1 /* 2 * Core code for QEMU igb emulation 3 * 4 * Datasheet: 5 * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf 6 * 7 * Copyright (c) 2020-2023 Red Hat, Inc. 8 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) 9 * Developed by Daynix Computing LTD (http://www.daynix.com) 10 * 11 * Authors: 12 * Akihiko Odaki <akihiko.odaki@daynix.com> 13 * Gal Hammmer <gal.hammer@sap.com> 14 * Marcel Apfelbaum <marcel.apfelbaum@gmail.com> 15 * Dmitry Fleytman <dmitry@daynix.com> 16 * Leonid Bloch <leonid@daynix.com> 17 * Yan Vugenfirer <yan@daynix.com> 18 * 19 * Based on work done by: 20 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 21 * Copyright (c) 2008 Qumranet 22 * Based on work done by: 23 * Copyright (c) 2007 Dan Aloni 24 * Copyright (c) 2004 Antony T Curtis 25 * 26 * This library is free software; you can redistribute it and/or 27 * modify it under the terms of the GNU Lesser General Public 28 * License as published by the Free Software Foundation; either 29 * version 2.1 of the License, or (at your option) any later version. 30 * 31 * This library is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 34 * Lesser General Public License for more details. 35 * 36 * You should have received a copy of the GNU Lesser General Public 37 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 38 */ 39 40 #include "qemu/osdep.h" 41 #include "qemu/log.h" 42 #include "net/net.h" 43 #include "net/tap.h" 44 #include "hw/net/mii.h" 45 #include "hw/pci/msi.h" 46 #include "hw/pci/msix.h" 47 #include "sysemu/runstate.h" 48 49 #include "net_tx_pkt.h" 50 #include "net_rx_pkt.h" 51 52 #include "igb_common.h" 53 #include "e1000x_common.h" 54 #include "igb_core.h" 55 56 #include "trace.h" 57 58 #define E1000E_MAX_TX_FRAGS (64) 59 60 union e1000_rx_desc_union { 61 struct e1000_rx_desc legacy; 62 union e1000_adv_rx_desc adv; 63 }; 64 65 typedef struct IGBTxPktVmdqCallbackContext { 66 IGBCore *core; 67 NetClientState *nc; 68 } IGBTxPktVmdqCallbackContext; 69 70 static ssize_t 71 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt, 72 bool has_vnet, bool *external_tx); 73 74 static inline void 75 igb_set_interrupt_cause(IGBCore *core, uint32_t val); 76 77 static void igb_update_interrupt_state(IGBCore *core); 78 static void igb_reset(IGBCore *core, bool sw); 79 80 static inline void 81 igb_raise_legacy_irq(IGBCore *core) 82 { 83 trace_e1000e_irq_legacy_notify(true); 84 e1000x_inc_reg_if_not_full(core->mac, IAC); 85 pci_set_irq(core->owner, 1); 86 } 87 88 static inline void 89 igb_lower_legacy_irq(IGBCore *core) 90 { 91 trace_e1000e_irq_legacy_notify(false); 92 pci_set_irq(core->owner, 0); 93 } 94 95 static void igb_msix_notify(IGBCore *core, unsigned int vector) 96 { 97 PCIDevice *dev = core->owner; 98 uint16_t vfn; 99 100 vfn = 8 - (vector + 2) / IGBVF_MSIX_VEC_NUM; 101 if (vfn < pcie_sriov_num_vfs(core->owner)) { 102 dev = pcie_sriov_get_vf_at_index(core->owner, vfn); 103 assert(dev); 104 vector = (vector + 2) % IGBVF_MSIX_VEC_NUM; 105 } else if (vector >= IGB_MSIX_VEC_NUM) { 106 qemu_log_mask(LOG_GUEST_ERROR, 107 "igb: Tried to use vector unavailable for PF"); 108 return; 109 } 110 111 msix_notify(dev, vector); 112 } 113 114 static inline void 115 igb_intrmgr_rearm_timer(IGBIntrDelayTimer *timer) 116 { 117 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] * 118 timer->delay_resolution_ns; 119 120 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns); 121 122 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns); 123 124 timer->running = true; 125 } 126 127 static void 128 igb_intmgr_timer_resume(IGBIntrDelayTimer *timer) 129 { 130 if (timer->running) { 131 igb_intrmgr_rearm_timer(timer); 132 } 133 } 134 135 static void 136 igb_intmgr_timer_pause(IGBIntrDelayTimer *timer) 137 { 138 if (timer->running) { 139 timer_del(timer->timer); 140 } 141 } 142 143 static void 144 igb_intrmgr_on_msix_throttling_timer(void *opaque) 145 { 146 IGBIntrDelayTimer *timer = opaque; 147 int idx = timer - &timer->core->eitr[0]; 148 149 timer->running = false; 150 151 trace_e1000e_irq_msix_notify_postponed_vec(idx); 152 igb_msix_notify(timer->core, idx); 153 } 154 155 static void 156 igb_intrmgr_initialize_all_timers(IGBCore *core, bool create) 157 { 158 int i; 159 160 for (i = 0; i < IGB_INTR_NUM; i++) { 161 core->eitr[i].core = core; 162 core->eitr[i].delay_reg = EITR0 + i; 163 core->eitr[i].delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 164 } 165 166 if (!create) { 167 return; 168 } 169 170 for (i = 0; i < IGB_INTR_NUM; i++) { 171 core->eitr[i].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 172 igb_intrmgr_on_msix_throttling_timer, 173 &core->eitr[i]); 174 } 175 } 176 177 static void 178 igb_intrmgr_resume(IGBCore *core) 179 { 180 int i; 181 182 for (i = 0; i < IGB_INTR_NUM; i++) { 183 igb_intmgr_timer_resume(&core->eitr[i]); 184 } 185 } 186 187 static void 188 igb_intrmgr_pause(IGBCore *core) 189 { 190 int i; 191 192 for (i = 0; i < IGB_INTR_NUM; i++) { 193 igb_intmgr_timer_pause(&core->eitr[i]); 194 } 195 } 196 197 static void 198 igb_intrmgr_reset(IGBCore *core) 199 { 200 int i; 201 202 for (i = 0; i < IGB_INTR_NUM; i++) { 203 if (core->eitr[i].running) { 204 timer_del(core->eitr[i].timer); 205 igb_intrmgr_on_msix_throttling_timer(&core->eitr[i]); 206 } 207 } 208 } 209 210 static void 211 igb_intrmgr_pci_unint(IGBCore *core) 212 { 213 int i; 214 215 for (i = 0; i < IGB_INTR_NUM; i++) { 216 timer_free(core->eitr[i].timer); 217 } 218 } 219 220 static void 221 igb_intrmgr_pci_realize(IGBCore *core) 222 { 223 igb_intrmgr_initialize_all_timers(core, true); 224 } 225 226 static inline bool 227 igb_rx_csum_enabled(IGBCore *core) 228 { 229 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true; 230 } 231 232 static inline bool 233 igb_rx_use_legacy_descriptor(IGBCore *core) 234 { 235 /* 236 * TODO: If SRRCTL[n],DESCTYPE = 000b, the 82576 uses the legacy Rx 237 * descriptor. 238 */ 239 return false; 240 } 241 242 static inline bool 243 igb_rss_enabled(IGBCore *core) 244 { 245 return (core->mac[MRQC] & 3) == E1000_MRQC_ENABLE_RSS_MQ && 246 !igb_rx_csum_enabled(core) && 247 !igb_rx_use_legacy_descriptor(core); 248 } 249 250 typedef struct E1000E_RSSInfo_st { 251 bool enabled; 252 uint32_t hash; 253 uint32_t queue; 254 uint32_t type; 255 } E1000E_RSSInfo; 256 257 static uint32_t 258 igb_rss_get_hash_type(IGBCore *core, struct NetRxPkt *pkt) 259 { 260 bool hasip4, hasip6; 261 EthL4HdrProto l4hdr_proto; 262 263 assert(igb_rss_enabled(core)); 264 265 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); 266 267 if (hasip4) { 268 trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC], 269 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]), 270 E1000_MRQC_EN_IPV4(core->mac[MRQC])); 271 272 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && 273 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) { 274 return E1000_MRQ_RSS_TYPE_IPV4TCP; 275 } 276 277 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) { 278 return E1000_MRQ_RSS_TYPE_IPV4; 279 } 280 } else if (hasip6) { 281 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt); 282 283 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS; 284 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS; 285 286 /* 287 * Following two traces must not be combined because resulting 288 * event will have 11 arguments totally and some trace backends 289 * (at least "ust") have limitation of maximum 10 arguments per 290 * event. Events with more arguments fail to compile for 291 * backends like these. 292 */ 293 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]); 294 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto, 295 ip6info->has_ext_hdrs, 296 ip6info->rss_ex_dst_valid, 297 ip6info->rss_ex_src_valid, 298 core->mac[MRQC], 299 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]), 300 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]), 301 E1000_MRQC_EN_IPV6(core->mac[MRQC])); 302 303 if ((!ex_dis || !ip6info->has_ext_hdrs) && 304 (!new_ex_dis || !(ip6info->rss_ex_dst_valid || 305 ip6info->rss_ex_src_valid))) { 306 307 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && 308 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) { 309 return E1000_MRQ_RSS_TYPE_IPV6TCP; 310 } 311 312 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) { 313 return E1000_MRQ_RSS_TYPE_IPV6EX; 314 } 315 316 } 317 318 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) { 319 return E1000_MRQ_RSS_TYPE_IPV6; 320 } 321 322 } 323 324 return E1000_MRQ_RSS_TYPE_NONE; 325 } 326 327 static uint32_t 328 igb_rss_calc_hash(IGBCore *core, struct NetRxPkt *pkt, E1000E_RSSInfo *info) 329 { 330 NetRxPktRssType type; 331 332 assert(igb_rss_enabled(core)); 333 334 switch (info->type) { 335 case E1000_MRQ_RSS_TYPE_IPV4: 336 type = NetPktRssIpV4; 337 break; 338 case E1000_MRQ_RSS_TYPE_IPV4TCP: 339 type = NetPktRssIpV4Tcp; 340 break; 341 case E1000_MRQ_RSS_TYPE_IPV6TCP: 342 type = NetPktRssIpV6TcpEx; 343 break; 344 case E1000_MRQ_RSS_TYPE_IPV6: 345 type = NetPktRssIpV6; 346 break; 347 case E1000_MRQ_RSS_TYPE_IPV6EX: 348 type = NetPktRssIpV6Ex; 349 break; 350 default: 351 assert(false); 352 return 0; 353 } 354 355 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]); 356 } 357 358 static void 359 igb_rss_parse_packet(IGBCore *core, struct NetRxPkt *pkt, bool tx, 360 E1000E_RSSInfo *info) 361 { 362 trace_e1000e_rx_rss_started(); 363 364 if (tx || !igb_rss_enabled(core)) { 365 info->enabled = false; 366 info->hash = 0; 367 info->queue = 0; 368 info->type = 0; 369 trace_e1000e_rx_rss_disabled(); 370 return; 371 } 372 373 info->enabled = true; 374 375 info->type = igb_rss_get_hash_type(core, pkt); 376 377 trace_e1000e_rx_rss_type(info->type); 378 379 if (info->type == E1000_MRQ_RSS_TYPE_NONE) { 380 info->hash = 0; 381 info->queue = 0; 382 return; 383 } 384 385 info->hash = igb_rss_calc_hash(core, pkt, info); 386 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash); 387 } 388 389 static void 390 igb_tx_insert_vlan(IGBCore *core, uint16_t qn, struct igb_tx *tx, 391 uint16_t vlan, bool insert_vlan) 392 { 393 if (core->mac[MRQC] & 1) { 394 uint16_t pool = qn % IGB_NUM_VM_POOLS; 395 396 if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_DEFAULT) { 397 /* always insert default VLAN */ 398 insert_vlan = true; 399 vlan = core->mac[VMVIR0 + pool] & 0xffff; 400 } else if (core->mac[VMVIR0 + pool] & E1000_VMVIR_VLANA_NEVER) { 401 insert_vlan = false; 402 } 403 } 404 405 if (insert_vlan && e1000x_vlan_enabled(core->mac)) { 406 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, vlan, 407 core->mac[VET] & 0xffff); 408 } 409 } 410 411 static bool 412 igb_setup_tx_offloads(IGBCore *core, struct igb_tx *tx) 413 { 414 if (tx->first_cmd_type_len & E1000_ADVTXD_DCMD_TSE) { 415 uint32_t idx = (tx->first_olinfo_status >> 4) & 1; 416 uint32_t mss = tx->ctx[idx].mss_l4len_idx >> 16; 417 if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, mss)) { 418 return false; 419 } 420 421 net_tx_pkt_update_ip_checksums(tx->tx_pkt); 422 e1000x_inc_reg_if_not_full(core->mac, TSCTC); 423 return true; 424 } 425 426 if (tx->first_olinfo_status & E1000_ADVTXD_POTS_TXSM) { 427 if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) { 428 return false; 429 } 430 } 431 432 if (tx->first_olinfo_status & E1000_ADVTXD_POTS_IXSM) { 433 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); 434 } 435 436 return true; 437 } 438 439 static void igb_tx_pkt_mac_callback(void *core, 440 const struct iovec *iov, 441 int iovcnt, 442 const struct iovec *virt_iov, 443 int virt_iovcnt) 444 { 445 igb_receive_internal(core, virt_iov, virt_iovcnt, true, NULL); 446 } 447 448 static void igb_tx_pkt_vmdq_callback(void *opaque, 449 const struct iovec *iov, 450 int iovcnt, 451 const struct iovec *virt_iov, 452 int virt_iovcnt) 453 { 454 IGBTxPktVmdqCallbackContext *context = opaque; 455 bool external_tx; 456 457 igb_receive_internal(context->core, virt_iov, virt_iovcnt, true, 458 &external_tx); 459 460 if (external_tx) { 461 if (context->core->has_vnet) { 462 qemu_sendv_packet(context->nc, virt_iov, virt_iovcnt); 463 } else { 464 qemu_sendv_packet(context->nc, iov, iovcnt); 465 } 466 } 467 } 468 469 /* TX Packets Switching (7.10.3.6) */ 470 static bool igb_tx_pkt_switch(IGBCore *core, struct igb_tx *tx, 471 NetClientState *nc) 472 { 473 IGBTxPktVmdqCallbackContext context; 474 475 /* TX switching is only used to serve VM to VM traffic. */ 476 if (!(core->mac[MRQC] & 1)) { 477 goto send_out; 478 } 479 480 /* TX switching requires DTXSWC.Loopback_en bit enabled. */ 481 if (!(core->mac[DTXSWC] & E1000_DTXSWC_VMDQ_LOOPBACK_EN)) { 482 goto send_out; 483 } 484 485 context.core = core; 486 context.nc = nc; 487 488 return net_tx_pkt_send_custom(tx->tx_pkt, false, 489 igb_tx_pkt_vmdq_callback, &context); 490 491 send_out: 492 return net_tx_pkt_send(tx->tx_pkt, nc); 493 } 494 495 static bool 496 igb_tx_pkt_send(IGBCore *core, struct igb_tx *tx, int queue_index) 497 { 498 int target_queue = MIN(core->max_queue_num, queue_index); 499 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue); 500 501 if (!igb_setup_tx_offloads(core, tx)) { 502 return false; 503 } 504 505 net_tx_pkt_dump(tx->tx_pkt); 506 507 if ((core->phy[MII_BMCR] & MII_BMCR_LOOPBACK) || 508 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) { 509 return net_tx_pkt_send_custom(tx->tx_pkt, false, 510 igb_tx_pkt_mac_callback, core); 511 } else { 512 return igb_tx_pkt_switch(core, tx, queue); 513 } 514 } 515 516 static void 517 igb_on_tx_done_update_stats(IGBCore *core, struct NetTxPkt *tx_pkt, int qn) 518 { 519 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 520 PTC1023, PTC1522 }; 521 522 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4; 523 524 e1000x_increase_size_stats(core->mac, PTCregs, tot_len); 525 e1000x_inc_reg_if_not_full(core->mac, TPT); 526 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len); 527 528 switch (net_tx_pkt_get_packet_type(tx_pkt)) { 529 case ETH_PKT_BCAST: 530 e1000x_inc_reg_if_not_full(core->mac, BPTC); 531 break; 532 case ETH_PKT_MCAST: 533 e1000x_inc_reg_if_not_full(core->mac, MPTC); 534 break; 535 case ETH_PKT_UCAST: 536 break; 537 default: 538 g_assert_not_reached(); 539 } 540 541 core->mac[GPTC] = core->mac[TPT]; 542 core->mac[GOTCL] = core->mac[TOTL]; 543 core->mac[GOTCH] = core->mac[TOTH]; 544 545 if (core->mac[MRQC] & 1) { 546 uint16_t pool = qn % IGB_NUM_VM_POOLS; 547 548 core->mac[PVFGOTC0 + (pool * 64)] += tot_len; 549 core->mac[PVFGPTC0 + (pool * 64)]++; 550 } 551 } 552 553 static void 554 igb_process_tx_desc(IGBCore *core, 555 PCIDevice *dev, 556 struct igb_tx *tx, 557 union e1000_adv_tx_desc *tx_desc, 558 int queue_index) 559 { 560 struct e1000_adv_tx_context_desc *tx_ctx_desc; 561 uint32_t cmd_type_len; 562 uint32_t idx; 563 uint64_t buffer_addr; 564 uint16_t length; 565 566 cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len); 567 568 if (cmd_type_len & E1000_ADVTXD_DCMD_DEXT) { 569 if ((cmd_type_len & E1000_ADVTXD_DTYP_DATA) == 570 E1000_ADVTXD_DTYP_DATA) { 571 /* advanced transmit data descriptor */ 572 if (tx->first) { 573 tx->first_cmd_type_len = cmd_type_len; 574 tx->first_olinfo_status = le32_to_cpu(tx_desc->read.olinfo_status); 575 tx->first = false; 576 } 577 } else if ((cmd_type_len & E1000_ADVTXD_DTYP_CTXT) == 578 E1000_ADVTXD_DTYP_CTXT) { 579 /* advanced transmit context descriptor */ 580 tx_ctx_desc = (struct e1000_adv_tx_context_desc *)tx_desc; 581 idx = (le32_to_cpu(tx_ctx_desc->mss_l4len_idx) >> 4) & 1; 582 tx->ctx[idx].vlan_macip_lens = le32_to_cpu(tx_ctx_desc->vlan_macip_lens); 583 tx->ctx[idx].seqnum_seed = le32_to_cpu(tx_ctx_desc->seqnum_seed); 584 tx->ctx[idx].type_tucmd_mlhl = le32_to_cpu(tx_ctx_desc->type_tucmd_mlhl); 585 tx->ctx[idx].mss_l4len_idx = le32_to_cpu(tx_ctx_desc->mss_l4len_idx); 586 return; 587 } else { 588 /* unknown descriptor type */ 589 return; 590 } 591 } else { 592 /* legacy descriptor */ 593 594 /* TODO: Implement a support for legacy descriptors (7.2.2.1). */ 595 } 596 597 buffer_addr = le64_to_cpu(tx_desc->read.buffer_addr); 598 length = cmd_type_len & 0xFFFF; 599 600 if (!tx->skip_cp) { 601 if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, buffer_addr, length)) { 602 tx->skip_cp = true; 603 } 604 } 605 606 if (cmd_type_len & E1000_TXD_CMD_EOP) { 607 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) { 608 idx = (tx->first_olinfo_status >> 4) & 1; 609 igb_tx_insert_vlan(core, queue_index, tx, 610 tx->ctx[idx].vlan_macip_lens >> 16, 611 !!