1 /* 2 * Faraday FTGMAC100 Gigabit Ethernet 3 * 4 * Copyright (C) 2016-2017, IBM Corporation. 5 * 6 * Based on Coldfire Fast Ethernet Controller emulation. 7 * 8 * Copyright (c) 2007 CodeSourcery. 9 * 10 * This code is licensed under the GPL version 2 or later. See the 11 * COPYING file in the top-level directory. 12 */ 13 14 #include "qemu/osdep.h" 15 #include "hw/irq.h" 16 #include "hw/net/ftgmac100.h" 17 #include "sysemu/dma.h" 18 #include "qapi/error.h" 19 #include "qemu/log.h" 20 #include "qemu/module.h" 21 #include "net/checksum.h" 22 #include "net/eth.h" 23 #include "hw/net/mii.h" 24 #include "hw/qdev-properties.h" 25 #include "migration/vmstate.h" 26 27 /* For crc32 */ 28 #include <zlib.h> 29 30 /* 31 * FTGMAC100 registers 32 */ 33 #define FTGMAC100_ISR 0x00 34 #define FTGMAC100_IER 0x04 35 #define FTGMAC100_MAC_MADR 0x08 36 #define FTGMAC100_MAC_LADR 0x0c 37 #define FTGMAC100_MATH0 0x10 38 #define FTGMAC100_MATH1 0x14 39 #define FTGMAC100_NPTXPD 0x18 40 #define FTGMAC100_RXPD 0x1C 41 #define FTGMAC100_NPTXR_BADR 0x20 42 #define FTGMAC100_RXR_BADR 0x24 43 #define FTGMAC100_HPTXPD 0x28 44 #define FTGMAC100_HPTXR_BADR 0x2c 45 #define FTGMAC100_ITC 0x30 46 #define FTGMAC100_APTC 0x34 47 #define FTGMAC100_DBLAC 0x38 48 #define FTGMAC100_REVR 0x40 49 #define FTGMAC100_FEAR1 0x44 50 #define FTGMAC100_RBSR 0x4c 51 #define FTGMAC100_TPAFCR 0x48 52 53 #define FTGMAC100_MACCR 0x50 54 #define FTGMAC100_MACSR 0x54 55 #define FTGMAC100_PHYCR 0x60 56 #define FTGMAC100_PHYDATA 0x64 57 #define FTGMAC100_FCR 0x68 58 59 /* 60 * Interrupt status register & interrupt enable register 61 */ 62 #define FTGMAC100_INT_RPKT_BUF (1 << 0) 63 #define FTGMAC100_INT_RPKT_FIFO (1 << 1) 64 #define FTGMAC100_INT_NO_RXBUF (1 << 2) 65 #define FTGMAC100_INT_RPKT_LOST (1 << 3) 66 #define FTGMAC100_INT_XPKT_ETH (1 << 4) 67 #define FTGMAC100_INT_XPKT_FIFO (1 << 5) 68 #define FTGMAC100_INT_NO_NPTXBUF (1 << 6) 69 #define FTGMAC100_INT_XPKT_LOST (1 << 7) 70 #define FTGMAC100_INT_AHB_ERR (1 << 8) 71 #define FTGMAC100_INT_PHYSTS_CHG (1 << 9) 72 #define FTGMAC100_INT_NO_HPTXBUF (1 << 10) 73 74 /* 75 * Automatic polling timer control register 76 */ 77 #define FTGMAC100_APTC_RXPOLL_CNT(x) ((x) & 0xf) 78 #define FTGMAC100_APTC_RXPOLL_TIME_SEL (1 << 4) 79 #define FTGMAC100_APTC_TXPOLL_CNT(x) (((x) >> 8) & 0xf) 80 #define FTGMAC100_APTC_TXPOLL_TIME_SEL (1 << 12) 81 82 /* 83 * PHY control register 84 */ 85 #define FTGMAC100_PHYCR_MIIRD (1 << 26) 86 #define FTGMAC100_PHYCR_MIIWR (1 << 27) 87 88 #define FTGMAC100_PHYCR_DEV(x) (((x) >> 16) & 0x1f) 89 #define FTGMAC100_PHYCR_REG(x) (((x) >> 21) & 0x1f) 90 91 /* 92 * PHY data register 93 */ 94 #define FTGMAC100_PHYDATA_MIIWDATA(x) ((x) & 0xffff) 95 #define FTGMAC100_PHYDATA_MIIRDATA(x) (((x) >> 16) & 0xffff) 96 97 /* 98 * PHY control register - New MDC/MDIO interface 99 */ 100 #define FTGMAC100_PHYCR_NEW_DATA(x) (((x) >> 16) & 0xffff) 101 #define FTGMAC100_PHYCR_NEW_FIRE (1 << 15) 102 #define FTGMAC100_PHYCR_NEW_ST_22 (1 << 12) 103 #define FTGMAC100_PHYCR_NEW_OP(x) (((x) >> 10) & 3) 104 #define FTGMAC100_PHYCR_NEW_OP_WRITE 0x1 105 #define FTGMAC100_PHYCR_NEW_OP_READ 0x2 106 #define FTGMAC100_PHYCR_NEW_DEV(x) (((x) >> 5) & 0x1f) 107 #define FTGMAC100_PHYCR_NEW_REG(x) ((x) & 0x1f) 108 109 /* 110 * Feature Register 111 */ 112 #define FTGMAC100_REVR_NEW_MDIO_INTERFACE (1 << 31) 113 114 /* 115 * MAC control register 116 */ 117 #define FTGMAC100_MACCR_TXDMA_EN (1 << 0) 118 #define FTGMAC100_MACCR_RXDMA_EN (1 << 1) 119 #define FTGMAC100_MACCR_TXMAC_EN (1 << 2) 120 #define FTGMAC100_MACCR_RXMAC_EN (1 << 3) 121 #define FTGMAC100_MACCR_RM_VLAN (1 << 4) 122 #define FTGMAC100_MACCR_HPTXR_EN (1 << 5) 123 #define FTGMAC100_MACCR_LOOP_EN (1 << 6) 124 #define FTGMAC100_MACCR_ENRX_IN_HALFTX (1 << 7) 125 #define FTGMAC100_MACCR_FULLDUP (1 << 8) 126 #define FTGMAC100_MACCR_GIGA_MODE (1 << 9) 127 #define FTGMAC100_MACCR_CRC_APD (1 << 10) /* not needed */ 128 #define FTGMAC100_MACCR_RX_RUNT (1 << 12) 129 #define FTGMAC100_MACCR_JUMBO_LF (1 << 13) 130 #define FTGMAC100_MACCR_RX_ALL (1 << 14) 131 #define FTGMAC100_MACCR_HT_MULTI_EN (1 << 15) 132 #define