xref: /openbmc/qemu/hw/net/ftgmac100.c (revision 9f2b8488)
1 /*
2  * Faraday FTGMAC100 Gigabit Ethernet
3  *
4  * Copyright (C) 2016-2017, IBM Corporation.
5  *
6  * Based on Coldfire Fast Ethernet Controller emulation.
7  *
8  * Copyright (c) 2007 CodeSourcery.
9  *
10  * This code is licensed under the GPL version 2 or later. See the
11  * COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include "hw/irq.h"
16 #include "hw/net/ftgmac100.h"
17 #include "sysemu/dma.h"
18 #include "qapi/error.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "net/checksum.h"
22 #include "net/eth.h"
23 #include "hw/net/mii.h"
24 #include "hw/qdev-properties.h"
25 #include "migration/vmstate.h"
26 
27 /* For crc32 */
28 #include <zlib.h>
29 
30 /*
31  * FTGMAC100 registers
32  */
33 #define FTGMAC100_ISR             0x00
34 #define FTGMAC100_IER             0x04
35 #define FTGMAC100_MAC_MADR        0x08
36 #define FTGMAC100_MAC_LADR        0x0c
37 #define FTGMAC100_MATH0           0x10
38 #define FTGMAC100_MATH1           0x14
39 #define FTGMAC100_NPTXPD          0x18
40 #define FTGMAC100_RXPD            0x1C
41 #define FTGMAC100_NPTXR_BADR      0x20
42 #define FTGMAC100_RXR_BADR        0x24
43 #define FTGMAC100_HPTXPD          0x28
44 #define FTGMAC100_HPTXR_BADR      0x2c
45 #define FTGMAC100_ITC             0x30
46 #define FTGMAC100_APTC            0x34
47 #define FTGMAC100_DBLAC           0x38
48 #define FTGMAC100_REVR            0x40
49 #define FTGMAC100_FEAR1           0x44
50 #define FTGMAC100_RBSR            0x4c
51 #define FTGMAC100_TPAFCR          0x48
52 
53 #define FTGMAC100_MACCR           0x50
54 #define FTGMAC100_MACSR           0x54
55 #define FTGMAC100_PHYCR           0x60
56 #define FTGMAC100_PHYDATA         0x64
57 #define FTGMAC100_FCR             0x68
58 
59 /*
60  * Interrupt status register & interrupt enable register
61  */
62 #define FTGMAC100_INT_RPKT_BUF    (1 << 0)
63 #define FTGMAC100_INT_RPKT_FIFO   (1 << 1)
64 #define FTGMAC100_INT_NO_RXBUF    (1 << 2)
65 #define FTGMAC100_INT_RPKT_LOST   (1 << 3)
66 #define FTGMAC100_INT_XPKT_ETH    (1 << 4)
67 #define FTGMAC100_INT_XPKT_FIFO   (1 << 5)
68 #define FTGMAC100_INT_NO_NPTXBUF  (1 << 6)
69 #define FTGMAC100_INT_XPKT_LOST   (1 << 7)
70 #define FTGMAC100_INT_AHB_ERR     (1 << 8)
71 #define FTGMAC100_INT_PHYSTS_CHG  (1 << 9)
72 #define FTGMAC100_INT_NO_HPTXBUF  (1 << 10)
73 
74 /*
75  * Automatic polling timer control register
76  */
77 #define FTGMAC100_APTC_RXPOLL_CNT(x)        ((x) & 0xf)
78 #define FTGMAC100_APTC_RXPOLL_TIME_SEL      (1 << 4)
79 #define FTGMAC100_APTC_TXPOLL_CNT(x)        (((x) >> 8) & 0xf)
80 #define FTGMAC100_APTC_TXPOLL_TIME_SEL      (1 << 12)
81 
82 /*
83  * DMA burst length and arbitration control register
84  */
85 #define FTGMAC100_DBLAC_RXBURST_SIZE(x)     (((x) >> 8) & 0x3)
86 #define FTGMAC100_DBLAC_TXBURST_SIZE(x)     (((x) >> 10) & 0x3)
87 #define FTGMAC100_DBLAC_RXDES_SIZE(x)       ((((x) >> 12) & 0xf) * 8)
88 #define FTGMAC100_DBLAC_TXDES_SIZE(x)       ((((x) >> 16) & 0xf) * 8)
89 #define FTGMAC100_DBLAC_IFG_CNT(x)          (((x) >> 20) & 0x7)
90 #define FTGMAC100_DBLAC_IFG_INC             (1 << 23)
91 
92 /*
93  * PHY control register
94  */
95 #define FTGMAC100_PHYCR_MIIRD               (1 << 26)
96 #define FTGMAC100_PHYCR_MIIWR               (1 << 27)
97 
98 #define FTGMAC100_PHYCR_DEV(x)              (((x) >> 16) & 0x1f)
99 #define FTGMAC100_PHYCR_REG(x)              (((x) >> 21) & 0x1f)
100 
101 /*
102  * PHY data register
103  */
104 #define FTGMAC100_PHYDATA_MIIWDATA(x)       ((x) & 0xffff)
105 #define FTGMAC100_PHYDATA_MIIRDATA(x)       (((x) >> 16) & 0xffff)
106 
107 /*
108  * PHY control register - New MDC/MDIO interface
109  */
110 #define FTGMAC100_PHYCR_NEW_DATA(x)     (((x) >> 16) & 0xffff)
111 #define FTGMAC100_PHYCR_NEW_FIRE        (1 << 15)
112 #define FTGMAC100_PHYCR_NEW_ST_22       (1 << 12)
113 #define FTGMAC100_PHYCR_NEW_OP(x)       (((x) >> 10) & 3)
114 #define   FTGMAC100_PHYCR_NEW_OP_WRITE    0x1
115 #define   FTGMAC100_PHYCR_NEW_OP_READ     0x2
116 #define FTGMAC100_PHYCR_NEW_DEV(x)      (((x) >> 5) & 0x1f)
117 #define FTGMAC100_PHYCR_NEW_REG(x)      ((x) & 0x1f)
118 
119 /*
120  * Feature Register
121  */
122 #define FTGMAC100_REVR_NEW_MDIO_INTERFACE   (1 << 31)
123 
124 /*
125  * MAC control register
126  */
127 #define FTGMAC100_MACCR_TXDMA_EN         (1 << 0)
128 #define FTGMAC100_MACCR_RXDMA_EN         (1 << 1)
129 #define FTGMAC100_MACCR_TXMAC_EN         (1 << 2)
130 #define FTGMAC100_MACCR_RXMAC_EN         (1 << 3)
131 #define FTGMAC100_MACCR_RM_VLAN          (1 << 4)
132 #define FTGMAC100_MACCR_HPTXR_EN         (1 << 5)
133 #define FTGMAC100_MACCR_LOOP_EN          (1 << 6)
134 #define FTGMAC100_MACCR_ENRX_IN_HALFTX   (1 << 7)
135 #define FTGMAC100_MACCR_FULLDUP          (1 << 8)
136 #define FTGMAC100_MACCR_GIGA_MODE        (1 << 9)
137 #define FTGMAC100_MACCR_CRC_APD          (1 << 10) /* not needed */
138 #define FTGMAC100_MACCR_RX_RUNT          (1 << 12)
