1 /* 2 * QEMU Intel 82576 SR/IOV Ethernet Controller Emulation 3 * 4 * Datasheet: 5 * https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf 6 * 7 * Copyright (c) 2020-2023 Red Hat, Inc. 8 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) 9 * Developed by Daynix Computing LTD (http://www.daynix.com) 10 * 11 * Authors: 12 * Akihiko Odaki <akihiko.odaki@daynix.com> 13 * Gal Hammmer <gal.hammer@sap.com> 14 * Marcel Apfelbaum <marcel.apfelbaum@gmail.com> 15 * Dmitry Fleytman <dmitry@daynix.com> 16 * Leonid Bloch <leonid@daynix.com> 17 * Yan Vugenfirer <yan@daynix.com> 18 * 19 * Based on work done by: 20 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 21 * Copyright (c) 2008 Qumranet 22 * Based on work done by: 23 * Copyright (c) 2007 Dan Aloni 24 * Copyright (c) 2004 Antony T Curtis 25 * 26 * This library is free software; you can redistribute it and/or 27 * modify it under the terms of the GNU Lesser General Public 28 * License as published by the Free Software Foundation; either 29 * version 2.1 of the License, or (at your option) any later version. 30 * 31 * This library is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 34 * Lesser General Public License for more details. 35 * 36 * You should have received a copy of the GNU Lesser General Public 37 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 38 */ 39 40 #include "qemu/osdep.h" 41 #include "qemu/units.h" 42 #include "net/eth.h" 43 #include "net/net.h" 44 #include "net/tap.h" 45 #include "qemu/module.h" 46 #include "qemu/range.h" 47 #include "sysemu/sysemu.h" 48 #include "hw/hw.h" 49 #include "hw/net/mii.h" 50 #include "hw/pci/pci.h" 51 #include "hw/pci/pcie.h" 52 #include "hw/pci/pcie_sriov.h" 53 #include "hw/pci/msi.h" 54 #include "hw/pci/msix.h" 55 #include "hw/qdev-properties.h" 56 #include "migration/vmstate.h" 57 58 #include "igb_common.h" 59 #include "igb_core.h" 60 61 #include "trace.h" 62 #include "qapi/error.h" 63 #include "qom/object.h" 64 65 #define TYPE_IGB "igb" 66 OBJECT_DECLARE_SIMPLE_TYPE(IGBState, IGB) 67 68 struct IGBState { 69 PCIDevice parent_obj; 70 NICState *nic; 71 NICConf conf; 72 73 MemoryRegion mmio; 74 MemoryRegion flash; 75 MemoryRegion io; 76 MemoryRegion msix; 77 78 uint32_t ioaddr; 79 80 IGBCore core; 81 bool has_flr; 82 }; 83 84 #define IGB_CAP_SRIOV_OFFSET (0x160) 85 #define IGB_VF_OFFSET (0x80) 86 #define IGB_VF_STRIDE (2) 87 88 #define E1000E_MMIO_IDX 0 89 #define E1000E_FLASH_IDX 1 90 #define E1000E_IO_IDX 2 91 #define E1000E_MSIX_IDX 3 92 93 #define E1000E_MMIO_SIZE (128 * KiB) 94 #define E1000E_FLASH_SIZE (128 * KiB) 95 #define E1000E_IO_SIZE (32) 96 #define E1000E_MSIX_SIZE (16 * KiB) 97 98 static void igb_write_config(PCIDevice *dev, uint32_t addr, 99 uint32_t val, int len) 100 { 101 IGBState *s = IGB(dev); 102 103 trace_igb_write_config(addr, val, len); 104 pci_default_write_config(dev, addr, val, len); 105 if (s->has_flr) { 106 pcie_cap_flr_write_config(dev, addr, val, len); 107 } 108 109 if (range_covers_byte(addr, len, PCI_COMMAND) && 