FTGMAC100_MACCR_RX_MULTIPKT (1 << 16) 133 #define FTGMAC100_MACCR_RX_BROADPKT (1 << 17) 134 #define FTGMAC100_MACCR_DISCARD_CRCERR (1 << 18) 135 #define FTGMAC100_MACCR_FAST_MODE (1 << 19) 136 #define FTGMAC100_MACCR_SW_RST (1 << 31) 137 138 /* 139 * Transmit descriptor 140 */ 141 #define FTGMAC100_TXDES0_TXBUF_SIZE(x) ((x) & 0x3fff) 142 #define FTGMAC100_TXDES0_EDOTR (1 << 15) 143 #define FTGMAC100_TXDES0_CRC_ERR (1 << 19) 144 #define FTGMAC100_TXDES0_LTS (1 << 28) 145 #define FTGMAC100_TXDES0_FTS (1 << 29) 146 #define FTGMAC100_TXDES0_EDOTR_ASPEED (1 << 30) 147 #define FTGMAC100_TXDES0_TXDMA_OWN (1 << 31) 148 149 #define FTGMAC100_TXDES1_VLANTAG_CI(x) ((x) & 0xffff) 150 #define FTGMAC100_TXDES1_INS_VLANTAG (1 << 16) 151 #define FTGMAC100_TXDES1_TCP_CHKSUM (1 << 17) 152 #define FTGMAC100_TXDES1_UDP_CHKSUM (1 << 18) 153 #define FTGMAC100_TXDES1_IP_CHKSUM (1 << 19) 154 #define FTGMAC100_TXDES1_LLC (1 << 22) 155 #define FTGMAC100_TXDES1_TX2FIC (1 << 30) 156 #define FTGMAC100_TXDES1_TXIC (1 << 31) 157 158 /* 159 * Receive descriptor 160 */ 161 #define FTGMAC100_RXDES0_VDBC 0x3fff 162 #define FTGMAC100_RXDES0_EDORR (1 << 15) 163 #define FTGMAC100_RXDES0_MULTICAST (1 << 16) 164 #define FTGMAC100_RXDES0_BROADCAST (1 << 17) 165 #define FTGMAC100_RXDES0_RX_ERR (1 << 18) 166 #define FTGMAC100_RXDES0_CRC_ERR (1 << 19) 167 #define FTGMAC100_RXDES0_FTL (1 << 20) 168 #define FTGMAC100_RXDES0_RUNT (1 << 21) 169 #define FTGMAC100_RXDES0_RX_ODD_NB (1 << 22) 170 #define FTGMAC100_RXDES0_FIFO_FULL (1 << 23) 171 #define FTGMAC100_RXDES0_PAUSE_OPCODE (1 << 24) 172 #define FTGMAC100_RXDES0_PAUSE_FRAME (1 << 25) 173 #define FTGMAC100_RXDES0_LRS (1 << 28) 174 #define FTGMAC100_RXDES0_FRS (1 << 29) 175 #define FTGMAC100_RXDES0_EDORR_ASPEED (1 << 30) 176 #define FTGMAC100_RXDES0_RXPKT_RDY (1 << 31) 177 178 #define FTGMAC100_RXDES1_VLANTAG_CI 0xffff 179 #define FTGMAC100_RXDES1_PROT_MASK (0x3 << 20) 180 #define FTGMAC100_RXDES1_PROT_NONIP (0x0 << 20) 181 #define FTGMAC100_RXDES1_PROT_IP (0x1 << 20) 182 #define FTGMAC100_RXDES1_PROT_TCPIP (0x2 << 20) 183 #define FTGMAC100_RXDES1_PROT_UDPIP (0x3 << 20) 184 #define FTGMAC100_RXDES1_LLC (1 << 22) 185 #define FTGMAC100_RXDES1_DF (1 << 23) 186 #define FTGMAC100_RXDES1_VLANTAG_AVAIL (1 << 24) 187 #define FTGMAC100_RXDES1_TCP_CHKSUM_ERR (1 << 25) 188 #define FTGMAC100_RXDES1_UDP_CHKSUM_ERR (1 << 26) 189 #define FTGMAC100_RXDES1_IP_CHKSUM_ERR (1 << 27) 190 191 /* 192 * Receive and transmit Buffer Descriptor 193 */ 194 typedef struct { 195 uint32_t des0; 196 uint32_t des1; 197 uint32_t des2; /* not used by HW */ 198 uint32_t des3; 199 } FTGMAC100Desc; 200 201 /* 202 * Specific RTL8211E MII Registers 203 */ 204 #define RTL8211E_MII_PHYCR 16 /* PHY Specific Control */ 205 #define RTL8211E_MII_PHYSR 17 /* PHY Specific Status */ 206 #define RTL8211E_MII_INER 18 /* Interrupt Enable */ 207 #define RTL8211E_MII_INSR 19 /* Interrupt Status */ 208 #define RTL8211E_MII_RXERC 24 /* Receive Error Counter */ 209 #define RTL8211E_MII_LDPSR 27 /* Link Down Power Saving */ 210 #define RTL8211E_MII_EPAGSR 30 /* Extension Page Select */ 211 #define RTL8211E_MII_PAGSEL 31 /* Page Select */ 212 213 /* 214 * RTL8211E Interrupt Status 215 */ 216 #define PHY_INT_AUTONEG_ERROR (1 << 15) 217 #define PHY_INT_PAGE_RECV (1 << 12) 218 #define PHY_INT_AUTONEG_COMPLETE (1 << 11) 219 #define PHY_INT_LINK_STATUS (1 << 10) 220 #define PHY_INT_ERROR (1 << 9) 221 #define PHY_INT_DOWN (1 << 8) 222 #define PHY_INT_JABBER (1 << 0) 223 224 /* 225 * Max frame size for the receiving buffer 226 */ 227 #define FTGMAC100_MAX_FRAME_SIZE 9220 228 229 /* Limits depending on the type of the frame 230 * 231 * 9216 for Jumbo frames (+ 4 for VLAN) 232 * 1518 for other frames (+ 4 for VLAN) 233 */ 234 static int ftgmac100_max_frame_size(FTGMAC100State *s, uint16_t proto) 235 { 236 int max = (s->maccr & FTGMAC100_MACCR_JUMBO_LF ? 9216 : 1518); 237 238 return max + (proto == ETH_P_VLAN ? 4 : 0); 239 } 240 241 static void ftgmac100_update_irq(FTGMAC100State *s) 242 { 243 qemu_set_irq(s->irq, s->isr & s->ier); 244 } 245 246 /* 247 * The MII phy could raise a GPIO to the processor which in turn 248 * could be handled as an interrpt by the OS. 249 * For now we don't handle any GPIO/interrupt line, so the OS will 250 * have to poll for the PHY status. 