139 #define FTGMAC100_MACCR_JUMBO_LF         (1 << 13)
140 #define FTGMAC100_MACCR_RX_ALL           (1 << 14)
141 #define FTGMAC100_MACCR_HT_MULTI_EN      (1 << 15)
142 #define FTGMAC100_MACCR_RX_MULTIPKT      (1 << 16)
143 #define FTGMAC100_MACCR_RX_BROADPKT      (1 << 17)
144 #define FTGMAC100_MACCR_DISCARD_CRCERR   (1 << 18)
145 #define FTGMAC100_MACCR_FAST_MODE        (1 << 19)
146 #define FTGMAC100_MACCR_SW_RST           (1 << 31)
147 
148 /*
149  * Transmit descriptor
150  */
151 #define FTGMAC100_TXDES0_TXBUF_SIZE(x)   ((x) & 0x3fff)
152 #define FTGMAC100_TXDES0_EDOTR           (1 << 15)
153 #define FTGMAC100_TXDES0_CRC_ERR         (1 << 19)
154 #define FTGMAC100_TXDES0_LTS             (1 << 28)
155 #define FTGMAC100_TXDES0_FTS             (1 << 29)
156 #define FTGMAC100_TXDES0_EDOTR_ASPEED    (1 << 30)
157 #define FTGMAC100_TXDES0_TXDMA_OWN       (1 << 31)
158 
159 #define FTGMAC100_TXDES1_VLANTAG_CI(x)   ((x) & 0xffff)
160 #define FTGMAC100_TXDES1_INS_VLANTAG     (1 << 16)
161 #define FTGMAC100_TXDES1_TCP_CHKSUM      (1 << 17)
162 #define FTGMAC100_TXDES1_UDP_CHKSUM      (1 << 18)
163 #define FTGMAC100_TXDES1_IP_CHKSUM       (1 << 19)
164 #define FTGMAC100_TXDES1_LLC             (1 << 22)
165 #define FTGMAC100_TXDES1_TX2FIC          (1 << 30)
166 #define FTGMAC100_TXDES1_TXIC            (1 << 31)
167 
168 /*
169  * Receive descriptor
170  */
171 #define FTGMAC100_RXDES0_VDBC            0x3fff
172 #define FTGMAC100_RXDES0_EDORR           (1 << 15)
173 #define FTGMAC100_RXDES0_MULTICAST       (1 << 16)
174 #define FTGMAC100_RXDES0_BROADCAST       (1 << 17)
175 #define FTGMAC100_RXDES0_RX_ERR          (1 << 18)
176 #define FTGMAC100_RXDES0_CRC_ERR         (1 << 19)
177 #define FTGMAC100_RXDES0_FTL             (1 << 20)
178 #define FTGMAC100_RXDES0_RUNT            (1 << 21)
179 #define FTGMAC100_RXDES0_RX_ODD_NB       (1 << 22)
180 #define FTGMAC100_RXDES0_FIFO_FULL       (1 << 23)
181 #define FTGMAC100_RXDES0_PAUSE_OPCODE    (1 << 24)
182 #define FTGMAC100_RXDES0_PAUSE_FRAME     (1 << 25)
183 #define FTGMAC100_RXDES0_LRS             (1 << 28)
184 #define FTGMAC100_RXDES0_FRS             (1 << 29)
185 #define FTGMAC100_RXDES0_EDORR_ASPEED    (1 << 30)
186 #define FTGMAC100_RXDES0_RXPKT_RDY       (1 << 31)
187 
188 #define FTGMAC100_RXDES1_VLANTAG_CI      0xffff
189 #define FTGMAC100_RXDES1_PROT_MASK       (0x3 << 20)
190 #define FTGMAC100_RXDES1_PROT_NONIP      (0x0 << 20)
191 #define FTGMAC100_RXDES1_PROT_IP         (0x1 << 20)
192 #define FTGMAC100_RXDES1_PROT_TCPIP      (0x2 << 20)
193 #define FTGMAC100_RXDES1_PROT_UDPIP      (0x3 << 20)
194 #define FTGMAC100_RXDES1_LLC             (1 << 22)
195 #define FTGMAC100_RXDES1_DF              (1 << 23)
196 #define FTGMAC100_RXDES1_VLANTAG_AVAIL   (1 << 24)
197 #define FTGMAC100_RXDES1_TCP_CHKSUM_ERR  (1 << 25)
198 #define FTGMAC100_RXDES1_UDP_CHKSUM_ERR  (1 << 26)
199 #define FTGMAC100_RXDES1_IP_CHKSUM_ERR   (1 << 27)
200 
201 /*
202  * Receive and transmit Buffer Descriptor
203  */
204 typedef struct {
205     uint32_t        des0;
206     uint32_t        des1;
207     uint32_t        des2;        /* not used by HW */
208     uint32_t        des3;
209 } FTGMAC100Desc;
210 
211 #define FTGMAC100_DESC_ALIGNMENT 16
212 
213 /*
214  * Specific RTL8211E MII Registers
215  */
216 #define RTL8211E_MII_PHYCR        16 /* PHY Specific Control */
217 #define RTL8211E_MII_PHYSR        17 /* PHY Specific Status */
218 #define RTL8211E_MII_INER         18 /* Interrupt Enable */
219 #define RTL8211E_MII_INSR         19 /* Interrupt Status */
220 #define RTL8211E_MII_RXERC        24 /* Receive Error Counter */
221 #define RTL8211E_MII_LDPSR        27 /* Link Down Power Saving */
222 #define RTL8211E_MII_EPAGSR       30 /* Extension Page Select */
223 #define RTL8211E_MII_PAGSEL       31 /* Page Select */
224 
225 /*
226  * RTL8211E Interrupt Status
227  */
228 #define PHY_INT_AUTONEG_ERROR       (1 << 15)
229 #define PHY_INT_PAGE_RECV           (1 << 12)
230 #define PHY_INT_AUTONEG_COMPLETE    (1 << 11)
231 #define PHY_INT_LINK_STATUS         (1 << 10)
232 #define PHY_INT_ERROR               (1 << 9)
233 #define PHY_INT_DOWN                (1 << 8)
234 #define PHY_INT_JABBER              (1 << 0)
235 
236 /*
237  * Max frame size for the receiving buffer
238  */
239 #define FTGMAC100_MAX_FRAME_SIZE    9220
240 
241 /*
242  * Limits depending on the type of the frame
243  *
244  *   9216 for Jumbo frames (+ 4 for VLAN)
245  *   1518 for other frames (+ 4 for VLAN)
246  */
247 static int ftgmac100_max_frame_size(FTGMAC100State *s, uint16_t proto)
248 {
249     int max = (s->maccr & FTGMAC100_MACCR_JUMBO_LF ? 9216 : 1518);
250 
251     return max + (proto == ETH_P_VLAN ? 4 : 0);
252 }
253 
254 static void ftgmac100_update_irq(FTGMAC100State *s)
255 {
256     qemu_set_irq(s->irq, s->isr & s->ier);
257 }
258 
259 /*
260  * The MII phy could raise a GPIO to the processor which in turn
261  * could be handled as an interrpt by the OS.