110 (dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { 111 igb_start_recv(&s->core); 112 } 113 } 114 115 uint64_t 116 igb_mmio_read(void *opaque, hwaddr addr, unsigned size) 117 { 118 IGBState *s = opaque; 119 return igb_core_read(&s->core, addr, size); 120 } 121 122 void 123 igb_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 124 { 125 IGBState *s = opaque; 126 igb_core_write(&s->core, addr, val, size); 127 } 128 129 void igb_vf_reset(void *opaque, uint16_t vfn) 130 { 131 IGBState *s = opaque; 132 igb_core_vf_reset(&s->core, vfn); 133 } 134 135 static bool 136 igb_io_get_reg_index(IGBState *s, uint32_t *idx) 137 { 138 if (s->ioaddr < 0x1FFFF) { 139 *idx = s->ioaddr; 140 return true; 141 } 142 143 if (s->ioaddr < 0x7FFFF) { 144 trace_e1000e_wrn_io_addr_undefined(s->ioaddr); 145 return false; 146 } 147 148 if (s->ioaddr < 0xFFFFF) { 149 trace_e1000e_wrn_io_addr_flash(s->ioaddr); 150 return false; 151 } 152 153 trace_e1000e_wrn_io_addr_unknown(s->ioaddr); 154 return false; 155 } 156 157 static uint64_t 158 igb_io_read(void *opaque, hwaddr addr, unsigned size) 159 { 160 IGBState *s = opaque; 161 uint32_t idx = 0; 162 uint64_t val; 163 164 switch (addr) { 165 case E1000_IOADDR: 166 trace_e1000e_io_read_addr(s->ioaddr); 167 return s->ioaddr; 168 case E1000_IODATA: 169 if (igb_io_get_reg_index(s, &idx)) { 170 val = igb_core_read(&s->core, idx, sizeof(val)); 171 trace_e1000e_io_read_data(idx, val); 172 return val; 173 } 174 return 0; 175 default: 176 trace_e1000e_wrn_io_read_unknown(addr); 177 return 0; 178 } 179 } 180 181 static void 182 igb_io_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) 183 { 184 IGBState *s = opaque; 185 uint32_t idx = 0; 186 187 switch (addr) { 188 case E1000_IOADDR: 189 trace_e1000e_io_write_addr(val); 190 s->ioaddr = (uint32_t) val; 191 return; 192 case E1000_IODATA: 193 if (igb_io_get_reg_index(s, &idx)) { 194 trace_e1000e_io_write_data(idx, val); 195 igb_core_write(&s->core, idx, val, sizeof(val)); 196 } 197 return; 198 default: 199 trace_e1000e_wrn_io_write_unknown(addr); 200 return; 201 } 202 } 203 204 static const MemoryRegionOps mmio_ops = { 205 .read = igb_mmio_read, 206 .write = igb_mmio_write, 207 .endianness = DEVICE_LITTLE_ENDIAN, 208 .impl = { 209 .min_access_size = 4, 210 .max_access_size = 4, 211 }, 212 }; 213 214 static const MemoryRegionOps io_ops = { 215 .read = igb_io_read, 216 .write = igb_io_write, 217 .endianness = DEVICE_LITTLE_ENDIAN, 218 .impl = { 219 .min_access_size = 4, 220 .max_access_size = 4, 221 }, 222 }; 223 224 static bool 225 igb_nc_can_receive(NetClientState *nc) 226 { 227 IGBState *s = qemu_get_nic_opaque(nc); 228 return igb_can_receive(&s->core); 229 } 230 231 static ssize_t 232 igb_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) 233 { 234 IGBState *s = qemu_get_nic_opaque(nc); 235 return igb_receive_iov(&s->core, iov, iovcnt); 236 } 237 238 static ssize_t 239 igb_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size) 240 { 241 IGBState *s = qemu_get_nic_opaque(nc); 242 