251 */ 252 static void phy_update_irq(FTGMAC100State *s) 253 { 254 ftgmac100_update_irq(s); 255 } 256 257 static void phy_update_link(FTGMAC100State *s) 258 { 259 /* Autonegotiation status mirrors link status. */ 260 if (qemu_get_queue(s->nic)->link_down) { 261 s->phy_status &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP); 262 s->phy_int |= PHY_INT_DOWN; 263 } else { 264 s->phy_status |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP); 265 s->phy_int |= PHY_INT_AUTONEG_COMPLETE; 266 } 267 phy_update_irq(s); 268 } 269 270 static void ftgmac100_set_link(NetClientState *nc) 271 { 272 phy_update_link(FTGMAC100(qemu_get_nic_opaque(nc))); 273 } 274 275 static void phy_reset(FTGMAC100State *s) 276 { 277 s->phy_status = (MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD | 278 MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_MFPS | 279 MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST | 280 MII_BMSR_EXTCAP); 281 s->phy_control = (MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000); 282 s->phy_advertise = (MII_ANAR_PAUSE_ASYM | MII_ANAR_PAUSE | MII_ANAR_TXFD | 283 MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 | 284 MII_ANAR_CSMACD); 285 s->phy_int_mask = 0; 286 s->phy_int = 0; 287 } 288 289 static uint16_t do_phy_read(FTGMAC100State *s, uint8_t reg) 290 { 291 uint16_t val; 292 293 switch (reg) { 294 case MII_BMCR: /* Basic Control */ 295 val = s->phy_control; 296 break; 297 case MII_BMSR: /* Basic Status */ 298 val = s->phy_status; 299 break; 300 case MII_PHYID1: /* ID1 */ 301 val = RTL8211E_PHYID1; 302 break; 303 case MII_PHYID2: /* ID2 */ 304 val = RTL8211E_PHYID2; 305 break; 306 case MII_ANAR: /* Auto-neg advertisement */ 307 val = s->phy_advertise; 308 break; 309 case MII_ANLPAR: /* Auto-neg Link Partner Ability */ 310 val = (MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD | 311 MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 | 312 MII_ANLPAR_CSMACD); 313 break; 314 case MII_ANER: /* Auto-neg Expansion */ 315 val = MII_ANER_NWAY; 316 break; 317 case MII_CTRL1000: /* 1000BASE-T control */ 318 val = (MII_CTRL1000_HALF | MII_CTRL1000_FULL); 319 break; 320 case MII_STAT1000: /* 1000BASE-T status */ 321 val = MII_STAT1000_FULL; 322 break; 323 case RTL8211E_MII_INSR: /* Interrupt status. */ 324 val = s->phy_int; 325 s->phy_int = 0; 326 phy_update_irq(s); 327 break; 328 case RTL8211E_MII_INER: /* Interrupt enable */ 329 val = s->phy_int_mask; 330 break; 331 case RTL8211E_MII_PHYCR: 332 case RTL8211E_MII_PHYSR: 333 case RTL8211E_MII_RXERC: 334 case RTL8211E_MII_LDPSR: 335 case RTL8211E_MII_EPAGSR: 336 case RTL8211E_MII_PAGSEL: 337 qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n", 338 __func__, reg); 339 val = 0; 340 break; 341 default: 342 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n", 343 __func__, reg); 344 val = 0; 345 break; 346 } 347 348 return val; 349 } 350 351 #define MII_BMCR_MASK (MII_BMCR_LOOPBACK | MII_BMCR_SPEED100 | \ 352 MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_PDOWN | \ 353 MII_BMCR_FD | MII_BMCR_CTST) 354 #define MII_ANAR_MASK 0x2d7f 355 356 static void do_phy_write(FTGMAC100State *s, uint8_t reg, uint16_t val) 357 { 358 switch (reg) { 359 case MII_BMCR: /* Basic Control */ 360 if (val & MII_BMCR_RESET) { 361 phy_reset(s); 362 } else { 363 s->phy_control = val & MII_BMCR_MASK; 364 /* Complete autonegotiation immediately. */ 365 if (val & MII_BMCR_AUTOEN) { 366 s->phy_status |= MII_BMSR_AN_COMP; 367 } 368 } 369 break; 370 case MII_ANAR: /* Auto-neg advertisement */ 371 s->phy_advertise = (val & MII_ANAR_MASK) | MII_ANAR_TX; 372 break; 373 case RTL8211E_MII_INER: /* Interrupt enable */ 374 s->phy_int_mask = val & 0xff; 375 phy_update_irq(s); 376 break; 377 case RTL8211E_MII_PHYCR: 378 case RTL8211E_MII_PHYSR: 379 case RTL8211E_MII_RXERC: 380 case RTL8211E_MII_LDPSR: 381 case RTL8211E_MII_EPAGSR: 382 case RTL8211E_MII_PAGSEL: 383 qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n", 384 __func__, reg); 385 break; 386 default: 387 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n", 388 __func__, reg); 389 break; 390 } 391 } 392 393 static void do_phy_new_ctl(FTGMAC100State *s) 394 { 395 uint8_t reg; 396 uint16_t data; 397 398 if (!