(cmd_type_len & E1000_TXD_CMD_VLE)); 612 613 if (igb_tx_pkt_send(core, tx, queue_index)) { 614 igb_on_tx_done_update_stats(core, tx->tx_pkt, queue_index); 615 } 616 } 617 618 tx->first = true; 619 tx->skip_cp = false; 620 net_tx_pkt_reset(tx->tx_pkt, dev); 621 } 622 } 623 624 static uint32_t igb_tx_wb_eic(IGBCore *core, int queue_idx) 625 { 626 uint32_t n, ent = 0; 627 628 n = igb_ivar_entry_tx(queue_idx); 629 ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff; 630 631 return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0; 632 } 633 634 static uint32_t igb_rx_wb_eic(IGBCore *core, int queue_idx) 635 { 636 uint32_t n, ent = 0; 637 638 n = igb_ivar_entry_rx(queue_idx); 639 ent = (core->mac[IVAR0 + n / 4] >> (8 * (n % 4))) & 0xff; 640 641 return (ent & E1000_IVAR_VALID) ? BIT(ent & 0x1f) : 0; 642 } 643 644 typedef struct E1000E_RingInfo_st { 645 int dbah; 646 int dbal; 647 int dlen; 648 int dh; 649 int dt; 650 int idx; 651 } E1000E_RingInfo; 652 653 static inline bool 654 igb_ring_empty(IGBCore *core, const E1000E_RingInfo *r) 655 { 656 return core->mac[r->dh] == core->mac[r->dt] || 657 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN; 658 } 659 660 static inline uint64_t 661 igb_ring_base(IGBCore *core, const E1000E_RingInfo *r) 662 { 663 uint64_t bah = core->mac[r->dbah]; 664 uint64_t bal = core->mac[r->dbal]; 665 666 return (bah << 32) + bal; 667 } 668 669 static inline uint64_t 670 igb_ring_head_descr(IGBCore *core, const E1000E_RingInfo *r) 671 { 672 return igb_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh]; 673 } 674 675 static inline void 676 igb_ring_advance(IGBCore *core, const E1000E_RingInfo *r, uint32_t count) 677 { 678 core->mac[r->dh] += count; 679 680 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) { 681 core->mac[r->dh] = 0; 682 } 683 } 684 685 static inline uint32_t 686 igb_ring_free_descr_num(IGBCore *core, const E1000E_RingInfo *r) 687 { 688 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen], 689 core->mac[r->dh], core->mac[r->dt]); 690 691 if (core->mac[r->dh] <= core->mac[r->dt]) { 692 return core->mac[r->dt] - core->mac[r->dh]; 693 } 694 695 if (core->mac[r->dh] > core->mac[r->dt]) { 696 return core->mac[r->dlen] / E1000_RING_DESC_LEN + 697 core->mac[r->dt] - core->mac[r->dh]; 698 } 699 700 g_assert_not_reached(); 701 return 0; 702 } 703 704 static inline bool 705 igb_ring_enabled(IGBCore *core, const E1000E_RingInfo *r) 706 { 707 return core->mac[r->dlen] > 0; 708 } 709 710 typedef struct IGB_TxRing_st { 711 const E1000E_RingInfo *i; 712 struct igb_tx *tx; 713 } IGB_TxRing; 714 715 static inline int 716 igb_mq_queue_idx(int base_reg_idx, int reg_idx) 717 { 718 return (reg_idx - base_reg_idx) / 16; 719 } 720 721 static inline void 722 igb_tx_ring_init(IGBCore *core, IGB_TxRing *txr, int idx) 723 { 724 static const E1000E_RingInfo i[IGB_NUM_QUEUES] = { 725 { TDBAH0, TDBAL0, TDLEN0, TDH0, TDT0, 0 }, 726 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }, 727 { TDBAH2, TDBAL2, TDLEN2, TDH2, TDT2, 2 }, 728 { TDBAH3, TDBAL3, TDLEN3, TDH3, TDT3, 3 }, 729 { TDBAH4, TDBAL4, TDLEN4, TDH4, TDT4, 4 }, 730 { TDBAH5, TDBAL5, TDLEN5, TDH5, TDT5, 5 }, 731 { TDBAH6, TDBAL6, TDLEN6, TDH6, TDT6, 6 }, 732 { TDBAH7, TDBAL7, TDLEN7, TDH7, TDT7, 7 }, 733 { TDBAH8, TDBAL8, TDLEN8, TDH8, TDT8, 8 }, 734 { TDBAH9, TDBAL9, TDLEN9, TDH9, TDT9, 9 }, 735 { TDBAH10, TDBAL10, TDLEN10, TDH10, TDT10, 10 }, 736 { TDBAH11, TDBAL11, TDLEN11, TDH11, TDT11, 11 }, 737 { TDBAH12, TDBAL12, TDLEN12, TDH12, TDT12, 12 }, 738 { TDBAH13, TDBAL13, TDLEN13, TDH13, TDT13, 13 }, 739 { TDBAH14, TDBAL14, TDLEN14, TDH14, TDT14, 14 }, 740 { TDBAH15, TDBAL15, TDLEN15, TDH15, TDT15, 15 } 741 }; 742 743 assert(idx < ARRAY_SIZE(i)); 744 745 txr->i = &i[idx]; 746 txr->tx = &core->tx[idx]; 747 } 748 749 typedef struct E1000E_RxRing_st { 750 const E1000E_RingInfo *i; 751 } E1000E_RxRing; 752 753 static inline void 754 igb_rx_ring_init(IGBCore *core, E1000E_RxRing *rxr, int idx) 755 { 756 static const E1000E_RingInfo i[IGB_NUM_QUEUES] = { 757 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 }, 758 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }, 759 { RDBAH2, RDBAL2, RDLEN2, RDH2, RDT2, 2 }, 760 { RDBAH3, RDBAL3, RDLEN3, RDH3, RDT3, 3 }, 761 { RDBAH4, RDBAL4, RDLEN4, RDH4, RDT4, 4 }, 762 { RDBAH5, RDBAL5, RDLEN5, RDH5, RDT5, 5 }, 763 { RDBAH6, RDBAL6, RDLEN6, RDH6, RDT6, 6 }, 764 { RDBAH7, RDBAL7, RDLEN7, RDH7, RDT7, 7 }, 765 { RDBAH8, RDBAL8, RDLEN8, RDH8, RDT8, 8 }, 766 { RDBAH9, RDBAL9, RDLEN9, RDH9, RDT9, 9 }, 767 { RDBAH10, RDBAL10, RDLEN10, RDH10, RDT10, 10 }, 768 { RDBAH11, RDBAL11, RDLEN11, RDH11, RDT11, 11 }, 769 { RDBAH12, RDBAL12, RDLEN12, RDH12, RDT12, 12 }, 770 { RDBAH13, RDBAL13, RDLEN13, RDH13, RDT13, 13 }, 771 { RDBAH14, RDBAL14, RDLEN14, RDH14, RDT14, 14 }, 772 { RDBAH15, RDBAL15, RDLEN15, RDH15, RDT15, 15 } 773 }; 774 775 assert(idx < ARRAY_SIZE(i)); 776 777 rxr->i = &i[idx]; 778 } 779 780 static uint32_t 781 igb_txdesc_writeback(IGBCore *core, dma_addr_t base, 782 union e1000_adv_tx_desc *tx_desc, 783 const E1000E_RingInfo *txi) 784 { 785 PCIDevice *d; 786 uint32_t cmd_type_len = le32_to_cpu(tx_desc->read.cmd_type_len); 787 uint64_t tdwba; 788 789 tdwba = core->mac[E1000_TDWBAL(txi->idx) >> 2]; 790 tdwba |= (uint64_t)core->mac[E1000_TDWBAH(txi->idx) >> 2] << 32; 791 792 if (!(cmd_type_len & E1000_TXD_CMD_RS)) { 793 return 0; 794 } 795 796 d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8); 797 if (!d) { 798 d = core->owner; 799 } 800 801 if (tdwba & 1) { 802 uint32_t buffer = cpu_to_le32(core->mac[txi->dh]); 803 pci_dma_write(d, tdwba & ~3, &buffer, sizeof(buffer)); 804 } else { 805 uint32_t status = le32_to_cpu(tx_desc->wb.status) | E1000_TXD_STAT_DD; 806 807 tx_desc->wb.status = cpu_to_le32(status); 808 pci_dma_write(d, base + offsetof(union e1000_adv_tx_desc, wb), 809 &tx_desc->wb, sizeof(tx_desc->wb)); 810 } 811 812 return igb_tx_wb_eic(core, txi->idx); 813 } 814 815 static inline bool 816 igb_tx_enabled(IGBCore *core, const E1000E_RingInfo *txi) 817 { 818 bool vmdq = core->mac[MRQC] & 1; 819 uint16_t qn = txi->idx; 820 uint16_t pool = qn % IGB_NUM_VM_POOLS; 821 822 return (core->mac[TCTL] & E1000_TCTL_EN) && 823 (!vmdq || core->mac[VFTE] & BIT(pool)) && 824 (core->mac[TXDCTL0 + (qn * 16)] & E1000_TXDCTL_QUEUE_ENABLE); 825 } 826 827 static void 828 igb_start_xmit(IGBCore *core, const IGB_TxRing *txr) 829 { 830 PCIDevice *d; 831 dma_addr_t base; 832 union e1000_adv_tx_desc desc; 833 const E1000E_RingInfo *txi = txr->i; 834 uint32_t eic = 0; 835 836 if (!igb_tx_enabled(core, txi)) { 837 trace_e1000e_tx_disabled(); 838 return; 839 } 840 841 d = pcie_sriov_get_vf_at_index(core->owner, txi->idx % 8); 842 if (!d) { 843 d = core->owner; 844 } 845 846 net_tx_pkt_reset(txr->tx->tx_pkt, d); 847 848 while (!igb_ring_empty(core, txi)) { 849 base = igb_ring_head_descr(core, txi); 850 851 pci_dma_read(d, base, &desc, sizeof(desc)); 852 853 trace_e1000e_tx_descr((void *)(intptr_t)desc.read.buffer_addr, 854 desc.read.cmd_type_len, desc.wb.status); 855 856 igb_process_tx_desc(core, d, txr->tx, &desc, txi->idx); 857 igb_ring_advance(core, txi, 1); 858 eic |= igb_txdesc_writeback(core, base, &desc, txi); 859 } 860 861 if (eic) { 862 core->mac[EICR] |= eic; 863 igb_set_interrupt_cause(core, E1000_ICR_TXDW); 864 } 865 } 866 867 static uint32_t 868 igb_rxbufsize(IGBCore *core, const E1000E_RingInfo *r) 869 { 870 uint32_t srrctl = core->mac[E1000_SRRCTL(r->idx) >> 2]; 871 uint32_t bsizepkt = srrctl & E1000_SRRCTL_BSIZEPKT_MASK; 872 if (bsizepkt) { 873 return bsizepkt << E1000_SRRCTL_BSIZEPKT_SHIFT; 874 } 875 876 return e1000x_rxbufsize(core->mac[RCTL]); 877 } 878 879 static bool 880 igb_has_rxbufs(IGBCore *core, const E1000E_RingInfo *r, size_t total_size) 881 { 882 uint32_t bufs = igb_ring_free_descr_num(core, r); 883 uint32_t bufsize = igb_rxbufsize(core, r); 884 885 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, bufsize); 886 887 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) * 888 bufsize; 889 } 890 891 void 892 igb_start_recv(IGBCore *core) 893 { 894 int i; 895 896 trace_e1000e_rx_start_recv(); 897 898 for (i = 0; i <= core->max_queue_num; i++) { 899 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i)); 900 } 901 } 902 903 bool 904 igb_can_receive(IGBCore *core) 905 { 906 int i; 907 908 if (!e1000x_rx_ready(core->owner, core->mac)) { 909 return false; 910 } 911 912 for (i = 0; i < IGB_NUM_QUEUES; i++) { 913 E1000E_RxRing rxr; 914 if (!(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) { 915 continue; 916 } 917 918 igb_rx_ring_init(core, &rxr, i); 919 if (igb_ring_enabled(core, rxr.i) && igb_has_rxbufs(core, rxr.i, 1)) { 920 trace_e1000e_rx_can_recv(); 921 return true; 922 } 923 } 924 925 trace_e1000e_rx_can_recv_rings_full(); 926 return false; 927 } 928 929 ssize_t 930 igb_receive(IGBCore *core, const uint8_t *buf, size_t size) 931 { 932 const struct iovec iov = { 933 .iov_base = (uint8_t *)buf, 934 .iov_len = size 935 }; 936 937 return igb_receive_iov(core, &iov, 1); 938 } 939 940 static inline bool 941 igb_rx_l3_cso_enabled(IGBCore *core) 942 { 943 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD); 944 } 945 946 static inline bool 947 igb_rx_l4_cso_enabled(IGBCore *core) 948 { 949 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD); 950 } 951 952 static bool 953 igb_rx_is_oversized(IGBCore *core, uint16_t qn, size_t size) 954 { 955 uint16_t pool = qn % IGB_NUM_VM_POOLS; 956 bool lpe = !!(core->mac[VMOLR0 + pool] & E1000_VMOLR_LPE); 957 int max_ethernet_lpe_size = 958 core->mac[VMOLR0 + pool] & E1000_VMOLR_RLPML_MASK; 959 int max_ethernet_vlan_size = 1522; 960 961 return size > (lpe ? max_ethernet_lpe_size : max_ethernet_vlan_size); 962 } 963 964 static uint16_t igb_receive_assign(IGBCore *core, const struct eth_header *ehdr, 965 size_t size, E1000E_RSSInfo *rss_info, 966 bool *external_tx) 967 { 968 static const int ta_shift[] = { 4, 3, 2, 0 }; 969 uint32_t f, ra[2], *macp, rctl = core->mac[RCTL]; 970 uint16_t queues = 0; 971 uint16_t oversized = 0; 972 uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(ehdr)->h_tci) & VLAN_VID_MASK; 973 bool accepted = false; 974 int i; 975 976 memset(rss_info, 0, sizeof(E1000E_RSSInfo)); 977 978 if (external_tx) { 979 *external_tx = true; 980 } 981 982 if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff) && 983 e1000x_vlan_rx_filter_enabled(core->mac)) { 984 uint32_t vfta = 985 ldl_le_p((uint32_t *)(core->mac + VFTA) + 986 ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK)); 987 if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) { 988 trace_e1000e_rx_flt_vlan_mismatch(vid); 989 return queues; 990 } else { 991 trace_e1000e_rx_flt_vlan_match(vid); 992 } 993 } 994 995 if (core->mac[MRQC] & 1) { 996 if (is_broadcast_ether_addr(ehdr->h_dest)) { 997 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 998 if (core->mac[VMOLR0 + i] & E1000_VMOLR_BAM) { 999 queues |= BIT(i); 1000 } 1001 } 1002 } else { 1003 for (macp = core->mac + RA; macp < core->mac + RA + 32; macp += 2) { 1004 if (!(macp[1] & E1000_RAH_AV)) { 1005 continue; 1006 } 1007 ra[0] = cpu_to_le32(macp[0]); 1008 ra[1] = cpu_to_le32(macp[1]); 1009 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1010 queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1; 1011 } 1012 } 1013 1014 for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) { 1015 if (!(macp[1] & E1000_RAH_AV)) { 1016 continue; 1017 } 1018 ra[0] = cpu_to_le32(macp[0]); 1019 ra[1] = cpu_to_le32(macp[1]); 1020 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1021 queues |= (macp[1] & E1000_RAH_POOL_MASK) / E1000_RAH_POOL_1; 1022 } 1023 } 1024 1025 if (!queues) { 1026 macp = core->mac + (is_multicast_ether_addr(ehdr->h_dest) ? MTA : UTA); 1027 1028 f = ta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3]; 1029 f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff; 1030 if (macp[f >> 5] & (1 << (f & 0x1f))) { 1031 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1032 if (core->mac[VMOLR0 + i] & E1000_VMOLR_ROMPE) { 1033 queues |= BIT(i); 1034 } 1035 } 1036 } 1037 } else if (is_unicast_ether_addr(ehdr->h_dest) && external_tx) { 1038 *external_tx = false; 1039 } 1040 } 1041 1042 if (e1000x_vlan_rx_filter_enabled(core->mac)) { 1043 uint16_t mask = 0; 1044 1045 if (e1000x_is_vlan_packet(ehdr, core->mac[VET] & 0xffff)) { 1046 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 1047 if ((core->mac[VLVF0 + i] & E1000_VLVF_VLANID_MASK) == vid && 1048 (core->mac[VLVF0 + i] & E1000_VLVF_VLANID_ENABLE)) { 1049 uint32_t poolsel = core->mac[VLVF0 + i] & E1000_VLVF_POOLSEL_MASK; 1050 mask |= poolsel >> E1000_VLVF_POOLSEL_SHIFT; 1051 } 1052 } 1053 } else { 1054 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1055 if (core->mac[VMOLR0 + i] & E1000_VMOLR_AUPE) { 1056 mask |= BIT(i); 1057 } 1058 } 1059 } 1060 1061 queues &= mask; 1062 } 1063 1064 if (is_unicast_ether_addr(ehdr->h_dest) && !queues && !external_tx && 1065 !