_PHY_LINK_HEALTH] = PHY_R,
2237     [IGP02E1000_PHY_POWER_MGMT]  = PHY_RW,
2238     [IGP01E1000_PHY_PAGE_SELECT] = PHY_W
2239 };
2240 
2241 static void
2242 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data)
2243 {
2244     assert(addr <= MAX_PHY_REG_ADDRESS);
2245 
2246     if (addr == MII_BMCR) {
2247         igb_set_phy_ctrl(core, data);
2248     } else {
2249         core->phy[addr] = data;
2250     }
2251 }
2252 
2253 static void
2254 igb_set_mdic(IGBCore *core, int index, uint32_t val)
2255 {
2256     uint32_t data = val & E1000_MDIC_DATA_MASK;
2257     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2258 
2259     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2260         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2261     } else if (val & E1000_MDIC_OP_READ) {
2262         if (!(igb_phy_regcap[addr] & PHY_R)) {
2263             trace_igb_core_mdic_read_unhandled(addr);
2264             val |= E1000_MDIC_ERROR;
2265         } else {
2266             val = (val ^ data) | core->phy[addr];
2267             trace_igb_core_mdic_read(addr, val);
2268         }
2269     } else if (val & E1000_MDIC_OP_WRITE) {
2270         if (!(igb_phy_regcap[addr] & PHY_W)) {
2271             trace_igb_core_mdic_write_unhandled(addr);
2272             val |= E1000_MDIC_ERROR;
2273         } else {
2274             trace_igb_core_mdic_write(addr, data);
2275             igb_phy_reg_write(core, addr, data);
2276         }
2277     }
2278     core->mac[MDIC] = val | E1000_MDIC_READY;
2279 
2280     if (val & E1000_MDIC_INT_EN) {
2281         igb_set_interrupt_cause(core, E1000_ICR_MDAC);
2282     }
2283 }
2284 
2285 static void
2286 igb_set_rdt(IGBCore *core, int index, uint32_t val)
2287 {
2288     core->mac[index] = val & 0xffff;
2289     trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val);
2290     igb_start_recv(core);
2291 }
2292 
2293 static void
2294 igb_set_status(IGBCore *core, int index, uint32_t val)
2295 {
2296     if ((val & E1000_STATUS_PHYRA) == 0) {
2297         core->mac[index] &= ~E1000_STATUS_PHYRA;
2298     }
2299 }
2300 
2301 static void
2302 igb_set_ctrlext(IGBCore *core, int index, uint32_t val)
2303 {
2304     trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2305                                   !!(val & E1000_CTRL_EXT_SPD_BYPS),
2306                                   !!(val & E1000_CTRL_EXT_PFRSTD));
2307 
2308     /* Zero self-clearing bits */
2309     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2310     core->mac[CTRL_EXT] = val;
2311 
2312     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) {
2313         for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
2314             core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI;
2315             core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD;
2316         }
2317     }
2318 }
2319 
2320 static void
2321 igb_set_pbaclr(IGBCore *core, int index, uint32_t val)
2322 {
2323     int i;
2324 
2325     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2326 
2327     if (!msix_enabled(core->owner)) {
2328         return;
2329     }
2330 
2331     for (i = 0; i < IGB_INTR_NUM; i++) {
2332         if (core->mac[PBACLR] & BIT(i)) {
2333             msix_clr_pending(core->owner, i);
2334         }
2335     }
2336 }
2337 
2338 static void
2339 igb_set_fcrth(IGBCore *core, int index, uint32_t val)
2340 {
2341     core->mac[FCRTH] = val & 0xFFF8;
2342 }
2343 
2344 static void
2345 igb_set_fcrtl(IGBCore *core, int index, uint32_t val)
2346 {
2347     core->mac[FCRTL] = val & 0x8000FFF8;
2348 }
2349 
2350 #define IGB_LOW_BITS_SET_FUNC(num)                             \
2351     static void                                                \
2352     igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \
2353     {                                                          \
2354         core->mac[index] = val & (BIT(num) - 1);               \
2355     }
2356 
2357 IGB_LOW_BITS_SET_FUNC(4)
2358 IGB_LOW_BITS_SET_FUNC(13)
2359 IGB_LOW_BITS_SET_FUNC(16)
2360 
2361 static void
2362 igb_set_dlen(IGBCore *core, int index, uint32_t val)
2363 {
2364     core->mac[index] = val & 0xffff0;
2365 }
2366 
2367 static void
2368 igb_set_dbal(IGBCore *core, int index, uint32_t val)
2369 {
2370     core->mac[index] = val & E1000_XDBAL_MASK;
2371 }
2372 
2373 static void
2374 igb_set_tdt(IGBCore *core, int index, uint32_t val)
2375 {
2376     IGB_TxRing txr;
2377     int qn = igb_mq_queue_idx(TDT0, index);
2378 
2379     core->mac[index] = val & 0xffff;
2380 
2381     igb_tx_ring_init(core, &txr, qn);
2382     igb_start_xmit(core, &txr);
2383 }
2384 
2385 static void
2386 igb_set_ics(IGBCore *core, int index, uint32_t val)
2387 {
2388     trace_e1000e_irq_write_ics(val);
2389     igb_set_interrupt_cause(core, val);
2390 }
2391 
2392 static void
2393 igb_set_imc(IGBCore *core, int index, uint32_t val)
2394 {
2395     trace_e1000e_irq_ims_clear_set_imc(val);
2396     igb_clear_ims_bits(core, val);
2397     igb_update_interrupt_state(core);
2398 }
2399 
2400 static void
2401 igb_set_ims(IGBCore *core, int index, uint32_t val)
2402 {
2403     uint32_t valid_val = val & 0x77D4FBFD;
2404 
2405     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2406     core->mac[IMS] |= valid_val;
2407     igb_update_interrupt_state(core);
2408 }
2409 
2410 static void igb_commit_icr(IGBCore *core)
2411 {
2412     /*
2413      * If GPIE.NSICR = 0, then the copy of IAM to IMS will occur only if at
2414      * least one bit is set in the IMS and there is a true interrupt as
2415      * reflected in ICR.INTA.
2416      */
2417     if ((core->mac[GPIE] & E1000_GPIE_NSICR) ||
2418         (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) {
2419         igb_set_ims(core, IMS, core->mac[IAM]);
2420     } else {
2421         igb_update_interrupt_state(core);
2422     }
2423 }
2424 
2425 static void igb_set_icr(IGBCore *core, int index, uint32_t val)
2426 {
2427     uint32_t icr = core->mac[ICR] & ~val;
2428 
2429     trace_igb_irq_icr_write(val, core->mac[ICR], icr);
2430     core->mac[ICR] = icr;
2431     igb_commit_icr(core);
2432 }
2433 
2434 static uint32_t
2435 igb_mac_readreg(IGBCore *core, int index)
2436 {
2437     return core->mac[index];
2438 }
2439 
2440 static uint32_t
2441 igb_mac_ics_read(IGBCore *core, int index)
2442 {
2443     trace_e1000e_irq_read_ics(core->mac[ICS]);
2444     return core->mac[ICS];
2445 }
2446 
2447 static uint32_t
2448 igb_mac_ims_read(IGBCore *core, int index)
2449 {
2450     trace_e1000e_irq_read_ims(core->mac[IMS]);
2451     return core->mac[IMS];
2452 }
2453 
2454 static uint32_t
2455 igb_mac_swsm_read(IGBCore *core, int index)
2456 {
2457     uint32_t val = core->mac[SWSM];
2458     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2459     return val;
2460 }
2461 
2462 static uint32_t
2463 igb_mac_eitr_read(IGBCore *core, int index)
2464 {
2465     return core->eitr_guest_value[index - EITR0];
2466 }
2467 
2468 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index)
2469 {
2470     uint32_t val = core->mac[index];
2471 
2472     core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK |
2473                           E1000_V2PMAILBOX_RSTD);
2474 
2475     return val;
2476 }
2477 
2478 static uint32_t
2479 igb_mac_icr_read(IGBCore *core, int index)
2480 {
2481     uint32_t ret = core->mac[ICR];
2482     trace_e1000e_irq_icr_read_entry(ret);
2483 
2484     if (core->mac[GPIE] & E1000_GPIE_NSICR) {
2485         trace_igb_irq_icr_clear_gpie_nsicr();
2486         core->mac[ICR] = 0;
2487     } else if (core->mac[IMS] == 0) {
2488         trace_e1000e_irq_icr_clear_zero_ims();
2489         core->mac[ICR] = 0;
2490     } else if (!msix_enabled(core->owner)) {
2491         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2492         core->mac[ICR] = 0;
2493     }
2494 
2495     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2496     igb_commit_icr(core);
2497     return ret;
2498 }
2499 
2500 static uint32_t
2501 igb_mac_read_clr4(IGBCore *core, int index)
2502 {
2503     uint32_t ret = core->mac[index];
2504 
2505     core->mac[index] = 0;
2506     return ret;
2507 }
2508 
2509 static uint32_t
2510 igb_mac_read_clr8(IGBCore *core, int index)
2511 {
2512     uint32_t ret = core->mac[index];
2513 
2514     core->mac[index] = 0;
2515     core->mac[index - 1] = 0;
2516     return ret;
2517 }
2518 
2519 static uint32_t
2520 igb_get_ctrl(IGBCore *core, int index)
2521 {
2522     uint32_t val = core->mac[CTRL];
2523 
2524     trace_e1000e_link_read_params(
2525         !!(val & E1000_CTRL_ASDE),
2526         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2527         !!(val & E1000_CTRL_FRCSPD),
2528         !!(val & E1000_CTRL_FRCDPX),
2529         !!(val & E1000_CTRL_RFCE),
2530         !!(val & E1000_CTRL_TFCE));
2531 
2532     return val;
2533 }
2534 
2535 static uint32_t igb_get_status(IGBCore *core, int index)
2536 {
2537     uint32_t res = core->mac[STATUS];
2538     uint16_t num_vfs = pcie_sriov_num_vfs(core->owner);
2539 
2540     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2541         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2542     } else {
2543         res |= E1000_STATUS_FD;
2544     }
2545 
2546     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2547         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2548         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2549         case E1000_CTRL_SPD_10:
2550             res |= E1000_STATUS_SPEED_10;
2551             break;
2552         case E1000_CTRL_SPD_100:
2553             res |= E1000_STATUS_SPEED_100;
2554             break;
2555         case E1000_CTRL_SPD_1000:
2556         default:
2557             res |= E1000_STATUS_SPEED_1000;
2558             break;
2559         }
2560     } else {
2561         res |= E1000_STATUS_SPEED_1000;
2562     }
2563 
2564     if (num_vfs) {
2565         res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT;
2566         res |= E1000_STATUS_IOV_MODE;
2567     }
2568 
2569     /*
2570      * Windows driver 12.18.9.23 resets if E1000_STATUS_GIO_MASTER_ENABLE is
2571      * left set after E1000_CTRL_LRST is set.