(s->phycr & FTGMAC100_PHYCR_NEW_ST_22)) { 399 qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__); 400 return; 401 } 402 403 /* Nothing to do */ 404 if (!(s->phycr & FTGMAC100_PHYCR_NEW_FIRE)) { 405 return; 406 } 407 408 reg = FTGMAC100_PHYCR_NEW_REG(s->phycr); 409 data = FTGMAC100_PHYCR_NEW_DATA(s->phycr); 410 411 switch (FTGMAC100_PHYCR_NEW_OP(s->phycr)) { 412 case FTGMAC100_PHYCR_NEW_OP_WRITE: 413 do_phy_write(s, reg, data); 414 break; 415 case FTGMAC100_PHYCR_NEW_OP_READ: 416 s->phydata = do_phy_read(s, reg) & 0xffff; 417 break; 418 default: 419 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n", 420 __func__, s->phycr); 421 } 422 423 s->phycr &= ~FTGMAC100_PHYCR_NEW_FIRE; 424 } 425 426 static void do_phy_ctl(FTGMAC100State *s) 427 { 428 uint8_t reg = FTGMAC100_PHYCR_REG(s->phycr); 429 430 if (s->phycr & FTGMAC100_PHYCR_MIIWR) { 431 do_phy_write(s, reg, s->phydata & 0xffff); 432 s->phycr &= ~FTGMAC100_PHYCR_MIIWR; 433 } else if (s->phycr & FTGMAC100_PHYCR_MIIRD) { 434 s->phydata = do_phy_read(s, reg) << 16; 435 s->phycr &= ~FTGMAC100_PHYCR_MIIRD; 436 } else { 437 qemu_log_mask(LOG_GUEST_ERROR, "%s: no OP code %08x\n", 438 __func__, s->phycr); 439 } 440 } 441 442 static int ftgmac100_read_bd(FTGMAC100Desc *bd, dma_addr_t addr) 443 { 444 if (dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd))) { 445 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read descriptor @ 0x%" 446 HWADDR_PRIx "\n", __func__, addr); 447 return -1; 448 } 449 bd->des0 = le32_to_cpu(bd->des0); 450 bd->des1 = le32_to_cpu(bd->des1); 451 bd->des2 = le32_to_cpu(bd->des2); 452 bd->des3 = le32_to_cpu(bd->des3); 453 return 0; 454 } 455 456 static int ftgmac100_write_bd(FTGMAC100Desc *bd, dma_addr_t addr) 457 { 458 FTGMAC100Desc lebd; 459 460 lebd.des0 = cpu_to_le32(bd->des0); 461 lebd.des1 = cpu_to_le32(bd->des1); 462 lebd.des2 = cpu_to_le32(bd->des2); 463 lebd.des3 = cpu_to_le32(bd->des3); 464 if (dma_memory_write(&address_space_memory, addr, &lebd, sizeof(lebd))) { 465 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to write descriptor @ 0x%" 466 HWADDR_PRIx "\n", __func__, addr); 467 return -1; 468 } 469 return 0; 470 } 471 472 static void ftgmac100_do_tx(FTGMAC100State *s, uint32_t tx_ring, 473 uint32_t tx_descriptor) 474 { 475 int frame_size = 0; 476 uint8_t *ptr = s->frame; 477 uint32_t addr = tx_descriptor; 478 uint32_t flags = 0; 479 480 while (1) { 481 FTGMAC100Desc bd; 482 int len; 483 484 if (ftgmac100_read_bd(&bd, addr) || 485 ((bd.des0 & FTGMAC100_TXDES0_TXDMA_OWN) == 0)) { 486 /* Run out of descriptors to transmit. */ 487 s->isr |= FTGMAC100_INT_NO_NPTXBUF; 488 break; 489 } 490 491 /* record transmit flags as they are valid only on the first 492 * segment */ 493 if (bd.des0 & FTGMAC100_TXDES0_FTS) { 494 flags = bd.des1; 495 } 496 497 len = FTGMAC100_TXDES0_TXBUF_SIZE(bd.des0); 498 if (frame_size + len > sizeof(s->frame)) { 499 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n", 500 __func__, len); 501 s->isr |= FTGMAC100_INT_XPKT_LOST; 502 len = sizeof(s->frame) - frame_size; 503 } 504 505 if (dma_memory_read(&address_space_memory, bd.des3, ptr, len)) { 506 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read packet @ 0x%x\n", 507 __func__, bd.des3); 508 s->isr |= FTGMAC100_INT_NO_NPTXBUF; 509 break; 510 } 511 512 /* Check for VLAN */ 513 if (bd.des0 & FTGMAC100_TXDES0_FTS && 514 bd.des1 & FTGMAC100_TXDES1_INS_VLANTAG && 515 be16_to_cpu(PKT_GET_ETH_HDR(ptr)->h_proto) != ETH_P_VLAN) { 516 if (frame_size + len + 4 > sizeof(s->frame)) { 517 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n", 518 __func__, len); 519 s->isr |= FTGMAC100_INT_XPKT_LOST; 520 len = sizeof(s->frame) - frame_size - 4; 521 } 522 memmove(ptr + 16, ptr + 12, len - 12); 523 stw_be_p(ptr + 12, ETH_P_VLAN); 524 stw_be_p(ptr + 14, bd.des1); 525 len += 4; 526 } 527 528 ptr += len; 529 