262  * For now we don't handle any GPIO/interrupt line, so the OS will
263  * have to poll for the PHY status.
264  */
265 static void phy_update_irq(FTGMAC100State *s)
266 {
267     ftgmac100_update_irq(s);
268 }
269 
270 static void phy_update_link(FTGMAC100State *s)
271 {
272     /* Autonegotiation status mirrors link status.  */
273     if (qemu_get_queue(s->nic)->link_down) {
274         s->phy_status &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
275         s->phy_int |= PHY_INT_DOWN;
276     } else {
277         s->phy_status |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
278         s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
279     }
280     phy_update_irq(s);
281 }
282 
283 static void ftgmac100_set_link(NetClientState *nc)
284 {
285     phy_update_link(FTGMAC100(qemu_get_nic_opaque(nc)));
286 }
287 
288 static void phy_reset(FTGMAC100State *s)
289 {
290     s->phy_status = (MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
291                      MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_MFPS |
292                      MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST |
293                      MII_BMSR_EXTCAP);
294     s->phy_control = (MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000);
295     s->phy_advertise = (MII_ANAR_PAUSE_ASYM | MII_ANAR_PAUSE | MII_ANAR_TXFD |
296                         MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
297                         MII_ANAR_CSMACD);
298     s->phy_int_mask = 0;
299     s->phy_int = 0;
300 }
301 
302 static uint16_t do_phy_read(FTGMAC100State *s, uint8_t reg)
303 {
304     uint16_t val;
305 
306     switch (reg) {
307     case MII_BMCR: /* Basic Control */
308         val = s->phy_control;
309         break;
310     case MII_BMSR: /* Basic Status */
311         val = s->phy_status;
312         break;
313     case MII_PHYID1: /* ID1 */
314         val = RTL8211E_PHYID1;
315         break;
316     case MII_PHYID2: /* ID2 */
317         val = RTL8211E_PHYID2;
318         break;
319     case MII_ANAR: /* Auto-neg advertisement */
320         val = s->phy_advertise;
321         break;
322     case MII_ANLPAR: /* Auto-neg Link Partner Ability */
323         val = (MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD |
324                MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 |
325                MII_ANLPAR_CSMACD);
326         break;
327     case MII_ANER: /* Auto-neg Expansion */
328         val = MII_ANER_NWAY;
329         break;
330     case MII_CTRL1000: /* 1000BASE-T control  */
331         val = (MII_CTRL1000_HALF | MII_CTRL1000_FULL);
332         break;
333     case MII_STAT1000: /* 1000BASE-T status  */
334         val = MII_STAT1000_FULL;
335         break;
336     case RTL8211E_MII_INSR:  /* Interrupt status.  */
337         val = s->phy_int;
338         s->phy_int = 0;
339         phy_update_irq(s);
340         break;
341     case RTL8211E_MII_INER:  /* Interrupt enable */
342         val = s->phy_int_mask;
343         break;
344     case RTL8211E_MII_PHYCR:
345     case RTL8211E_MII_PHYSR:
346     case RTL8211E_MII_RXERC:
347     case RTL8211E_MII_LDPSR:
348     case RTL8211E_MII_EPAGSR:
349     case RTL8211E_MII_PAGSEL:
350         qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
351                       __func__, reg);
352         val = 0;
353         break;
354     default:
355         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
356                       __func__, reg);
357         val = 0;
358         break;
359     }
360 
361     return val;
362 }
363 
364 #define MII_BMCR_MASK (MII_BMCR_LOOPBACK | MII_BMCR_SPEED100 |          \
365                        MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_PDOWN | \
366                        MII_BMCR_FD | MII_BMCR_CTST)
367 #define MII_ANAR_MASK 0x2d7f
368 
369 static void do_phy_write(FTGMAC100State *s, uint8_t reg, uint16_t val)
370 {
371     switch (reg) {
372     case MII_BMCR:     /* Basic Control */
373         if (val & MII_BMCR_RESET) {
374             phy_reset(s);
375         } else {
376             s->phy_control = val & MII_BMCR_MASK;
377             /* Complete autonegotiation immediately.  */
378             if (val & MII_BMCR_AUTOEN) {
379                 s->phy_status |= MII_BMSR_AN_COMP;
380             }
381         }
382         break;
383     case MII_ANAR:     /* Auto-neg advertisement */
384         s->phy_advertise = (val & MII_ANAR_MASK) | MII_ANAR_TX;
385         break;
386     case RTL8211E_MII_INER: /* Interrupt enable */
387         s->phy_int_mask = val & 0xff;
388         phy_update_irq(s);
389         break;
390     case RTL8211E_MII_PHYCR:
391     case RTL8211E_MII_PHYSR:
392     case RTL8211E_MII_RXERC:
393     case RTL8211E_MII_LDPSR:
394     case RTL8211E_MII_EPAGSR:
395     case RTL8211E_MII_PAGSEL:
396         qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
397                       __func__, reg);
398         break;
399     default:
400         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
401                       __func__, reg);
402         break;
403     }
404 }
405 
406 static void do_phy_new_ctl(FTGMAC100State *s)
407 {
408     uint8_t reg;
409     uint16_t data;
410 
411     if (!(s->phycr & FTGMAC100_PHYCR_NEW_ST_22)) {
412         qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
413         return;
414     }
415 
416     /* Nothing to do */
417     if (!(s->phycr & FTGMAC100_PHYCR_NEW_FIRE)) {
418         return;
419     }
420 
421     reg = FTGMAC100_PHYCR_NEW_REG(s->phycr);
422     data = FTGMAC100_PHYCR_NEW_DATA(s->phycr);
423 
424     switch (FTGMAC100_PHYCR_NEW_OP(s->phycr)) {
425     case FTGMAC100_PHYCR_NEW_OP_WRITE:
426         do_phy_write(s, reg, data);
427         break;
428     case FTGMAC100_PHYCR_NEW_OP_READ:
429         s->phydata = do_phy_read(s, reg) & 0xffff;
430         break;
431     default:
432         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
433                       __func__, s->phycr);
434     }
435 
436     s->phycr &= ~FTGMAC100_PHYCR_NEW_FIRE;
437 }
438 
439 static void do_phy_ctl(FTGMAC100State *s)
440 {
441     uint8_t reg = FTGMAC100_PHYCR_REG(s->phycr);
442 
443     if (s->phycr & FTGMAC100_PHYCR_MIIWR) {
444         do_phy_write(s, reg, s->phydata & 0xffff);
445         s->phycr &= ~FTGMAC100_PHYCR_MIIWR;
446     } else if (s->phycr & FTGMAC100_PHYCR_MIIRD) {
447         s->phydata = do_phy_read(s, reg) << 16;
448         s->phycr &= ~FTGMAC100_PHYCR_MIIRD;
449     } else {
450         qemu_log_mask(LOG_GUEST_ERROR, "%s: no OP code %08x\n",
451                       __func__, s->phycr);
452     }
453 }
454 
455 static int ftgmac100_read_bd(FTGMAC100Desc *bd, dma_addr_t addr)