2572      */
2573     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE) &&
2574         !(core->mac[CTRL] & E1000_CTRL_LRST)) {
2575         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2576     }
2577 
2578     return res;
2579 }
2580 
2581 static void
2582 igb_mac_writereg(IGBCore *core, int index, uint32_t val)
2583 {
2584     core->mac[index] = val;
2585 }
2586 
2587 static void
2588 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val)
2589 {
2590     uint32_t macaddr[2];
2591 
2592     core->mac[index] = val;
2593 
2594     macaddr[0] = cpu_to_le32(core->mac[RA]);
2595     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2596     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2597         (uint8_t *) macaddr);
2598 
2599     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2600 }
2601 
2602 static void
2603 igb_set_eecd(IGBCore *core, int index, uint32_t val)
2604 {
2605     static const uint32_t ro_bits = E1000_EECD_PRES          |
2606                                     E1000_EECD_AUTO_RD       |
2607                                     E1000_EECD_SIZE_EX_MASK;
2608 
2609     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2610 }
2611 
2612 static void
2613 igb_set_eerd(IGBCore *core, int index, uint32_t val)
2614 {
2615     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2616     uint32_t flags = 0;
2617     uint32_t data = 0;
2618 
2619     if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2620         data = core->eeprom[addr];
2621         flags = E1000_EERW_DONE;
2622     }
2623 
2624     core->mac[EERD] = flags                           |
2625                       (addr << E1000_EERW_ADDR_SHIFT) |
2626                       (data << E1000_EERW_DATA_SHIFT);
2627 }
2628 
2629 static void
2630 igb_set_eitr(IGBCore *core, int index, uint32_t val)
2631 {
2632     uint32_t eitr_num = index - EITR0;
2633 
2634     trace_igb_irq_eitr_set(eitr_num, val);
2635 
2636     core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR;
2637     core->mac[index] = val & 0x7FFE;
2638 }
2639 
2640 static void
2641 igb_update_rx_offloads(IGBCore *core)
2642 {
2643     int cso_state = igb_rx_l4_cso_enabled(core);
2644 
2645     trace_e1000e_rx_set_cso(cso_state);
2646 
2647     if (core->has_vnet) {
2648         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2649                          cso_state, 0, 0, 0, 0);
2650     }
2651 }
2652 
2653 static void
2654 igb_set_rxcsum(IGBCore *core, int index, uint32_t val)
2655 {
2656     core->mac[RXCSUM] = val;
2657     igb_update_rx_offloads(core);
2658 }
2659 
2660 static void
2661 igb_set_gcr(IGBCore *core, int index, uint32_t val)
2662 {
2663     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2664     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2665 }
2666 
2667 static uint32_t igb_get_systiml(IGBCore *core, int index)
2668 {
2669     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2670     return core->mac[SYSTIML];
2671 }
2672 
2673 static uint32_t igb_get_rxsatrh(IGBCore *core, int index)
2674 {
2675     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2676     return core->mac[RXSATRH];
2677 }
2678 
2679 static uint32_t igb_get_txstmph(IGBCore *core, int index)
2680 {
2681     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2682     return core->mac[TXSTMPH];
2683 }
2684 
2685 static void igb_set_timinca(IGBCore *core, int index, uint32_t val)
2686 {
2687     e1000x_set_timinca(core->mac, &core->timadj, val);
2688 }
2689 
2690 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val)
2691 {
2692     core->mac[TIMADJH] = val;
2693     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2694 }
2695 
2696 #define igb_getreg(x)    [x] = igb_mac_readreg
2697 typedef uint32_t (*readops)(IGBCore *, int);
2698 static const readops igb_macreg_readops[] = {
2699     igb_getreg(WUFC),
2700     igb_getreg(MANC),
2701     igb_getreg(TOTL),
2702     igb_getreg(RDT0),
2703     igb_getreg(RDT1),
2704     igb_getreg(RDT2),
2705     igb_getreg(RDT3),
2706     igb_getreg(RDT4),
2707     igb_getreg(RDT5),
2708     igb_getreg(RDT6),
2709     igb_getreg(RDT7),
2710     igb_getreg(RDT8),
2711     igb_getreg(RDT9),
2712     igb_getreg(RDT10),
2713     igb_getreg(RDT11),
2714     igb_getreg(RDT12),
2715     igb_getreg(RDT13),
2716     igb_getreg(RDT14),
2717     igb_getreg(RDT15),
2718     igb_getreg(RDBAH0),
2719     igb_getreg(RDBAH1),
2720     igb_getreg(RDBAH2),
2721     igb_getreg(RDBAH3),
2722     igb_getreg(RDBAH4),
2723     igb_getreg(RDBAH5),
2724     igb_getreg(RDBAH6),
2725     igb_getreg(RDBAH7),
2726     igb_getreg(RDBAH8),
2727     igb_getreg(RDBAH9),
2728     igb_getreg(RDBAH10),
2729     igb_getreg(RDBAH11),
2730     igb_getreg(RDBAH12),
2731     igb_getreg(RDBAH13),
2732     igb_getreg(RDBAH14),
2733     igb_getreg(RDBAH15),
2734     igb_getreg(TDBAL0),
2735     igb_getreg(TDBAL1),
2736     igb_getreg(TDBAL2),
2737     igb_getreg(TDBAL3),
2738     igb_getreg(TDBAL4),
2739     igb_getreg(TDBAL5),
2740     igb_getreg(TDBAL6),
2741     igb_getreg(TDBAL7),
2742     igb_getreg(TDBAL8),
2743     igb_getreg(TDBAL9),
2744     igb_getreg(TDBAL10),
2745     igb_getreg(TDBAL11),
2746     igb_getreg(TDBAL12),
2747     igb_getreg(TDBAL13),
2748     igb_getreg(TDBAL14),
2749     igb_getreg(TDBAL15),
2750     igb_getreg(RDLEN0),
2751     igb_getreg(RDLEN1),
2752     igb_getreg(RDLEN2),
2753     igb_getreg(RDLEN3),
2754     igb_getreg(RDLEN4),
2755     igb_getreg(RDLEN5),
2756     igb_getreg(RDLEN6),
2757     igb_getreg(RDLEN7),
2758     igb_getreg(RDLEN8),
2759     igb_getreg(RDLEN9),
2760     igb_getreg(RDLEN10),
2761     igb_getreg(RDLEN11),
2762     igb_getreg(RDLEN12),
2763     igb_getreg(RDLEN13),
2764     igb_getreg(RDLEN14),
2765     igb_getreg(RDLEN15),
2766     igb_getreg(SRRCTL0),
2767     igb_getreg(SRRCTL1),
2768     igb_getreg(SRRCTL2),
2769     igb_getreg(SRRCTL3),
2770     igb_getreg(SRRCTL4),
2771     igb_getreg(SRRCTL5),
2772     igb_getreg(SRRCTL6),
2773     igb_getreg(SRRCTL7),
2774     igb_getreg(SRRCTL8),
2775     igb_getreg(SRRCTL9),
2776     igb_getreg(SRRCTL10),
2777     igb_getreg(SRRCTL11),
2778     igb_getreg(SRRCTL12),
2779     igb_getreg(SRRCTL13),
2780     igb_getreg(SRRCTL14),
2781     igb_getreg(SRRCTL15),
2782     igb_getreg(LATECOL),
2783     igb_getreg(XONTXC),
2784     igb_getreg(TDFH),
2785     igb_getreg(TDFT),
2786     igb_getreg(TDFHS),
2787     igb_getreg(TDFTS),
2788     igb_getreg(TDFPC),
2789     igb_getreg(WUS),
2790     igb_getreg(RDFH),
2791     igb_getreg(RDFT),
2792     igb_getreg(RDFHS),
2793     igb_getreg(RDFTS),
2794     igb_getreg(RDFPC),
2795     igb_getreg(GORCL),
2796     igb_getreg(MGTPRC),
2797     igb_getreg(EERD),
2798     igb_getreg(EIAC),
2799     igb_getreg(MANC2H),
2800     igb_getreg(RXCSUM),
2801     igb_getreg(GSCL_3),
2802     igb_getreg(GSCN_2),
2803     igb_getreg(FCAH),
2804     igb_getreg(FCRTH),
2805     igb_getreg(FLOP),
2806     igb_getreg(RXSTMPH),
2807     igb_getreg(TXSTMPL),
2808     igb_getreg(TIMADJL),
2809     igb_getreg(RDH0),
2810     igb_getreg(RDH1),
2811     igb_getreg(RDH2),
2812     igb_getreg(RDH3),
2813     igb_getreg(RDH4),
2814     igb_getreg(RDH5),
2815     igb_getreg(RDH6),
2816     igb_getreg(RDH7),
2817     igb_getreg(RDH8),
2818     igb_getreg(RDH9),
2819     igb_getreg(RDH10),
2820     igb_getreg(RDH11),
2821     igb_getreg(RDH12),
2822     igb_getreg(RDH13),
2823     igb_getreg(RDH14),
2824     igb_getreg(RDH15),
2825     igb_getreg(TDT0),
2826     igb_getreg(TDT1),
2827     igb_getreg(TDT2),
2828     igb_getreg(TDT3),
2829     igb_getreg(TDT4),
2830     igb_getreg(TDT5),
2831     igb_getreg(TDT6),
2832     igb_getreg(TDT7),
2833     igb_getreg(TDT8),
2834     igb_getreg(TDT9),
2835     igb_getreg(TDT10),
2836     igb_getreg(TDT11),
2837     igb_getreg(TDT12),
2838     igb_getreg(TDT13),
2839     igb_getreg(TDT14),
2840     igb_getreg(TDT15),