return igb_receive(&s->core, buf, size); 243 } 244 245 static void 246 igb_set_link_status(NetClientState *nc) 247 { 248 IGBState *s = qemu_get_nic_opaque(nc); 249 igb_core_set_link_status(&s->core); 250 } 251 252 static NetClientInfo net_igb_info = { 253 .type = NET_CLIENT_DRIVER_NIC, 254 .size = sizeof(NICState), 255 .can_receive = igb_nc_can_receive, 256 .receive = igb_nc_receive, 257 .receive_iov = igb_nc_receive_iov, 258 .link_status_changed = igb_set_link_status, 259 }; 260 261 /* 262 * EEPROM (NVM) contents documented in section 6.1, table 6-1: 263 * and in 6.10 Software accessed words. 264 */ 265 static const uint16_t igb_eeprom_template[] = { 266 /* Address |Compat.|OEM sp.| ImRev | OEM sp. */ 267 0x0000, 0x0000, 0x0000, 0x0d34, 0xffff, 0x2010, 0xffff, 0xffff, 268 /* PBA |ICtrl1 | SSID | SVID | DevID |-------|ICtrl2 */ 269 0x1040, 0xffff, 0x002b, 0x0000, 0x8086, 0x10c9, 0x0000, 0x70c3, 270 /* SwPin0| DevID | EESZ |-------|ICtrl3 |PCI-tc | MSIX | APtr */ 271 0x0004, 0x10c9, 0x5c00, 0x0000, 0x2880, 0x0014, 0x4a40, 0x0060, 272 /* PCIe Init. Conf 1,2,3 |PCICtrl| LD1,3 |DDevID |DevRev | LD0,2 */ 273 0x6cfb, 0xc7b0, 0x0abe, 0x0403, 0x0783, 0x10a6, 0x0001, 0x0602, 274 /* SwPin1| FunC |LAN-PWR|ManHwC |ICtrl3 | IOVct |VDevID |-------*/ 275 0x0004, 0x0020, 0x0000, 0x004a, 0x2080, 0x00f5, 0x10ca, 0x0000, 276 /*---------------| LD1,3 | LD0,2 | ROEnd | ROSta | Wdog | VPD */ 277 0x0000, 0x0000, 0x4784, 0x4602, 0x0000, 0x0000, 0x1000, 0xffff, 278 /* PCSet0| Ccfg0 |PXEver |IBAcap |PCSet1 | Ccfg1 |iSCVer | ?? */ 279 0x0100, 0x4000, 0x131f, 0x4013, 0x0100, 0x4000, 0xffff, 0xffff, 280 /* PCSet2| Ccfg2 |PCSet3 | Ccfg3 | ?? |AltMacP| ?? |CHKSUM */ 281 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x00e0, 0xffff, 0x0000, 282 /* NC-SIC */ 283 0x0003, 284 }; 285 286 static void igb_core_realize(IGBState *s) 287 { 288 s->core.owner = &s->parent_obj; 289 s->core.owner_nic = s->nic; 290 } 291 292 static void 293 igb_init_msix(IGBState *s) 294 { 295 int i, res; 296 297 res = msix_init(PCI_DEVICE(s), IGB_MSIX_VEC_NUM, 298 &s->msix, 299 E1000E_MSIX_IDX, 0, 300 &s->msix, 301 E1000E_MSIX_IDX, 0x2000, 302 0x70, NULL); 303 304 if (res < 0) { 305 trace_e1000e_msix_init_fail(res); 306 } else { 307 for (i = 0; i < IGB_MSIX_VEC_NUM; i++) { 308 msix_vector_use(PCI_DEVICE(s), i); 309 } 310 } 311 } 312 313 static void 314 igb_cleanup_msix(IGBState *s) 315 { 316 msix_unuse_all_vectors(PCI_DEVICE(s)); 317 msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix); 318 } 319 320 static void 321 igb_init_net_peer(IGBState *s, PCIDevice *pci_dev, uint8_t *macaddr) 322 { 323 DeviceState *dev = DEVICE(pci_dev); 324 NetClientState *nc; 325 int i; 326 327 s->nic = qemu_new_nic(&net_igb_info, &s->conf, 328 object_get_typename(OBJECT(s)), dev->id, &dev->mem_reentrancy_guard, s); 329 330 s->core.max_queue_num = s->conf.peers.queues ? s->conf.peers.queues - 1 : 0; 331 332 trace_e1000e_mac_set_permanent(MAC_ARG(macaddr)); 333 memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac)); 334 335 qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr); 336 337 /* Setup virtio headers */ 338 for (i = 0; i < s->conf.peers.queues; i++) { 339 nc = qemu_get_subqueue(s->nic, i); 340 if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) { 341 trace_e1000e_cfg_support_virtio(false); 342 return; 343 } 344 } 345 346 trace_e1000e_cfg_support_virtio(true); 347 s->core.has_vnet = true; 348 349 for (i = 0; i < s->conf.peers.queues; i++) { 350 nc = qemu_get_subqueue(s->nic, i); 351 qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr)); 352 qemu_using_vnet_hdr(nc->peer, true); 353 } 354 } 355 356 static int 357 igb_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc) 358 { 359 Error *local_err = NULL; 360 int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset, 361 PCI_PM_SIZEOF, &local_err); 362 363 if (local_err) { 364 error_report_err(local_err); 365 return ret; 366 } 367 368 pci_set_word(pdev->config + offset + PCI_PM_PMC, 369 PCI_PM_CAP_VER_1_1 | 370 pmc); 371 372 pci_set_word(pdev->wmask + offset + PCI_PM_CTRL, 373 PCI_PM_CTRL_STATE_MASK | 374 PCI_PM_CTRL_PME_ENABLE | 375 PCI_PM_CTRL_DATA_SEL_MASK); 376 377 pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL, 378 PCI_PM_CTRL_PME_STATUS); 379 380 return ret; 381 } 382 383 static void igb_pci_realize(PCIDevice *pci_dev, Error **errp) 384 { 385 IGBState *s = IGB(pci_dev); 386 uint8_t *macaddr; 387 int ret; 388 389 trace_e1000e_cb_pci_realize(); 390 391 pci_dev->config_write = igb_write_config; 392 393 pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10; 394 pci_dev->config[PCI_INTERRUPT_PIN] = 1; 395 396 /* Define IO/MMIO regions */ 397 memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s, 398 "igb-mmio", E1000E_MMIO_SIZE); 399 pci_register_bar(pci_dev, E1000E_MMIO_IDX, 400 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio); 401 402 /* 403 * We provide a dummy implementation for the flash BAR 404 * for drivers that may theoretically probe for its presence. 405 */ 406 memory_region_init(&s->flash, OBJECT(s), 407 "igb-flash", E1000E_FLASH_SIZE); 408 pci_register_bar(pci_dev, E1000E_FLASH_IDX, 409 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash); 410 411 memory_region_init_io(&s->io, OBJECT(s), &io_ops, s, 412 "igb-io", E1000E_IO_SIZE); 413 pci_register_bar(pci_dev, E1000E_IO_IDX, 414 PCI_BASE_ADDRESS_SPACE_IO, &s->io); 415 416 memory_region_init(&s->msix, OBJECT(s), "igb-msix", 417 E1000E_MSIX_SIZE); 418 pci_register_bar(pci_dev, E1000E_MSIX_IDX, 419 PCI_BASE_ADDRESS_MEM_TYPE_64, &s->msix); 420 421 /* Create networking backend */ 422 qemu_macaddr_default_if_unset(&s->conf.macaddr); 423 macaddr = s->conf.macaddr.a; 424 425 /* Add PCI capabilities in reverse order */ 426 assert(pcie_endpoint_cap_init(pci_dev, 0xa0) > 0); 427 428 igb_init_msix(s); 429 430 ret = msi_init(pci_dev, 0x50, 1, true, true, NULL); 431 if (ret) { 432 trace_e1000e_msi_init_fail(ret); 433 } 434 435 if (igb_add_pm_capability(pci_dev, 0x40, PCI_PM_CAP_DSI) < 0) { 436 hw_error("Failed to initialize PM