(core->mac[VT_CTL] & E1000_VT_CTL_DISABLE_DEF_POOL)) { 1066 uint32_t def_pl = core->mac[VT_CTL] & E1000_VT_CTL_DEFAULT_POOL_MASK; 1067 queues = BIT(def_pl >> E1000_VT_CTL_DEFAULT_POOL_SHIFT); 1068 } 1069 1070 queues &= core->mac[VFRE]; 1071 if (queues) { 1072 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1073 if ((queues & BIT(i)) && igb_rx_is_oversized(core, i, size)) { 1074 oversized |= BIT(i); 1075 } 1076 } 1077 /* 8.19.37 increment ROC if packet is oversized for all queues */ 1078 if (oversized == queues) { 1079 trace_e1000x_rx_oversized(size); 1080 e1000x_inc_reg_if_not_full(core->mac, ROC); 1081 } 1082 queues &= ~oversized; 1083 } 1084 1085 if (queues) { 1086 igb_rss_parse_packet(core, core->rx_pkt, 1087 external_tx != NULL, rss_info); 1088 /* Sec 8.26.1: PQn = VFn + VQn*8 */ 1089 if (rss_info->queue & 1) { 1090 for (i = 0; i < IGB_NUM_VM_POOLS; i++) { 1091 if ((queues & BIT(i)) && 1092 (core->mac[VMOLR0 + i] & E1000_VMOLR_RSSE)) { 1093 queues |= BIT(i + IGB_NUM_VM_POOLS); 1094 queues &= ~BIT(i); 1095 } 1096 } 1097 } 1098 } 1099 } else { 1100 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { 1101 case ETH_PKT_UCAST: 1102 if (rctl & E1000_RCTL_UPE) { 1103 accepted = true; /* promiscuous ucast */ 1104 } 1105 break; 1106 1107 case ETH_PKT_BCAST: 1108 if (rctl & E1000_RCTL_BAM) { 1109 accepted = true; /* broadcast enabled */ 1110 } 1111 break; 1112 1113 case ETH_PKT_MCAST: 1114 if (rctl & E1000_RCTL_MPE) { 1115 accepted = true; /* promiscuous mcast */ 1116 } 1117 break; 1118 1119 default: 1120 g_assert_not_reached(); 1121 } 1122 1123 if (!accepted) { 1124 accepted = e1000x_rx_group_filter(core->mac, ehdr->h_dest); 1125 } 1126 1127 if (!accepted) { 1128 for (macp = core->mac + RA2; macp < core->mac + RA2 + 16; macp += 2) { 1129 if (!(macp[1] & E1000_RAH_AV)) { 1130 continue; 1131 } 1132 ra[0] = cpu_to_le32(macp[0]); 1133 ra[1] = cpu_to_le32(macp[1]); 1134 if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) { 1135 trace_e1000x_rx_flt_ucast_match((int)(macp - core->mac - RA2) / 2, 1136 MAC_ARG(ehdr->h_dest)); 1137 1138 accepted = true; 1139 break; 1140 } 1141 } 1142 } 1143 1144 if (accepted) { 1145 igb_rss_parse_packet(core, core->rx_pkt, false, rss_info); 1146 queues = BIT(rss_info->queue); 1147 } 1148 } 1149 1150 return queues; 1151 } 1152 1153 static inline void 1154 igb_read_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc, 1155 hwaddr *buff_addr) 1156 { 1157 *buff_addr = le64_to_cpu(desc->buffer_addr); 1158 } 1159 1160 static inline void 1161 igb_read_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc, 1162 hwaddr *buff_addr) 1163 { 1164 *buff_addr = le64_to_cpu(desc->read.pkt_addr); 1165 } 1166 1167 static inline void 1168 igb_read_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc, 1169 hwaddr *buff_addr) 1170 { 1171 if (igb_rx_use_legacy_descriptor(core)) { 1172 igb_read_lgcy_rx_descr(core, &desc->legacy, buff_addr); 1173 } else { 1174 igb_read_adv_rx_descr(core, &desc->adv, buff_addr); 1175 } 1176 } 1177 1178 static void 1179 igb_verify_csum_in_sw(IGBCore *core, 1180 struct NetRxPkt *pkt, 1181 uint32_t *status_flags, 1182 EthL4HdrProto l4hdr_proto) 1183 { 1184 bool csum_valid; 1185 uint32_t csum_error; 1186 1187 if (igb_rx_l3_cso_enabled(core)) { 1188 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) { 1189 trace_e1000e_rx_metadata_l3_csum_validation_failed(); 1190 } else { 1191 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE; 1192 *status_flags |= E1000_RXD_STAT_IPCS | csum_error; 1193 } 1194 } else { 1195 trace_e1000e_rx_metadata_l3_cso_disabled(); 1196 } 1197 1198 if (!igb_rx_l4_cso_enabled(core)) { 1199 trace_e1000e_rx_metadata_l4_cso_disabled(); 1200 return; 1201 } 1202 1203 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { 1204 trace_e1000e_rx_metadata_l4_csum_validation_failed(); 1205 return; 1206 } 1207 1208 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE; 1209 *status_flags |= E1000_RXD_STAT_TCPCS | csum_error; 1210 1211 if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) { 1212 *status_flags |= E1000_RXD_STAT_UDPCS; 1213 } 1214 } 1215 1216 static void 1217 igb_build_rx_metadata(IGBCore *core, 1218 struct NetRxPkt *pkt, 1219 bool is_eop, 1220 const E1000E_RSSInfo *rss_info, 1221 uint16_t *pkt_info, uint16_t *hdr_info, 1222 uint32_t *rss, 1223 uint32_t *status_flags, 1224 uint16_t *ip_id, 1225 uint16_t *vlan_tag) 1226 { 1227 struct virtio_net_hdr *vhdr; 1228 bool hasip4, hasip6; 1229 EthL4HdrProto l4hdr_proto; 1230 uint32_t pkt_type; 1231 1232 *status_flags = E1000_RXD_STAT_DD; 1233 1234 /* No additional metadata needed for non-EOP descriptors */ 1235 /* TODO: EOP apply only to status so don't skip whole function. */ 1236 if (!is_eop) { 1237 goto func_exit; 1238 } 1239 1240 *status_flags |= E1000_RXD_STAT_EOP; 1241 1242 net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); 1243 trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto); 1244 1245 /* VLAN state */ 1246 if (net_rx_pkt_is_vlan_stripped(pkt)) { 1247 *status_flags |= E1000_RXD_STAT_VP; 1248 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt)); 1249 trace_e1000e_rx_metadata_vlan(*vlan_tag); 1250 } 1251 1252 /* Packet parsing results */ 1253 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) { 1254 if (rss_info->enabled) { 1255 *rss = cpu_to_le32(rss_info->hash); 1256 trace_igb_rx_metadata_rss(*rss); 1257 } 1258 } else if (hasip4) { 1259 *status_flags |= E1000_RXD_STAT_IPIDV; 1260 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt)); 1261 trace_e1000e_rx_metadata_ip_id(*ip_id); 1262 } 1263 1264 if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && net_rx_pkt_is_tcp_ack(pkt)) { 1265 *status_flags |= E1000_RXD_STAT_ACK; 1266 trace_e1000e_rx_metadata_ack(); 1267 } 1268 1269 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) { 1270 trace_e1000e_rx_metadata_ipv6_filtering_disabled(); 1271 pkt_type = E1000_RXD_PKT_MAC; 1272 } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP || 1273 l4hdr_proto == ETH_L4_HDR_PROTO_UDP) { 1274 pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP; 1275 } else if (hasip4 || hasip6) { 1276 pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6; 1277 } else { 1278 pkt_type = E1000_RXD_PKT_MAC; 1279 } 1280 1281 trace_e1000e_rx_metadata_pkt_type(pkt_type); 1282 1283 if (pkt_info) { 1284 if (rss_info->enabled) { 1285 *pkt_info = rss_info->type; 1286 } 1287 1288 *pkt_info |= (pkt_type << 4); 1289 } else { 1290 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type); 1291 } 1292 1293 if (hdr_info) { 1294 *hdr_info = 0; 1295 } 1296 1297 /* RX CSO information */ 1298 if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) { 1299 trace_e1000e_rx_metadata_ipv6_sum_disabled(); 1300 goto func_exit; 1301 } 1302 1303 vhdr = net_rx_pkt_get_vhdr(pkt); 1304 1305 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) && 1306 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) { 1307 trace_e1000e_rx_metadata_virthdr_no_csum_info(); 1308 igb_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto); 1309 goto func_exit; 1310 } 1311 1312 if (igb_rx_l3_cso_enabled(core)) { 1313 *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0; 1314 } else { 1315 trace_e1000e_rx_metadata_l3_cso_disabled(); 1316 } 1317 1318 if (igb_rx_l4_cso_enabled(core)) { 1319 switch (l4hdr_proto) { 1320 case ETH_L4_HDR_PROTO_TCP: 1321 *status_flags |= E1000_RXD_STAT_TCPCS; 1322 break; 1323 1324 case ETH_L4_HDR_PROTO_UDP: 1325 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS; 1326 break; 1327 1328 default: 1329 goto func_exit; 1330 } 1331 } else { 1332 trace_e1000e_rx_metadata_l4_cso_disabled(); 1333 } 1334 1335 trace_e1000e_rx_metadata_status_flags(*status_flags); 1336 1337 func_exit: 1338 *status_flags = cpu_to_le32(*status_flags); 1339 } 1340 1341 static inline void 1342 igb_write_lgcy_rx_descr(IGBCore *core, struct e1000_rx_desc *desc, 1343 struct NetRxPkt *pkt, 1344 const E1000E_RSSInfo *rss_info, 1345 uint16_t length) 1346 { 1347 uint32_t status_flags, rss; 1348 uint16_t ip_id; 1349 1350 assert(!rss_info->enabled); 1351 desc->length = cpu_to_le16(length); 1352 desc->csum = 0; 1353 1354 igb_build_rx_metadata(core, pkt, pkt != NULL, 1355 rss_info, 1356 NULL, NULL, &rss, 1357 &status_flags, &ip_id, 1358 &desc->special); 1359 desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24); 1360 desc->status = (uint8_t) le32_to_cpu(status_flags); 1361 } 1362 1363 static inline void 1364 igb_write_adv_rx_descr(IGBCore *core, union e1000_adv_rx_desc *desc, 1365 struct NetRxPkt *pkt, 1366 const E1000E_RSSInfo *rss_info, 1367 uint16_t length) 1368 { 1369 memset(&desc->wb, 0, sizeof(desc->wb)); 1370 1371 desc->wb.upper.length = cpu_to_le16(length); 1372 1373 igb_build_rx_metadata(core, pkt, pkt != NULL, 1374 rss_info, 1375 &desc->wb.lower.lo_dword.pkt_info, 1376 &desc->wb.lower.lo_dword.hdr_info, 1377 &desc->wb.lower.hi_dword.rss, 1378 &desc->wb.upper.status_error, 1379 &desc->wb.lower.hi_dword.csum_ip.ip_id, 1380 &desc->wb.upper.vlan); 1381 } 1382 1383 static inline void 1384 igb_write_rx_descr(IGBCore *core, union e1000_rx_desc_union *desc, 1385 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, uint16_t length) 1386 { 1387 if (igb_rx_use_legacy_descriptor(core)) { 1388 igb_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info, length); 1389 } else { 1390 igb_write_adv_rx_descr(core, &desc->adv, pkt, rss_info, length); 1391 } 1392 } 1393 1394 static inline void 1395 igb_pci_dma_write_rx_desc(IGBCore *core, PCIDevice *dev, dma_addr_t addr, 1396 union e1000_rx_desc_union *desc, dma_addr_t len) 1397 { 1398 if (igb_rx_use_legacy_descriptor(core)) { 1399 struct e1000_rx_desc *d = &desc->legacy; 1400 size_t offset = offsetof(struct e1000_rx_desc, status); 1401 uint8_t status = d->status; 1402 1403 d->status &= ~E1000_RXD_STAT_DD; 1404 pci_dma_write(dev, addr, desc, len); 1405 1406 if (status & E1000_RXD_STAT_DD) { 1407 d->status = status; 1408 pci_dma_write(dev, addr + offset, &status, sizeof(status)); 1409 } 1410 } else { 1411 union e1000_adv_rx_desc *d = &desc->adv; 1412 size_t offset = 1413 offsetof(union e1000_adv_rx_desc, wb.upper.status_error); 1414 uint32_t status = d->wb.upper.status_error; 1415 1416 d->wb.upper.status_error &= ~E1000_RXD_STAT_DD; 1417 pci_dma_write(dev, addr, desc, len); 1418 1419 if (status & E1000_RXD_STAT_DD) { 1420 d->wb.upper.status_error = status; 1421 pci_dma_write(dev, addr + offset, &status, sizeof(status)); 1422 } 1423 } 1424 } 1425 1426 static void 1427 igb_write_to_rx_buffers(IGBCore *core, 1428 PCIDevice *d, 1429 hwaddr ba, 1430 uint16_t *written, 1431 const char *data, 1432 dma_addr_t data_len) 1433 { 1434 trace_igb_rx_desc_buff_write(ba, *written, data, data_len); 1435 pci_dma_write(d, ba + *written, data, data_len); 1436 *written += data_len; 1437 } 1438 1439 static void 1440 igb_update_rx_stats(IGBCore *core, const E1000E_RingInfo *rxi, 1441 size_t data_size, size_t data_fcs_size) 1442 { 1443 e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size); 1444 1445 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { 1446 case ETH_PKT_BCAST: 1447 e1000x_inc_reg_if_not_full(core->mac, BPRC); 1448 break; 1449 1450 case ETH_PKT_MCAST: 1451 e1000x_inc_reg_if_not_full(core->mac, MPRC); 1452 break; 1453 1454 default: 1455 break; 1456 } 1457 1458 if (core->mac[MRQC] & 1) { 1459 uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS; 1460 1461 core->mac[PVFGORC0 + (pool * 64)] += data_size + 4; 1462 core->mac[PVFGPRC0 + (pool * 64)]++; 1463 if (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) { 1464 core->mac[PVFMPRC0 + (pool * 64)]++; 1465 } 1466 } 1467 } 1468 1469 static inline bool 1470 igb_rx_descr_threshold_hit(IGBCore *core, const E1000E_RingInfo *rxi) 1471 { 1472 return igb_ring_free_descr_num(core, rxi) == 1473 ((core->mac[E1000_SRRCTL(rxi->idx) >> 2] >> 20) & 31) * 16; 1474 } 1475 1476 static void 1477 igb_write_packet_to_guest(IGBCore *core, struct NetRxPkt *pkt, 1478 const E1000E_RxRing *rxr, 1479 const E1000E_RSSInfo *rss_info) 1480 { 1481 PCIDevice *d; 1482 dma_addr_t base; 1483 union e1000_rx_desc_union desc; 1484 size_t desc_size; 1485 size_t desc_offset = 0; 1486 size_t iov_ofs = 0; 1487 1488 struct iovec *iov = net_rx_pkt_get_iovec(pkt); 1489 size_t size = net_rx_pkt_get_total_len(pkt); 1490 size_t total_size = size + e1000x_fcs_len(core->mac); 1491 const E1000E_RingInfo *rxi = rxr->i; 1492 size_t bufsize = igb_rxbufsize(core, rxi); 1493 1494 d = pcie_sriov_get_vf_at_index(core->owner, rxi->idx % 8); 1495 if (!d) { 1496 d = core->owner; 1497 } 1498 1499 do { 1500 hwaddr ba; 1501 uint16_t written = 0; 1502 bool is_last = false; 1503 1504 desc_size = total_size - desc_offset; 1505 1506 if (desc_size > bufsize) { 1507 desc_size = bufsize; 1508 } 1509 1510 if (igb_ring_empty(core, rxi)) { 1511 return; 1512 } 1513 1514 base = igb_ring_head_descr(core, rxi); 1515 1516 pci_dma_read(d, base, &desc, core->rx_desc_len); 1517 1518 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len); 1519 1520 igb_read_rx_descr(core, &desc, &ba); 1521 1522 if (ba) { 1523 if (desc_offset < size) { 1524 static const uint32_t fcs_pad; 1525 size_t iov_copy; 1526 size_t copy_size = size - desc_offset; 1527 if (copy_size > bufsize) { 1528 copy_size = bufsize; 1529 } 1530 1531 /* Copy packet payload */ 1532 while (copy_size) { 1533 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 1534 1535 igb_write_to_rx_buffers(core, d, ba, &written, 1536 iov->iov_base + iov_ofs, iov_copy); 1537 1538 copy_size -= iov_copy; 1539 iov_ofs += iov_copy; 1540 if (iov_ofs == iov->iov_len) { 1541 iov++; 1542 iov_ofs = 0; 1543 } 1544 } 1545 1546 if (desc_offset + desc_size >= total_size) { 1547 /* Simulate FCS checksum presence in the last descriptor */ 1548 igb_write_to_rx_buffers(core, d, ba, &written, 1549 (const char *) &fcs_pad, e1000x_fcs_len(core->mac)); 1550 } 1551 } 1552 } else { /* as per intel docs; skip descriptors with null buf addr */ 1553 trace_e1000e_rx_null_descriptor(); 1554 } 1555 desc_offset += desc_size; 1556 if (desc_offset >= total_size) { 1557 is_last = true; 1558 } 1559 1560 igb_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL, 1561 rss_info, written); 1562 igb_pci_dma_write_rx_desc(core, d, base, &desc, core->rx_desc_len); 1563 1564 igb_ring_advance(core, rxi, core->rx_desc_len / E1000_MIN_RX_DESC_LEN); 1565 1566 } while (desc_offset < total_size); 1567 1568 igb_update_rx_stats(core, rxi, size, total_size); 1569 } 1570 1571 static bool 1572 igb_rx_strip_vlan(IGBCore *core, const E1000E_RingInfo *rxi) 1573 { 1574 if (core->mac[MRQC] & 1) { 1575 uint16_t pool = rxi->idx % IGB_NUM_VM_POOLS; 1576 /* Sec 7.10.3.8: CTRL.VME is ignored, only VMOLR/RPLOLR is used */ 1577 return (net_rx_pkt_get_packet_type(core->rx_pkt) == ETH_PKT_MCAST) ? 