2841     igb_getreg(TNCRS),
2842     igb_getreg(RJC),
2843     igb_getreg(IAM),
2844     igb_getreg(GSCL_2),
2845     igb_getreg(TIPG),
2846     igb_getreg(FLMNGCTL),
2847     igb_getreg(FLMNGCNT),
2848     igb_getreg(TSYNCTXCTL),
2849     igb_getreg(EEMNGDATA),
2850     igb_getreg(CTRL_EXT),
2851     igb_getreg(SYSTIMH),
2852     igb_getreg(EEMNGCTL),
2853     igb_getreg(FLMNGDATA),
2854     igb_getreg(TSYNCRXCTL),
2855     igb_getreg(LEDCTL),
2856     igb_getreg(TCTL),
2857     igb_getreg(TCTL_EXT),
2858     igb_getreg(DTXCTL),
2859     igb_getreg(RXPBS),
2860     igb_getreg(TDH0),
2861     igb_getreg(TDH1),
2862     igb_getreg(TDH2),
2863     igb_getreg(TDH3),
2864     igb_getreg(TDH4),
2865     igb_getreg(TDH5),
2866     igb_getreg(TDH6),
2867     igb_getreg(TDH7),
2868     igb_getreg(TDH8),
2869     igb_getreg(TDH9),
2870     igb_getreg(TDH10),
2871     igb_getreg(TDH11),
2872     igb_getreg(TDH12),
2873     igb_getreg(TDH13),
2874     igb_getreg(TDH14),
2875     igb_getreg(TDH15),
2876     igb_getreg(ECOL),
2877     igb_getreg(DC),
2878     igb_getreg(RLEC),
2879     igb_getreg(XOFFTXC),
2880     igb_getreg(RFC),
2881     igb_getreg(RNBC),
2882     igb_getreg(MGTPTC),
2883     igb_getreg(TIMINCA),
2884     igb_getreg(FACTPS),
2885     igb_getreg(GSCL_1),
2886     igb_getreg(GSCN_0),
2887     igb_getreg(PBACLR),
2888     igb_getreg(FCTTV),
2889     igb_getreg(RXSATRL),
2890     igb_getreg(TORL),
2891     igb_getreg(TDLEN0),
2892     igb_getreg(TDLEN1),
2893     igb_getreg(TDLEN2),
2894     igb_getreg(TDLEN3),
2895     igb_getreg(TDLEN4),
2896     igb_getreg(TDLEN5),
2897     igb_getreg(TDLEN6),
2898     igb_getreg(TDLEN7),
2899     igb_getreg(TDLEN8),
2900     igb_getreg(TDLEN9),
2901     igb_getreg(TDLEN10),
2902     igb_getreg(TDLEN11),
2903     igb_getreg(TDLEN12),
2904     igb_getreg(TDLEN13),
2905     igb_getreg(TDLEN14),
2906     igb_getreg(TDLEN15),
2907     igb_getreg(MCC),
2908     igb_getreg(WUC),
2909     igb_getreg(EECD),
2910     igb_getreg(FCRTV),
2911     igb_getreg(TXDCTL0),
2912     igb_getreg(TXDCTL1),
2913     igb_getreg(TXDCTL2),
2914     igb_getreg(TXDCTL3),
2915     igb_getreg(TXDCTL4),
2916     igb_getreg(TXDCTL5),
2917     igb_getreg(TXDCTL6),
2918     igb_getreg(TXDCTL7),
2919     igb_getreg(TXDCTL8),
2920     igb_getreg(TXDCTL9),
2921     igb_getreg(TXDCTL10),
2922     igb_getreg(TXDCTL11),
2923     igb_getreg(TXDCTL12),
2924     igb_getreg(TXDCTL13),
2925     igb_getreg(TXDCTL14),
2926     igb_getreg(TXDCTL15),
2927     igb_getreg(TXCTL0),
2928     igb_getreg(TXCTL1),
2929     igb_getreg(TXCTL2),
2930     igb_getreg(TXCTL3),
2931     igb_getreg(TXCTL4),
2932     igb_getreg(TXCTL5),
2933     igb_getreg(TXCTL6),
2934     igb_getreg(TXCTL7),
2935     igb_getreg(TXCTL8),
2936     igb_getreg(TXCTL9),
2937     igb_getreg(TXCTL10),
2938     igb_getreg(TXCTL11),
2939     igb_getreg(TXCTL12),
2940     igb_getreg(TXCTL13),
2941     igb_getreg(TXCTL14),
2942     igb_getreg(TXCTL15),
2943     igb_getreg(TDWBAL0),
2944     igb_getreg(TDWBAL1),
2945     igb_getreg(TDWBAL2),
2946     igb_getreg(TDWBAL3),
2947     igb_getreg(TDWBAL4),
2948     igb_getreg(TDWBAL5),
2949     igb_getreg(TDWBAL6),
2950     igb_getreg(TDWBAL7),
2951     igb_getreg(TDWBAL8),
2952     igb_getreg(TDWBAL9),
2953     igb_getreg(TDWBAL10),
2954     igb_getreg(TDWBAL11),
2955     igb_getreg(TDWBAL12),
2956     igb_getreg(TDWBAL13),
2957     igb_getreg(TDWBAL14),
2958     igb_getreg(TDWBAL15),
2959     igb_getreg(TDWBAH0),
2960     igb_getreg(TDWBAH1),
2961     igb_getreg(TDWBAH2),
2962     igb_getreg(TDWBAH3),
2963     igb_getreg(TDWBAH4),
2964     igb_getreg(TDWBAH5),
2965     igb_getreg(TDWBAH6),
2966     igb_getreg(TDWBAH7),
2967     igb_getreg(TDWBAH8),
2968     igb_getreg(TDWBAH9),
2969     igb_getreg(TDWBAH10),
2970     igb_getreg(TDWBAH11),
2971     igb_getreg(TDWBAH12),
2972     igb_getreg(TDWBAH13),
2973     igb_getreg(TDWBAH14),
2974     igb_getreg(TDWBAH15),
2975     igb_getreg(PVTCTRL0),
2976     igb_getreg(PVTCTRL1),
2977     igb_getreg(PVTCTRL2),
2978     igb_getreg(PVTCTRL3),
2979     igb_getreg(PVTCTRL4),
2980     igb_getreg(PVTCTRL5),
2981     igb_getreg(PVTCTRL6),
2982     igb_getreg(PVTCTRL7),
2983     igb_getreg(PVTEIMS0),
2984     igb_getreg(PVTEIMS1),
2985     igb_getreg(PVTEIMS2),
2986     igb_getreg(PVTEIMS3),
2987     igb_getreg(PVTEIMS4),
2988     igb_getreg(PVTEIMS5),
2989     igb_getreg(PVTEIMS6),
2990     igb_getreg(PVTEIMS7),
2991     igb_getreg(PVTEIAC0),
2992     igb_getreg(PVTEIAC1),
2993     igb_getreg(PVTEIAC2),
2994     igb_getreg(PVTEIAC3),
2995     igb_getreg(PVTEIAC4),
2996     igb_getreg(PVTEIAC5),
2997     igb_getreg(PVTEIAC6),
2998     igb_getreg(PVTEIAC7),
2999     igb_getreg(PVTEIAM0),
3000     igb_getreg(PVTEIAM1),
3001     igb_getreg(PVTEIAM2),
3002     igb_getreg(PVTEIAM3),
3003     igb_getreg(PVTEIAM4),
3004     igb_getreg(PVTEIAM5),
3005     igb_getreg(PVTEIAM6),
3006     igb_getreg(PVTEIAM7),
3007     igb_getreg(PVFGPRC0),
3008     igb_getreg(PVFGPRC1),
3009     igb_getreg(PVFGPRC2),
3010     igb_getreg(PVFGPRC3),
3011     igb_getreg(PVFGPRC4),
3012     igb_getreg(PVFGPRC5),
3013     igb_getreg(PVFGPRC6),
3014     igb_getreg(PVFGPRC7),
3015     igb_getreg(PVFGPTC0),
3016     igb_getreg(PVFGPTC1),
3017     igb_getreg(PVFGPTC2),
3018     igb_getreg(PVFGPTC3),
3019     igb_getreg(PVFGPTC4),
3020     igb_getreg(PVFGPTC5),
3021     igb_getreg(PVFGPTC6),
3022     igb_getreg(PVFGPTC7),
3023     igb_getreg(PVFGORC0),
3024     igb_getreg(PVFGORC1),
3025     igb_getreg(PVFGORC2),
3026     igb_getreg(PVFGORC3),
3027     igb_getreg(PVFGORC4),
3028     igb_getreg(PVFGORC5),
3029     igb_getreg(PVFGORC6),
3030     igb_getreg(PVFGORC7),
3031     igb_getreg(PVFGOTC0),
3032     igb_getreg(PVFGOTC1),
3033     igb_getreg(PVFGOTC2),
3034     igb_getreg(PVFGOTC3),
3035     igb_getreg(PVFGOTC4),
3036     igb_getreg(PVFGOTC5),
3037     igb_getreg(PVFGOTC6),
3038     igb_getreg(PVFGOTC7),
3039     igb_getreg(PVFMPRC0),
3040     igb_getreg(PVFMPRC1),
3041     igb_getreg(PVFMPRC2),
3042     igb_getreg(PVFMPRC3),
3043     igb_getreg(PVFMPRC4),
3044     igb_getreg(PVFMPRC5),
3045     igb_getreg(PVFMPRC6),
3046     igb_getreg(PVFMPRC7),
3047     igb_getreg(PVFGPRLBC0),
3048     igb_getreg(PVFGPRLBC1),
3049     igb_getreg(PVFGPRLBC2),
3050     igb_getreg(PVFGPRLBC3),
3051     igb_getreg(PVFGPRLBC4),
3052     igb_getreg(PVFGPRLBC5),
3053     igb_getreg(PVFGPRLBC6),
3054     igb_getreg(PVFGPRLBC7),
3055     igb_getreg(PVFGPTLBC0),
3056     igb_getreg(PVFGPTLBC1),
3057     igb_getreg(PVFGPTLBC2),
3058     igb_getreg(PVFGPTLBC3),
3059     igb_getreg(PVFGPTLBC4),
3060     igb_getreg(PVFGPTLBC5),
3061     igb_getreg(PVFGPTLBC6),
3062     igb_getreg(PVFGPTLBC7),
3063     igb_getreg(PVFGORLBC0),
3064     igb_getreg(PVFGORLBC1),
3065     igb_getreg(PVFGORLBC2),
3066     igb_getreg(PVFGORLBC3),
3067     igb_getreg(PVFGORLBC4),
3068     igb_getreg(PVFGORLBC5),
3069     igb_getreg(PVFGORLBC6),
3070     igb_getreg(PVFGORLBC7),
3071     igb_getreg(PVFGOTLBC0),
3072     igb_getreg(PVFGOTLBC1),
3073     igb_getreg(PVFGOTLBC2),
3074     igb_getreg(PVFGOTLBC3),
3075     igb_getreg(PVFGOTLBC4),
3076     igb_getreg(PVFGOTLBC5),
3077     igb_getreg(PVFGOTLBC6),
3078     igb_getreg(PVFGOTLBC7),
3079     igb_getreg(RCTL),
3080     igb_getreg(MDIC),
3081     igb_getreg(FCRUC),
3082     igb_getreg(VET),
3083     igb_getreg(RDBAL0),
3084     igb_getreg(RDBAL1),
3085     igb_getreg(RDBAL2),
3086     igb_getreg(RDBAL3),
3087     igb_getreg(RDBAL4),
3088     igb_getreg(RDBAL5),
3089     igb_getreg(RDBAL6),
3090     igb_getreg(RDBAL7),
3091     igb_getreg(RDBAL8),
3092     igb_getreg(RDBAL9),
3093     igb_getreg(RDBAL10),
3094     igb_getreg(RDBAL11),
3095     igb_getreg(RDBAL12),
3096     igb_getreg(RDBAL13),
3097     igb_getreg(RDBAL14),
3098     igb_getreg(RDBAL15),
3099     igb_getreg(TDBAH0),
3100     igb_getreg(TDBAH1),
3101     igb_getreg(TDBAH2),