frame_size += len; 530 if (bd.des0 & FTGMAC100_TXDES0_LTS) { 531 if (flags & FTGMAC100_TXDES1_IP_CHKSUM) { 532 net_checksum_calculate(s->frame, frame_size); 533 } 534 /* Last buffer in frame. */ 535 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size); 536 ptr = s->frame; 537 frame_size = 0; 538 if (flags & FTGMAC100_TXDES1_TXIC) { 539 s->isr |= FTGMAC100_INT_XPKT_ETH; 540 } 541 } 542 543 if (flags & FTGMAC100_TXDES1_TX2FIC) { 544 s->isr |= FTGMAC100_INT_XPKT_FIFO; 545 } 546 bd.des0 &= ~FTGMAC100_TXDES0_TXDMA_OWN; 547 548 /* Write back the modified descriptor. */ 549 ftgmac100_write_bd(&bd, addr); 550 /* Advance to the next descriptor. */ 551 if (bd.des0 & s->txdes0_edotr) { 552 addr = tx_ring; 553 } else { 554 addr += sizeof(FTGMAC100Desc); 555 } 556 } 557 558 s->tx_descriptor = addr; 559 560 ftgmac100_update_irq(s); 561 } 562 563 static int ftgmac100_can_receive(NetClientState *nc) 564 { 565 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc)); 566 FTGMAC100Desc bd; 567 568 if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) 569 != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) { 570 return 0; 571 } 572 573 if (ftgmac100_read_bd(&bd, s->rx_descriptor)) { 574 return 0; 575 } 576 return !(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY); 577 } 578 579 /* 580 * This is purely informative. The HW can poll the RW (and RX) ring 581 * buffers for available descriptors but we don't need to trigger a 582 * timer for that in qemu. 583 */ 584 static uint32_t ftgmac100_rxpoll(FTGMAC100State *s) 585 { 586 /* Polling times : 587 * 588 * Speed TIME_SEL=0 TIME_SEL=1 589 * 590 * 10 51.2 ms 819.2 ms 591 * 100 5.12 ms 81.92 ms 592 * 1000 1.024 ms 16.384 ms 593 */ 594 static const int div[] = { 20, 200, 1000 }; 595 596 uint32_t cnt = 1024 * FTGMAC100_APTC_RXPOLL_CNT(s->aptcr); 597 uint32_t speed = (s->maccr & FTGMAC100_MACCR_FAST_MODE) ? 1 : 0; 598 599 if (s->aptcr & FTGMAC100_APTC_RXPOLL_TIME_SEL) { 600 cnt <<= 4; 601 } 602 603 if (s->maccr & FTGMAC100_MACCR_GIGA_MODE) { 604 speed = 2; 605 } 606 607 return cnt / div[speed]; 608 } 609 610 static void ftgmac100_reset(DeviceState *d) 611 { 612 FTGMAC100State *s = FTGMAC100(d); 613 614 /* Reset the FTGMAC100 */ 615 s->isr = 0; 616 s->ier = 0; 617 s->rx_enabled = 0; 618 s->rx_ring = 0; 619 s->rbsr = 0x640; 620 s->rx_descriptor = 0; 621 s->tx_ring = 0; 622 s->tx_descriptor = 0; 623 s->math[0] = 0; 624 s->math[1] = 0; 625 s->itc = 0; 626 s->aptcr = 1; 627 s->dblac = 0x00022f00; 628 s->revr = 0; 629 s->fear1 = 0; 630 s->tpafcr = 0xf1; 631 632 s->maccr = 0; 633 s->phycr = 0; 634 s->phydata = 0; 635 s->fcr = 0x400; 636 637 /* and the PHY */ 638 phy_reset(s); 639 } 640 641 static uint64_t ftgmac100_read(void *opaque, hwaddr addr, unsigned size) 642 { 643 FTGMAC100State *s = FTGMAC100(opaque); 644 645 switch (addr & 0xff) { 646 case FTGMAC100_ISR: 647 return s->isr; 648 case FTGMAC100_IER: 649 return s->ier; 650 case FTGMAC100_MAC_MADR: 651 return (s->conf.macaddr.a[0] << 8) | s->conf.macaddr.a[1]; 652 case FTGMAC100_MAC_LADR: 653 return ((uint32_t) s->conf.macaddr.a[2] << 24) | 654 (s->conf.macaddr.a[3] << 16) | (s->conf.macaddr.a[4] << 8) | 655 s->conf.macaddr.a[5]; 656 case FTGMAC100_MATH0: 657 return s->math[0]; 658 case FTGMAC100_MATH1: 659 return s->math[1]; 660 case FTGMAC100_ITC: 661 return s->itc; 662 case FTGMAC100_DBLAC: 663 return s->dblac; 664 case FTGMAC100_REVR: 665 return s->revr; 666 case FTGMAC100_FEAR1: 667 return s->fear1; 668 case FTGMAC100_TPAFCR: 669 return s->tpafcr; 670 case FTGMAC100_FCR: 671 return s->fcr; 672 case FTGMAC100_MACCR: 673 return s->maccr; 674 case FTGMAC100_PHYCR: 675 return s->phycr; 676 case FTGMAC100_PHYDATA: 677 return s->phydata; 678 679 /* We might want to support these one day */ 680 case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */ 681 case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */ 682 case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */ 683 qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%" 684 HWADDR_PRIx "\n", __func__, addr); 685 return 0; 686 default: 687 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%" 