1578 core->mac[RPLOLR] & E1000_RPLOLR_STRVLAN : 1579 core->mac[VMOLR0 + pool] & E1000_VMOLR_STRVLAN; 1580 } 1581 1582 return e1000x_vlan_enabled(core->mac); 1583 } 1584 1585 static inline void 1586 igb_rx_fix_l4_csum(IGBCore *core, struct NetRxPkt *pkt) 1587 { 1588 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt); 1589 1590 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 1591 net_rx_pkt_fix_l4_csum(pkt); 1592 } 1593 } 1594 1595 ssize_t 1596 igb_receive_iov(IGBCore *core, const struct iovec *iov, int iovcnt) 1597 { 1598 return igb_receive_internal(core, iov, iovcnt, core->has_vnet, NULL); 1599 } 1600 1601 static ssize_t 1602 igb_receive_internal(IGBCore *core, const struct iovec *iov, int iovcnt, 1603 bool has_vnet, bool *external_tx) 1604 { 1605 static const int maximum_ethernet_hdr_len = (ETH_HLEN + 4); 1606 1607 uint16_t queues = 0; 1608 uint32_t n = 0; 1609 uint8_t min_buf[ETH_ZLEN]; 1610 struct iovec min_iov; 1611 struct eth_header *ehdr; 1612 uint8_t *filter_buf; 1613 size_t size, orig_size; 1614 size_t iov_ofs = 0; 1615 E1000E_RxRing rxr; 1616 E1000E_RSSInfo rss_info; 1617 size_t total_size; 1618 int i; 1619 1620 trace_e1000e_rx_receive_iov(iovcnt); 1621 1622 if (external_tx) { 1623 *external_tx = true; 1624 } 1625 1626 if (!e1000x_hw_rx_enabled(core->mac)) { 1627 return -1; 1628 } 1629 1630 /* Pull virtio header in */ 1631 if (has_vnet) { 1632 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt); 1633 iov_ofs = sizeof(struct virtio_net_hdr); 1634 } else { 1635 net_rx_pkt_unset_vhdr(core->rx_pkt); 1636 } 1637 1638 filter_buf = iov->iov_base + iov_ofs; 1639 orig_size = iov_size(iov, iovcnt); 1640 size = orig_size - iov_ofs; 1641 1642 /* Pad to minimum Ethernet frame length */ 1643 if (size < sizeof(min_buf)) { 1644 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size); 1645 memset(&min_buf[size], 0, sizeof(min_buf) - size); 1646 e1000x_inc_reg_if_not_full(core->mac, RUC); 1647 min_iov.iov_base = filter_buf = min_buf; 1648 min_iov.iov_len = size = sizeof(min_buf); 1649 iovcnt = 1; 1650 iov = &min_iov; 1651 iov_ofs = 0; 1652 } else if (iov->iov_len < maximum_ethernet_hdr_len) { 1653 /* This is very unlikely, but may happen. */ 1654 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len); 1655 filter_buf = min_buf; 1656 } 1657 1658 /* Discard oversized packets if !LPE and !SBP. */ 1659 if (e1000x_is_oversized(core->mac, size)) { 1660 return orig_size; 1661 } 1662 1663 ehdr = PKT_GET_ETH_HDR(filter_buf); 1664 net_rx_pkt_set_packet_type(core->rx_pkt, get_eth_packet_type(ehdr)); 1665 net_rx_pkt_set_protocols(core->rx_pkt, filter_buf, size); 1666 1667 queues = igb_receive_assign(core, ehdr, size, &rss_info, external_tx); 1668 if (!queues) { 1669 trace_e1000e_rx_flt_dropped(); 1670 return orig_size; 1671 } 1672 1673 for (i = 0; i < IGB_NUM_QUEUES; i++) { 1674 if (!(queues & BIT(i)) || 1675 !(core->mac[RXDCTL0 + (i * 16)] & E1000_RXDCTL_QUEUE_ENABLE)) { 1676 continue; 1677 } 1678 1679 igb_rx_ring_init(core, &rxr, i); 1680 1681 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs, 1682 igb_rx_strip_vlan(core, rxr.i), 1683 core->mac[VET] & 0xffff); 1684 1685 total_size = net_rx_pkt_get_total_len(core->rx_pkt) + 1686 e1000x_fcs_len(core->mac); 1687 1688 if (!igb_has_rxbufs(core, rxr.i, total_size)) { 1689 n |= E1000_ICS_RXO; 1690 trace_e1000e_rx_not_written_to_guest(rxr.i->idx); 1691 continue; 1692 } 1693 1694 n |= E1000_ICR_RXDW; 1695 1696 igb_rx_fix_l4_csum(core, core->rx_pkt); 1697 igb_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info); 1698 1699 /* Check if receive descriptor minimum threshold hit */ 1700 if (igb_rx_descr_threshold_hit(core, rxr.i)) { 1701 n |= E1000_ICS_RXDMT0; 1702 } 1703 1704 core->mac[EICR] |= igb_rx_wb_eic(core, rxr.i->idx); 1705 1706 trace_e1000e_rx_written_to_guest(rxr.i->idx); 1707 } 1708 1709 trace_e1000e_rx_interrupt_set(n); 1710 igb_set_interrupt_cause(core, n); 1711 1712 return orig_size; 1713 } 1714 1715 static inline bool 1716 igb_have_autoneg(IGBCore *core) 1717 { 1718 return core->phy[MII_BMCR] & MII_BMCR_AUTOEN; 1719 } 1720 1721 static void igb_update_flowctl_status(IGBCore *core) 1722 { 1723 if (igb_have_autoneg(core) && core->phy[MII_BMSR] & MII_BMSR_AN_COMP) { 1724 trace_e1000e_link_autoneg_flowctl(true); 1725 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE; 1726 } else { 1727 trace_e1000e_link_autoneg_flowctl(false); 1728 } 1729 } 1730 1731 static inline void 1732 igb_link_down(IGBCore *core) 1733 { 1734 e1000x_update_regs_on_link_down(core->mac, core->phy); 1735 igb_update_flowctl_status(core); 1736 } 1737 1738 static inline void 1739 igb_set_phy_ctrl(IGBCore *core, uint16_t val) 1740 { 1741 /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */ 1742 core->phy[MII_BMCR] = val & ~(0x3f | MII_BMCR_RESET | MII_BMCR_ANRESTART); 1743 1744 if ((val & MII_BMCR_ANRESTART) && igb_have_autoneg(core)) { 1745 e1000x_restart_autoneg(core->mac, core->phy, core->autoneg_timer); 1746 } 1747 } 1748 1749 void igb_core_set_link_status(IGBCore *core) 1750 { 1751 NetClientState *nc = qemu_get_queue(core->owner_nic); 1752 uint32_t old_status = core->mac[STATUS]; 1753 1754 trace_e1000e_link_status_changed(nc->link_down ? false : true); 1755 1756 if (nc->link_down) { 1757 e1000x_update_regs_on_link_down(core->mac, core->phy); 1758 } else { 1759 if (igb_have_autoneg(core) && 1760 !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) { 1761 e1000x_restart_autoneg(core->mac, core->phy, 1762 core->autoneg_timer); 1763 } else { 1764 e1000x_update_regs_on_link_up(core->mac, core->phy); 1765 igb_start_recv(core); 1766 } 1767 } 1768 1769 if (core->mac[STATUS] != old_status) { 1770 igb_set_interrupt_cause(core, E1000_ICR_LSC); 1771 } 1772 } 1773 1774 static void 1775 igb_set_ctrl(IGBCore *core, int index, uint32_t val) 1776 { 1777 trace_e1000e_core_ctrl_write(index, val); 1778 1779 /* RST is self clearing */ 1780 core->mac[CTRL] = val & ~E1000_CTRL_RST; 1781 core->mac[CTRL_DUP] = core->mac[CTRL]; 1782 1783 trace_e1000e_link_set_params( 1784 !!(val & E1000_CTRL_ASDE), 1785 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 1786 !!(val & E1000_CTRL_FRCSPD), 1787 !!(val & E1000_CTRL_FRCDPX), 1788 !!(val & E1000_CTRL_RFCE), 1789 !!(val & E1000_CTRL_TFCE)); 1790 1791 if (val & E1000_CTRL_RST) { 1792 trace_e1000e_core_ctrl_sw_reset(); 1793 igb_reset(core, true); 1794 } 1795 1796 if (val & E1000_CTRL_PHY_RST) { 1797 trace_e1000e_core_ctrl_phy_reset(); 1798 core->mac[STATUS] |= E1000_STATUS_PHYRA; 1799 } 1800 } 1801 1802 static void 1803 igb_set_rfctl(IGBCore *core, int index, uint32_t val) 1804 { 1805 trace_e1000e_rx_set_rfctl(val); 1806 1807 if (!(val & E1000_RFCTL_ISCSI_DIS)) { 1808 trace_e1000e_wrn_iscsi_filtering_not_supported(); 1809 } 1810 1811 if (!(val & E1000_RFCTL_NFSW_DIS)) { 1812 trace_e1000e_wrn_nfsw_filtering_not_supported(); 1813 } 1814 1815 if (!(val & E1000_RFCTL_NFSR_DIS)) { 1816 trace_e1000e_wrn_nfsr_filtering_not_supported(); 1817 } 1818 1819 core->mac[RFCTL] = val; 1820 } 1821 1822 static void 1823 igb_calc_rxdesclen(IGBCore *core) 1824 { 1825 if (igb_rx_use_legacy_descriptor(core)) { 1826 core->rx_desc_len = sizeof(struct e1000_rx_desc); 1827 } else { 1828 core->rx_desc_len = sizeof(union e1000_adv_rx_desc); 1829 } 1830 trace_e1000e_rx_desc_len(core->rx_desc_len); 1831 } 1832 1833 static void 1834 igb_set_rx_control(IGBCore *core, int index, uint32_t val) 1835 { 1836 core->mac[RCTL] = val; 1837 trace_e1000e_rx_set_rctl(core->mac[RCTL]); 1838 1839 if (val & E1000_RCTL_DTYP_MASK) { 1840 qemu_log_mask(LOG_GUEST_ERROR, 1841 "igb: RCTL.DTYP must be zero for compatibility"); 1842 } 1843 1844 if (val & E1000_RCTL_EN) { 1845 igb_calc_rxdesclen(core); 1846 igb_start_recv(core); 1847 } 1848 } 1849 1850 static inline void 1851 igb_clear_ims_bits(IGBCore *core, uint32_t bits) 1852 { 1853 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits); 1854 core->mac[IMS] &= ~bits; 1855 } 1856 1857 static inline bool 1858 igb_postpone_interrupt(IGBIntrDelayTimer *timer) 1859 { 1860 if (timer->running) { 1861 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2); 1862 1863 return true; 1864 } 1865 1866 if (timer->core->mac[timer->delay_reg] != 0) { 1867 igb_intrmgr_rearm_timer(timer); 1868 } 1869 1870 return false; 1871 } 1872 1873 static inline bool 1874 igb_eitr_should_postpone(IGBCore *core, int idx) 1875 { 1876 return igb_postpone_interrupt(&core->eitr[idx]); 1877 } 1878 1879 static void igb_send_msix(IGBCore *core) 1880 { 1881 uint32_t causes = core->mac[EICR] & core->mac[EIMS]; 1882 uint32_t effective_eiac; 1883 int vector; 1884 1885 for (vector = 0; vector < IGB_INTR_NUM; ++vector) { 1886 if ((causes & BIT(vector)) && !igb_eitr_should_postpone(core, vector)) { 1887 1888 trace_e1000e_irq_msix_notify_vec(vector); 1889 igb_msix_notify(core, vector); 1890 1891 trace_e1000e_irq_icr_clear_eiac(core->mac[EICR], core->mac[EIAC]); 1892 effective_eiac = core->mac[EIAC] & BIT(vector); 1893 core->mac[EICR] &= ~effective_eiac; 1894 } 1895 } 1896 } 1897 1898 static inline void 1899 igb_fix_icr_asserted(IGBCore *core) 1900 { 1901 core->mac[ICR] &= ~E1000_ICR_ASSERTED; 1902 if (core->mac[ICR]) { 1903 core->mac[ICR] |= E1000_ICR_ASSERTED; 1904 } 1905 1906 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]); 1907 } 1908 1909 static void 1910 igb_update_interrupt_state(IGBCore *core) 1911 { 1912 uint32_t icr; 1913 uint32_t causes; 1914 uint32_t int_alloc; 1915 1916 icr = core->mac[ICR] & core->mac[IMS]; 1917 1918 if (msix_enabled(core->owner)) { 1919 if (icr) { 1920 causes = 0; 1921 if (icr & E1000_ICR_DRSTA) { 1922 int_alloc = core->mac[IVAR_MISC] & 0xff; 1923 if (int_alloc & E1000_IVAR_VALID) { 1924 causes |= BIT(int_alloc & 0x1f); 1925 } 1926 } 1927 /* Check if other bits (excluding the TCP Timer) are enabled. */ 1928 if (icr & ~E1000_ICR_DRSTA) { 1929 int_alloc = (core->mac[IVAR_MISC] >> 8) & 0xff; 1930 if (int_alloc & E1000_IVAR_VALID) { 1931 causes |= BIT(int_alloc & 0x1f); 1932 } 1933 trace_e1000e_irq_add_msi_other(core->mac[EICR]); 1934 } 1935 core->mac[EICR] |= causes; 1936 } 1937 1938 if ((core->mac[EICR] & core->mac[EIMS])) { 1939 igb_send_msix(core); 1940 } 1941 } else { 1942 igb_fix_icr_asserted(core); 1943 1944 if (icr) { 1945 core->mac[EICR] |= (icr & E1000_ICR_DRSTA) | E1000_EICR_OTHER; 1946 } else { 1947 core->mac[EICR] &= ~E1000_EICR_OTHER; 1948 } 1949 1950 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], 1951 core->mac[ICR], core->mac[IMS]); 1952 1953 if (msi_enabled(core->owner)) { 1954 if (icr) { 1955 msi_notify(core->owner, 0); 1956 } 1957 } else { 1958 if (icr) { 1959 igb_raise_legacy_irq(core); 1960 } else { 1961 igb_lower_legacy_irq(core); 1962 } 1963 } 1964 } 1965 } 1966 1967 static void 1968 igb_set_interrupt_cause(IGBCore *core, uint32_t val) 1969 { 1970 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]); 1971 1972 core->mac[ICR] |= val; 1973 1974 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]); 1975 1976 igb_update_interrupt_state(core); 1977 } 1978 1979 static void igb_set_eics(IGBCore *core, int index, uint32_t val) 1980 { 1981 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 1982 1983 trace_igb_irq_write_eics(val, msix); 1984 1985 core->mac[EICS] |= 1986 val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK); 1987 1988 /* 1989 * TODO: Move to igb_update_interrupt_state if EICS is modified in other 1990 * places. 1991 */ 1992 core->mac[EICR] = core->mac[EICS]; 1993 1994 igb_update_interrupt_state(core); 1995 } 1996 1997 static void igb_set_eims(IGBCore *core, int index, uint32_t val) 1998 { 1999 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2000 2001 trace_igb_irq_write_eims(val, msix); 2002 2003 core->mac[EIMS] |= 2004 val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK); 2005 2006 igb_update_interrupt_state(core); 2007 } 2008 2009 static void mailbox_interrupt_to_vf(IGBCore *core, uint16_t vfn) 2010 { 2011 uint32_t ent = core->mac[VTIVAR_MISC + vfn]; 2012 2013 if ((ent & E1000_IVAR_VALID)) { 2014 core->mac[EICR] |= (ent & 0x3) << (22 - vfn * IGBVF_MSIX_VEC_NUM); 2015 igb_update_interrupt_state(core); 2016 } 2017 } 2018 2019 static void mailbox_interrupt_to_pf(IGBCore *core) 2020 { 2021 igb_set_interrupt_cause(core, E1000_ICR_VMMB); 2022 } 2023 2024 static void igb_set_pfmailbox(IGBCore *core, int index, uint32_t val) 2025 { 2026 uint16_t vfn = index - P2VMAILBOX0; 2027 2028 trace_igb_set_pfmailbox(vfn, val); 2029 2030 if (val & E1000_P2VMAILBOX_STS) { 2031 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFSTS; 2032 mailbox_interrupt_to_vf(core, vfn); 2033 } 2034 2035 if (val & E1000_P2VMAILBOX_ACK) { 2036 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFACK; 2037 mailbox_interrupt_to_vf(core, vfn); 2038 } 2039 2040 /* Buffer Taken by PF (can be set only if the VFU is cleared). */ 2041 if (val & E1000_P2VMAILBOX_PFU) { 2042 if (!(core->mac[index] & E1000_P2VMAILBOX_VFU)) { 2043 core->mac[index] |= E1000_P2VMAILBOX_PFU; 2044 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_PFU; 2045 } 2046 } else { 2047 core->mac[index] &= ~E1000_P2VMAILBOX_PFU; 2048 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_PFU; 2049 } 2050 2051 if (val & E1000_P2VMAILBOX_RVFU) { 2052 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_VFU; 2053 core->mac[MBVFICR] &= ~((E1000_MBVFICR_VFACK_VF1 << vfn) | 2054 (E1000_MBVFICR_VFREQ_VF1 << vfn)); 2055 } 2056 } 2057 2058 static void igb_set_vfmailbox(IGBCore *core, int index, uint32_t val) 2059 { 2060 uint16_t vfn = index - V2PMAILBOX0; 2061 2062 trace_igb_set_vfmailbox(vfn, val); 2063 2064 if (val & E1000_V2PMAILBOX_REQ) { 2065 core->mac[MBVFICR] |= E1000_MBVFICR_VFREQ_VF1 << vfn; 2066 mailbox_interrupt_to_pf(core); 2067 } 2068 2069 if (val & E1000_V2PMAILBOX_ACK) { 2070 core->mac[MBVFICR] |= E1000_MBVFICR_VFACK_VF1 << vfn; 2071 mailbox_interrupt_to_pf(core); 2072 } 2073 2074 /* Buffer Taken by VF (can be set only if the PFU is cleared). */ 2075 if (val & E1000_V2PMAILBOX_VFU) { 2076 if (!(core->mac[index] & E1000_V2PMAILBOX_PFU)) { 2077 core->mac[index] |= E1000_V2PMAILBOX_VFU; 2078 core->mac[P2VMAILBOX0 + vfn] |= E1000_P2VMAILBOX_VFU; 2079 } 2080 } else { 2081 core->mac[index] &= ~E1000_V2PMAILBOX_VFU; 2082 core->mac[P2VMAILBOX0 + vfn] &= ~E1000_P2VMAILBOX_VFU; 2083 } 2084 } 2085 2086 static void igb_vf_reset(IGBCore *core, uint16_t vfn) 2087 { 2088 uint16_t qn0 = vfn; 2089 uint16_t qn1 = vfn + IGB_NUM_VM_POOLS; 2090 2091 /* disable Rx and Tx for the VF*/ 2092 core->mac[RXDCTL0 + (qn0 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE; 2093 core->mac[RXDCTL0 + (qn1 * 16)] &= ~E1000_RXDCTL_QUEUE_ENABLE; 2094 core->mac[TXDCTL0 + (qn0 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE; 2095 core->mac[TXDCTL0 + (qn1 * 16)] &= ~E1000_TXDCTL_QUEUE_ENABLE; 2096 core->mac[VFRE] &= ~BIT(vfn); 2097 core->mac[VFTE] &= ~BIT(vfn); 2098 /* indicate VF reset to PF */ 2099 core->mac[VFLRE] |= BIT(vfn); 2100 /* VFLRE and mailbox use the same interrupt cause */ 2101 mailbox_interrupt_to_pf(core); 2102 } 2103 2104 static void igb_w1c(IGBCore *core, int index, uint32_t val) 2105 { 2106 core->mac[index] &= ~val; 2107 } 2108 2109 static void igb_set_eimc(IGBCore *core, int index, uint32_t val) 2110 { 2111 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2112 2113 /* Interrupts are disabled via a write to EIMC and reflected in EIMS. */ 2114 core->mac[EIMS] &= 2115 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2116 2117 trace_igb_irq_write_eimc(val, core->mac[EIMS], msix); 2118 igb_update_interrupt_state(core); 2119 } 2120 2121 static void igb_set_eiac(IGBCore *core, int index, uint32_t val) 2122 { 2123 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2124 2125 if (msix) { 2126 trace_igb_irq_write_eiac(val); 2127 2128 /* 2129 * TODO: When using IOV, the bits that correspond to MSI-X vectors 2130 * that are assigned to a VF are read-only. 2131 */ 2132 core->mac[EIAC] |= (val & E1000_EICR_MSIX_MASK); 2133 } 2134 } 2135 2136 static void igb_set_eiam(IGBCore *core, int index, uint32_t val) 2137 { 2138 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2139 2140 /* 2141 * TODO: When using IOV, the bits that correspond to MSI-X vectors that 2142 * are assigned to a VF are read-only. 2143 */ 2144 core->mac[EIAM] |= 2145 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2146 2147 trace_igb_irq_write_eiam(val, msix); 2148 } 2149 2150 static void igb_set_eicr(IGBCore *core, int index, uint32_t val) 2151 { 2152 bool msix = !!