3102     igb_getreg(TDBAH3),
3103     igb_getreg(TDBAH4),
3104     igb_getreg(TDBAH5),
3105     igb_getreg(TDBAH6),
3106     igb_getreg(TDBAH7),
3107     igb_getreg(TDBAH8),
3108     igb_getreg(TDBAH9),
3109     igb_getreg(TDBAH10),
3110     igb_getreg(TDBAH11),
3111     igb_getreg(TDBAH12),
3112     igb_getreg(TDBAH13),
3113     igb_getreg(TDBAH14),
3114     igb_getreg(TDBAH15),
3115     igb_getreg(SCC),
3116     igb_getreg(COLC),
3117     igb_getreg(XOFFRXC),
3118     igb_getreg(IPAV),
3119     igb_getreg(GOTCL),
3120     igb_getreg(MGTPDC),
3121     igb_getreg(GCR),
3122     igb_getreg(MFVAL),
3123     igb_getreg(FUNCTAG),
3124     igb_getreg(GSCL_4),
3125     igb_getreg(GSCN_3),
3126     igb_getreg(MRQC),
3127     igb_getreg(FCT),
3128     igb_getreg(FLA),
3129     igb_getreg(RXDCTL0),
3130     igb_getreg(RXDCTL1),
3131     igb_getreg(RXDCTL2),
3132     igb_getreg(RXDCTL3),
3133     igb_getreg(RXDCTL4),
3134     igb_getreg(RXDCTL5),
3135     igb_getreg(RXDCTL6),
3136     igb_getreg(RXDCTL7),
3137     igb_getreg(RXDCTL8),
3138     igb_getreg(RXDCTL9),
3139     igb_getreg(RXDCTL10),
3140     igb_getreg(RXDCTL11),
3141     igb_getreg(RXDCTL12),
3142     igb_getreg(RXDCTL13),
3143     igb_getreg(RXDCTL14),
3144     igb_getreg(RXDCTL15),
3145     igb_getreg(RXSTMPL),
3146     igb_getreg(TIMADJH),
3147     igb_getreg(FCRTL),
3148     igb_getreg(XONRXC),
3149     igb_getreg(RFCTL),
3150     igb_getreg(GSCN_1),
3151     igb_getreg(FCAL),
3152     igb_getreg(GPIE),
3153     igb_getreg(TXPBS),
3154     igb_getreg(RLPML),
3155 
3156     [TOTH]    = igb_mac_read_clr8,
3157     [GOTCH]   = igb_mac_read_clr8,
3158     [PRC64]   = igb_mac_read_clr4,
3159     [PRC255]  = igb_mac_read_clr4,
3160     [PRC1023] = igb_mac_read_clr4,
3161     [PTC64]   = igb_mac_read_clr4,
3162     [PTC255]  = igb_mac_read_clr4,
3163     [PTC1023] = igb_mac_read_clr4,
3164     [GPRC]    = igb_mac_read_clr4,
3165     [TPT]     = igb_mac_read_clr4,
3166     [RUC]     = igb_mac_read_clr4,
3167     [BPRC]    = igb_mac_read_clr4,
3168     [MPTC]    = igb_mac_read_clr4,
3169     [IAC]     = igb_mac_read_clr4,
3170     [ICR]     = igb_mac_icr_read,
3171     [STATUS]  = igb_get_status,
3172     [ICS]     = igb_mac_ics_read,
3173     /*
3174      * 8.8.10: Reading the IMC register returns the value of the IMS register.
3175      */
3176     [IMC]     = igb_mac_ims_read,
3177     [TORH]    = igb_mac_read_clr8,
3178     [GORCH]   = igb_mac_read_clr8,
3179     [PRC127]  = igb_mac_read_clr4,
3180     [PRC511]  = igb_mac_read_clr4,
3181     [PRC1522] = igb_mac_read_clr4,
3182     [PTC127]  = igb_mac_read_clr4,
3183     [PTC511]  = igb_mac_read_clr4,
3184     [PTC1522] = igb_mac_read_clr4,
3185     [GPTC]    = igb_mac_read_clr4,
3186     [TPR]     = igb_mac_read_clr4,
3187     [ROC]     = igb_mac_read_clr4,
3188     [MPRC]    = igb_mac_read_clr4,
3189     [BPTC]    = igb_mac_read_clr4,
3190     [TSCTC]   = igb_mac_read_clr4,
3191     [CTRL]    = igb_get_ctrl,
3192     [SWSM]    = igb_mac_swsm_read,
3193     [IMS]     = igb_mac_ims_read,
3194     [SYSTIML] = igb_get_systiml,
3195     [RXSATRH] = igb_get_rxsatrh,
3196     [TXSTMPH] = igb_get_txstmph,
3197 
3198     [CRCERRS ... MPC]      = igb_mac_readreg,
3199     [IP6AT ... IP6AT + 3]  = igb_mac_readreg,
3200     [IP4AT ... IP4AT + 6]  = igb_mac_readreg,
3201     [RA ... RA + 31]       = igb_mac_readreg,
3202     [RA2 ... RA2 + 31]     = igb_mac_readreg,
3203     [WUPM ... WUPM + 31]   = igb_mac_readreg,
3204     [MTA ... MTA + E1000_MC_TBL_SIZE - 1]    = igb_mac_readreg,
3205     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = igb_mac_readreg,
3206     [FFMT ... FFMT + 254]  = igb_mac_readreg,
3207     [MDEF ... MDEF + 7]    = igb_mac_readreg,
3208     [FTFT ... FTFT + 254]  = igb_mac_readreg,
3209     [RETA ... RETA + 31]   = igb_mac_readreg,
3210     [RSSRK ... RSSRK + 9]  = igb_mac_readreg,
3211     [MAVTV0 ... MAVTV3]    = igb_mac_readreg,
3212     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read,
3213     [PVTEICR0] = igb_mac_read_clr4,
3214     [PVTEICR1] = igb_mac_read_clr4,
3215     [PVTEICR2] = igb_mac_read_clr4,
3216     [PVTEICR3] = igb_mac_read_clr4,
3217     [PVTEICR4] = igb_mac_read_clr4,
3218     [PVTEICR5] = igb_mac_read_clr4,
3219     [PVTEICR6] = igb_mac_read_clr4,
3220     [PVTEICR7] = igb_mac_read_clr4,
3221 
3222     /* IGB specific: */
3223     [FWSM]       = igb_mac_readreg,
3224     [SW_FW_SYNC] = igb_mac_readreg,
3225     [HTCBDPC]    = igb_mac_read_clr4,
3226     [EICR]       = igb_mac_read_clr4,
3227     [EIMS]       = igb_mac_readreg,
3228     [EIAM]       = igb_mac_readreg,
3229     [IVAR0 ... IVAR0 + 7] = igb_mac_readreg,
3230     igb_getreg(IVAR_MISC),
3231     igb_getreg(VT_CTL),
3232     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg,
3233     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read,
3234     igb_getreg(MBVFICR),
3235     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg,
3236     igb_getreg(MBVFIMR),
3237     igb_getreg(VFLRE),
3238     igb_getreg(VFRE),
3239     igb_getreg(VFTE),
3240     igb_getreg(QDE),
3241     igb_getreg(DTXSWC),
3242     igb_getreg(RPLOLR),
3243     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg,
3244     [VMVIR0 ... VMVIR7] = igb_mac_readreg,
3245     [VMOLR0 ... VMOLR7] = igb_mac_readreg,
3246     [WVBR] = igb_mac_read_clr4,
3247     [RQDPC0] = igb_mac_read_clr4,
3248     [RQDPC1] = igb_mac_read_clr4,
3249     [RQDPC2] = igb_mac_read_clr4,
3250     [RQDPC3] = igb_mac_read_clr4,
3251     [RQDPC4] = igb_mac_read_clr4,
3252     [RQDPC5] = igb_mac_read_clr4,
3253     [RQDPC6] = igb_mac_read_clr4,
3254     [RQDPC7] = igb_mac_read_clr4,
3255     [RQDPC8] = igb_mac_read_clr4,
3256     [RQDPC9] = igb_mac_read_clr4,
3257     [RQDPC10] = igb_mac_read_clr4,
3258     [RQDPC11] = igb_mac_read_clr4,
3259     [RQDPC12] = igb_mac_read_clr4,
3260     [RQDPC13] = igb_mac_read_clr4,
3261     [RQDPC14] = igb_mac_read_clr4,
3262     [RQDPC15] = igb_mac_read_clr4,
3263     [VTIVAR ... VTIVAR + 7] = igb_mac_readreg,
3264     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg,
3265 };
3266 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) };
3267 
3268 #define igb_putreg(x)    [x] = igb_mac_writereg
3269 typedef void (*writeops)(IGBCore *, int, uint32_t);
3270 static const writeops igb_macreg_writeops[] = {
3271     igb_putreg(SWSM),
3272     igb_putreg(WUFC),
3273     igb_putreg(RDBAH0),
3274     igb_putreg(RDBAH1),
3275     igb_putreg(RDBAH2),
3276     igb_putreg(RDBAH3),
3277     igb_putreg(RDBAH4),
3278     igb_putreg(RDBAH5),
3279     igb_putreg(RDBAH6),
3280     igb_putreg(RDBAH7),
3281     igb_putreg(RDBAH8),
3282     igb_putreg(RDBAH9),
3283     igb_putreg(RDBAH10),
3284     igb_putreg(RDBAH11),
3285     igb_putreg(RDBAH12),
3286     igb_putreg(RDBAH13),
3287     igb_putreg(RDBAH14),
3288     igb_putreg(RDBAH15),
3289     igb_putreg(SRRCTL0),
3290     igb_putreg(SRRCTL1),
3291     igb_putreg(SRRCTL2),
3292     igb_putreg(SRRCTL3),
3293     igb_putreg(SRRCTL4),
3294     igb_putreg(SRRCTL5),
3295     igb_putreg(SRRCTL6),
3296     igb_putreg(SRRCTL7),
3297     igb_putreg(SRRCTL8),
3298     igb_putreg(SRRCTL9),
3299     igb_putreg(SRRCTL10),
3300     igb_putreg(SRRCTL11),
3301     igb_putreg(SRRCTL12),
3302     igb_putreg(SRRCTL13),
3303     igb_putreg(SRRCTL14),
3304     igb_putreg(SRRCTL15),
3305     igb_putreg(RXDCTL0),
3306     igb_putreg(RXDCTL1),
3307     igb_putreg(RXDCTL2),
3308     igb_putreg(RXDCTL3),
3309     igb_putreg(RXDCTL4),
3310     igb_putreg(RXDCTL5),
3311     igb_putreg(RXDCTL6),
3312     igb_putreg(RXDCTL7),
3313     igb_putreg(RXDCTL8),
3314     igb_putreg(RXDCTL9),
3315     igb_putreg(RXDCTL10),
3316     igb_putreg(RXDCTL11),
3317     igb_putreg(RXDCTL12),
3318     igb_putreg(RXDCTL13),
3319     igb_putreg(RXDCTL14),
3320     igb_putreg(RXDCTL15),
3321     igb_putreg(LEDCTL),
3322     igb_putreg(TCTL),