688 HWADDR_PRIx "\n", __func__, addr); 689 return 0; 690 } 691 } 692 693 static void ftgmac100_write(void *opaque, hwaddr addr, 694 uint64_t value, unsigned size) 695 { 696 FTGMAC100State *s = FTGMAC100(opaque); 697 698 switch (addr & 0xff) { 699 case FTGMAC100_ISR: /* Interrupt status */ 700 s->isr &= ~value; 701 break; 702 case FTGMAC100_IER: /* Interrupt control */ 703 s->ier = value; 704 break; 705 case FTGMAC100_MAC_MADR: /* MAC */ 706 s->conf.macaddr.a[0] = value >> 8; 707 s->conf.macaddr.a[1] = value; 708 break; 709 case FTGMAC100_MAC_LADR: 710 s->conf.macaddr.a[2] = value >> 24; 711 s->conf.macaddr.a[3] = value >> 16; 712 s->conf.macaddr.a[4] = value >> 8; 713 s->conf.macaddr.a[5] = value; 714 break; 715 case FTGMAC100_MATH0: /* Multicast Address Hash Table 0 */ 716 s->math[0] = value; 717 break; 718 case FTGMAC100_MATH1: /* Multicast Address Hash Table 1 */ 719 s->math[1] = value; 720 break; 721 case FTGMAC100_ITC: /* TODO: Interrupt Timer Control */ 722 s->itc = value; 723 break; 724 case FTGMAC100_RXR_BADR: /* Ring buffer address */ 725 s->rx_ring = value; 726 s->rx_descriptor = s->rx_ring; 727 break; 728 729 case FTGMAC100_RBSR: /* DMA buffer size */ 730 s->rbsr = value; 731 break; 732 733 case FTGMAC100_NPTXR_BADR: /* Transmit buffer address */ 734 s->tx_ring = value; 735 s->tx_descriptor = s->tx_ring; 736 break; 737 738 case FTGMAC100_NPTXPD: /* Trigger transmit */ 739 if ((s->maccr & (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) 740 == (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) { 741 /* TODO: high priority tx ring */ 742 ftgmac100_do_tx(s, s->tx_ring, s->tx_descriptor); 743 } 744 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) { 745 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 746 } 747 break; 748 749 case FTGMAC100_RXPD: /* Receive Poll Demand Register */ 750 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) { 751 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 752 } 753 break; 754 755 case FTGMAC100_APTC: /* Automatic polling */ 756 s->aptcr = value; 757 758 if (FTGMAC100_APTC_RXPOLL_CNT(s->aptcr)) { 759 ftgmac100_rxpoll(s); 760 } 761 762 if (FTGMAC100_APTC_TXPOLL_CNT(s->aptcr)) { 763 qemu_log_mask(LOG_UNIMP, "%s: no transmit polling\n", __func__); 764 } 765 break; 766 767 case FTGMAC100_MACCR: /* MAC Device control */ 768 s->maccr = value; 769 if (value & FTGMAC100_MACCR_SW_RST) { 770 ftgmac100_reset(DEVICE(s)); 771 } 772 773 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) { 774 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 775 } 776 break; 777 778 case FTGMAC100_PHYCR: /* PHY Device control */ 779 s->phycr = value; 780 if (s->revr & FTGMAC100_REVR_NEW_MDIO_INTERFACE) { 781 do_phy_new_ctl(s); 782 } else { 783 do_phy_ctl(s); 784 } 785 break; 786 case FTGMAC100_PHYDATA: 787 s->phydata = value & 0xffff; 788 break; 789 case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */ 790 s->dblac = value; 791 break; 792 case FTGMAC100_REVR: /* Feature Register */ 793 s->revr = value; 794 break; 795 case FTGMAC100_FEAR1: /* Feature Register 1 */ 796 s->fear1 = value; 797 break; 798 case FTGMAC100_TPAFCR: /* Transmit Priority Arbitration and FIFO Control */ 799 s->tpafcr = value; 800 break; 801 case FTGMAC100_FCR: /* Flow Control */ 802 s->fcr = value; 803 break; 804 805 case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */ 806 case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */ 807 case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */ 808 qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%" 809 HWADDR_PRIx "\n", __func__, addr); 810 break; 811 default: 812 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%" 813 HWADDR_PRIx "\n", __func__, addr); 814 break; 815 } 816 817 ftgmac100_update_irq(s); 818 } 819 820 static int ftgmac100_filter(FTGMAC100State *s, const uint8_t *buf, size_t len) 821 { 822 unsigned mcast_idx; 823 824 if (s->maccr & FTGMAC100_MACCR_RX_ALL) { 825 return 1; 826 } 827 828 switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) { 829 case ETH_PKT_BCAST: 830 if (!