(core->mac[GPIE] & E1000_GPIE_MSIX_MODE); 2153 2154 /* 2155 * TODO: In IOV mode, only bit zero of this vector is available for the PF 2156 * function. 2157 */ 2158 core->mac[EICR] &= 2159 ~(val & (msix ? E1000_EICR_MSIX_MASK : E1000_EICR_LEGACY_MASK)); 2160 2161 trace_igb_irq_write_eicr(val, msix); 2162 igb_update_interrupt_state(core); 2163 } 2164 2165 static void igb_set_vtctrl(IGBCore *core, int index, uint32_t val) 2166 { 2167 uint16_t vfn; 2168 2169 if (val & E1000_CTRL_RST) { 2170 vfn = (index - PVTCTRL0) / 0x40; 2171 igb_vf_reset(core, vfn); 2172 } 2173 } 2174 2175 static void igb_set_vteics(IGBCore *core, int index, uint32_t val) 2176 { 2177 uint16_t vfn = (index - PVTEICS0) / 0x40; 2178 2179 core->mac[index] = val; 2180 igb_set_eics(core, EICS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2181 } 2182 2183 static void igb_set_vteims(IGBCore *core, int index, uint32_t val) 2184 { 2185 uint16_t vfn = (index - PVTEIMS0) / 0x40; 2186 2187 core->mac[index] = val; 2188 igb_set_eims(core, EIMS, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2189 } 2190 2191 static void igb_set_vteimc(IGBCore *core, int index, uint32_t val) 2192 { 2193 uint16_t vfn = (index - PVTEIMC0) / 0x40; 2194 2195 core->mac[index] = val; 2196 igb_set_eimc(core, EIMC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2197 } 2198 2199 static void igb_set_vteiac(IGBCore *core, int index, uint32_t val) 2200 { 2201 uint16_t vfn = (index - PVTEIAC0) / 0x40; 2202 2203 core->mac[index] = val; 2204 igb_set_eiac(core, EIAC, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2205 } 2206 2207 static void igb_set_vteiam(IGBCore *core, int index, uint32_t val) 2208 { 2209 uint16_t vfn = (index - PVTEIAM0) / 0x40; 2210 2211 core->mac[index] = val; 2212 igb_set_eiam(core, EIAM, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2213 } 2214 2215 static void igb_set_vteicr(IGBCore *core, int index, uint32_t val) 2216 { 2217 uint16_t vfn = (index - PVTEICR0) / 0x40; 2218 2219 core->mac[index] = val; 2220 igb_set_eicr(core, EICR, (val & 0x7) << (22 - vfn * IGBVF_MSIX_VEC_NUM)); 2221 } 2222 2223 static void igb_set_vtivar(IGBCore *core, int index, uint32_t val) 2224 { 2225 uint16_t vfn = (index - VTIVAR); 2226 uint16_t qn = vfn; 2227 uint8_t ent; 2228 int n; 2229 2230 core->mac[index] = val; 2231 2232 /* Get assigned vector associated with queue Rx#0. */ 2233 if ((val & E1000_IVAR_VALID)) { 2234 n = igb_ivar_entry_rx(qn); 2235 ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (val & 0x7))); 2236 core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4); 2237 } 2238 2239 /* Get assigned vector associated with queue Tx#0 */ 2240 ent = val >> 8; 2241 if ((ent & E1000_IVAR_VALID)) { 2242 n = igb_ivar_entry_tx(qn); 2243 ent = E1000_IVAR_VALID | (24 - vfn * IGBVF_MSIX_VEC_NUM - (2 - (ent & 0x7))); 2244 core->mac[IVAR0 + n / 4] |= ent << 8 * (n % 4); 2245 } 2246 2247 /* 2248 * Ignoring assigned vectors associated with queues Rx#1 and Tx#1 for now. 2249 */ 2250 } 2251 2252 static inline void 2253 igb_autoneg_timer(void *opaque) 2254 { 2255 IGBCore *core = opaque; 2256 if (!qemu_get_queue(core->owner_nic)->link_down) { 2257 e1000x_update_regs_on_autoneg_done(core->mac, core->phy); 2258 igb_start_recv(core); 2259 2260 igb_update_flowctl_status(core); 2261 /* signal link status change to the guest */ 2262 igb_set_interrupt_cause(core, E1000_ICR_LSC); 2263 } 2264 } 2265 2266 static inline uint16_t 2267 igb_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr) 2268 { 2269 uint16_t index = (addr & 0x1ffff) >> 2; 2270 return index + (mac_reg_access[index] & 0xfffe); 2271 } 2272 2273 static const char igb_phy_regcap[MAX_PHY_REG_ADDRESS + 1] = { 2274 [MII_BMCR] = PHY_RW, 2275 [MII_BMSR] = PHY_R, 2276 [MII_PHYID1] = PHY_R, 2277 [MII_PHYID2] = PHY_R, 2278 [MII_ANAR] = PHY_RW, 2279 [MII_ANLPAR] = PHY_R, 2280 [MII_ANER] = PHY_R, 2281 [MII_ANNP] = PHY_RW, 2282 [MII_ANLPRNP] = PHY_R, 2283 [MII_CTRL1000] = PHY_RW, 2284 [MII_STAT1000] = PHY_R, 2285 [MII_EXTSTAT] = PHY_R, 2286 2287 [IGP01E1000_PHY_PORT_CONFIG] = PHY_RW, 2288 [IGP01E1000_PHY_PORT_STATUS] = PHY_R, 2289 [IGP01E1000_PHY_PORT_CTRL] = PHY_RW, 2290 [IGP01E1000_PHY_LINK_HEALTH] = PHY_R, 2291 [IGP02E1000_PHY_POWER_MGMT] = PHY_RW, 2292 [IGP01E1000_PHY_PAGE_SELECT] = PHY_W 2293 }; 2294 2295 static void 2296 igb_phy_reg_write(IGBCore *core, uint32_t addr, uint16_t data) 2297 { 2298 assert(addr <= MAX_PHY_REG_ADDRESS); 2299 2300 if (addr == MII_BMCR) { 2301 igb_set_phy_ctrl(core, data); 2302 } else { 2303 core->phy[addr] = data; 2304 } 2305 } 2306 2307 static void 2308 igb_set_mdic(IGBCore *core, int index, uint32_t val) 2309 { 2310 uint32_t data = val & E1000_MDIC_DATA_MASK; 2311 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 2312 2313 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */ 2314 val = core->mac[MDIC] | E1000_MDIC_ERROR; 2315 } else if (val & E1000_MDIC_OP_READ) { 2316 if (!(igb_phy_regcap[addr] & PHY_R)) { 2317 trace_igb_core_mdic_read_unhandled(addr); 2318 val |= E1000_MDIC_ERROR; 2319 } else { 2320 val = (val ^ data) | core->phy[addr]; 2321 trace_igb_core_mdic_read(addr, val); 2322 } 2323 } else if (val & E1000_MDIC_OP_WRITE) { 2324 if (!(igb_phy_regcap[addr] & PHY_W)) { 2325 trace_igb_core_mdic_write_unhandled(addr); 2326 val |= E1000_MDIC_ERROR; 2327 } else { 2328 trace_igb_core_mdic_write(addr, data); 2329 igb_phy_reg_write(core, addr, data); 2330 } 2331 } 2332 core->mac[MDIC] = val | E1000_MDIC_READY; 2333 2334 if (val & E1000_MDIC_INT_EN) { 2335 igb_set_interrupt_cause(core, E1000_ICR_MDAC); 2336 } 2337 } 2338 2339 static void 2340 igb_set_rdt(IGBCore *core, int index, uint32_t val) 2341 { 2342 core->mac[index] = val & 0xffff; 2343 trace_e1000e_rx_set_rdt(igb_mq_queue_idx(RDT0, index), val); 2344 igb_start_recv(core); 2345 } 2346 2347 static void 2348 igb_set_status(IGBCore *core, int index, uint32_t val) 2349 { 2350 if ((val & E1000_STATUS_PHYRA) == 0) { 2351 core->mac[index] &= ~E1000_STATUS_PHYRA; 2352 } 2353 } 2354 2355 static void 2356 igb_set_ctrlext(IGBCore *core, int index, uint32_t val) 2357 { 2358 trace_igb_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK), 2359 !!(val & E1000_CTRL_EXT_SPD_BYPS), 2360 !!(val & E1000_CTRL_EXT_PFRSTD)); 2361 2362 /* Zero self-clearing bits */ 2363 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST); 2364 core->mac[CTRL_EXT] = val; 2365 2366 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PFRSTD) { 2367 for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) { 2368 core->mac[V2PMAILBOX0 + vfn] &= ~E1000_V2PMAILBOX_RSTI; 2369 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTD; 2370 } 2371 } 2372 } 2373 2374 static void 2375 igb_set_pbaclr(IGBCore *core, int index, uint32_t val) 2376 { 2377 int i; 2378 2379 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK; 2380 2381 if (!msix_enabled(core->owner)) { 2382 return; 2383 } 2384 2385 for (i = 0; i < IGB_INTR_NUM; i++) { 2386 if (core->mac[PBACLR] & BIT(i)) { 2387 msix_clr_pending(core->owner, i); 2388 } 2389 } 2390 } 2391 2392 static void 2393 igb_set_fcrth(IGBCore *core, int index, uint32_t val) 2394 { 2395 core->mac[FCRTH] = val & 0xFFF8; 2396 } 2397 2398 static void 2399 igb_set_fcrtl(IGBCore *core, int index, uint32_t val) 2400 { 2401 core->mac[FCRTL] = val & 0x8000FFF8; 2402 } 2403 2404 #define IGB_LOW_BITS_SET_FUNC(num) \ 2405 static void \ 2406 igb_set_##num##bit(IGBCore *core, int index, uint32_t val) \ 2407 { \ 2408 core->mac[index] = val & (BIT(num) - 1); \ 2409 } 2410 2411 IGB_LOW_BITS_SET_FUNC(4) 2412 IGB_LOW_BITS_SET_FUNC(13) 2413 IGB_LOW_BITS_SET_FUNC(16) 2414 2415 static void 2416 igb_set_dlen(IGBCore *core, int index, uint32_t val) 2417 { 2418 core->mac[index] = val & 0xffff0; 2419 } 2420 2421 static void 2422 igb_set_dbal(IGBCore *core, int index, uint32_t val) 2423 { 2424 core->mac[index] = val & E1000_XDBAL_MASK; 2425 } 2426 2427 static void 2428 igb_set_tdt(IGBCore *core, int index, uint32_t val) 2429 { 2430 IGB_TxRing txr; 2431 int qn = igb_mq_queue_idx(TDT0, index); 2432 2433 core->mac[index] = val & 0xffff; 2434 2435 igb_tx_ring_init(core, &txr, qn); 2436 igb_start_xmit(core, &txr); 2437 } 2438 2439 static void 2440 igb_set_ics(IGBCore *core, int index, uint32_t val) 2441 { 2442 trace_e1000e_irq_write_ics(val); 2443 igb_set_interrupt_cause(core, val); 2444 } 2445 2446 static void 2447 igb_set_imc(IGBCore *core, int index, uint32_t val) 2448 { 2449 trace_e1000e_irq_ims_clear_set_imc(val); 2450 igb_clear_ims_bits(core, val); 2451 igb_update_interrupt_state(core); 2452 } 2453 2454 static void 2455 igb_set_ims(IGBCore *core, int index, uint32_t val) 2456 { 2457 uint32_t valid_val = val & 0x77D4FBFD; 2458 2459 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val); 2460 core->mac[IMS] |= valid_val; 2461 igb_update_interrupt_state(core); 2462 } 2463 2464 static void igb_commit_icr(IGBCore *core) 2465 { 2466 /* 2467 * If GPIE.NSICR = 0, then the copy of IAM to IMS will occur only if at 2468 * least one bit is set in the IMS and there is a true interrupt as 2469 * reflected in ICR.INTA. 2470 */ 2471 if ((core->mac[GPIE] & E1000_GPIE_NSICR) || 2472 (core->mac[IMS] && (core->mac[ICR] & E1000_ICR_INT_ASSERTED))) { 2473 igb_set_ims(core, IMS, core->mac[IAM]); 2474 } else { 2475 igb_update_interrupt_state(core); 2476 } 2477 } 2478 2479 static void igb_set_icr(IGBCore *core, int index, uint32_t val) 2480 { 2481 uint32_t icr = core->mac[ICR] & ~val; 2482 2483 trace_igb_irq_icr_write(val, core->mac[ICR], icr); 2484 core->mac[ICR] = icr; 2485 igb_commit_icr(core); 2486 } 2487 2488 static uint32_t 2489 igb_mac_readreg(IGBCore *core, int index) 2490 { 2491 return core->mac[index]; 2492 } 2493 2494 static uint32_t 2495 igb_mac_ics_read(IGBCore *core, int index) 2496 { 2497 trace_e1000e_irq_read_ics(core->mac[ICS]); 2498 return core->mac[ICS]; 2499 } 2500 2501 static uint32_t 2502 igb_mac_ims_read(IGBCore *core, int index) 2503 { 2504 trace_e1000e_irq_read_ims(core->mac[IMS]); 2505 return core->mac[IMS]; 2506 } 2507 2508 static uint32_t 2509 igb_mac_swsm_read(IGBCore *core, int index) 2510 { 2511 uint32_t val = core->mac[SWSM]; 2512 core->mac[SWSM] = val | E1000_SWSM_SMBI; 2513 return val; 2514 } 2515 2516 static uint32_t 2517 igb_mac_eitr_read(IGBCore *core, int index) 2518 { 2519 return core->eitr_guest_value[index - EITR0]; 2520 } 2521 2522 static uint32_t igb_mac_vfmailbox_read(IGBCore *core, int index) 2523 { 2524 uint32_t val = core->mac[index]; 2525 2526 core->mac[index] &= ~(E1000_V2PMAILBOX_PFSTS | E1000_V2PMAILBOX_PFACK | 2527 E1000_V2PMAILBOX_RSTD); 2528 2529 return val; 2530 } 2531 2532 static uint32_t 2533 igb_mac_icr_read(IGBCore *core, int index) 2534 { 2535 uint32_t ret = core->mac[ICR]; 2536 trace_e1000e_irq_icr_read_entry(ret); 2537 2538 if (core->mac[GPIE] & E1000_GPIE_NSICR) { 2539 trace_igb_irq_icr_clear_gpie_nsicr(); 2540 core->mac[ICR] = 0; 2541 } else if (core->mac[IMS] == 0) { 2542 trace_e1000e_irq_icr_clear_zero_ims(); 2543 core->mac[ICR] = 0; 2544 } else if (!msix_enabled(core->owner)) { 2545 trace_e1000e_irq_icr_clear_nonmsix_icr_read(); 2546 core->mac[ICR] = 0; 2547 } 2548 2549 trace_e1000e_irq_icr_read_exit(core->mac[ICR]); 2550 igb_commit_icr(core); 2551 return ret; 2552 } 2553 2554 static uint32_t 2555 igb_mac_read_clr4(IGBCore *core, int index) 2556 { 2557 uint32_t ret = core->mac[index]; 2558 2559 core->mac[index] = 0; 2560 return ret; 2561 } 2562 2563 static uint32_t 2564 igb_mac_read_clr8(IGBCore *core, int index) 2565 { 2566 uint32_t ret = core->mac[index]; 2567 2568 core->mac[index] = 0; 2569 core->mac[index - 1] = 0; 2570 return ret; 2571 } 2572 2573 static uint32_t 2574 igb_get_ctrl(IGBCore *core, int index) 2575 { 2576 uint32_t val = core->mac[CTRL]; 2577 2578 trace_e1000e_link_read_params( 2579 !!(val & E1000_CTRL_ASDE), 2580 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 2581 !!(val & E1000_CTRL_FRCSPD), 2582 !!(val & E1000_CTRL_FRCDPX), 2583 !!(val & E1000_CTRL_RFCE), 2584 !!(val & E1000_CTRL_TFCE)); 2585 2586 return val; 2587 } 2588 2589 static uint32_t igb_get_status(IGBCore *core, int index) 2590 { 2591 uint32_t res = core->mac[STATUS]; 2592 uint16_t num_vfs = pcie_sriov_num_vfs(core->owner); 2593 2594 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) { 2595 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0; 2596 } else { 2597 res |= E1000_STATUS_FD; 2598 } 2599 2600 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) || 2601 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) { 2602 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) { 2603 case E1000_CTRL_SPD_10: 2604 res |= E1000_STATUS_SPEED_10; 2605 break; 2606 case E1000_CTRL_SPD_100: 2607 res |= E1000_STATUS_SPEED_100; 2608 break; 2609 case E1000_CTRL_SPD_1000: 2610 default: 2611 res |= E1000_STATUS_SPEED_1000; 2612 break; 2613 } 2614 } else { 2615 res |= E1000_STATUS_SPEED_1000; 2616 } 2617 2618 if (num_vfs) { 2619 res |= num_vfs << E1000_STATUS_NUM_VFS_SHIFT; 2620 res |= E1000_STATUS_IOV_MODE; 2621 } 2622 2623 /* 2624 * Windows driver 12.18.9.23 resets if E1000_STATUS_GIO_MASTER_ENABLE is 2625 * left set after E1000_CTRL_LRST is set. 2626 */ 2627 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE) && 2628 !