3323     igb_putreg(TCTL_EXT),
3324     igb_putreg(DTXCTL),
3325     igb_putreg(RXPBS),
3326     igb_putreg(RQDPC0),
3327     igb_putreg(FCAL),
3328     igb_putreg(FCRUC),
3329     igb_putreg(WUC),
3330     igb_putreg(WUS),
3331     igb_putreg(IPAV),
3332     igb_putreg(TDBAH0),
3333     igb_putreg(TDBAH1),
3334     igb_putreg(TDBAH2),
3335     igb_putreg(TDBAH3),
3336     igb_putreg(TDBAH4),
3337     igb_putreg(TDBAH5),
3338     igb_putreg(TDBAH6),
3339     igb_putreg(TDBAH7),
3340     igb_putreg(TDBAH8),
3341     igb_putreg(TDBAH9),
3342     igb_putreg(TDBAH10),
3343     igb_putreg(TDBAH11),
3344     igb_putreg(TDBAH12),
3345     igb_putreg(TDBAH13),
3346     igb_putreg(TDBAH14),
3347     igb_putreg(TDBAH15),
3348     igb_putreg(IAM),
3349     igb_putreg(MANC),
3350     igb_putreg(MANC2H),
3351     igb_putreg(MFVAL),
3352     igb_putreg(FACTPS),
3353     igb_putreg(FUNCTAG),
3354     igb_putreg(GSCL_1),
3355     igb_putreg(GSCL_2),
3356     igb_putreg(GSCL_3),
3357     igb_putreg(GSCL_4),
3358     igb_putreg(GSCN_0),
3359     igb_putreg(GSCN_1),
3360     igb_putreg(GSCN_2),
3361     igb_putreg(GSCN_3),
3362     igb_putreg(MRQC),
3363     igb_putreg(FLOP),
3364     igb_putreg(FLA),
3365     igb_putreg(TXDCTL0),
3366     igb_putreg(TXDCTL1),
3367     igb_putreg(TXDCTL2),
3368     igb_putreg(TXDCTL3),
3369     igb_putreg(TXDCTL4),
3370     igb_putreg(TXDCTL5),
3371     igb_putreg(TXDCTL6),
3372     igb_putreg(TXDCTL7),
3373     igb_putreg(TXDCTL8),
3374     igb_putreg(TXDCTL9),
3375     igb_putreg(TXDCTL10),
3376     igb_putreg(TXDCTL11),
3377     igb_putreg(TXDCTL12),
3378     igb_putreg(TXDCTL13),
3379     igb_putreg(TXDCTL14),
3380     igb_putreg(TXDCTL15),
3381     igb_putreg(TXCTL0),
3382     igb_putreg(TXCTL1),
3383     igb_putreg(TXCTL2),
3384     igb_putreg(TXCTL3),
3385     igb_putreg(TXCTL4),
3386     igb_putreg(TXCTL5),
3387     igb_putreg(TXCTL6),
3388     igb_putreg(TXCTL7),
3389     igb_putreg(TXCTL8),
3390     igb_putreg(TXCTL9),
3391     igb_putreg(TXCTL10),
3392     igb_putreg(TXCTL11),
3393     igb_putreg(TXCTL12),
3394     igb_putreg(TXCTL13),
3395     igb_putreg(TXCTL14),
3396     igb_putreg(TXCTL15),
3397     igb_putreg(TDWBAL0),
3398     igb_putreg(TDWBAL1),
3399     igb_putreg(TDWBAL2),
3400     igb_putreg(TDWBAL3),
3401     igb_putreg(TDWBAL4),
3402     igb_putreg(TDWBAL5),
3403     igb_putreg(TDWBAL6),
3404     igb_putreg(TDWBAL7),
3405     igb_putreg(TDWBAL8),
3406     igb_putreg(TDWBAL9),
3407     igb_putreg(TDWBAL10),
3408     igb_putreg(TDWBAL11),
3409     igb_putreg(TDWBAL12),
3410     igb_putreg(TDWBAL13),
3411     igb_putreg(TDWBAL14),
3412     igb_putreg(TDWBAL15),
3413     igb_putreg(TDWBAH0),
3414     igb_putreg(TDWBAH1),
3415     igb_putreg(TDWBAH2),
3416     igb_putreg(TDWBAH3),
3417     igb_putreg(TDWBAH4),
3418     igb_putreg(TDWBAH5),
3419     igb_putreg(TDWBAH6),
3420     igb_putreg(TDWBAH7),
3421     igb_putreg(TDWBAH8),
3422     igb_putreg(TDWBAH9),
3423     igb_putreg(TDWBAH10),
3424     igb_putreg(TDWBAH11),
3425     igb_putreg(TDWBAH12),
3426     igb_putreg(TDWBAH13),
3427     igb_putreg(TDWBAH14),
3428     igb_putreg(TDWBAH15),
3429     igb_putreg(TIPG),
3430     igb_putreg(RXSTMPH),
3431     igb_putreg(RXSTMPL),
3432     igb_putreg(RXSATRL),
3433     igb_putreg(RXSATRH),
3434     igb_putreg(TXSTMPL),
3435     igb_putreg(TXSTMPH),
3436     igb_putreg(SYSTIML),
3437     igb_putreg(SYSTIMH),
3438     igb_putreg(TIMADJL),
3439     igb_putreg(TSYNCRXCTL),
3440     igb_putreg(TSYNCTXCTL),
3441     igb_putreg(EEMNGCTL),
3442     igb_putreg(GPIE),
3443     igb_putreg(TXPBS),
3444     igb_putreg(RLPML),
3445     igb_putreg(VET),
3446 
3447     [TDH0]     = igb_set_16bit,
3448     [TDH1]     = igb_set_16bit,
3449     [TDH2]     = igb_set_16bit,
3450     [TDH3]     = igb_set_16bit,
3451     [TDH4]     = igb_set_16bit,
3452     [TDH5]     = igb_set_16bit,
3453     [TDH6]     = igb_set_16bit,
3454     [TDH7]     = igb_set_16bit,
3455     [TDH8]     = igb_set_16bit,
3456     [TDH9]     = igb_set_16bit,
3457     [TDH10]    = igb_set_16bit,
3458     [TDH11]    = igb_set_16bit,
3459     [TDH12]    = igb_set_16bit,
3460     [TDH13]    = igb_set_16bit,
3461     [TDH14]    = igb_set_16bit,
3462     [TDH15]    = igb_set_16bit,
3463     [TDT0]     = igb_set_tdt,
3464     [TDT1]     = igb_set_tdt,
3465     [TDT2]     = igb_set_tdt,
3466     [TDT3]     = igb_set_tdt,
3467     [TDT4]     = igb_set_tdt,
3468     [TDT5]     = igb_set_tdt,
3469     [TDT6]     = igb_set_tdt,
3470     [TDT7]     = igb_set_tdt,
3471     [TDT8]     = igb_set_tdt,
3472     [TDT9]     = igb_set_tdt,
3473     [TDT10]    = igb_set_tdt,
3474     [TDT11]    = igb_set_tdt,
3475     [TDT12]    = igb_set_tdt,
3476     [TDT13]    = igb_set_tdt,
3477     [TDT14]    = igb_set_tdt,
3478     [TDT15]    = igb_set_tdt,
3479     [MDIC]     = igb_set_mdic,
3480     [ICS]      = igb_set_ics,
3481     [RDH0]     = igb_set_16bit,
3482     [RDH1]     = igb_set_16bit,
3483     [RDH2]     = igb_set_16bit,
3484     [RDH3]     = igb_set_16bit,
3485     [RDH4]     = igb_set_16bit,
3486     [RDH5]     = igb_set_16bit,
3487     [RDH6]     = igb_set_16bit,
3488     [RDH7]     = igb_set_16bit,
3489     [RDH8]     = igb_set_16bit,
3490     [RDH9]     = igb_set_16bit,
3491     [RDH10]    = igb_set_16bit,
3492     [RDH11]    = igb_set_16bit,
3493     [RDH12]    = igb_set_16bit,
3494     [RDH13]    = igb_set_16bit,
3495     [RDH14]    = igb_set_16bit,
3496     [RDH15]    = igb_set_16bit,
3497     [RDT0]     = igb_set_rdt,
3498     [RDT1]     = igb_set_rdt,
3499     [RDT2]     = igb_set_rdt,
3500     [RDT3]     = igb_set_rdt,
3501     [RDT4]     = igb_set_rdt,
3502     [RDT5]     = igb_set_rdt,
3503     [RDT6]     = igb_set_rdt,
3504     [RDT7]     = igb_set_rdt,
3505     [RDT8]     = igb_set_rdt,
3506     [RDT9]     = igb_set_rdt,
3507     [RDT10]    = igb_set_rdt,
3508     [RDT11]    = igb_set_rdt,
3509     [RDT12]    = igb_set_rdt,
3510     [RDT13]    = igb_set_rdt,
3511     [RDT14]    = igb_set_rdt,
3512     [RDT15]    = igb_set_rdt,
3513     [IMC]      = igb_set_imc,
3514     [IMS]      = igb_set_ims,
3515     [ICR]      = igb_set_icr,
3516     [EECD]     = igb_set_eecd,
3517     [RCTL]     = igb_set_rx_control,
3518     [CTRL]     = igb_set_ctrl,
3519     [EERD]     = igb_set_eerd,
3520     [TDFH]     = igb_set_13bit,
3521     [TDFT]     = igb_set_13bit,
3522     [TDFHS]    = igb_set_13bit,
3523     [TDFTS]    = igb_set_13bit,
3524     [TDFPC]    = igb_set_13bit,
3525     [RDFH]     = igb_set_13bit,
3526     [RDFT]     = igb_set_13bit,
3527     [RDFHS]    = igb_set_13bit,
3528     [RDFTS]    = igb_set_13bit,
3529     [RDFPC]    = igb_set_13bit,
3530     [GCR]      = igb_set_gcr,
3531     [RXCSUM]   = igb_set_rxcsum,
3532     [TDLEN0]   = igb_set_dlen,
3533     [TDLEN1]   = igb_set_dlen,
3534     [TDLEN2]   = igb_set_dlen,
3535     [TDLEN3]   = igb_set_dlen,
3536     [TDLEN4]   = igb_set_dlen,
3537     [TDLEN5]   = igb_set_dlen,
3538     [TDLEN6]   = igb_set_dlen,
3539     [TDLEN7]   = igb_set_dlen,
3540     [TDLEN8]   = igb_set_dlen,
3541     [TDLEN9]   = igb_set_dlen,
3542     [TDLEN10]  = igb_set_dlen,
3543     [TDLEN11]  = igb_set_dlen,
3544     [TDLEN12]  = igb_set_dlen,
3545     [TDLEN13]  = igb_set_dlen,
3546     [TDLEN14]  = igb_set_dlen,
3547     [TDLEN15]  = igb_set_dlen,
3548     [RDLEN0]   = igb_set_dlen,
3549     [RDLEN1]   = igb_set_dlen,
3550     [RDLEN2]   = igb_set_dlen,
3551     [RDLEN3]   = igb_set_dlen,
3552     [RDLEN4]   = igb_set_dlen,
3553     [RDLEN5]   = igb_set_dlen,
3554     [RDLEN6]   = igb_set_dlen,
3555     [RDLEN7]   = igb_set_dlen,
3556     [RDLEN8]   = igb_set_dlen,
3557     [RDLEN9]   = igb_set_dlen,
3558     [RDLEN10]  = igb_set_dlen,
3559     [RDLEN11]  = igb_set_dlen,
3560     [RDLEN12]  = igb_set_dlen,
3561     [RDLEN13]  = igb_set_dlen,
3562     [RDLEN14]  = igb_set_dlen,
3563     [RDLEN15]  = igb_set_dlen,