456 {
457     if (dma_memory_read(&address_space_memory, addr,
458                         bd, sizeof(*bd), MEMTXATTRS_UNSPECIFIED)) {
459         qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read descriptor @ 0x%"
460                       HWADDR_PRIx "\n", __func__, addr);
461         return -1;
462     }
463     bd->des0 = le32_to_cpu(bd->des0);
464     bd->des1 = le32_to_cpu(bd->des1);
465     bd->des2 = le32_to_cpu(bd->des2);
466     bd->des3 = le32_to_cpu(bd->des3);
467     return 0;
468 }
469 
470 static int ftgmac100_write_bd(FTGMAC100Desc *bd, dma_addr_t addr)
471 {
472     FTGMAC100Desc lebd;
473 
474     lebd.des0 = cpu_to_le32(bd->des0);
475     lebd.des1 = cpu_to_le32(bd->des1);
476     lebd.des2 = cpu_to_le32(bd->des2);
477     lebd.des3 = cpu_to_le32(bd->des3);
478     if (dma_memory_write(&address_space_memory, addr,
479                          &lebd, sizeof(lebd), MEMTXATTRS_UNSPECIFIED)) {
480         qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to write descriptor @ 0x%"
481                       HWADDR_PRIx "\n", __func__, addr);
482         return -1;
483     }
484     return 0;
485 }
486 
487 static int ftgmac100_insert_vlan(FTGMAC100State *s, int frame_size,
488                                   uint8_t vlan_tci)
489 {
490     uint8_t *vlan_hdr = s->frame + (ETH_ALEN * 2);
491     uint8_t *payload = vlan_hdr + sizeof(struct vlan_header);
492 
493     if (frame_size < sizeof(struct eth_header)) {
494         qemu_log_mask(LOG_GUEST_ERROR,
495                       "%s: frame too small for VLAN insertion : %d bytes\n",
496                       __func__, frame_size);
497         s->isr |= FTGMAC100_INT_XPKT_LOST;
498         goto out;
499     }
500 
501     if (frame_size + sizeof(struct vlan_header) > sizeof(s->frame)) {
502         qemu_log_mask(LOG_GUEST_ERROR,
503                       "%s: frame too big : %d bytes\n",
504                       __func__, frame_size);
505         s->isr |= FTGMAC100_INT_XPKT_LOST;
506         frame_size -= sizeof(struct vlan_header);
507     }
508 
509     memmove(payload, vlan_hdr, frame_size - (ETH_ALEN * 2));
510     stw_be_p(vlan_hdr, ETH_P_VLAN);
511     stw_be_p(vlan_hdr + 2, vlan_tci);
512     frame_size += sizeof(struct vlan_header);
513 
514 out:
515     return frame_size;
516 }
517 
518 static void ftgmac100_do_tx(FTGMAC100State *s, uint32_t tx_ring,
519                             uint32_t tx_descriptor)
520 {
521     int frame_size = 0;
522     uint8_t *ptr = s->frame;
523     uint32_t addr = tx_descriptor;
524     uint32_t flags = 0;
525 
526     while (1) {
527         FTGMAC100Desc bd;
528         int len;
529 
530         if (ftgmac100_read_bd(&bd, addr) ||
531             ((bd.des0 & FTGMAC100_TXDES0_TXDMA_OWN) == 0)) {
532             /* Run out of descriptors to transmit.  */
533             s->isr |= FTGMAC100_INT_NO_NPTXBUF;
534             break;
535         }
536 
537         /*
538          * record transmit flags as they are valid only on the first
539          * segment
540          */
541         if (bd.des0 & FTGMAC100_TXDES0_FTS) {
542             flags = bd.des1;
543         }
544 
545         len = FTGMAC100_TXDES0_TXBUF_SIZE(bd.des0);
546         if (!len) {
547             /*
548              * 0 is an invalid size, however the HW does not raise any
549              * interrupt. Flag an error because the guest is buggy.
550              */
551             qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid segment size\n",
552                           __func__);
553         }
554 
555         if (frame_size + len > sizeof(s->frame)) {
556             qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
557                           __func__, len);
558             s->isr |= FTGMAC100_INT_XPKT_LOST;
559             len =  sizeof(s->frame) - frame_size;
560         }
561 
562         if (dma_memory_read(&address_space_memory, bd.des3,
563                             ptr, len, MEMTXATTRS_UNSPECIFIED)) {
564             qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read packet @ 0x%x\n",
565                           __func__, bd.des3);
566             s->isr |= FTGMAC100_INT_AHB_ERR;
567             break;
568         }
569 
570         ptr += len;
571         frame_size += len;
572         if (bd.des0 & FTGMAC100_TXDES0_LTS) {
573             int csum = 0;
574 
575             /* Check for VLAN */
576             if (flags & FTGMAC100_TXDES1_INS_VLANTAG &&
577                 be16_to_cpu(PKT_GET_ETH_HDR(s->frame)->h_proto) != ETH_P_VLAN) {
578                 frame_size = ftgmac100_insert_vlan(s, frame_size,
579                                             FTGMAC100_TXDES1_VLANTAG_CI(flags));
580             }
581 
582             if (flags & FTGMAC100_TXDES1_IP_CHKSUM) {
583                 csum |= CSUM_IP;
584             }
585             if (flags & FTGMAC100_TXDES1_TCP_CHKSUM) {
586                 csum |= CSUM_TCP;
587             }
588             if (flags & FTGMAC100_TXDES1_UDP_CHKSUM) {
589                 csum |= CSUM_UDP;
590             }
591             if (csum) {
592                 net_checksum_calculate(s->frame, frame_size, csum);
593             }
594 
595             /* Last buffer in frame.  */
596             qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
597             ptr = s->frame;
598             frame_size = 0;
599             s->isr |= FTGMAC100_INT_XPKT_ETH;
600         }
601 
602         if (flags & FTGMAC100_TXDES1_TX2FIC) {
603             s->isr |= FTGMAC100_INT_XPKT_FIFO;
604         }
605         bd.des0 &= ~FTGMAC100_TXDES0_TXDMA_OWN;
606 
607         /* Write back the modified descriptor.  */
608         ftgmac100_write_bd(&bd, addr);
609         /* Advance to the next descriptor.  */
610         if (bd.des0 & s->txdes0_edotr) {
611             addr = tx_ring;
612         } else {
613             addr += FTGMAC100_DBLAC_TXDES_SIZE(s->dblac);
614         }
615     }
616 
617     s->tx_descriptor = addr;
618 
619     ftgmac100_update_irq(s);
620 }
621 
622 static bool ftgmac100_can_receive(NetClientState *nc)
623 {
624     FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
625     FTGMAC100Desc bd;
626 
627     if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
628          != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
629         return false;
630     }
631 
632     if (ftgmac100_read_bd(&bd, s->rx_descriptor)) {
633         return false;
634     }
635     return !(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY);
636 }
637 
638 /*
639  * This is purely informative. The HW can poll the RW (and RX) ring
640  * buffers for available descriptors but we don't need to trigger a
641  * timer for that in qemu.