(core->mac[CTRL] & E1000_CTRL_LRST)) { 2629 res |= E1000_STATUS_GIO_MASTER_ENABLE; 2630 } 2631 2632 return res; 2633 } 2634 2635 static void 2636 igb_mac_writereg(IGBCore *core, int index, uint32_t val) 2637 { 2638 core->mac[index] = val; 2639 } 2640 2641 static void 2642 igb_mac_setmacaddr(IGBCore *core, int index, uint32_t val) 2643 { 2644 uint32_t macaddr[2]; 2645 2646 core->mac[index] = val; 2647 2648 macaddr[0] = cpu_to_le32(core->mac[RA]); 2649 macaddr[1] = cpu_to_le32(core->mac[RA + 1]); 2650 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic), 2651 (uint8_t *) macaddr); 2652 2653 trace_e1000e_mac_set_sw(MAC_ARG(macaddr)); 2654 } 2655 2656 static void 2657 igb_set_eecd(IGBCore *core, int index, uint32_t val) 2658 { 2659 static const uint32_t ro_bits = E1000_EECD_PRES | 2660 E1000_EECD_AUTO_RD | 2661 E1000_EECD_SIZE_EX_MASK; 2662 2663 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits); 2664 } 2665 2666 static void 2667 igb_set_eerd(IGBCore *core, int index, uint32_t val) 2668 { 2669 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; 2670 uint32_t flags = 0; 2671 uint32_t data = 0; 2672 2673 if ((addr < IGB_EEPROM_SIZE) && (val & E1000_EERW_START)) { 2674 data = core->eeprom[addr]; 2675 flags = E1000_EERW_DONE; 2676 } 2677 2678 core->mac[EERD] = flags | 2679 (addr << E1000_EERW_ADDR_SHIFT) | 2680 (data << E1000_EERW_DATA_SHIFT); 2681 } 2682 2683 static void 2684 igb_set_eitr(IGBCore *core, int index, uint32_t val) 2685 { 2686 uint32_t eitr_num = index - EITR0; 2687 2688 trace_igb_irq_eitr_set(eitr_num, val); 2689 2690 core->eitr_guest_value[eitr_num] = val & ~E1000_EITR_CNT_IGNR; 2691 core->mac[index] = val & 0x7FFE; 2692 } 2693 2694 static void 2695 igb_update_rx_offloads(IGBCore *core) 2696 { 2697 int cso_state = igb_rx_l4_cso_enabled(core); 2698 2699 trace_e1000e_rx_set_cso(cso_state); 2700 2701 if (core->has_vnet) { 2702 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer, 2703 cso_state, 0, 0, 0, 0); 2704 } 2705 } 2706 2707 static void 2708 igb_set_rxcsum(IGBCore *core, int index, uint32_t val) 2709 { 2710 core->mac[RXCSUM] = val; 2711 igb_update_rx_offloads(core); 2712 } 2713 2714 static void 2715 igb_set_gcr(IGBCore *core, int index, uint32_t val) 2716 { 2717 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS; 2718 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits; 2719 } 2720 2721 static uint32_t igb_get_systiml(IGBCore *core, int index) 2722 { 2723 e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH); 2724 return core->mac[SYSTIML]; 2725 } 2726 2727 static uint32_t igb_get_rxsatrh(IGBCore *core, int index) 2728 { 2729 core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID; 2730 return core->mac[RXSATRH]; 2731 } 2732 2733 static uint32_t igb_get_txstmph(IGBCore *core, int index) 2734 { 2735 core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID; 2736 return core->mac[TXSTMPH]; 2737 } 2738 2739 static void igb_set_timinca(IGBCore *core, int index, uint32_t val) 2740 { 2741 e1000x_set_timinca(core->mac, &core->timadj, val); 2742 } 2743 2744 static void igb_set_timadjh(IGBCore *core, int index, uint32_t val) 2745 { 2746 core->mac[TIMADJH] = val; 2747 core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32); 2748 } 2749 2750 #define igb_getreg(x) [x] = igb_mac_readreg 2751 typedef uint32_t (*readops)(IGBCore *, int); 2752 static const readops igb_macreg_readops[] = { 2753 igb_getreg(WUFC), 2754 igb_getreg(MANC), 2755 igb_getreg(TOTL), 2756 igb_getreg(RDT0), 2757 igb_getreg(RDT1), 2758 igb_getreg(RDT2), 2759 igb_getreg(RDT3), 2760 igb_getreg(RDT4), 2761 igb_getreg(RDT5), 2762 igb_getreg(RDT6), 2763 igb_getreg(RDT7), 2764 igb_getreg(RDT8), 2765 igb_getreg(RDT9), 2766 igb_getreg(RDT10), 2767 igb_getreg(RDT11), 2768 igb_getreg(RDT12), 2769 igb_getreg(RDT13), 2770 igb_getreg(RDT14), 2771 igb_getreg(RDT15), 2772 igb_getreg(RDBAH0), 2773 igb_getreg(RDBAH1), 2774 igb_getreg(RDBAH2), 2775 igb_getreg(RDBAH3), 2776 igb_getreg(RDBAH4), 2777 igb_getreg(RDBAH5), 2778 igb_getreg(RDBAH6), 2779 igb_getreg(RDBAH7), 2780 igb_getreg(RDBAH8), 2781 igb_getreg(RDBAH9), 2782 igb_getreg(RDBAH10), 2783 igb_getreg(RDBAH11), 2784 igb_getreg(RDBAH12), 2785 igb_getreg(RDBAH13), 2786 igb_getreg(RDBAH14), 2787 igb_getreg(RDBAH15), 2788 igb_getreg(TDBAL0), 2789 igb_getreg(TDBAL1), 2790 igb_getreg(TDBAL2), 2791 igb_getreg(TDBAL3), 2792 igb_getreg(TDBAL4), 2793 igb_getreg(TDBAL5), 2794 igb_getreg(TDBAL6), 2795 igb_getreg(TDBAL7), 2796 igb_getreg(TDBAL8), 2797 igb_getreg(TDBAL9), 2798 igb_getreg(TDBAL10), 2799 igb_getreg(TDBAL11), 2800 igb_getreg(TDBAL12), 2801 igb_getreg(TDBAL13), 2802 igb_getreg(TDBAL14), 2803 igb_getreg(TDBAL15), 2804 igb_getreg(RDLEN0), 2805 igb_getreg(RDLEN1), 2806 igb_getreg(RDLEN2), 2807 igb_getreg(RDLEN3), 2808 igb_getreg(RDLEN4), 2809 igb_getreg(RDLEN5), 2810 igb_getreg(RDLEN6), 2811 igb_getreg(RDLEN7), 2812 igb_getreg(RDLEN8), 2813 igb_getreg(RDLEN9), 2814 igb_getreg(RDLEN10), 2815 igb_getreg(RDLEN11), 2816 igb_getreg(RDLEN12), 2817 igb_getreg(RDLEN13), 2818 igb_getreg(RDLEN14), 2819 igb_getreg(RDLEN15), 2820 igb_getreg(SRRCTL0), 2821 igb_getreg(SRRCTL1), 2822 igb_getreg(SRRCTL2), 2823 igb_getreg(SRRCTL3), 2824 igb_getreg(SRRCTL4), 2825 igb_getreg(SRRCTL5), 2826 igb_getreg(SRRCTL6), 2827 igb_getreg(SRRCTL7), 2828 igb_getreg(SRRCTL8), 2829 igb_getreg(SRRCTL9), 2830 igb_getreg(SRRCTL10), 2831 igb_getreg(SRRCTL11), 2832 igb_getreg(SRRCTL12), 2833 igb_getreg(SRRCTL13), 2834 igb_getreg(SRRCTL14), 2835 igb_getreg(SRRCTL15), 2836 igb_getreg(LATECOL), 2837 igb_getreg(XONTXC), 2838 igb_getreg(TDFH), 2839 igb_getreg(TDFT), 2840 igb_getreg(TDFHS), 2841 igb_getreg(TDFTS), 2842 igb_getreg(TDFPC), 2843 igb_getreg(WUS), 2844 igb_getreg(RDFH), 2845 igb_getreg(RDFT), 2846 igb_getreg(RDFHS), 2847 igb_getreg(RDFTS), 2848 igb_getreg(RDFPC), 2849 igb_getreg(GORCL), 2850 igb_getreg(MGTPRC), 2851 igb_getreg(EERD), 2852 igb_getreg(EIAC), 2853 igb_getreg(MANC2H), 2854 igb_getreg(RXCSUM), 2855 igb_getreg(GSCL_3), 2856 igb_getreg(GSCN_2), 2857 igb_getreg(FCAH), 2858 igb_getreg(FCRTH), 2859 igb_getreg(FLOP), 2860 igb_getreg(RXSTMPH), 2861 igb_getreg(TXSTMPL), 2862 igb_getreg(TIMADJL), 2863 igb_getreg(RDH0), 2864 igb_getreg(RDH1), 2865 igb_getreg(RDH2), 2866 igb_getreg(RDH3), 2867 igb_getreg(RDH4), 2868 igb_getreg(RDH5), 2869 igb_getreg(RDH6), 2870 igb_getreg(RDH7), 2871 igb_getreg(RDH8), 2872 igb_getreg(RDH9), 2873 igb_getreg(RDH10), 2874 igb_getreg(RDH11), 2875 igb_getreg(RDH12), 2876 igb_getreg(RDH13), 2877 igb_getreg(RDH14), 2878 igb_getreg(RDH15), 2879 igb_getreg(TDT0), 2880 igb_getreg(TDT1), 2881 igb_getreg(TDT2), 2882 igb_getreg(TDT3), 2883 igb_getreg(TDT4), 2884 igb_getreg(TDT5), 2885 igb_getreg(TDT6), 2886 igb_getreg(TDT7), 2887 igb_getreg(TDT8), 2888 igb_getreg(TDT9), 2889 igb_getreg(TDT10), 2890 igb_getreg(TDT11), 2891 igb_getreg(TDT12), 2892 igb_getreg(TDT13), 2893 igb_getreg(TDT14), 2894 igb_getreg(TDT15), 2895 igb_getreg(TNCRS), 2896 igb_getreg(RJC), 2897 igb_getreg(IAM), 2898 igb_getreg(GSCL_2), 2899 igb_getreg(TIPG), 2900 igb_getreg(FLMNGCTL), 2901 igb_getreg(FLMNGCNT), 2902 igb_getreg(TSYNCTXCTL), 2903 igb_getreg(EEMNGDATA), 2904 igb_getreg(CTRL_EXT), 2905 igb_getreg(SYSTIMH), 2906 igb_getreg(EEMNGCTL), 2907 igb_getreg(FLMNGDATA), 2908 igb_getreg(TSYNCRXCTL), 2909 igb_getreg(LEDCTL), 2910 igb_getreg(TCTL), 2911 igb_getreg(TCTL_EXT), 2912 igb_getreg(DTXCTL), 2913 igb_getreg(RXPBS), 2914 igb_getreg(TDH0), 2915 igb_getreg(TDH1), 2916 igb_getreg(TDH2), 2917 igb_getreg(TDH3), 2918 igb_getreg(TDH4), 2919 igb_getreg(TDH5), 2920 igb_getreg(TDH6), 2921 igb_getreg(TDH7), 2922 igb_getreg(TDH8), 2923 igb_getreg(TDH9), 2924 igb_getreg(TDH10), 2925 igb_getreg(TDH11), 2926 igb_getreg(TDH12), 2927 igb_getreg(TDH13), 2928 igb_getreg(TDH14), 2929 igb_getreg(TDH15), 2930 igb_getreg(ECOL), 2931 igb_getreg(DC), 2932 igb_getreg(RLEC), 2933 igb_getreg(XOFFTXC), 2934 igb_getreg(RFC), 2935 igb_getreg(RNBC), 2936 igb_getreg(MGTPTC), 2937 igb_getreg(TIMINCA), 2938 igb_getreg(FACTPS), 2939 igb_getreg(GSCL_1), 2940 igb_getreg(GSCN_0), 2941 igb_getreg(PBACLR), 2942 igb_getreg(FCTTV), 2943 igb_getreg(RXSATRL), 2944 igb_getreg(TORL), 2945 igb_getreg(TDLEN0), 2946 igb_getreg(TDLEN1), 2947 igb_getreg(TDLEN2), 2948 igb_getreg(TDLEN3), 2949 igb_getreg(TDLEN4), 2950 igb_getreg(TDLEN5), 2951 igb_getreg(TDLEN6), 2952 igb_getreg(TDLEN7), 2953 igb_getreg(TDLEN8), 2954 igb_getreg(TDLEN9), 2955 igb_getreg(TDLEN10), 2956 igb_getreg(TDLEN11), 2957 igb_getreg(TDLEN12), 2958 igb_getreg(TDLEN13), 2959 igb_getreg(TDLEN14), 2960 igb_getreg(TDLEN15), 2961 igb_getreg(MCC), 2962 igb_getreg(WUC), 2963 igb_getreg(EECD), 2964 igb_getreg(FCRTV), 2965 igb_getreg(TXDCTL0), 2966 igb_getreg(TXDCTL1), 2967 igb_getreg(TXDCTL2), 2968 igb_getreg(TXDCTL3), 2969 igb_getreg(TXDCTL4), 2970 igb_getreg(TXDCTL5), 2971 igb_getreg(TXDCTL6), 2972 igb_getreg(TXDCTL7), 2973 igb_getreg(TXDCTL8), 2974 igb_getreg(TXDCTL9), 2975 igb_getreg(TXDCTL10), 2976 igb_getreg(TXDCTL11), 2977 igb_getreg(TXDCTL12), 2978 igb_getreg(TXDCTL13), 2979 igb_getreg(TXDCTL14), 2980 igb_getreg(TXDCTL15), 2981 igb_getreg(TXCTL0), 2982 igb_getreg(TXCTL1), 2983 igb_getreg(TXCTL2), 2984 igb_getreg(TXCTL3), 2985 igb_getreg(TXCTL4), 2986 igb_getreg(TXCTL5), 2987 igb_getreg(TXCTL6), 2988 igb_getreg(TXCTL7), 2989 igb_getreg(TXCTL8), 2990 igb_getreg(TXCTL9), 2991 igb_getreg(TXCTL10), 2992 igb_getreg(TXCTL11), 2993 igb_getreg(TXCTL12), 2994 igb_getreg(TXCTL13), 2995 igb_getreg(TXCTL14), 2996 igb_getreg(TXCTL15), 2997 igb_getreg(TDWBAL0), 2998 igb_getreg(TDWBAL1), 2999 igb_getreg(TDWBAL2), 3000 igb_getreg(TDWBAL3), 3001 igb_getreg(TDWBAL4), 3002 igb_getreg(TDWBAL5), 3003 igb_getreg(TDWBAL6), 3004 igb_getreg(TDWBAL7), 3005 igb_getreg(TDWBAL8), 3006 igb_getreg(TDWBAL9), 3007 igb_getreg(TDWBAL10), 3008 igb_getreg(TDWBAL11), 3009 igb_getreg(TDWBAL12), 3010 igb_getreg(TDWBAL13), 3011 igb_getreg(TDWBAL14), 3012 igb_getreg(TDWBAL15), 3013 igb_getreg(TDWBAH0), 3014 igb_getreg(TDWBAH1), 3015 igb_getreg(TDWBAH2), 3016 igb_getreg(TDWBAH3), 3017 igb_getreg(TDWBAH4), 3018 igb_getreg(TDWBAH5), 3019 igb_getreg(TDWBAH6), 3020 igb_getreg(TDWBAH7), 3021 igb_getreg(TDWBAH8), 3022 igb_getreg(TDWBAH9), 3023 igb_getreg(TDWBAH10), 3024 igb_getreg(TDWBAH11), 3025 igb_getreg(TDWBAH12), 3026 igb_getreg(TDWBAH13), 3027 igb_getreg(TDWBAH14), 3028 igb_getreg(TDWBAH15), 3029 igb_getreg(PVTCTRL0), 3030 igb_getreg(PVTCTRL1), 3031 igb_getreg(PVTCTRL2), 3032 igb_getreg(PVTCTRL3), 3033 igb_getreg(PVTCTRL4), 3034 igb_getreg(PVTCTRL5), 3035 igb_getreg(PVTCTRL6), 3036 igb_getreg(PVTCTRL7), 3037 igb_getreg(PVTEIMS0), 3038 igb_getreg(PVTEIMS1), 3039 igb_getreg(PVTEIMS2), 3040 igb_getreg(PVTEIMS3), 3041 igb_getreg(PVTEIMS4), 3042 igb_getreg(PVTEIMS5), 3043 igb_getreg(PVTEIMS6), 3044 igb_getreg(PVTEIMS7), 3045 igb_getreg(PVTEIAC0), 3046 igb_getreg(PVTEIAC1), 3047 igb_getreg(PVTEIAC2), 3048 igb_getreg(PVTEIAC3), 3049 igb_getreg(PVTEIAC4), 3050 igb_getreg(PVTEIAC5), 3051 igb_getreg(PVTEIAC6), 3052 igb_getreg(PVTEIAC7), 3053 igb_getreg(PVTEIAM0), 3054 igb_getreg(PVTEIAM1), 3055 igb_getreg(PVTEIAM2), 3056 igb_getreg(PVTEIAM3), 3057 igb_getreg(PVTEIAM4), 3058 igb_getreg(PVTEIAM5), 3059 igb_getreg(PVTEIAM6), 3060 igb_getreg(PVTEIAM7), 3061 igb_getreg(PVFGPRC0), 3062 igb_getreg(PVFGPRC1), 3063 igb_getreg(PVFGPRC2), 3064 igb_getreg(PVFGPRC3), 3065 igb_getreg(PVFGPRC4), 3066 igb_getreg(PVFGPRC5), 3067 igb_getreg(PVFGPRC6), 3068 igb_getreg(PVFGPRC7), 3069 igb_getreg(PVFGPTC0), 3070 igb_getreg(PVFGPTC1), 3071 igb_getreg(PVFGPTC2), 3072 igb_getreg(PVFGPTC3), 3073 igb_getreg(PVFGPTC4), 3074 igb_getreg(PVFGPTC5), 3075 igb_getreg(PVFGPTC6), 3076 igb_getreg(PVFGPTC7), 3077 igb_getreg(PVFGORC0), 3078 igb_getreg(PVFGORC1), 3079 igb_getreg(PVFGORC2), 3080 igb_getreg(PVFGORC3), 3081 igb_getreg(PVFGORC4), 3082 igb_getreg(PVFGORC5), 3083 igb_getreg(PVFGORC6), 3084 igb_getreg(PVFGORC7), 3085 igb_getreg(PVFGOTC0), 3086 igb_getreg(PVFGOTC1), 3087 igb_getreg(PVFGOTC2), 3088 igb_getreg(PVFGOTC3), 3089 igb_getreg(PVFGOTC4), 3090 igb_getreg(PVFGOTC5), 3091 igb_getreg(PVFGOTC6), 3092 igb_getreg(PVFGOTC7), 3093 igb_getreg(PVFMPRC0), 3094 igb_getreg(PVFMPRC1), 3095 igb_getreg(PVFMPRC2), 3096 igb_getreg(PVFMPRC3), 3097 igb_getreg(PVFMPRC4), 3098 igb_getreg(PVFMPRC5), 3099 igb_getreg(PVFMPRC6), 3100 igb_getreg(PVFMPRC7), 3101 igb_getreg(PVFGPRLBC0), 3102 igb_getreg(PVFGPRLBC1), 3103 igb_getreg(PVFGPRLBC2), 3104 igb_getreg(PVFGPRLBC3), 3105 igb_getreg(PVFGPRLBC4), 3106 igb_getreg(PVFGPRLBC5), 3107 igb_getreg(PVFGPRLBC6), 3108 igb_getreg(PVFGPRLBC7), 3109 igb_getreg(PVFGPTLBC0), 3110 igb_getreg(PVFGPTLBC1), 3111 igb_getreg(PVFGPTLBC2), 3112 igb_getreg(PVFGPTLBC3), 3113 igb_getreg(PVFGPTLBC4), 3114 igb_getreg(PVFGPTLBC5), 3115 igb_getreg(PVFGPTLBC6), 3116 igb_getreg(PVFGPTLBC7), 3117 igb_getreg(PVFGORLBC0), 3118 igb_getreg(PVFGORLBC1), 3119 igb_getreg(PVFGORLBC2), 3120 igb_getreg(PVFGORLBC3), 3121 igb_getreg(PVFGORLBC4), 3122 igb_getreg(PVFGORLBC5), 3123 igb_getreg(PVFGORLBC6), 3124 igb_getreg(PVFGORLBC7), 3125 igb_getreg(PVFGOTLBC0), 3126 igb_getreg(PVFGOTLBC1), 3127 igb_getreg(PVFGOTLBC2), 3128 igb_getreg(PVFGOTLBC3), 3129 igb_getreg(PVFGOTLBC4), 3130 igb_getreg(PVFGOTLBC5), 3131 igb_getreg(PVFGOTLBC6), 3132 igb_getreg(PVFGOTLBC7), 3133 igb_getreg(RCTL), 3134 igb_getreg(MDIC), 3135 igb_getreg(FCRUC), 3136 igb_getreg(VET), 3137 igb_getreg(RDBAL0), 3138 igb_getreg(RDBAL1), 3139 igb_getreg(RDBAL2), 3140 igb_getreg(RDBAL3), 3141 igb_getreg(RDBAL4), 3142 igb_getreg(RDBAL5), 3143 igb_getreg(RDBAL6), 3144 igb_getreg(RDBAL7), 3145 igb_getreg(RDBAL8), 3146 igb_getreg(RDBAL9), 3147 igb_getreg(RDBAL10), 3148 igb_getreg(RDBAL11), 3149 igb_getreg(RDBAL12), 3150 igb_getreg(RDBAL13), 3151 igb_getreg(RDBAL14), 3152 igb_getreg(RDBAL15), 3153 igb_getreg(TDBAH0), 3154 igb_getreg(TDBAH1), 3155 igb_getreg(TDBAH2), 3156 igb_getreg(TDBAH3), 3157 igb_getreg(TDBAH4), 3158 igb_getreg(TDBAH5), 3159 igb_getreg(TDBAH6), 3160 igb_getreg(TDBAH7), 3161 igb_getreg(TDBAH8), 3162 igb_getreg(TDBAH9), 3163 igb_getreg(TDBAH10), 3164 igb_getreg(TDBAH11), 3165 igb_getreg(TDBAH12), 3166 igb_getreg(TDBAH13), 3167 igb_getreg(TDBAH14), 3168 igb_getreg(TDBAH15), 3169 igb_getreg(SCC), 3170 igb_getreg(COLC), 3171 igb_getreg(XOFFRXC), 3172 igb_getreg(IPAV), 3173 igb_getreg(GOTCL), 3174 igb_getreg(MGTPDC), 3175 igb_getreg(GCR), 3176 igb_getreg(MFVAL), 3177 igb_getreg(FUNCTAG), 3178 igb_getreg(GSCL_4), 3179 igb_getreg(GSCN_3), 3180 igb_getreg(MRQC), 3181 igb_getreg(FCT), 3182 igb_getreg(FLA), 3183 igb_getreg(RXDCTL0), 3184 igb_getreg(RXDCTL1), 3185 igb_getreg(RXDCTL2), 3186 igb_getreg(RXDCTL3), 3187 igb_getreg(RXDCTL4), 3188 igb_getreg(RXDCTL5), 3189 igb_getreg(RXDCTL6), 3190 igb_getreg(RXDCTL7), 3191 igb_getreg(RXDCTL8), 3192 igb_getreg(RXDCTL9), 3193 igb_getreg(RXDCTL10), 3194 igb_getreg(RXDCTL11), 3195 igb_getreg(RXDCTL12), 3196 igb_getreg(RXDCTL13), 3197 igb_getreg(RXDCTL14), 3198 igb_getreg(RXDCTL15), 3199 igb_getreg(RXSTMPL), 3200 igb_getreg(TIMADJH), 3201 igb_getreg(FCRTL), 3202 igb_getreg(XONRXC), 3203 igb_getreg(RFCTL), 3204 igb_getreg(GSCN_1), 3205 igb_getreg(FCAL), 3206 igb_getreg(GPIE), 3207 igb_getreg(TXPBS), 3208 igb_getreg(RLPML), 3209 3210 [TOTH] = igb_mac_read_clr8, 3211 [GOTCH] = igb_mac_read_clr8, 3212 [PRC64] = igb_mac_read_clr4, 3213 [PRC255] = igb_mac_read_clr4, 3214 [PRC1023] = igb_mac_read_clr4, 3215 [PTC64] = igb_mac_read_clr4, 3216 [PTC255] = igb_mac_read_clr4, 3217 [PTC1023] = igb_mac_read_clr4, 3218 [GPRC] = igb_mac_read_clr4, 3219 [TPT] = igb_mac_read_clr4, 3220 [RUC] = igb_mac_read_clr4, 3221 [BPRC] = igb_mac_read_clr4, 3222 [MPTC] = igb_mac_read_clr4, 3223 [IAC] = igb_mac_read_clr4, 3224 [ICR] = igb_mac_icr_read, 3225 [STATUS] = igb_get_status, 3226 [ICS] = igb_mac_ics_read, 3227 /* 3228 * 8.8.10: Reading the IMC register returns the value of the IMS register. 