3564     [TDBAL0]   = igb_set_dbal,
3565     [TDBAL1]   = igb_set_dbal,
3566     [TDBAL2]   = igb_set_dbal,
3567     [TDBAL3]   = igb_set_dbal,
3568     [TDBAL4]   = igb_set_dbal,
3569     [TDBAL5]   = igb_set_dbal,
3570     [TDBAL6]   = igb_set_dbal,
3571     [TDBAL7]   = igb_set_dbal,
3572     [TDBAL8]   = igb_set_dbal,
3573     [TDBAL9]   = igb_set_dbal,
3574     [TDBAL10]  = igb_set_dbal,
3575     [TDBAL11]  = igb_set_dbal,
3576     [TDBAL12]  = igb_set_dbal,
3577     [TDBAL13]  = igb_set_dbal,
3578     [TDBAL14]  = igb_set_dbal,
3579     [TDBAL15]  = igb_set_dbal,
3580     [RDBAL0]   = igb_set_dbal,
3581     [RDBAL1]   = igb_set_dbal,
3582     [RDBAL2]   = igb_set_dbal,
3583     [RDBAL3]   = igb_set_dbal,
3584     [RDBAL4]   = igb_set_dbal,
3585     [RDBAL5]   = igb_set_dbal,
3586     [RDBAL6]   = igb_set_dbal,
3587     [RDBAL7]   = igb_set_dbal,
3588     [RDBAL8]   = igb_set_dbal,
3589     [RDBAL9]   = igb_set_dbal,
3590     [RDBAL10]  = igb_set_dbal,
3591     [RDBAL11]  = igb_set_dbal,
3592     [RDBAL12]  = igb_set_dbal,
3593     [RDBAL13]  = igb_set_dbal,
3594     [RDBAL14]  = igb_set_dbal,
3595     [RDBAL15]  = igb_set_dbal,
3596     [STATUS]   = igb_set_status,
3597     [PBACLR]   = igb_set_pbaclr,
3598     [CTRL_EXT] = igb_set_ctrlext,
3599     [FCAH]     = igb_set_16bit,
3600     [FCT]      = igb_set_16bit,
3601     [FCTTV]    = igb_set_16bit,
3602     [FCRTV]    = igb_set_16bit,
3603     [FCRTH]    = igb_set_fcrth,
3604     [FCRTL]    = igb_set_fcrtl,
3605     [CTRL_DUP] = igb_set_ctrl,
3606     [RFCTL]    = igb_set_rfctl,
3607     [TIMINCA]  = igb_set_timinca,
3608     [TIMADJH]  = igb_set_timadjh,
3609 
3610     [IP6AT ... IP6AT + 3]    = igb_mac_writereg,
3611     [IP4AT ... IP4AT + 6]    = igb_mac_writereg,
3612     [RA]                     = igb_mac_writereg,
3613     [RA + 1]                 = igb_mac_setmacaddr,
3614     [RA + 2 ... RA + 31]     = igb_mac_writereg,
3615     [RA2 ... RA2 + 31]       = igb_mac_writereg,
3616     [WUPM ... WUPM + 31]     = igb_mac_writereg,
3617     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3618     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg,
3619     [FFMT ... FFMT + 254]    = igb_set_4bit,
3620     [MDEF ... MDEF + 7]      = igb_mac_writereg,
3621     [FTFT ... FTFT + 254]    = igb_mac_writereg,
3622     [RETA ... RETA + 31]     = igb_mac_writereg,
3623     [RSSRK ... RSSRK + 9]    = igb_mac_writereg,
3624     [MAVTV0 ... MAVTV3]      = igb_mac_writereg,
3625     [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr,
3626 
3627     /* IGB specific: */
3628     [FWSM]     = igb_mac_writereg,
3629     [SW_FW_SYNC] = igb_mac_writereg,
3630     [EICR] = igb_set_eicr,
3631     [EICS] = igb_set_eics,
3632     [EIAC] = igb_set_eiac,
3633     [EIAM] = igb_set_eiam,
3634     [EIMC] = igb_set_eimc,
3635     [EIMS] = igb_set_eims,
3636     [IVAR0 ... IVAR0 + 7] = igb_mac_writereg,
3637     igb_putreg(IVAR_MISC),
3638     igb_putreg(VT_CTL),
3639     [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox,
3640     [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox,
3641     [MBVFICR] = igb_w1c,
3642     [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg,
3643     igb_putreg(MBVFIMR),
3644     [VFLRE] = igb_w1c,
3645     igb_putreg(VFRE),
3646     igb_putreg(VFTE),
3647     igb_putreg(QDE),
3648     igb_putreg(DTXSWC),
3649     igb_putreg(RPLOLR),
3650     [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg,
3651     [VMVIR0 ... VMVIR7] = igb_mac_writereg,
3652     [VMOLR0 ... VMOLR7] = igb_mac_writereg,
3653     [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg,
3654     [PVTCTRL0] = igb_set_vtctrl,
3655     [PVTCTRL1] = igb_set_vtctrl,
3656     [PVTCTRL2] = igb_set_vtctrl,
3657     [PVTCTRL3] = igb_set_vtctrl,
3658     [PVTCTRL4] = igb_set_vtctrl,
3659     [PVTCTRL5] = igb_set_vtctrl,
3660     [PVTCTRL6] = igb_set_vtctrl,
3661     [PVTCTRL7] = igb_set_vtctrl,
3662     [PVTEICS0] = igb_set_vteics,
3663     [PVTEICS1] = igb_set_vteics,
3664     [PVTEICS2] = igb_set_vteics,
3665     [PVTEICS3] = igb_set_vteics,
3666     [PVTEICS4] = igb_set_vteics,
3667     [PVTEICS5] = igb_set_vteics,
3668     [PVTEICS6] = igb_set_vteics,
3669     [PVTEICS7] = igb_set_vteics,
3670     [PVTEIMS0] = igb_set_vteims,
3671     [PVTEIMS1] = igb_set_vteims,
3672     [PVTEIMS2] = igb_set_vteims,
3673     [PVTEIMS3] = igb_set_vteims,
3674     [PVTEIMS4] = igb_set_vteims,
3675     [PVTEIMS5] = igb_set_vteims,
3676     [PVTEIMS6] = igb_set_vteims,
3677     [PVTEIMS7] = igb_set_vteims,
3678     [PVTEIMC0] = igb_set_vteimc,
3679     [PVTEIMC1] = igb_set_vteimc,
3680     [PVTEIMC2] = igb_set_vteimc,
3681     [PVTEIMC3] = igb_set_vteimc,
3682     [PVTEIMC4] = igb_set_vteimc,
3683     [PVTEIMC5] = igb_set_vteimc,
3684     [PVTEIMC6] = igb_set_vteimc,
3685     [PVTEIMC7] = igb_set_vteimc,
3686     [PVTEIAC0] = igb_set_vteiac,
3687     [PVTEIAC1] = igb_set_vteiac,
3688     [PVTEIAC2] = igb_set_vteiac,
3689     [PVTEIAC3] = igb_set_vteiac,
3690     [PVTEIAC4] = igb_set_vteiac,
3691     [PVTEIAC5] = igb_set_vteiac,
3692     [PVTEIAC6] = igb_set_vteiac,
3693     [PVTEIAC7] = igb_set_vteiac,
3694     [PVTEIAM0] = igb_set_vteiam,
3695     [PVTEIAM1] = igb_set_vteiam,
3696     [PVTEIAM2] = igb_set_vteiam,
3697     [PVTEIAM3] = igb_set_vteiam,
3698     [PVTEIAM4] = igb_set_vteiam,
3699     [PVTEIAM5] = igb_set_vteiam,
3700     [PVTEIAM6] = igb_set_vteiam,
3701     [PVTEIAM7] = igb_set_vteiam,
3702     [PVTEICR0] = igb_set_vteicr,
3703     [PVTEICR1] = igb_set_vteicr,
3704     [PVTEICR2] = igb_set_vteicr,
3705     [PVTEICR3] = igb_set_vteicr,
3706     [PVTEICR4] = igb_set_vteicr,
3707     [PVTEICR5] = igb_set_vteicr,
3708     [PVTEICR6] = igb_set_vteicr,
3709     [PVTEICR7] = igb_set_vteicr,
3710     [VTIVAR ... VTIVAR + 7] = igb_set_vtivar,
3711     [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg
3712 };
3713 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) };
3714 
3715 enum { MAC_ACCESS_PARTIAL = 1 };
3716 
3717 /*
3718  * The array below combines alias offsets of the index values for the
3719  * MAC registers that have aliases, with the indication of not fully
3720  * implemented registers (lowest bit). This combination is possible
3721  * because all of the offsets are even.
3722  */
3723 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3724     /* Alias index offsets */
3725     [FCRTL_A] = 0x07fe,
3726     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3727     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3728     [RA_A ... RA_A + 31]      = 0x14f0,
3729     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3730 
3731     [RDBAL0_A] = 0x2600,
3732     [RDBAH0_A] = 0x2600,
3733     [RDLEN0_A] = 0x2600,
3734     [SRRCTL0_A] = 0x2600,
3735     [RDH0_A] = 0x2600,
3736     [RDT0_A] = 0x2600,
3737     [RXDCTL0_A] = 0x2600,
3738     [RXCTL0_A] = 0x2600,
3739     [RQDPC0_A] = 0x2600,
3740     [RDBAL1_A] = 0x25D0,
3741     [RDBAL2_A] = 0x25A0,
3742     [RDBAL3_A] = 0x2570,
3743     [RDBAH1_A] = 0x25D0,
3744     [RDBAH2_A] = 0x25A0,
3745     [RDBAH3_A] = 0x2570,
3746     [RDLEN1_A] = 0x25D0,
3747     [RDLEN2_A] = 0x25A0,
3748     [RDLEN3_A] = 0x2570,
3749     [SRRCTL1_A] = 0x25D0,
3750     [SRRCTL2_A] = 0x25A0,
3751     [SRRCTL3_A] = 0x2570,
3752     [RDH1_A] = 0x25D0,
3753     [RDH2_A] = 0x25A0,
3754     [RDH3_A] = 0x2570,
3755     [RDT1_A] = 0x25D0,
3756     [RDT2_A] = 0x25A0,
3757     [RDT3_A] = 0x2570,
3758     [RXDCTL1_A] = 0x25D0,
3759     [RXDCTL2_A] = 0x25A0,
3760     [RXDCTL3_A] = 0x2570,
3761     [RXCTL1_A] = 0x25D0,
3762     [RXCTL2_A] = 0x25A0,
3763     [RXCTL3_A] = 0x2570,
3764     [RQDPC1_A] = 0x25D0,
3765     [RQDPC2_A] = 0x25A0,
3766     [RQDPC3_A] = 0x2570,
3767     [TDBAL0_A] = 0x2A00,
3768     [TDBAH0_A] = 0x2A00,
3769     [TDLEN0_A] = 0x2A00,
3770     [TDH0_A] = 0x2A00,
3771     [TDT0_A] = 0x2A00,
3772     [TXCTL0_A] = 0x2A00,