642  */
643 static uint32_t ftgmac100_rxpoll(FTGMAC100State *s)
644 {
645     /*
646      * Polling times :
647      *
648      * Speed      TIME_SEL=0    TIME_SEL=1
649      *
650      *    10         51.2 ms      819.2 ms
651      *   100         5.12 ms      81.92 ms
652      *  1000        1.024 ms     16.384 ms
653      */
654     static const int div[] = { 20, 200, 1000 };
655 
656     uint32_t cnt = 1024 * FTGMAC100_APTC_RXPOLL_CNT(s->aptcr);
657     uint32_t speed = (s->maccr & FTGMAC100_MACCR_FAST_MODE) ? 1 : 0;
658 
659     if (s->aptcr & FTGMAC100_APTC_RXPOLL_TIME_SEL) {
660         cnt <<= 4;
661     }
662 
663     if (s->maccr & FTGMAC100_MACCR_GIGA_MODE) {
664         speed = 2;
665     }
666 
667     return cnt / div[speed];
668 }
669 
670 static void ftgmac100_do_reset(FTGMAC100State *s, bool sw_reset)
671 {
672     /* Reset the FTGMAC100 */
673     s->isr = 0;
674     s->ier = 0;
675     s->rx_enabled = 0;
676     s->rx_ring = 0;
677     s->rbsr = 0x640;
678     s->rx_descriptor = 0;
679     s->tx_ring = 0;
680     s->tx_descriptor = 0;
681     s->math[0] = 0;
682     s->math[1] = 0;
683     s->itc = 0;
684     s->aptcr = 1;
685     s->dblac = 0x00022f00;
686     s->revr = 0;
687     s->fear1 = 0;
688     s->tpafcr = 0xf1;
689 
690     if (sw_reset) {
691         s->maccr &= FTGMAC100_MACCR_GIGA_MODE | FTGMAC100_MACCR_FAST_MODE;
692     } else {
693         s->maccr = 0;
694     }
695 
696     s->phycr = 0;
697     s->phydata = 0;
698     s->fcr = 0x400;
699 
700     /* and the PHY */
701     phy_reset(s);
702 }
703 
704 static void ftgmac100_reset(DeviceState *d)
705 {
706     ftgmac100_do_reset(FTGMAC100(d), false);
707 }
708 
709 static uint64_t ftgmac100_read(void *opaque, hwaddr addr, unsigned size)
710 {
711     FTGMAC100State *s = FTGMAC100(opaque);
712 
713     switch (addr & 0xff) {
714     case FTGMAC100_ISR:
715         return s->isr;
716     case FTGMAC100_IER:
717         return s->ier;
718     case FTGMAC100_MAC_MADR:
719         return (s->conf.macaddr.a[0] << 8)  | s->conf.macaddr.a[1];
720     case FTGMAC100_MAC_LADR:
721         return ((uint32_t) s->conf.macaddr.a[2] << 24) |
722             (s->conf.macaddr.a[3] << 16) | (s->conf.macaddr.a[4] << 8) |
723             s->conf.macaddr.a[5];
724     case FTGMAC100_MATH0:
725         return s->math[0];
726     case FTGMAC100_MATH1:
727         return s->math[1];
728     case FTGMAC100_RXR_BADR:
729         return s->rx_ring;
730     case FTGMAC100_NPTXR_BADR:
731         return s->tx_ring;
732     case FTGMAC100_ITC:
733         return s->itc;
734     case FTGMAC100_DBLAC:
735         return s->dblac;
736     case FTGMAC100_REVR:
737         return s->revr;
738     case FTGMAC100_FEAR1:
739         return s->fear1;
740     case FTGMAC100_TPAFCR:
741         return s->tpafcr;
742     case FTGMAC100_FCR:
743         return s->fcr;
744     case FTGMAC100_MACCR:
745         return s->maccr;
746     case FTGMAC100_PHYCR:
747         return s->phycr;
748     case FTGMAC100_PHYDATA:
749         return s->phydata;
750 
751         /* We might want to support these one day */
752     case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
753     case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
754     case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
755         qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%"
756                       HWADDR_PRIx "\n", __func__, addr);
757         return 0;
758     default:
759         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
760                       HWADDR_PRIx "\n", __func__, addr);
761         return 0;
762     }
763 }
764 
765 static void ftgmac100_write(void *opaque, hwaddr addr,
766                           uint64_t value, unsigned size)
767 {
768     FTGMAC100State *s = FTGMAC100(opaque);
769 
770     switch (addr & 0xff) {
771     case FTGMAC100_ISR: /* Interrupt status */
772         s->isr &= ~value;
773         break;
774     case FTGMAC100_IER: /* Interrupt control */
775         s->ier = value;
776         break;
777     case FTGMAC100_MAC_MADR: /* MAC */
778         s->conf.macaddr.a[0] = value >> 8;
779         s->conf.macaddr.a[1] = value;
780         break;
781     case FTGMAC100_MAC_LADR:
782         s->conf.macaddr.a[2] = value >> 24;
783         s->conf.macaddr.a[3] = value >> 16;
784         s->conf.macaddr.a[4] = value >> 8;
785         s->conf.macaddr.a[5] = value;
786         break;
787     case FTGMAC100_MATH0: /* Multicast Address Hash Table 0 */
788         s->math[0] = value;
789         break;
790     case FTGMAC100_MATH1: /* Multicast Address Hash Table 1 */
791         s->math[1] = value;
792         break;
793     case FTGMAC100_ITC: /* TODO: Interrupt Timer Control */
794         s->itc = value;
795         break;
796     case FTGMAC100_RXR_BADR: /* Ring buffer address */
797         if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
798             qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad RX buffer alignment 0x%"
799                           HWADDR_PRIx "\n", __func__, value);
800             return;
801         }
802 
803         s->rx_ring = value;
804         s->rx_descriptor = s->rx_ring;
805         break;
806 
807     case FTGMAC100_RBSR: /* DMA buffer size */
808         s->rbsr = value;
809         break;
810 
811     case FTGMAC100_NPTXR_BADR: /* Transmit buffer address */
812         if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
813             qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad TX buffer alignment 0x%"
814                           HWADDR_PRIx "\n", __func__, value);
815             return;
816         }
817         s->tx_ring = value;
818         s->tx_descriptor = s->tx_ring;
819         break;
820 
821     case FTGMAC100_NPTXPD: /* Trigger transmit */
822         if ((s->maccr & (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN))
823             == (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) {
824             /* TODO: high priority tx ring */
825             ftgmac100_do_tx(s, s->tx_ring, s->tx_descriptor);
826         }
827         if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
828             qemu_flush_queued_packets(qemu_get_queue(s->nic));