3229 */ 3230 [IMC] = igb_mac_ims_read, 3231 [TORH] = igb_mac_read_clr8, 3232 [GORCH] = igb_mac_read_clr8, 3233 [PRC127] = igb_mac_read_clr4, 3234 [PRC511] = igb_mac_read_clr4, 3235 [PRC1522] = igb_mac_read_clr4, 3236 [PTC127] = igb_mac_read_clr4, 3237 [PTC511] = igb_mac_read_clr4, 3238 [PTC1522] = igb_mac_read_clr4, 3239 [GPTC] = igb_mac_read_clr4, 3240 [TPR] = igb_mac_read_clr4, 3241 [ROC] = igb_mac_read_clr4, 3242 [MPRC] = igb_mac_read_clr4, 3243 [BPTC] = igb_mac_read_clr4, 3244 [TSCTC] = igb_mac_read_clr4, 3245 [CTRL] = igb_get_ctrl, 3246 [SWSM] = igb_mac_swsm_read, 3247 [IMS] = igb_mac_ims_read, 3248 [SYSTIML] = igb_get_systiml, 3249 [RXSATRH] = igb_get_rxsatrh, 3250 [TXSTMPH] = igb_get_txstmph, 3251 3252 [CRCERRS ... MPC] = igb_mac_readreg, 3253 [IP6AT ... IP6AT + 3] = igb_mac_readreg, 3254 [IP4AT ... IP4AT + 6] = igb_mac_readreg, 3255 [RA ... RA + 31] = igb_mac_readreg, 3256 [RA2 ... RA2 + 31] = igb_mac_readreg, 3257 [WUPM ... WUPM + 31] = igb_mac_readreg, 3258 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_readreg, 3259 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_readreg, 3260 [FFMT ... FFMT + 254] = igb_mac_readreg, 3261 [MDEF ... MDEF + 7] = igb_mac_readreg, 3262 [FTFT ... FTFT + 254] = igb_mac_readreg, 3263 [RETA ... RETA + 31] = igb_mac_readreg, 3264 [RSSRK ... RSSRK + 9] = igb_mac_readreg, 3265 [MAVTV0 ... MAVTV3] = igb_mac_readreg, 3266 [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_mac_eitr_read, 3267 [PVTEICR0] = igb_mac_read_clr4, 3268 [PVTEICR1] = igb_mac_read_clr4, 3269 [PVTEICR2] = igb_mac_read_clr4, 3270 [PVTEICR3] = igb_mac_read_clr4, 3271 [PVTEICR4] = igb_mac_read_clr4, 3272 [PVTEICR5] = igb_mac_read_clr4, 3273 [PVTEICR6] = igb_mac_read_clr4, 3274 [PVTEICR7] = igb_mac_read_clr4, 3275 3276 /* IGB specific: */ 3277 [FWSM] = igb_mac_readreg, 3278 [SW_FW_SYNC] = igb_mac_readreg, 3279 [HTCBDPC] = igb_mac_read_clr4, 3280 [EICR] = igb_mac_read_clr4, 3281 [EIMS] = igb_mac_readreg, 3282 [EIAM] = igb_mac_readreg, 3283 [IVAR0 ... IVAR0 + 7] = igb_mac_readreg, 3284 igb_getreg(IVAR_MISC), 3285 igb_getreg(VT_CTL), 3286 [P2VMAILBOX0 ... P2VMAILBOX7] = igb_mac_readreg, 3287 [V2PMAILBOX0 ... V2PMAILBOX7] = igb_mac_vfmailbox_read, 3288 igb_getreg(MBVFICR), 3289 [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_readreg, 3290 igb_getreg(MBVFIMR), 3291 igb_getreg(VFLRE), 3292 igb_getreg(VFRE), 3293 igb_getreg(VFTE), 3294 igb_getreg(QDE), 3295 igb_getreg(DTXSWC), 3296 igb_getreg(RPLOLR), 3297 [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_readreg, 3298 [VMVIR0 ... VMVIR7] = igb_mac_readreg, 3299 [VMOLR0 ... VMOLR7] = igb_mac_readreg, 3300 [WVBR] = igb_mac_read_clr4, 3301 [RQDPC0] = igb_mac_read_clr4, 3302 [RQDPC1] = igb_mac_read_clr4, 3303 [RQDPC2] = igb_mac_read_clr4, 3304 [RQDPC3] = igb_mac_read_clr4, 3305 [RQDPC4] = igb_mac_read_clr4, 3306 [RQDPC5] = igb_mac_read_clr4, 3307 [RQDPC6] = igb_mac_read_clr4, 3308 [RQDPC7] = igb_mac_read_clr4, 3309 [RQDPC8] = igb_mac_read_clr4, 3310 [RQDPC9] = igb_mac_read_clr4, 3311 [RQDPC10] = igb_mac_read_clr4, 3312 [RQDPC11] = igb_mac_read_clr4, 3313 [RQDPC12] = igb_mac_read_clr4, 3314 [RQDPC13] = igb_mac_read_clr4, 3315 [RQDPC14] = igb_mac_read_clr4, 3316 [RQDPC15] = igb_mac_read_clr4, 3317 [VTIVAR ... VTIVAR + 7] = igb_mac_readreg, 3318 [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_readreg, 3319 }; 3320 enum { IGB_NREADOPS = ARRAY_SIZE(igb_macreg_readops) }; 3321 3322 #define igb_putreg(x) [x] = igb_mac_writereg 3323 typedef void (*writeops)(IGBCore *, int, uint32_t); 3324 static const writeops igb_macreg_writeops[] = { 3325 igb_putreg(SWSM), 3326 igb_putreg(WUFC), 3327 igb_putreg(RDBAH0), 3328 igb_putreg(RDBAH1), 3329 igb_putreg(RDBAH2), 3330 igb_putreg(RDBAH3), 3331 igb_putreg(RDBAH4), 3332 igb_putreg(RDBAH5), 3333 igb_putreg(RDBAH6), 3334 igb_putreg(RDBAH7), 3335 igb_putreg(RDBAH8), 3336 igb_putreg(RDBAH9), 3337 igb_putreg(RDBAH10), 3338 igb_putreg(RDBAH11), 3339 igb_putreg(RDBAH12), 3340 igb_putreg(RDBAH13), 3341 igb_putreg(RDBAH14), 3342 igb_putreg(RDBAH15), 3343 igb_putreg(SRRCTL0), 3344 igb_putreg(SRRCTL1), 3345 igb_putreg(SRRCTL2), 3346 igb_putreg(SRRCTL3), 3347 igb_putreg(SRRCTL4), 3348 igb_putreg(SRRCTL5), 3349 igb_putreg(SRRCTL6), 3350 igb_putreg(SRRCTL7), 3351 igb_putreg(SRRCTL8), 3352 igb_putreg(SRRCTL9), 3353 igb_putreg(SRRCTL10), 3354 igb_putreg(SRRCTL11), 3355 igb_putreg(SRRCTL12), 3356 igb_putreg(SRRCTL13), 3357 igb_putreg(SRRCTL14), 3358 igb_putreg(SRRCTL15), 3359 igb_putreg(RXDCTL0), 3360 igb_putreg(RXDCTL1), 3361 igb_putreg(RXDCTL2), 3362 igb_putreg(RXDCTL3), 3363 igb_putreg(RXDCTL4), 3364 igb_putreg(RXDCTL5), 3365 igb_putreg(RXDCTL6), 3366 igb_putreg(RXDCTL7), 3367 igb_putreg(RXDCTL8), 3368 igb_putreg(RXDCTL9), 3369 igb_putreg(RXDCTL10), 3370 igb_putreg(RXDCTL11), 3371 igb_putreg(RXDCTL12), 3372 igb_putreg(RXDCTL13), 3373 igb_putreg(RXDCTL14), 3374 igb_putreg(RXDCTL15), 3375 igb_putreg(LEDCTL), 3376 igb_putreg(TCTL), 3377 igb_putreg(TCTL_EXT), 3378 igb_putreg(DTXCTL), 3379 igb_putreg(RXPBS), 3380 igb_putreg(RQDPC0), 3381 igb_putreg(FCAL), 3382 igb_putreg(FCRUC), 3383 igb_putreg(WUC), 3384 igb_putreg(WUS), 3385 igb_putreg(IPAV), 3386 igb_putreg(TDBAH0), 3387 igb_putreg(TDBAH1), 3388 igb_putreg(TDBAH2), 3389 igb_putreg(TDBAH3), 3390 igb_putreg(TDBAH4), 3391 igb_putreg(TDBAH5), 3392 igb_putreg(TDBAH6), 3393 igb_putreg(TDBAH7), 3394 igb_putreg(TDBAH8), 3395 igb_putreg(TDBAH9), 3396 igb_putreg(TDBAH10), 3397 igb_putreg(TDBAH11), 3398 igb_putreg(TDBAH12), 3399 igb_putreg(TDBAH13), 3400 igb_putreg(TDBAH14), 3401 igb_putreg(TDBAH15), 3402 igb_putreg(IAM), 3403 igb_putreg(MANC), 3404 igb_putreg(MANC2H), 3405 igb_putreg(MFVAL), 3406 igb_putreg(FACTPS), 3407 igb_putreg(FUNCTAG), 3408 igb_putreg(GSCL_1), 3409 igb_putreg(GSCL_2), 3410 igb_putreg(GSCL_3), 3411 igb_putreg(GSCL_4), 3412 igb_putreg(GSCN_0), 3413 igb_putreg(GSCN_1), 3414 igb_putreg(GSCN_2), 3415 igb_putreg(GSCN_3), 3416 igb_putreg(MRQC), 3417 igb_putreg(FLOP), 3418 igb_putreg(FLA), 3419 igb_putreg(TXDCTL0), 3420 igb_putreg(TXDCTL1), 3421 igb_putreg(TXDCTL2), 3422 igb_putreg(TXDCTL3), 3423 igb_putreg(TXDCTL4), 3424 igb_putreg(TXDCTL5), 3425 igb_putreg(TXDCTL6), 3426 igb_putreg(TXDCTL7), 3427 igb_putreg(TXDCTL8), 3428 igb_putreg(TXDCTL9), 3429 igb_putreg(TXDCTL10), 3430 igb_putreg(TXDCTL11), 3431 igb_putreg(TXDCTL12), 3432 igb_putreg(TXDCTL13), 3433 igb_putreg(TXDCTL14), 3434 igb_putreg(TXDCTL15), 3435 igb_putreg(TXCTL0), 3436 igb_putreg(TXCTL1), 3437 igb_putreg(TXCTL2), 3438 igb_putreg(TXCTL3), 3439 igb_putreg(TXCTL4), 3440 igb_putreg(TXCTL5), 3441 igb_putreg(TXCTL6), 3442 igb_putreg(TXCTL7), 3443 igb_putreg(TXCTL8), 3444 igb_putreg(TXCTL9), 3445 igb_putreg(TXCTL10), 3446 igb_putreg(TXCTL11), 3447 igb_putreg(TXCTL12), 3448 igb_putreg(TXCTL13), 3449 igb_putreg(TXCTL14), 3450 igb_putreg(TXCTL15), 3451 igb_putreg(TDWBAL0), 3452 igb_putreg(TDWBAL1), 3453 igb_putreg(TDWBAL2), 3454 igb_putreg(TDWBAL3), 3455 igb_putreg(TDWBAL4), 3456 igb_putreg(TDWBAL5), 3457 igb_putreg(TDWBAL6), 3458 igb_putreg(TDWBAL7), 3459 igb_putreg(TDWBAL8), 3460 igb_putreg(TDWBAL9), 3461 igb_putreg(TDWBAL10), 3462 igb_putreg(TDWBAL11), 3463 igb_putreg(TDWBAL12), 3464 igb_putreg(TDWBAL13), 3465 igb_putreg(TDWBAL14), 3466 igb_putreg(TDWBAL15), 3467 igb_putreg(TDWBAH0), 3468 igb_putreg(TDWBAH1), 3469 igb_putreg(TDWBAH2), 3470 igb_putreg(TDWBAH3), 3471 igb_putreg(TDWBAH4), 3472 igb_putreg(TDWBAH5), 3473 igb_putreg(TDWBAH6), 3474 igb_putreg(TDWBAH7), 3475 igb_putreg(TDWBAH8), 3476 igb_putreg(TDWBAH9), 3477 igb_putreg(TDWBAH10), 3478 igb_putreg(TDWBAH11), 3479 igb_putreg(TDWBAH12), 3480 igb_putreg(TDWBAH13), 3481 igb_putreg(TDWBAH14), 3482 igb_putreg(TDWBAH15), 3483 igb_putreg(TIPG), 3484 igb_putreg(RXSTMPH), 3485 igb_putreg(RXSTMPL), 3486 igb_putreg(RXSATRL), 3487 igb_putreg(RXSATRH), 3488 igb_putreg(TXSTMPL), 3489 igb_putreg(TXSTMPH), 3490 igb_putreg(SYSTIML), 3491 igb_putreg(SYSTIMH), 3492 igb_putreg(TIMADJL), 3493 igb_putreg(TSYNCRXCTL), 3494 igb_putreg(TSYNCTXCTL), 3495 igb_putreg(EEMNGCTL), 3496 igb_putreg(GPIE), 3497 igb_putreg(TXPBS), 3498 igb_putreg(RLPML), 3499 igb_putreg(VET), 3500 3501 [TDH0] = igb_set_16bit, 3502 [TDH1] = igb_set_16bit, 3503 [TDH2] = igb_set_16bit, 3504 [TDH3] = igb_set_16bit, 3505 [TDH4] = igb_set_16bit, 3506 [TDH5] = igb_set_16bit, 3507 [TDH6] = igb_set_16bit, 3508 [TDH7] = igb_set_16bit, 3509 [TDH8] = igb_set_16bit, 3510 [TDH9] = igb_set_16bit, 3511 [TDH10] = igb_set_16bit, 3512 [TDH11] = igb_set_16bit, 3513 [TDH12] = igb_set_16bit, 3514 [TDH13] = igb_set_16bit, 3515 [TDH14] = igb_set_16bit, 3516 [TDH15] = igb_set_16bit, 3517 [TDT0] = igb_set_tdt, 3518 [TDT1] = igb_set_tdt, 3519 [TDT2] = igb_set_tdt, 3520 [TDT3] = igb_set_tdt, 3521 [TDT4] = igb_set_tdt, 3522 [TDT5] = igb_set_tdt, 3523 [TDT6] = igb_set_tdt, 3524 [TDT7] = igb_set_tdt, 3525 [TDT8] = igb_set_tdt, 3526 [TDT9] = igb_set_tdt, 3527 [TDT10] = igb_set_tdt, 3528 [TDT11] = igb_set_tdt, 3529 [TDT12] = igb_set_tdt, 3530 [TDT13] = igb_set_tdt, 3531 [TDT14] = igb_set_tdt, 3532 [TDT15] = igb_set_tdt, 3533 [MDIC] = igb_set_mdic, 3534 [ICS] = igb_set_ics, 3535 [RDH0] = igb_set_16bit, 3536 [RDH1] = igb_set_16bit, 3537 [RDH2] = igb_set_16bit, 3538 [RDH3] = igb_set_16bit, 3539 [RDH4] = igb_set_16bit, 3540 [RDH5] = igb_set_16bit, 3541 [RDH6] = igb_set_16bit, 3542 [RDH7] = igb_set_16bit, 3543 [RDH8] = igb_set_16bit, 3544 [RDH9] = igb_set_16bit, 3545 [RDH10] = igb_set_16bit, 3546 [RDH11] = igb_set_16bit, 3547 [RDH12] = igb_set_16bit, 3548 [RDH13] = igb_set_16bit, 3549 [RDH14] = igb_set_16bit, 3550 [RDH15] = igb_set_16bit, 3551 [RDT0] = igb_set_rdt, 3552 [RDT1] = igb_set_rdt, 3553 [RDT2] = igb_set_rdt, 3554 [RDT3] = igb_set_rdt, 3555 [RDT4] = igb_set_rdt, 3556 [RDT5] = igb_set_rdt, 3557 [RDT6] = igb_set_rdt, 3558 [RDT7] = igb_set_rdt, 3559 [RDT8] = igb_set_rdt, 3560 [RDT9] = igb_set_rdt, 3561 [RDT10] = igb_set_rdt, 3562 [RDT11] = igb_set_rdt, 3563 [RDT12] = igb_set_rdt, 3564 [RDT13] = igb_set_rdt, 3565 [RDT14] = igb_set_rdt, 3566 [RDT15] = igb_set_rdt, 3567 [IMC] = igb_set_imc, 3568 [IMS] = igb_set_ims, 3569 [ICR] = igb_set_icr, 3570 [EECD] = igb_set_eecd, 3571 [RCTL] = igb_set_rx_control, 3572 [CTRL] = igb_set_ctrl, 3573 [EERD] = igb_set_eerd, 3574 [TDFH] = igb_set_13bit, 3575 [TDFT] = igb_set_13bit, 3576 [TDFHS] = igb_set_13bit, 3577 [TDFTS] = igb_set_13bit, 3578 [TDFPC] = igb_set_13bit, 3579 [RDFH] = igb_set_13bit, 3580 [RDFT] = igb_set_13bit, 3581 [RDFHS] = igb_set_13bit, 3582 [RDFTS] = igb_set_13bit, 3583 [RDFPC] = igb_set_13bit, 3584 [GCR] = igb_set_gcr, 3585 [RXCSUM] = igb_set_rxcsum, 3586 [TDLEN0] = igb_set_dlen, 3587 [TDLEN1] = igb_set_dlen, 3588 [TDLEN2] = igb_set_dlen, 3589 [TDLEN3] = igb_set_dlen, 3590 [TDLEN4] = igb_set_dlen, 3591 [TDLEN5] = igb_set_dlen, 3592 [TDLEN6] = igb_set_dlen, 3593 [TDLEN7] = igb_set_dlen, 3594 [TDLEN8] = igb_set_dlen, 3595 [TDLEN9] = igb_set_dlen, 3596 [TDLEN10] = igb_set_dlen, 3597 [TDLEN11] = igb_set_dlen, 3598 [TDLEN12] = igb_set_dlen, 3599 [TDLEN13] = igb_set_dlen, 3600 [TDLEN14] = igb_set_dlen, 3601 [TDLEN15] = igb_set_dlen, 3602 [RDLEN0] = igb_set_dlen, 3603 [RDLEN1] = igb_set_dlen, 3604 [RDLEN2] = igb_set_dlen, 3605 [RDLEN3] = igb_set_dlen, 3606 [RDLEN4] = igb_set_dlen, 3607 [RDLEN5] = igb_set_dlen, 3608 [RDLEN6] = igb_set_dlen, 3609 [RDLEN7] = igb_set_dlen, 3610 [RDLEN8] = igb_set_dlen, 3611 [RDLEN9] = igb_set_dlen, 3612 [RDLEN10] = igb_set_dlen, 3613 [RDLEN11] = igb_set_dlen, 3614 [RDLEN12] = igb_set_dlen, 3615 [RDLEN13] = igb_set_dlen, 3616 [RDLEN14] = igb_set_dlen, 3617 [RDLEN15] = igb_set_dlen, 3618 [TDBAL0] = igb_set_dbal, 3619 [TDBAL1] = igb_set_dbal, 3620 [TDBAL2] = igb_set_dbal, 3621 [TDBAL3] = igb_set_dbal, 3622 [TDBAL4] = igb_set_dbal, 3623 [TDBAL5] = igb_set_dbal, 3624 [TDBAL6] = igb_set_dbal, 3625 [TDBAL7] = igb_set_dbal, 3626 [TDBAL8] = igb_set_dbal, 3627 [TDBAL9] = igb_set_dbal, 3628 [TDBAL10] = igb_set_dbal, 3629 [TDBAL11] = igb_set_dbal, 3630 [TDBAL12] = igb_set_dbal, 3631 [TDBAL13] = igb_set_dbal, 3632 [TDBAL14] = igb_set_dbal, 3633 [TDBAL15] = igb_set_dbal, 3634 [RDBAL0] = igb_set_dbal, 3635 [RDBAL1] = igb_set_dbal, 3636 [RDBAL2] = igb_set_dbal, 3637 [RDBAL3] = igb_set_dbal, 3638 [RDBAL4] = igb_set_dbal, 3639 [RDBAL5] = igb_set_dbal, 3640 [RDBAL6] = igb_set_dbal, 3641 [RDBAL7] = igb_set_dbal, 3642 [RDBAL8] = igb_set_dbal, 3643 [RDBAL9] = igb_set_dbal, 3644 [RDBAL10] = igb_set_dbal, 3645 [RDBAL11] = igb_set_dbal, 3646 [RDBAL12] = igb_set_dbal, 3647 [RDBAL13] = igb_set_dbal, 3648 [RDBAL14] = igb_set_dbal, 3649 [RDBAL15] = igb_set_dbal, 3650 [STATUS] = igb_set_status, 3651 [PBACLR] = igb_set_pbaclr, 3652 [CTRL_EXT] = igb_set_ctrlext, 3653 [FCAH] = igb_set_16bit, 3654 [FCT] = igb_set_16bit, 3655 [FCTTV] = igb_set_16bit, 3656 [FCRTV] = igb_set_16bit, 3657 [FCRTH] = igb_set_fcrth, 3658 [FCRTL] = igb_set_fcrtl, 3659 [CTRL_DUP] = igb_set_ctrl, 3660 [RFCTL] = igb_set_rfctl, 3661 [TIMINCA] = igb_set_timinca, 3662 [TIMADJH] = igb_set_timadjh, 3663 3664 [IP6AT ... IP6AT + 3] = igb_mac_writereg, 3665 [IP4AT ... IP4AT + 6] = igb_mac_writereg, 3666 [RA] = igb_mac_writereg, 3667 [RA + 1] = igb_mac_setmacaddr, 3668 [RA + 2 ... RA + 31] = igb_mac_writereg, 3669 [RA2 ... RA2 + 31] = igb_mac_writereg, 3670 [WUPM ... WUPM + 31] = igb_mac_writereg, 3671 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg, 3672 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = igb_mac_writereg, 3673 [FFMT ... FFMT + 254] = igb_set_4bit, 3674 [MDEF ... MDEF + 7] = igb_mac_writereg, 3675 [FTFT ... FTFT + 254] = igb_mac_writereg, 3676 [RETA ... RETA + 31] = igb_mac_writereg, 3677 [RSSRK ... RSSRK + 9] = igb_mac_writereg, 3678 [MAVTV0 ... MAVTV3] = igb_mac_writereg, 3679 [EITR0 ... EITR0 + IGB_INTR_NUM - 1] = igb_set_eitr, 3680 3681 /* IGB specific: */ 3682 [FWSM] = igb_mac_writereg, 3683 [SW_FW_SYNC] = igb_mac_writereg, 3684 [EICR] = igb_set_eicr, 3685 [EICS] = igb_set_eics, 3686 [EIAC] = igb_set_eiac, 3687 [EIAM] = igb_set_eiam, 3688 [EIMC] = igb_set_eimc, 3689 [EIMS] = igb_set_eims, 3690 [IVAR0 ... IVAR0 + 7] = igb_mac_writereg, 3691 igb_putreg(IVAR_MISC), 3692 igb_putreg(VT_CTL), 3693 [P2VMAILBOX0 ... P2VMAILBOX7] = igb_set_pfmailbox, 3694 [V2PMAILBOX0 ... V2PMAILBOX7] = igb_set_vfmailbox, 3695 [MBVFICR] = igb_w1c, 3696 [VMBMEM0 ... VMBMEM0 + 127] = igb_mac_writereg, 3697 igb_putreg(MBVFIMR), 3698 [VFLRE] = igb_w1c, 3699 igb_putreg(VFRE), 3700 igb_putreg(VFTE), 3701 igb_putreg(QDE), 3702 igb_putreg(DTXSWC), 3703 igb_putreg(RPLOLR), 3704 [VLVF0 ... VLVF0 + E1000_VLVF_ARRAY_SIZE - 1] = igb_mac_writereg, 3705 [VMVIR0 ... VMVIR7] = igb_mac_writereg, 3706 [VMOLR0 ... VMOLR7] = igb_mac_writereg, 3707 [UTA ... UTA + E1000_MC_TBL_SIZE - 1] = igb_mac_writereg, 3708 [PVTCTRL0] = igb_set_vtctrl, 3709 [PVTCTRL1] = igb_set_vtctrl, 3710 [PVTCTRL2] = igb_set_vtctrl, 3711 [PVTCTRL3] = igb_set_vtctrl, 3712 [PVTCTRL4] = igb_set_vtctrl, 3713 [PVTCTRL5] = igb_set_vtctrl, 3714 [PVTCTRL6] = igb_set_vtctrl, 3715 [PVTCTRL7] = igb_set_vtctrl, 3716 [PVTEICS0] = igb_set_vteics, 3717 [PVTEICS1] = igb_set_vteics, 3718 [PVTEICS2] = igb_set_vteics, 3719 [PVTEICS3] = igb_set_vteics, 3720 [PVTEICS4] = igb_set_vteics, 3721 [PVTEICS5] = igb_set_vteics, 3722 [PVTEICS6] = igb_set_vteics, 3723 [PVTEICS7] = igb_set_vteics, 3724 [PVTEIMS0] = igb_set_vteims, 3725 [PVTEIMS1] = igb_set_vteims, 3726 [PVTEIMS2] = igb_set_vteims, 3727 [PVTEIMS3] = igb_set_vteims, 3728 [PVTEIMS4] = igb_set_vteims, 3729 [PVTEIMS5] = igb_set_vteims, 3730 [PVTEIMS6] = igb_set_vteims, 3731 [PVTEIMS7] = igb_set_vteims, 3732 [PVTEIMC0] = igb_set_vteimc, 3733 [PVTEIMC1] = igb_set_vteimc, 3734 [PVTEIMC2] = igb_set_vteimc, 3735 [PVTEIMC3] = igb_set_vteimc, 3736 [PVTEIMC4] = igb_set_vteimc, 3737 [PVTEIMC5] = igb_set_vteimc, 3738 [PVTEIMC6] = igb_set_vteimc, 3739 [PVTEIMC7] = igb_set_vteimc, 3740 [PVTEIAC0] = igb_set_vteiac, 3741 [PVTEIAC1] = igb_set_vteiac, 3742 [PVTEIAC2] = igb_set_vteiac, 3743 [PVTEIAC3] = igb_set_vteiac, 3744 [PVTEIAC4] = igb_set_vteiac, 3745 [PVTEIAC5] = igb_set_vteiac, 3746 [PVTEIAC6] = igb_set_vteiac, 3747 [PVTEIAC7] = igb_set_vteiac, 3748 [PVTEIAM0] = igb_set_vteiam, 3749 [PVTEIAM1] = igb_set_vteiam, 