3773     [TDWBAL0_A] = 0x2A00,
3774     [TDWBAH0_A] = 0x2A00,
3775     [TDBAL1_A] = 0x29D0,
3776     [TDBAL2_A] = 0x29A0,
3777     [TDBAL3_A] = 0x2970,
3778     [TDBAH1_A] = 0x29D0,
3779     [TDBAH2_A] = 0x29A0,
3780     [TDBAH3_A] = 0x2970,
3781     [TDLEN1_A] = 0x29D0,
3782     [TDLEN2_A] = 0x29A0,
3783     [TDLEN3_A] = 0x2970,
3784     [TDH1_A] = 0x29D0,
3785     [TDH2_A] = 0x29A0,
3786     [TDH3_A] = 0x2970,
3787     [TDT1_A] = 0x29D0,
3788     [TDT2_A] = 0x29A0,
3789     [TDT3_A] = 0x2970,
3790     [TXDCTL0_A] = 0x2A00,
3791     [TXDCTL1_A] = 0x29D0,
3792     [TXDCTL2_A] = 0x29A0,
3793     [TXDCTL3_A] = 0x2970,
3794     [TXCTL1_A] = 0x29D0,
3795     [TXCTL2_A] = 0x29A0,
3796     [TXCTL3_A] = 0x29D0,
3797     [TDWBAL1_A] = 0x29D0,
3798     [TDWBAL2_A] = 0x29A0,
3799     [TDWBAL3_A] = 0x2970,
3800     [TDWBAH1_A] = 0x29D0,
3801     [TDWBAH2_A] = 0x29A0,
3802     [TDWBAH3_A] = 0x2970,
3803 
3804     /* Access options */
3805     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3806     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3807     [RDFPC] = MAC_ACCESS_PARTIAL,
3808     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3809     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3810     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3811     [FLA]   = MAC_ACCESS_PARTIAL,
3812     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3813     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3814     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3815     [FCRTH] = MAC_ACCESS_PARTIAL,
3816     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3817 };
3818 
3819 void
3820 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size)
3821 {
3822     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3823 
3824     if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) {
3825         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3826             trace_e1000e_wrn_regs_write_trivial(index << 2);
3827         }
3828         trace_e1000e_core_write(index << 2, size, val);
3829         igb_macreg_writeops[index](core, index, val);
3830     } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3831         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3832     } else {
3833         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3834     }
3835 }
3836 
3837 uint64_t
3838 igb_core_read(IGBCore *core, hwaddr addr, unsigned size)
3839 {
3840     uint64_t val;
3841     uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr);
3842 
3843     if (index < IGB_NREADOPS && igb_macreg_readops[index]) {
3844         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3845             trace_e1000e_wrn_regs_read_trivial(index << 2);
3846         }
3847         val = igb_macreg_readops[index](core, index);
3848         trace_e1000e_core_read(index << 2, size, val);
3849         return val;
3850     } else {
3851         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3852     }
3853     return 0;
3854 }
3855 
3856 static inline void
3857 igb_autoneg_pause(IGBCore *core)
3858 {
3859     timer_del(core->autoneg_timer);
3860 }
3861 
3862 static void
3863 igb_autoneg_resume(IGBCore *core)
3864 {
3865     if (igb_have_autoneg(core) &&
3866         !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) {
3867         qemu_get_queue(core->owner_nic)->link_down = false;
3868         timer_mod(core->autoneg_timer,
3869                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3870     }
3871 }
3872 
3873 static void
3874 igb_vm_state_change(void *opaque, bool running, RunState state)
3875 {
3876     IGBCore *core = opaque;
3877 
3878     if (running) {
3879         trace_e1000e_vm_state_running();
3880         igb_intrmgr_resume(core);
3881         igb_autoneg_resume(core);
3882     } else {
3883         trace_e1000e_vm_state_stopped();
3884         igb_autoneg_pause(core);
3885         igb_intrmgr_pause(core);
3886     }
3887 }
3888 
3889 void
3890 igb_core_pci_realize(IGBCore        *core,
3891                      const uint16_t *eeprom_templ,
3892                      uint32_t        eeprom_size,
3893                      const uint8_t  *macaddr)
3894 {
3895     int i;
3896 
3897     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3898                                        igb_autoneg_timer, core);
3899     igb_intrmgr_pci_realize(core);
3900 
3901     core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core);
3902 
3903     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3904         net_tx_pkt_init(&core->tx[i].tx_pkt, NULL, E1000E_MAX_TX_FRAGS);
3905     }
3906 
3907     net_rx_pkt_init(&core->rx_pkt);
3908 
3909     e1000x_core_prepare_eeprom(core->eeprom,
3910                                eeprom_templ,
3911                                eeprom_size,
3912                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3913                                macaddr);
3914     igb_update_rx_offloads(core);
3915 }
3916 
3917 void
3918 igb_core_pci_uninit(IGBCore *core)
3919 {
3920     int i;
3921 
3922     timer_free(core->autoneg_timer);
3923 
3924     igb_intrmgr_pci_unint(core);
3925 
3926     qemu_del_vm_change_state_handler(core->vmstate);
3927 
3928     for (i = 0; i < IGB_NUM_QUEUES; i++) {
3929         net_tx_pkt_reset(core->tx[i].tx_pkt, NULL);
3930         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3931     }
3932 
3933     net_rx_pkt_uninit(core->rx_pkt);
3934 }
3935 
3936 static const uint16_t
3937 igb_phy_reg_init[] = {
3938     [MII_BMCR] = MII_BMCR_SPEED1000 |
3939                  MII_BMCR_FD        |
3940                  MII_BMCR_AUTOEN,
3941 
3942     [MII_BMSR] = MII_BMSR_EXTCAP    |
3943                  MII_BMSR_LINK_ST   |
3944                  MII_BMSR_AUTONEG   |
3945                  MII_BMSR_MFPS      |
3946                  MII_BMSR_EXTSTAT   |
3947                  MII_BMSR_10T_HD    |
3948                  MII_BMSR_10T_FD    |
3949                  MII_BMSR_100TX_HD  |
3950                  MII_BMSR_100TX_FD,
3951 
3952     [MII_PHYID1]            = IGP03E1000_E_PHY_ID >> 16,
3953     [MII_PHYID2]            = (IGP03E1000_E_PHY_ID & 0xfff0) | 1,
3954     [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3955                               MII_ANAR_10FD | MII_ANAR_TX |
3956                               MII_ANAR_TXFD | MII_ANAR_PAUSE |
3957                               MII_ANAR_PAUSE_ASYM,
3958     [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3959                               MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3960                               MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3961     [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3962     [MII_ANNP]              = 0x1 | MII_ANNP_MP,
3963     [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3964                               MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3965     [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3966                               MII_STAT1000_ROK | MII_STAT1000_LOK,
3967     [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3968 
3969     [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8),
3970     [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS,
3971     [IGP02E1000_PHY_POWER_MGMT]  = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU |
3972                                    IGP01E1000_PSCFR_SMART_SPEED
3973 };
3974 
3975 static const uint32_t igb_mac_reg_init[] = {
3976     [LEDCTL]        = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24),
3977     [EEMNGCTL]      = BIT(31),
3978     [TXDCTL0]       = E1000_TXDCTL_QUEUE_ENABLE,
3979     [RXDCTL0]       = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16),
3980     [RXDCTL1]       = 1 << 16,
3981     [RXDCTL2]       = 1 << 16,
3982     [RXDCTL3]       = 1 << 16,
3983     [RXDCTL4]       = 1 << 16,