829         }
830         break;
831 
832     case FTGMAC100_RXPD: /* Receive Poll Demand Register */
833         if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
834             qemu_flush_queued_packets(qemu_get_queue(s->nic));
835         }
836         break;
837 
838     case FTGMAC100_APTC: /* Automatic polling */
839         s->aptcr = value;
840 
841         if (FTGMAC100_APTC_RXPOLL_CNT(s->aptcr)) {
842             ftgmac100_rxpoll(s);
843         }
844 
845         if (FTGMAC100_APTC_TXPOLL_CNT(s->aptcr)) {
846             qemu_log_mask(LOG_UNIMP, "%s: no transmit polling\n", __func__);
847         }
848         break;
849 
850     case FTGMAC100_MACCR: /* MAC Device control */
851         s->maccr = value;
852         if (value & FTGMAC100_MACCR_SW_RST) {
853             ftgmac100_do_reset(s, true);
854         }
855 
856         if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
857             qemu_flush_queued_packets(qemu_get_queue(s->nic));
858         }
859         break;
860 
861     case FTGMAC100_PHYCR:  /* PHY Device control */
862         s->phycr = value;
863         if (s->revr & FTGMAC100_REVR_NEW_MDIO_INTERFACE) {
864             do_phy_new_ctl(s);
865         } else {
866             do_phy_ctl(s);
867         }
868         break;
869     case FTGMAC100_PHYDATA:
870         s->phydata = value & 0xffff;
871         break;
872     case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */
873         if (FTGMAC100_DBLAC_TXDES_SIZE(value) < sizeof(FTGMAC100Desc)) {
874             qemu_log_mask(LOG_GUEST_ERROR,
875                           "%s: transmit descriptor too small: %" PRIx64
876                           " bytes\n", __func__,
877                           FTGMAC100_DBLAC_TXDES_SIZE(value));
878             break;
879         }
880         if (FTGMAC100_DBLAC_RXDES_SIZE(value) < sizeof(FTGMAC100Desc)) {
881             qemu_log_mask(LOG_GUEST_ERROR,
882                           "%s: receive descriptor too small : %" PRIx64
883                           " bytes\n", __func__,
884                           FTGMAC100_DBLAC_RXDES_SIZE(value));
885             break;
886         }
887         s->dblac = value;
888         break;
889     case FTGMAC100_REVR:  /* Feature Register */
890         s->revr = value;
891         break;
892     case FTGMAC100_FEAR1: /* Feature Register 1 */
893         s->fear1 = value;
894         break;
895     case FTGMAC100_TPAFCR: /* Transmit Priority Arbitration and FIFO Control */
896         s->tpafcr = value;
897         break;
898     case FTGMAC100_FCR: /* Flow Control  */
899         s->fcr  = value;
900         break;
901 
902     case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
903     case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
904     case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
905         qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%"
906                       HWADDR_PRIx "\n", __func__, addr);
907         break;
908     default:
909         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
910                       HWADDR_PRIx "\n", __func__, addr);
911         break;
912     }
913 
914     ftgmac100_update_irq(s);
915 }
916 
917 static int ftgmac100_filter(FTGMAC100State *s, const uint8_t *buf, size_t len)
918 {
919     unsigned mcast_idx;
920 
921     if (s->maccr & FTGMAC100_MACCR_RX_ALL) {
922         return 1;
923     }
924 
925     switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
926     case ETH_PKT_BCAST:
927         if (!(s->maccr & FTGMAC100_MACCR_RX_BROADPKT)) {
928             return 0;
929         }
930         break;
931     case ETH_PKT_MCAST:
932         if (!(s->maccr & FTGMAC100_MACCR_RX_MULTIPKT)) {
933             if (!(s->maccr & FTGMAC100_MACCR_HT_MULTI_EN)) {
934                 return 0;
935             }
936 
937             mcast_idx = net_crc32_le(buf, ETH_ALEN);
938             mcast_idx = (~(mcast_idx >> 2)) & 0x3f;
939             if (!(s->math[mcast_idx / 32] & (1 << (mcast_idx % 32)))) {
940                 return 0;
941             }
942         }
943         break;
944     case ETH_PKT_UCAST:
945         if (memcmp(s->conf.macaddr.a, buf, 6)) {
946             return 0;
947         }
948         break;
949     }
950 
951     return 1;
952 }
953 
954 static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf,
955                                  size_t len)
956 {
957     FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
958     FTGMAC100Desc bd;
959     uint32_t flags = 0;
960     uint32_t addr;
961     uint32_t crc;
962     uint32_t buf_addr;
963     uint8_t *crc_ptr;
964     uint32_t buf_len;
965     size_t size = len;
966     uint32_t first = FTGMAC100_RXDES0_FRS;
967     uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(buf)->h_proto);
968     int max_frame_size = ftgmac100_max_frame_size(s, proto);
969 
970     if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
971          != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
972         return -1;
973     }
974 
975     if (!ftgmac100_filter(s, buf, size)) {
976         return size;
977     }
978 
979     crc = cpu_to_be32(crc32(~0, buf, size));
980     /* Increase size by 4, loop below reads the last 4 bytes from crc_ptr. */
981     size += 4;
982     crc_ptr = (uint8_t *) &crc;
983 
984     /* Huge frames are truncated.  */
985     if (size > max_frame_size) {
986         qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %zd bytes\n",
987                       __func__, size);
988         size = max_frame_size;
989         flags |= FTGMAC100_RXDES0_FTL;
990     }
991 
992     switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
993     case ETH_PKT_BCAST:
994         flags |= FTGMAC100_RXDES0_BROADCAST;
995         break;
996     case ETH_PKT_MCAST:
997         flags |= FTGMAC100_RXDES0_MULTICAST;
998         break;
999     case ETH_PKT_UCAST:
1000         break;
1001     }
1002 
1003     s->isr |= FTGMAC100_INT_RPKT_FIFO;
1004     addr = s->rx_descriptor;
1005     while (size > 0) {
1006         if (!ftgmac100_can_receive(nc)) {
1007             qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__);