capability"); 437 } 438 439 /* PCIe extended capabilities (in order) */ 440 if (s->has_flr) { 441 pcie_cap_flr_init(pci_dev); 442 } 443 444 if (pcie_aer_init(pci_dev, 1, 0x100, 0x40, errp) < 0) { 445 hw_error("Failed to initialize AER capability"); 446 } 447 448 pcie_ari_init(pci_dev, 0x150); 449 450 pcie_sriov_pf_init(pci_dev, IGB_CAP_SRIOV_OFFSET, TYPE_IGBVF, 451 IGB_82576_VF_DEV_ID, IGB_MAX_VF_FUNCTIONS, IGB_MAX_VF_FUNCTIONS, 452 IGB_VF_OFFSET, IGB_VF_STRIDE); 453 454 pcie_sriov_pf_init_vf_bar(pci_dev, IGBVF_MMIO_BAR_IDX, 455 PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, 456 IGBVF_MMIO_SIZE); 457 pcie_sriov_pf_init_vf_bar(pci_dev, IGBVF_MSIX_BAR_IDX, 458 PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, 459 IGBVF_MSIX_SIZE); 460 461 igb_init_net_peer(s, pci_dev, macaddr); 462 463 /* Initialize core */ 464 igb_core_realize(s); 465 466 igb_core_pci_realize(&s->core, 467 igb_eeprom_template, 468 sizeof(igb_eeprom_template), 469 macaddr); 470 } 471 472 static void igb_pci_uninit(PCIDevice *pci_dev) 473 { 474 IGBState *s = IGB(pci_dev); 475 476 trace_e1000e_cb_pci_uninit(); 477 478 igb_core_pci_uninit(&s->core); 479 480 pcie_sriov_pf_exit(pci_dev); 481 pcie_cap_exit(pci_dev); 482 483 qemu_del_nic(s->nic); 484 485 igb_cleanup_msix(s); 486 msi_uninit(pci_dev); 487 } 488 489 static void igb_qdev_reset_hold(Object *obj) 490 { 491 PCIDevice *d = PCI_DEVICE(obj); 492 IGBState *s = IGB(obj); 493 494 trace_e1000e_cb_qdev_reset_hold(); 495 496 pcie_sriov_pf_disable_vfs(d); 497 igb_core_reset(&s->core); 498 } 499 500 static int igb_pre_save(void *opaque) 501 { 502 IGBState *s = opaque; 503 504 trace_e1000e_cb_pre_save(); 505 506 igb_core_pre_save(&s->core); 507 508 return 0; 509 } 510 511 static int igb_post_load(void *opaque, int version_id) 512 { 513 IGBState *s = opaque; 514 515 trace_e1000e_cb_post_load(); 516 return igb_core_post_load(&s->core); 517 } 518 519 static const VMStateDescription igb_vmstate_tx_ctx = { 520 .name = "igb-tx-ctx", 521 .version_id = 1, 522 .minimum_version_id = 1, 523 .fields = (VMStateField[]) { 524 VMSTATE_UINT32(vlan_macip_lens, struct e1000_adv_tx_context_desc), 525 VMSTATE_UINT32(seqnum_seed, struct e1000_adv_tx_context_desc), 526 VMSTATE_UINT32(type_tucmd_mlhl, struct e1000_adv_tx_context_desc), 527 VMSTATE_UINT32(mss_l4len_idx, struct e1000_adv_tx_context_desc), 528 VMSTATE_END_OF_LIST() 529 } 530 }; 531 532 static const VMStateDescription igb_vmstate_tx = { 533 .name = "igb-tx", 534 .version_id = 2, 535 .minimum_version_id = 2, 536 .fields = (VMStateField[]) { 537 VMSTATE_STRUCT_ARRAY(ctx, struct igb_tx, 2, 0, igb_vmstate_tx_ctx, 538 struct e1000_adv_tx_context_desc), 539 VMSTATE_UINT32(first_cmd_type_len, struct igb_tx), 540 VMSTATE_UINT32(first_olinfo_status, struct igb_tx), 541 VMSTATE_BOOL(first, struct igb_tx), 542 VMSTATE_BOOL(skip_cp, struct igb_tx), 543 VMSTATE_END_OF_LIST() 544 } 545 }; 546 547 static const VMStateDescription igb_vmstate_intr_timer = { 548 .name = "igb-intr-timer", 549 .version_id = 1, 550 .minimum_version_id = 1, 551 .fields = (VMStateField[]) { 552 VMSTATE_TIMER_PTR(timer, IGBIntrDelayTimer), 553 VMSTATE_BOOL(running, IGBIntrDelayTimer), 554 VMSTATE_END_OF_LIST() 555 } 556 }; 557 558 #define VMSTATE_IGB_INTR_DELAY_TIMER(_f, _s) \ 559 VMSTATE_STRUCT(_f, _s, 0, \ 560 igb_vmstate_intr_timer, IGBIntrDelayTimer) 561 562 #define VMSTATE_IGB_INTR_DELAY_TIMER_ARRAY(_f, _s, _num) \ 563 VMSTATE_STRUCT_ARRAY(_f, _s, _num, 0, \ 564 igb_vmstate_intr_timer, IGBIntrDelayTimer) 565 566 static const VMStateDescription igb_vmstate = { 567 .name = "igb", 568 .version_id = 1, 569 .minimum_version_id = 1, 570 .pre_save = igb_pre_save, 571 .post_load = igb_post_load, 572 .fields = (VMStateField[]) { 573 VMSTATE_PCI_DEVICE(parent_obj, IGBState), 574 VMSTATE_MSIX(parent_obj, IGBState), 575 576 VMSTATE_UINT32(ioaddr, IGBState), 577 VMSTATE_UINT8(core.rx_desc_len, IGBState), 578 VMSTATE_UINT16_ARRAY(core.eeprom, IGBState, IGB_EEPROM_SIZE), 579 VMSTATE_UINT16_ARRAY(core.phy, IGBState, MAX_PHY_REG_ADDRESS + 1), 580 VMSTATE_UINT32_ARRAY(core.mac, IGBState, E1000E_MAC_SIZE), 581 VMSTATE_UINT8_ARRAY(core.permanent_mac, IGBState, ETH_ALEN), 582 583 VMSTATE_IGB_INTR_DELAY_TIMER_ARRAY(core.eitr, IGBState, 584 IGB_INTR_NUM), 585 586 VMSTATE_UINT32_ARRAY(core.eitr_guest_value, IGBState, IGB_INTR_NUM), 587 588 VMSTATE_STRUCT_ARRAY(core.tx, IGBState, IGB_NUM_QUEUES, 0, 589 igb_vmstate_tx, struct igb_tx), 590 591 VMSTATE_INT64(core.timadj, IGBState), 592 593 VMSTATE_END_OF_LIST() 594 } 595 }; 596 597 static Property igb_properties[] = { 598 DEFINE_NIC_PROPERTIES(IGBState, conf), 599 DEFINE_PROP_BOOL("x-pcie-flr-init", IGBState, has_flr, true), 600 DEFINE_PROP_END_OF_LIST(), 601 }; 602 603 static void igb_class_init(ObjectClass *class, void *data) 604 { 605 DeviceClass *dc = DEVICE_CLASS(class); 606 ResettableClass *rc = RESETTABLE_CLASS(class); 607 PCIDeviceClass *c = PCI_DEVICE_CLASS(class); 608 609 c->realize = igb_pci_realize; 610 c->exit = igb_pci_uninit; 611 c->vendor_id = PCI_VENDOR_ID_INTEL; 612 c->device_id = E1000_DEV_ID_82576; 613 c->revision = 1; 614 c->class_id = PCI_CLASS_NETWORK_ETHERNET; 615 616 rc->phases.hold = igb_qdev_reset_hold; 617 618 dc->desc = "Intel 82576 Gigabit Ethernet Controller"; 619 dc->vmsd = &igb_vmstate; 620 621 device_class_set_props(dc, igb_properties); 622 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 623 } 624 625 static void igb_instance_init(Object *obj) 626 { 627 IGBState *s = IGB(obj); 628 device_add_bootindex_property(obj, &s->conf.bootindex, 629 "bootindex", "/ethernet-phy@0", 630 DEVICE(obj)); 631 } 632 633 static const TypeInfo igb_info = { 634 .name = TYPE_IGB, 635 .parent = TYPE_PCI_DEVICE, 636 .instance_size = sizeof(IGBState), 637 .class_init = igb_class_init, 638 .instance_init = igb_instance_init, 639 .interfaces = (InterfaceInfo[]) { 640 { INTERFACE_PCIE_DEVICE }, 641 { } 642 }, 643 }; 644 645 static void igb_register_types(void) 646 { 647 type_register_static(&igb_info); 648 } 649 650 type_init(igb_register_types) 651