3984     [RXDCTL5]       = 1 << 16,
3985     [RXDCTL6]       = 1 << 16,
3986     [RXDCTL7]       = 1 << 16,
3987     [RXDCTL8]       = 1 << 16,
3988     [RXDCTL9]       = 1 << 16,
3989     [RXDCTL10]      = 1 << 16,
3990     [RXDCTL11]      = 1 << 16,
3991     [RXDCTL12]      = 1 << 16,
3992     [RXDCTL13]      = 1 << 16,
3993     [RXDCTL14]      = 1 << 16,
3994     [RXDCTL15]      = 1 << 16,
3995     [TIPG]          = 0x08 | (0x04 << 10) | (0x06 << 20),
3996     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 |
3997                       E1000_CTRL_ADVD3WUC,
3998     [STATUS]        = E1000_STATUS_PHYRA | BIT(31),
3999     [EECD]          = E1000_EECD_FWE_DIS | E1000_EECD_PRES |
4000                       (2 << E1000_EECD_SIZE_EX_SHIFT),
4001     [GCR]           = E1000_L0S_ADJUST |
4002                       E1000_GCR_CMPL_TMOUT_RESEND |
4003                       E1000_GCR_CAP_VER2 |
4004                       E1000_L1_ENTRY_LATENCY_MSB |
4005                       E1000_L1_ENTRY_LATENCY_LSB,
4006     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
4007     [TXPBS]         = 0x28,
4008     [RXPBS]         = 0x40,
4009     [TCTL]          = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) |
4010                       (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28),
4011     [TCTL_EXT]      = 0x40 | (0x42 << 10),
4012     [DTXCTL]        = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT,
4013     [VET]           = ETH_P_VLAN | (ETH_P_VLAN << 16),
4014 
4015     [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI,
4016     [MBVFIMR]       = 0xFF,
4017     [VFRE]          = 0xFF,
4018     [VFTE]          = 0xFF,
4019     [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC,
4020     [RPLOLR]        = E1000_RPLOLR_STRCRC,
4021     [RLPML]         = 0x2600,
4022     [TXCTL0]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4023                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4024                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4025     [TXCTL1]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4026                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4027                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4028     [TXCTL2]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4029                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4030                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4031     [TXCTL3]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4032                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4033                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4034     [TXCTL4]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4035                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4036                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4037     [TXCTL5]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4038                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4039                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4040     [TXCTL6]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4041                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4042                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4043     [TXCTL7]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4044                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4045                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4046     [TXCTL8]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4047                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4048                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4049     [TXCTL9]       = E1000_DCA_TXCTRL_DATA_RRO_EN |
4050                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4051                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4052     [TXCTL10]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4053                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4054                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4055     [TXCTL11]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4056                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4057                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4058     [TXCTL12]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4059                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4060                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4061     [TXCTL13]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4062                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4063                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4064     [TXCTL14]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4065                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4066                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4067     [TXCTL15]      = E1000_DCA_TXCTRL_DATA_RRO_EN |
4068                      E1000_DCA_TXCTRL_TX_WB_RO_EN |
4069                      E1000_DCA_TXCTRL_DESC_RRO_EN,
4070 };
4071 
4072 static void igb_reset(IGBCore *core, bool sw)
4073 {
4074     struct igb_tx *tx;
4075     int i;
4076 
4077     timer_del(core->autoneg_timer);
4078 
4079     igb_intrmgr_reset(core);
4080 
4081     memset(core->phy, 0, sizeof core->phy);
4082     memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init);
4083 
4084     for (i = 0; i < E1000E_MAC_SIZE; i++) {
4085         if (sw &&
4086             (i == RXPBS || i == TXPBS ||
4087              (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) {
4088             continue;
4089         }
4090 
4091         core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ?
4092                        igb_mac_reg_init[i] : 0;
4093     }
4094 
4095     if (qemu_get_queue(core->owner_nic)->link_down) {
4096         igb_link_down(core);
4097     }
4098 
4099     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
4100 
4101     for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) {
4102         /* Set RSTI, so VF can identify a PF reset is in progress */
4103         core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI;
4104     }
4105 
4106     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4107         tx = &core->tx[i];
4108         net_tx_pkt_reset(tx->tx_pkt, NULL);
4109         memset(tx->ctx, 0, sizeof(tx->ctx));
4110         tx->first = true;
4111         tx->skip_cp = false;
4112     }
4113 }
4114 
4115 void
4116 igb_core_reset(IGBCore *core)
4117 {
4118     igb_reset(core, false);
4119 }
4120 
4121 void igb_core_pre_save(IGBCore *core)
4122 {
4123     int i;
4124     NetClientState *nc = qemu_get_queue(core->owner_nic);
4125 
4126     /*
4127      * If link is down and auto-negotiation is supported and ongoing,
4128      * complete auto-negotiation immediately. This allows us to look
4129      * at MII_BMSR_AN_COMP to infer link status on load.
4130      */
4131     if (nc->link_down && igb_have_autoneg(core)) {
4132         core->phy[MII_BMSR] |= MII_BMSR_AN_COMP;
4133         igb_update_flowctl_status(core);
4134     }
4135 
4136     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
4137         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
4138             core->tx[i].skip_cp = true;
4139         }
4140     }
4141 }
4142 
4143 int
4144 igb_core_post_load(IGBCore *core)
4145 {
4146     NetClientState *nc = qemu_get_queue(core->owner_nic);
4147 
4148     /*
4149      * nc.link_down can't be migrated, so infer link_down according
4150      * to link status bit in core.mac[STATUS].
4151      */
4152     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
4153 
4154     return 0;
4155 }
4156