1008             return -1;
1009         }
1010 
1011         if (ftgmac100_read_bd(&bd, addr) ||
1012             (bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY)) {
1013             /* No descriptors available.  Bail out.  */
1014             qemu_log_mask(LOG_GUEST_ERROR, "%s: Lost end of frame\n",
1015                           __func__);
1016             s->isr |= FTGMAC100_INT_NO_RXBUF;
1017             break;
1018         }
1019         buf_len = (size <= s->rbsr) ? size : s->rbsr;
1020         bd.des0 |= buf_len & 0x3fff;
1021         size -= buf_len;
1022 
1023         /* The last 4 bytes are the CRC.  */
1024         if (size < 4) {
1025             buf_len += size - 4;
1026         }
1027         buf_addr = bd.des3;
1028         if (first && proto == ETH_P_VLAN && buf_len >= 18) {
1029             bd.des1 = lduw_be_p(buf + 14) | FTGMAC100_RXDES1_VLANTAG_AVAIL;
1030 
1031             if (s->maccr & FTGMAC100_MACCR_RM_VLAN) {
1032                 dma_memory_write(&address_space_memory, buf_addr, buf, 12,
1033                                  MEMTXATTRS_UNSPECIFIED);
1034                 dma_memory_write(&address_space_memory, buf_addr + 12,
1035                                  buf + 16, buf_len - 16,
1036                                  MEMTXATTRS_UNSPECIFIED);
1037             } else {
1038                 dma_memory_write(&address_space_memory, buf_addr, buf,
1039                                  buf_len, MEMTXATTRS_UNSPECIFIED);
1040             }
1041         } else {
1042             bd.des1 = 0;
1043             dma_memory_write(&address_space_memory, buf_addr, buf, buf_len,
1044                              MEMTXATTRS_UNSPECIFIED);
1045         }
1046         buf += buf_len;
1047         if (size < 4) {
1048             dma_memory_write(&address_space_memory, buf_addr + buf_len,
1049                              crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED);
1050             crc_ptr += 4 - size;
1051         }
1052 
1053         bd.des0 |= first | FTGMAC100_RXDES0_RXPKT_RDY;
1054         first = 0;
1055         if (size == 0) {
1056             /* Last buffer in frame.  */
1057             bd.des0 |= flags | FTGMAC100_RXDES0_LRS;
1058             s->isr |= FTGMAC100_INT_RPKT_BUF;
1059         }
1060         ftgmac100_write_bd(&bd, addr);
1061         if (bd.des0 & s->rxdes0_edorr) {
1062             addr = s->rx_ring;
1063         } else {
1064             addr += FTGMAC100_DBLAC_RXDES_SIZE(s->dblac);
1065         }
1066     }
1067     s->rx_descriptor = addr;
1068 
1069     ftgmac100_update_irq(s);
1070     return len;
1071 }
1072 
1073 static const MemoryRegionOps ftgmac100_ops = {
1074     .read = ftgmac100_read,
1075     .write = ftgmac100_write,
1076     .valid.min_access_size = 4,
1077     .valid.max_access_size = 4,
1078     .endianness = DEVICE_LITTLE_ENDIAN,
1079 };
1080 
1081 static void ftgmac100_cleanup(NetClientState *nc)
1082 {
1083     FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
1084 
1085     s->nic = NULL;
1086 }
1087 
1088 static NetClientInfo net_ftgmac100_info = {
1089     .type = NET_CLIENT_DRIVER_NIC,
1090     .size = sizeof(NICState),
1091     .can_receive = ftgmac100_can_receive,
1092     .receive = ftgmac100_receive,
1093     .cleanup = ftgmac100_cleanup,
1094     .link_status_changed = ftgmac100_set_link,
1095 };
1096 
1097 static void ftgmac100_realize(DeviceState *dev, Error **errp)
1098 {
1099     FTGMAC100State *s = FTGMAC100(dev);
1100     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1101 
1102     if (s->aspeed) {
1103         s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR_ASPEED;
1104         s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR_ASPEED;
1105     } else {
1106         s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR;
1107         s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR;
1108     }
1109 
1110     memory_region_init_io(&s->iomem, OBJECT(dev), &ftgmac100_ops, s,
1111                           TYPE_FTGMAC100, 0x2000);
1112     sysbus_init_mmio(sbd, &s->iomem);
1113     sysbus_init_irq(sbd, &s->irq);
1114     qemu_macaddr_default_if_unset(&s->conf.macaddr);
1115 
1116     s->nic = qemu_new_nic(&net_ftgmac100_info, &s->conf,
1117                           object_get_typename(OBJECT(dev)), dev->id,
1118                           &dev->mem_reentrancy_guard, s);
1119     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1120 }
1121 
1122 static const VMStateDescription vmstate_ftgmac100 = {
1123     .name = TYPE_FTGMAC100,
1124     .version_id = 1,
1125     .minimum_version_id = 1,
1126     .fields = (const VMStateField[]) {
1127         VMSTATE_UINT32(irq_state, FTGMAC100State),
1128         VMSTATE_UINT32(isr, FTGMAC100State),
1129         VMSTATE_UINT32(ier, FTGMAC100State),
1130         VMSTATE_UINT32(rx_enabled, FTGMAC100State),
1131         VMSTATE_UINT32(rx_ring, FTGMAC100State),
1132         VMSTATE_UINT32(rbsr, FTGMAC100State),
1133         VMSTATE_UINT32(tx_ring, FTGMAC100State),
1134         VMSTATE_UINT32(rx_descriptor, FTGMAC100State),
1135         VMSTATE_UINT32(tx_descriptor, FTGMAC100State),
1136         VMSTATE_UINT32_ARRAY(math, FTGMAC100State, 2),
1137         VMSTATE_UINT32(itc, FTGMAC100State),
1138         VMSTATE_UINT32(aptcr, FTGMAC100State),
1139         VMSTATE_UINT32(dblac, FTGMAC100State),
1140         VMSTATE_UINT32(revr, FTGMAC100State),
1141         VMSTATE_UINT32(fear1, FTGMAC100State),
1142         VMSTATE_UINT32(tpafcr, FTGMAC100State),
1143         VMSTATE_UINT32(maccr, FTGMAC100State),
1144         VMSTATE_UINT32(phycr, FTGMAC100State),
1145         VMSTATE_UINT32(phydata, FTGMAC100State),
1146         VMSTATE_UINT32(fcr, FTGMAC100State),
1147         VMSTATE_UINT32(phy_status, FTGMAC100State),
1148         VMSTATE_UINT32(phy_control, FTGMAC100State),
1149         VMSTATE_UINT32(phy_advertise, FTGMAC100State),
1150         VMSTATE_UINT32(phy_int, FTGMAC100State),
1151         VMSTATE_UINT32(phy_int_mask, FTGMAC100State),
1152         VMSTATE_UINT32(txdes0_edotr, FTGMAC100State),
1153         VMSTATE_UINT32(rxdes0_edorr, FTGMAC100State),
1154         VMSTATE_END_OF_LIST()
1155     }
1156 };
1157 
1158 static Property ftgmac100_properties[] = {