3750 [PVTEIAM2] = igb_set_vteiam, 3751 [PVTEIAM3] = igb_set_vteiam, 3752 [PVTEIAM4] = igb_set_vteiam, 3753 [PVTEIAM5] = igb_set_vteiam, 3754 [PVTEIAM6] = igb_set_vteiam, 3755 [PVTEIAM7] = igb_set_vteiam, 3756 [PVTEICR0] = igb_set_vteicr, 3757 [PVTEICR1] = igb_set_vteicr, 3758 [PVTEICR2] = igb_set_vteicr, 3759 [PVTEICR3] = igb_set_vteicr, 3760 [PVTEICR4] = igb_set_vteicr, 3761 [PVTEICR5] = igb_set_vteicr, 3762 [PVTEICR6] = igb_set_vteicr, 3763 [PVTEICR7] = igb_set_vteicr, 3764 [VTIVAR ... VTIVAR + 7] = igb_set_vtivar, 3765 [VTIVAR_MISC ... VTIVAR_MISC + 7] = igb_mac_writereg 3766 }; 3767 enum { IGB_NWRITEOPS = ARRAY_SIZE(igb_macreg_writeops) }; 3768 3769 enum { MAC_ACCESS_PARTIAL = 1 }; 3770 3771 /* 3772 * The array below combines alias offsets of the index values for the 3773 * MAC registers that have aliases, with the indication of not fully 3774 * implemented registers (lowest bit). This combination is possible 3775 * because all of the offsets are even. 3776 */ 3777 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = { 3778 /* Alias index offsets */ 3779 [FCRTL_A] = 0x07fe, 3780 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904, 3781 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00, 3782 [RA_A ... RA_A + 31] = 0x14f0, 3783 [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400, 3784 3785 [RDBAL0_A] = 0x2600, 3786 [RDBAH0_A] = 0x2600, 3787 [RDLEN0_A] = 0x2600, 3788 [SRRCTL0_A] = 0x2600, 3789 [RDH0_A] = 0x2600, 3790 [RDT0_A] = 0x2600, 3791 [RXDCTL0_A] = 0x2600, 3792 [RXCTL0_A] = 0x2600, 3793 [RQDPC0_A] = 0x2600, 3794 [RDBAL1_A] = 0x25D0, 3795 [RDBAL2_A] = 0x25A0, 3796 [RDBAL3_A] = 0x2570, 3797 [RDBAH1_A] = 0x25D0, 3798 [RDBAH2_A] = 0x25A0, 3799 [RDBAH3_A] = 0x2570, 3800 [RDLEN1_A] = 0x25D0, 3801 [RDLEN2_A] = 0x25A0, 3802 [RDLEN3_A] = 0x2570, 3803 [SRRCTL1_A] = 0x25D0, 3804 [SRRCTL2_A] = 0x25A0, 3805 [SRRCTL3_A] = 0x2570, 3806 [RDH1_A] = 0x25D0, 3807 [RDH2_A] = 0x25A0, 3808 [RDH3_A] = 0x2570, 3809 [RDT1_A] = 0x25D0, 3810 [RDT2_A] = 0x25A0, 3811 [RDT3_A] = 0x2570, 3812 [RXDCTL1_A] = 0x25D0, 3813 [RXDCTL2_A] = 0x25A0, 3814 [RXDCTL3_A] = 0x2570, 3815 [RXCTL1_A] = 0x25D0, 3816 [RXCTL2_A] = 0x25A0, 3817 [RXCTL3_A] = 0x2570, 3818 [RQDPC1_A] = 0x25D0, 3819 [RQDPC2_A] = 0x25A0, 3820 [RQDPC3_A] = 0x2570, 3821 [TDBAL0_A] = 0x2A00, 3822 [TDBAH0_A] = 0x2A00, 3823 [TDLEN0_A] = 0x2A00, 3824 [TDH0_A] = 0x2A00, 3825 [TDT0_A] = 0x2A00, 3826 [TXCTL0_A] = 0x2A00, 3827 [TDWBAL0_A] = 0x2A00, 3828 [TDWBAH0_A] = 0x2A00, 3829 [TDBAL1_A] = 0x29D0, 3830 [TDBAL2_A] = 0x29A0, 3831 [TDBAL3_A] = 0x2970, 3832 [TDBAH1_A] = 0x29D0, 3833 [TDBAH2_A] = 0x29A0, 3834 [TDBAH3_A] = 0x2970, 3835 [TDLEN1_A] = 0x29D0, 3836 [TDLEN2_A] = 0x29A0, 3837 [TDLEN3_A] = 0x2970, 3838 [TDH1_A] = 0x29D0, 3839 [TDH2_A] = 0x29A0, 3840 [TDH3_A] = 0x2970, 3841 [TDT1_A] = 0x29D0, 3842 [TDT2_A] = 0x29A0, 3843 [TDT3_A] = 0x2970, 3844 [TXDCTL0_A] = 0x2A00, 3845 [TXDCTL1_A] = 0x29D0, 3846 [TXDCTL2_A] = 0x29A0, 3847 [TXDCTL3_A] = 0x2970, 3848 [TXCTL1_A] = 0x29D0, 3849 [TXCTL2_A] = 0x29A0, 3850 [TXCTL3_A] = 0x29D0, 3851 [TDWBAL1_A] = 0x29D0, 3852 [TDWBAL2_A] = 0x29A0, 3853 [TDWBAL3_A] = 0x2970, 3854 [TDWBAH1_A] = 0x29D0, 3855 [TDWBAH2_A] = 0x29A0, 3856 [TDWBAH3_A] = 0x2970, 3857 3858 /* Access options */ 3859 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL, 3860 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL, 3861 [RDFPC] = MAC_ACCESS_PARTIAL, 3862 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL, 3863 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL, 3864 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL, 3865 [FLA] = MAC_ACCESS_PARTIAL, 3866 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL, 3867 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL, 3868 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL, 3869 [FCRTH] = MAC_ACCESS_PARTIAL, 3870 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL 3871 }; 3872 3873 void 3874 igb_core_write(IGBCore *core, hwaddr addr, uint64_t val, unsigned size) 3875 { 3876 uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr); 3877 3878 if (index < IGB_NWRITEOPS && igb_macreg_writeops[index]) { 3879 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3880 trace_e1000e_wrn_regs_write_trivial(index << 2); 3881 } 3882 trace_e1000e_core_write(index << 2, size, val); 3883 igb_macreg_writeops[index](core, index, val); 3884 } else if (index < IGB_NREADOPS && igb_macreg_readops[index]) { 3885 trace_e1000e_wrn_regs_write_ro(index << 2, size, val); 3886 } else { 3887 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val); 3888 } 3889 } 3890 3891 uint64_t 3892 igb_core_read(IGBCore *core, hwaddr addr, unsigned size) 3893 { 3894 uint64_t val; 3895 uint16_t index = igb_get_reg_index_with_offset(mac_reg_access, addr); 3896 3897 if (index < IGB_NREADOPS && igb_macreg_readops[index]) { 3898 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3899 trace_e1000e_wrn_regs_read_trivial(index << 2); 3900 } 3901 val = igb_macreg_readops[index](core, index); 3902 trace_e1000e_core_read(index << 2, size, val); 3903 return val; 3904 } else { 3905 trace_e1000e_wrn_regs_read_unknown(index << 2, size); 3906 } 3907 return 0; 3908 } 3909 3910 static inline void 3911 igb_autoneg_pause(IGBCore *core) 3912 { 3913 timer_del(core->autoneg_timer); 3914 } 3915 3916 static void 3917 igb_autoneg_resume(IGBCore *core) 3918 { 3919 if (igb_have_autoneg(core) && 3920 !(core->phy[MII_BMSR] & MII_BMSR_AN_COMP)) { 3921 qemu_get_queue(core->owner_nic)->link_down = false; 3922 timer_mod(core->autoneg_timer, 3923 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 3924 } 3925 } 3926 3927 static void 3928 igb_vm_state_change(void *opaque, bool running, RunState state) 3929 { 3930 IGBCore *core = opaque; 3931 3932 if (running) { 3933 trace_e1000e_vm_state_running(); 3934 igb_intrmgr_resume(core); 3935 igb_autoneg_resume(core); 3936 } else { 3937 trace_e1000e_vm_state_stopped(); 3938 igb_autoneg_pause(core); 3939 igb_intrmgr_pause(core); 3940 } 3941 } 3942 3943 void 3944 igb_core_pci_realize(IGBCore *core, 3945 const uint16_t *eeprom_templ, 3946 uint32_t eeprom_size, 3947 const uint8_t *macaddr) 3948 { 3949 int i; 3950 3951 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 3952 igb_autoneg_timer, core); 3953 igb_intrmgr_pci_realize(core); 3954 3955 core->vmstate = qemu_add_vm_change_state_handler(igb_vm_state_change, core); 3956 3957 for (i = 0; i < IGB_NUM_QUEUES; i++) { 3958 net_tx_pkt_init(&core->tx[i].tx_pkt, NULL, E1000E_MAX_TX_FRAGS); 3959 } 3960 3961 net_rx_pkt_init(&core->rx_pkt); 3962 3963 e1000x_core_prepare_eeprom(core->eeprom, 3964 eeprom_templ, 3965 eeprom_size, 3966 PCI_DEVICE_GET_CLASS(core->owner)->device_id, 3967 macaddr); 3968 igb_update_rx_offloads(core); 3969 } 3970 3971 void 3972 igb_core_pci_uninit(IGBCore *core) 3973 { 3974 int i; 3975 3976 timer_free(core->autoneg_timer); 3977 3978 igb_intrmgr_pci_unint(core); 3979 3980 qemu_del_vm_change_state_handler(core->vmstate); 3981 3982 for (i = 0; i < IGB_NUM_QUEUES; i++) { 3983 net_tx_pkt_reset(core->tx[i].tx_pkt, NULL); 3984 net_tx_pkt_uninit(core->tx[i].tx_pkt); 3985 } 3986 3987 net_rx_pkt_uninit(core->rx_pkt); 3988 } 3989 3990 static const uint16_t 3991 igb_phy_reg_init[] = { 3992 [MII_BMCR] = MII_BMCR_SPEED1000 | 3993 MII_BMCR_FD | 3994 MII_BMCR_AUTOEN, 3995 3996 [MII_BMSR] = MII_BMSR_EXTCAP | 3997 MII_BMSR_LINK_ST | 3998 MII_BMSR_AUTONEG | 3999 MII_BMSR_MFPS | 4000 MII_BMSR_EXTSTAT | 4001 MII_BMSR_10T_HD | 4002 MII_BMSR_10T_FD | 4003 MII_BMSR_100TX_HD | 4004 MII_BMSR_100TX_FD, 4005 4006 [MII_PHYID1] = IGP03E1000_E_PHY_ID >> 16, 4007 [MII_PHYID2] = (IGP03E1000_E_PHY_ID & 0xfff0) | 1, 4008 [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 | 4009 MII_ANAR_10FD | MII_ANAR_TX | 4010 MII_ANAR_TXFD | MII_ANAR_PAUSE | 4011 MII_ANAR_PAUSE_ASYM, 4012 [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD | 4013 MII_ANLPAR_TX | MII_ANLPAR_TXFD | 4014 MII_ANLPAR_T4 | MII_ANLPAR_PAUSE, 4015 [MII_ANER] = MII_ANER_NP | MII_ANER_NWAY, 4016 [MII_ANNP] = 0x1 | MII_ANNP_MP, 4017 [MII_CTRL1000] = MII_CTRL1000_HALF | MII_CTRL1000_FULL | 4018 MII_CTRL1000_PORT | MII_CTRL1000_MASTER, 4019 [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL | 4020 MII_STAT1000_ROK | MII_STAT1000_LOK, 4021 [MII_EXTSTAT] = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD, 4022 4023 [IGP01E1000_PHY_PORT_CONFIG] = BIT(5) | BIT(8), 4024 [IGP01E1000_PHY_PORT_STATUS] = IGP01E1000_PSSR_SPEED_1000MBPS, 4025 [IGP02E1000_PHY_POWER_MGMT] = BIT(0) | BIT(3) | IGP02E1000_PM_D3_LPLU | 4026 IGP01E1000_PSCFR_SMART_SPEED 4027 }; 4028 4029 static const uint32_t igb_mac_reg_init[] = { 4030 [LEDCTL] = 2 | (3 << 8) | BIT(15) | (6 << 16) | (7 << 24), 4031 [EEMNGCTL] = BIT(31), 4032 [TXDCTL0] = E1000_TXDCTL_QUEUE_ENABLE, 4033 [RXDCTL0] = E1000_RXDCTL_QUEUE_ENABLE | (1 << 16), 4034 [RXDCTL1] = 1 << 16, 4035 [RXDCTL2] = 1 << 16, 4036 [RXDCTL3] = 1 << 16, 4037 [RXDCTL4] = 1 << 16, 4038 [RXDCTL5] = 1 << 16, 4039 [RXDCTL6] = 1 << 16, 4040 [RXDCTL7] = 1 << 16, 4041 [RXDCTL8] = 1 << 16, 4042 [RXDCTL9] = 1 << 16, 4043 [RXDCTL10] = 1 << 16, 4044 [RXDCTL11] = 1 << 16, 4045 [RXDCTL12] = 1 << 16, 4046 [RXDCTL13] = 1 << 16, 4047 [RXDCTL14] = 1 << 16, 4048 [RXDCTL15] = 1 << 16, 4049 [TIPG] = 0x08 | (0x04 << 10) | (0x06 << 20), 4050 [CTRL] = E1000_CTRL_FD | E1000_CTRL_LRST | E1000_CTRL_SPD_1000 | 4051 E1000_CTRL_ADVD3WUC, 4052 [STATUS] = E1000_STATUS_PHYRA | BIT(31), 4053 [EECD] = E1000_EECD_FWE_DIS | E1000_EECD_PRES | 4054 (2 << E1000_EECD_SIZE_EX_SHIFT), 4055 [GCR] = E1000_L0S_ADJUST | 4056 E1000_GCR_CMPL_TMOUT_RESEND | 4057 E1000_GCR_CAP_VER2 | 4058 E1000_L1_ENTRY_LATENCY_MSB | 4059 E1000_L1_ENTRY_LATENCY_LSB, 4060 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD, 4061 [TXPBS] = 0x28, 4062 [RXPBS] = 0x40, 4063 [TCTL] = E1000_TCTL_PSP | (0xF << E1000_CT_SHIFT) | 4064 (0x40 << E1000_COLD_SHIFT) | (0x1 << 26) | (0xA << 28), 4065 [TCTL_EXT] = 0x40 | (0x42 << 10), 4066 [DTXCTL] = E1000_DTXCTL_8023LL | E1000_DTXCTL_SPOOF_INT, 4067 [VET] = ETH_P_VLAN | (ETH_P_VLAN << 16), 4068 4069 [V2PMAILBOX0 ... V2PMAILBOX0 + IGB_MAX_VF_FUNCTIONS - 1] = E1000_V2PMAILBOX_RSTI, 4070 [MBVFIMR] = 0xFF, 4071 [VFRE] = 0xFF, 4072 [VFTE] = 0xFF, 4073 [VMOLR0 ... VMOLR0 + 7] = 0x2600 | E1000_VMOLR_STRCRC, 4074 [RPLOLR] = E1000_RPLOLR_STRCRC, 4075 [RLPML] = 0x2600, 4076 [TXCTL0] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4077 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4078 E1000_DCA_TXCTRL_DESC_RRO_EN, 4079 [TXCTL1] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4080 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4081 E1000_DCA_TXCTRL_DESC_RRO_EN, 4082 [TXCTL2] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4083 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4084 E1000_DCA_TXCTRL_DESC_RRO_EN, 4085 [TXCTL3] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4086 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4087 E1000_DCA_TXCTRL_DESC_RRO_EN, 4088 [TXCTL4] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4089 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4090 E1000_DCA_TXCTRL_DESC_RRO_EN, 4091 [TXCTL5] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4092 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4093 E1000_DCA_TXCTRL_DESC_RRO_EN, 4094 [TXCTL6] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4095 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4096 E1000_DCA_TXCTRL_DESC_RRO_EN, 4097 [TXCTL7] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4098 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4099 E1000_DCA_TXCTRL_DESC_RRO_EN, 4100 [TXCTL8] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4101 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4102 E1000_DCA_TXCTRL_DESC_RRO_EN, 4103 [TXCTL9] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4104 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4105 E1000_DCA_TXCTRL_DESC_RRO_EN, 4106 [TXCTL10] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4107 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4108 E1000_DCA_TXCTRL_DESC_RRO_EN, 4109 [TXCTL11] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4110 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4111 E1000_DCA_TXCTRL_DESC_RRO_EN, 4112 [TXCTL12] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4113 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4114 E1000_DCA_TXCTRL_DESC_RRO_EN, 4115 [TXCTL13] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4116 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4117 E1000_DCA_TXCTRL_DESC_RRO_EN, 4118 [TXCTL14] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4119 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4120 E1000_DCA_TXCTRL_DESC_RRO_EN, 4121 [TXCTL15] = E1000_DCA_TXCTRL_DATA_RRO_EN | 4122 E1000_DCA_TXCTRL_TX_WB_RO_EN | 4123 E1000_DCA_TXCTRL_DESC_RRO_EN, 4124 }; 4125 4126 static void igb_reset(IGBCore *core, bool sw) 4127 { 4128 struct igb_tx *tx; 4129 int i; 4130 4131 timer_del(core->autoneg_timer); 4132 4133 igb_intrmgr_reset(core); 4134 4135 memset(core->phy, 0, sizeof core->phy); 4136 memcpy(core->phy, igb_phy_reg_init, sizeof igb_phy_reg_init); 4137 4138 for (i = 0; i < E1000E_MAC_SIZE; i++) { 4139 if (sw && 4140 (i == RXPBS || i == TXPBS || 4141 (i >= EITR0 && i < EITR0 + IGB_INTR_NUM))) { 4142 continue; 4143 } 4144 4145 core->mac[i] = i < ARRAY_SIZE(igb_mac_reg_init) ? 4146 igb_mac_reg_init[i] : 0; 4147 } 4148 4149 if (qemu_get_queue(core->owner_nic)->link_down) { 4150 igb_link_down(core); 4151 } 4152 4153 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); 4154 4155 for (int vfn = 0; vfn < IGB_MAX_VF_FUNCTIONS; vfn++) { 4156 /* Set RSTI, so VF can identify a PF reset is in progress */ 4157 core->mac[V2PMAILBOX0 + vfn] |= E1000_V2PMAILBOX_RSTI; 4158 } 4159 4160 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 4161 tx = &core->tx[i]; 4162 net_tx_pkt_reset(tx->tx_pkt, NULL); 4163 memset(tx->ctx, 0, sizeof(tx->ctx)); 4164 tx->first = true; 4165 tx->skip_cp = false; 4166 } 4167 } 4168 4169 void 4170 igb_core_reset(IGBCore *core) 4171 { 4172 igb_reset(core, false); 4173 } 4174 4175 void igb_core_pre_save(IGBCore *core) 4176 { 4177 int i; 4178 NetClientState *nc = qemu_get_queue(core->owner_nic); 4179 4180 /* 4181 * If link is down and auto-negotiation is supported and ongoing, 4182 * complete auto-negotiation immediately. This allows us to look 4183 * at MII_BMSR_AN_COMP to infer link status on load. 4184 */ 4185 if (nc->link_down && igb_have_autoneg(core)) { 4186 core->phy[MII_BMSR] |= MII_BMSR_AN_COMP; 4187 igb_update_flowctl_status(core); 4188 } 4189 4190 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 4191 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) { 4192 core->tx[i].skip_cp = true; 4193 } 4194 } 4195 } 4196 4197 int 4198 igb_core_post_load(IGBCore *core) 4199 { 4200 NetClientState *nc = qemu_get_queue(core->owner_nic); 4201 4202 /* 4203 * nc.link_down can't be migrated, so infer link_down according 4204 * to link status bit in core.mac[STATUS]. 4205 */ 4206 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0; 4207 4208 return 0; 4209 } 4210