1159     DEFINE_PROP_BOOL("aspeed", FTGMAC100State, aspeed, false),
1160     DEFINE_NIC_PROPERTIES(FTGMAC100State, conf),
1161     DEFINE_PROP_END_OF_LIST(),
1162 };
1163 
1164 static void ftgmac100_class_init(ObjectClass *klass, void *data)
1165 {
1166     DeviceClass *dc = DEVICE_CLASS(klass);
1167 
1168     dc->vmsd = &vmstate_ftgmac100;
1169     dc->reset = ftgmac100_reset;
1170     device_class_set_props(dc, ftgmac100_properties);
1171     set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1172     dc->realize = ftgmac100_realize;
1173     dc->desc = "Faraday FTGMAC100 Gigabit Ethernet emulation";
1174 }
1175 
1176 static const TypeInfo ftgmac100_info = {
1177     .name = TYPE_FTGMAC100,
1178     .parent = TYPE_SYS_BUS_DEVICE,
1179     .instance_size = sizeof(FTGMAC100State),
1180     .class_init = ftgmac100_class_init,
1181 };
1182 
1183 /*
1184  * AST2600 MII controller
1185  */
1186 #define ASPEED_MII_PHYCR_FIRE        BIT(31)
1187 #define ASPEED_MII_PHYCR_ST_22       BIT(28)
1188 #define ASPEED_MII_PHYCR_OP(x)       ((x) & (ASPEED_MII_PHYCR_OP_WRITE | \
1189                                              ASPEED_MII_PHYCR_OP_READ))
1190 #define ASPEED_MII_PHYCR_OP_WRITE    BIT(26)
1191 #define ASPEED_MII_PHYCR_OP_READ     BIT(27)
1192 #define ASPEED_MII_PHYCR_DATA(x)     (x & 0xffff)
1193 #define ASPEED_MII_PHYCR_PHY(x)      (((x) >> 21) & 0x1f)
1194 #define ASPEED_MII_PHYCR_REG(x)      (((x) >> 16) & 0x1f)
1195 
1196 #define ASPEED_MII_PHYDATA_IDLE      BIT(16)
1197 
1198 static void aspeed_mii_transition(AspeedMiiState *s, bool fire)
1199 {
1200     if (fire) {
1201         s->phycr |= ASPEED_MII_PHYCR_FIRE;
1202         s->phydata &= ~ASPEED_MII_PHYDATA_IDLE;
1203     } else {
1204         s->phycr &= ~ASPEED_MII_PHYCR_FIRE;
1205         s->phydata |= ASPEED_MII_PHYDATA_IDLE;
1206     }
1207 }
1208 
1209 static void aspeed_mii_do_phy_ctl(AspeedMiiState *s)
1210 {
1211     uint8_t reg;
1212     uint16_t data;
1213 
1214     if (!(s->phycr & ASPEED_MII_PHYCR_ST_22)) {
1215         aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
1216         qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
1217         return;
1218     }
1219 
1220     /* Nothing to do */
1221     if (!(s->phycr & ASPEED_MII_PHYCR_FIRE)) {
1222         return;
1223     }
1224 
1225     reg = ASPEED_MII_PHYCR_REG(s->phycr);
1226     data = ASPEED_MII_PHYCR_DATA(s->phycr);
1227 
1228     switch (ASPEED_MII_PHYCR_OP(s->phycr)) {
1229     case ASPEED_MII_PHYCR_OP_WRITE:
1230         do_phy_write(s->nic, reg, data);
1231         break;
1232     case ASPEED_MII_PHYCR_OP_READ:
1233         s->phydata = (s->phydata & ~0xffff) | do_phy_read(s->nic, reg);
1234         break;
1235     default:
1236         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
1237                       __func__, s->phycr);
1238     }
1239 
1240     aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
1241 }
1242 
1243 static uint64_t aspeed_mii_read(void *opaque, hwaddr addr, unsigned size)
1244 {
1245     AspeedMiiState *s = ASPEED_MII(opaque);
1246 
1247     switch (addr) {
1248     case 0x0:
1249         return s->phycr;
1250     case 0x4:
1251         return s->phydata;
1252     default:
1253         g_assert_not_reached();
1254     }
1255 }
1256 
1257 static void aspeed_mii_write(void *opaque, hwaddr addr,
1258                              uint64_t value, unsigned size)
1259 {
1260     AspeedMiiState *s = ASPEED_MII(opaque);
1261 
1262     switch (addr) {
1263     case 0x0:
1264         s->phycr = value & ~(s->phycr & ASPEED_MII_PHYCR_FIRE);
1265         break;
1266     case 0x4:
1267         s->phydata = value & ~(0xffff | ASPEED_MII_PHYDATA_IDLE);
1268         break;
1269     default:
1270         g_assert_not_reached();
1271     }
1272 
1273     aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
1274     aspeed_mii_do_phy_ctl(s);
1275 }
1276 
1277 static const MemoryRegionOps aspeed_mii_ops = {
1278     .read = aspeed_mii_read,
1279     .write = aspeed_mii_write,
1280     .valid.min_access_size = 4,
1281     .valid.max_access_size = 4,
1282     .endianness = DEVICE_LITTLE_ENDIAN,
1283 };
1284 
1285 static void aspeed_mii_reset(DeviceState *dev)
1286 {
1287     AspeedMiiState *s = ASPEED_MII(dev);
1288 
1289     s->phycr = 0;
1290     s->phydata = 0;
1291 
1292     aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
1293 };
1294 
1295 static void aspeed_mii_realize(DeviceState *dev, Error **errp)
1296 {
1297     AspeedMiiState *s = ASPEED_MII(dev);
1298     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1299 
1300     assert(s->nic);
1301 
1302     memory_region_init_io(&s->iomem, OBJECT(dev), &aspeed_mii_ops, s,
1303                           TYPE_ASPEED_MII, 0x8);
1304     sysbus_init_mmio(sbd, &s->iomem);
1305 }
1306 
1307 static const VMStateDescription vmstate_aspeed_mii = {
1308     .name = TYPE_ASPEED_MII,
1309     .version_id = 1,
1310     .minimum_version_id = 1,
1311     .fields = (const VMStateField[]) {
1312         VMSTATE_UINT32(phycr, FTGMAC100State),
1313         VMSTATE_UINT32(phydata, FTGMAC100State),
1314         VMSTATE_END_OF_LIST()
1315     }
1316 };
1317 
1318 static Property aspeed_mii_properties[] = {
1319     DEFINE_PROP_LINK("nic", AspeedMiiState, nic, TYPE_FTGMAC100,
1320                      FTGMAC100State *),
1321     DEFINE_PROP_END_OF_LIST(),
1322 };
1323 
1324 static void aspeed_mii_class_init(ObjectClass *klass, void *data)
1325 {
1326     DeviceClass *dc = DEVICE_CLASS(klass);
1327 
1328     dc->vmsd = &vmstate_aspeed_mii;
1329     dc->reset = aspeed_mii_reset;
1330     dc->realize = aspeed_mii_realize;
1331     dc->desc = "Aspeed MII controller";
1332     device_class_set_props(dc, aspeed_mii_properties);
1333 }
1334 
1335 static const TypeInfo aspeed_mii_info = {
1336     .name = TYPE_ASPEED_MII,
1337     .parent = TYPE_SYS_BUS_DEVICE,
1338     .instance_size = sizeof(AspeedMiiState),
1339     .class_init = aspeed_mii_class_init,
1340 };
1341 
1342 static void ftgmac100_register_types(void)
1343 {
1344     type_register_static(&ftgmac100_info);
1345     type_register_static(&aspeed_mii_info);
1346 }
1347 
1348 type_init(ftgmac100_register_types)
1349