(s->maccr & FTGMAC100_MACCR_RX_BROADPKT)) { 831 return 0; 832 } 833 break; 834 case ETH_PKT_MCAST: 835 if (!(s->maccr & FTGMAC100_MACCR_RX_MULTIPKT)) { 836 if (!(s->maccr & FTGMAC100_MACCR_HT_MULTI_EN)) { 837 return 0; 838 } 839 840 mcast_idx = net_crc32_le(buf, ETH_ALEN); 841 mcast_idx = (~(mcast_idx >> 2)) & 0x3f; 842 if (!(s->math[mcast_idx / 32] & (1 << (mcast_idx % 32)))) { 843 return 0; 844 } 845 } 846 break; 847 case ETH_PKT_UCAST: 848 if (memcmp(s->conf.macaddr.a, buf, 6)) { 849 return 0; 850 } 851 break; 852 } 853 854 return 1; 855 } 856 857 static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf, 858 size_t len) 859 { 860 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc)); 861 FTGMAC100Desc bd; 862 uint32_t flags = 0; 863 uint32_t addr; 864 uint32_t crc; 865 uint32_t buf_addr; 866 uint8_t *crc_ptr; 867 uint32_t buf_len; 868 size_t size = len; 869 uint32_t first = FTGMAC100_RXDES0_FRS; 870 uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(buf)->h_proto); 871 int max_frame_size = ftgmac100_max_frame_size(s, proto); 872 873 if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) 874 != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) { 875 return -1; 876 } 877 878 /* TODO : Pad to minimum Ethernet frame length */ 879 /* handle small packets. */ 880 if (size < 10) { 881 qemu_log_mask(LOG_GUEST_ERROR, "%s: dropped frame of %zd bytes\n", 882 __func__, size); 883 return size; 884 } 885 886 if (!ftgmac100_filter(s, buf, size)) { 887 return size; 888 } 889 890 /* 4 bytes for the CRC. */ 891 size += 4; 892 crc = cpu_to_be32(crc32(~0, buf, size)); 893 crc_ptr = (uint8_t *) &crc; 894 895 /* Huge frames are truncated. */ 896 if (size > max_frame_size) { 897 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %zd bytes\n", 898 __func__, size); 899 size = max_frame_size; 900 flags |= FTGMAC100_RXDES0_FTL; 901 } 902 903 switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) { 904 case ETH_PKT_BCAST: 905 flags |= FTGMAC100_RXDES0_BROADCAST; 906 break; 907 case ETH_PKT_MCAST: 908 flags |= FTGMAC100_RXDES0_MULTICAST; 909 break; 910 case ETH_PKT_UCAST: 911 break; 912 } 913 914 addr = s->rx_descriptor; 915 while (size > 0) { 916 if (!ftgmac100_can_receive(nc)) { 917 qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__); 918 return -1; 919 } 920 921 if (ftgmac100_read_bd(&bd, addr) || 922 (bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY)) { 923 /* No descriptors available. Bail out. */ 924 qemu_log_mask(LOG_GUEST_ERROR, "%s: Lost end of frame\n", 925 __func__); 926 s->isr |= FTGMAC100_INT_NO_RXBUF; 927 break; 928 } 929 buf_len = (size <= s->rbsr) ? size : s->rbsr; 930 bd.des0 |= buf_len & 0x3fff; 931 size -= buf_len; 932 933 /* The last 4 bytes are the CRC. */ 934 if (size < 4) { 935 buf_len += size - 4; 936 } 937 buf_addr = bd.des3; 938 if (first && proto == ETH_P_VLAN && buf_len >= 18) { 939 bd.des1 = lduw_be_p(buf + 14) | FTGMAC100_RXDES1_VLANTAG_AVAIL; 940 941 if (s->maccr & FTGMAC100_MACCR_RM_VLAN) { 942 dma_memory_write(&address_space_memory, buf_addr, buf, 12); 943 dma_memory_write(&address_space_memory, buf_addr + 12, buf + 16, 944 buf_len - 16); 945 } else { 946 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len); 947 } 948 } else { 949 bd.des1 = 0; 950 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len); 951 } 952 buf += buf_len; 953 if (size < 4) { 954 dma_memory_write(&address_space_memory, buf_addr + buf_len, 955 crc_ptr, 4 - size); 956 crc_ptr += 4 - size; 957 } 958 959 bd.des0 |= first | FTGMAC100_RXDES0_RXPKT_RDY; 960 first = 0; 961 if (size == 0) { 962 /* Last buffer in frame. */ 963 bd.des0 |= flags | FTGMAC100_RXDES0_LRS; 964 s->isr |= FTGMAC100_INT_RPKT_BUF; 965 } else { 966 s->isr |= FTGMAC100_INT_RPKT_FIFO; 967 } 968 ftgmac100_write_bd(&bd, addr); 969 if (bd.des0 & s->rxdes0_edorr) { 970 addr = s->rx_ring; 971 } else { 972 addr += sizeof(FTGMAC100Desc); 973 } 974 } 975 s->rx_descriptor = addr; 976 977 ftgmac100_update_irq(s); 978 return len; 979 } 980 981 static const MemoryRegionOps ftgmac100_ops = { 982 .read = ftgmac100_read, 983 .write = ftgmac100_write, 984 .valid.min_access_size = 4, 985 .valid.max_access_size = 4, 986 .endianness = DEVICE_LITTLE_ENDIAN, 987 }; 988 989 static void ftgmac100_cleanup(NetClientState *nc) 990 { 991 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc)); 992 993 s->nic = NULL; 994 } 995 996 static NetClientInfo net_ftgmac100_info = { 997 .type = NET_CLIENT_DRIVER_NIC, 998 .size = sizeof(NICState), 999 .can_receive = ftgmac100_can_receive, 1000 .receive = ftgmac100_receive, 1001 .cleanup = ftgmac100_cleanup, 1002 .link_status_changed = ftgmac100_set_link, 1003 }; 1004 1005 static void ftgmac100_realize(DeviceState *dev, Error **errp) 1006 { 1007 FTGMAC100State *s = FTGMAC100(dev); 1008 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1009 1010 if (s->aspeed) { 1011 s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR_ASPEED; 1012 s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR_ASPEED; 1013 } else { 1014 s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR; 1015 s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR; 1016 } 1017 1018 memory_region_init_io(&s->iomem, OBJECT(dev), &ftgmac100_ops, s, 1019 TYPE_FTGMAC100, 0x2000); 1020 sysbus_init_mmio(sbd, &s->iomem); 1021 sysbus_init_irq(sbd, &s->irq); 1022 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1023 1024 s->nic = qemu_new_nic(&net_ftgmac100_info, &s->conf, 1025 object_get_typename(OBJECT(dev)), DEVICE(dev)->id, 1026 s); 1027 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 1028 } 1029 1030 static const VMStateDescription vmstate_ftgmac100 = { 1031 .name = TYPE_FTGMAC100, 1032 .version_id = 1, 1033 .minimum_version_id = 1, 1034 .fields = (VMStateField[]) { 1035 VMSTATE_UINT32(irq_state, FTGMAC100State), 1036 VMSTATE_UINT32(isr, FTGMAC100State), 1037 VMSTATE_UINT32(ier, FTGMAC100State), 1038 VMSTATE_UINT32(rx_enabled, FTGMAC100State), 1039 VMSTATE_UINT32(rx_ring, FTGMAC100State), 1040 VMSTATE_UINT32(rbsr, FTGMAC100State), 1041 VMSTATE_UINT32(tx_ring, FTGMAC100State), 1042 VMSTATE_UINT32(rx_descriptor, FTGMAC100State), 1043 VMSTATE_UINT32(tx_descriptor, FTGMAC100State), 1044 VMSTATE_UINT32_ARRAY(math, FTGMAC100State, 2), 1045 VMSTATE_UINT32(itc, FTGMAC100State), 1046 VMSTATE_UINT32(aptcr, FTGMAC100State), 1047 VMSTATE_UINT32(dblac, FTGMAC100State), 1048 VMSTATE_UINT32(revr, FTGMAC100State), 1049 VMSTATE_UINT32(fear1, FTGMAC100State), 1050 VMSTATE_UINT32(tpafcr, FTGMAC100State), 1051 VMSTATE_UINT32(maccr, FTGMAC100State), 1052 VMSTATE_UINT32(phycr, FTGMAC100State), 1053 VMSTATE_UINT32(phydata, FTGMAC100State), 1054 VMSTATE_UINT32(fcr, FTGMAC100State), 1055 VMSTATE_UINT32(phy_status, FTGMAC100State), 1056 VMSTATE_UINT32(phy_control, FTGMAC100State), 1057 VMSTATE_UINT32(phy_advertise, FTGMAC100State), 1058 VMSTATE_UINT32(phy_int, FTGMAC100State), 1059 VMSTATE_UINT32(phy_int_mask, FTGMAC100State), 1060 VMSTATE_UINT32(txdes0_edotr, FTGMAC100State), 1061 VMSTATE_UINT32(rxdes0_edorr, FTGMAC100State), 1062 VMSTATE_END_OF_LIST() 1063 } 1064 }; 1065 1066 static Property ftgmac100_properties[] = { 1067 DEFINE_PROP_BOOL("aspeed", FTGMAC100State, aspeed, false), 1068 DEFINE_NIC_PROPERTIES(FTGMAC100State, conf), 1069 DEFINE_PROP_END_OF_LIST(), 1070 }; 1071 1072 static void ftgmac100_class_init(ObjectClass *klass, void *data) 1073 { 1074 DeviceClass *dc = DEVICE_CLASS(klass); 1075 1076 dc->vmsd = &vmstate_ftgmac100; 1077 dc->reset = ftgmac100_reset; 1078 dc->props = ftgmac100_properties; 1079 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 1080 dc->realize = ftgmac100_realize; 1081 dc->desc = "Faraday FTGMAC100 Gigabit Ethernet emulation"; 1082 } 1083 1084 static const TypeInfo ftgmac100_info = { 1085 .name = TYPE_FTGMAC100, 1086 .parent = TYPE_SYS_BUS_DEVICE, 1087 .instance_size = sizeof(FTGMAC100State), 1088 .class_init = ftgmac100_class_init, 1089 }; 1090 1091 /* 1092 * AST2600 MII controller 1093 */ 1094 #define ASPEED_MII_PHYCR_FIRE BIT(31) 1095 #define ASPEED_MII_PHYCR_ST_22 BIT(28) 1096 #define ASPEED_MII_PHYCR_OP(x) ((x) & (ASPEED_MII_PHYCR_OP_WRITE | \ 1097 ASPEED_MII_PHYCR_OP_READ)) 1098 #define ASPEED_MII_PHYCR_OP_WRITE BIT(26) 1099 #define ASPEED_MII_PHYCR_OP_READ BIT(27) 1100 #define ASPEED_MII_PHYCR_DATA(x) (x & 0xffff) 1101 #define ASPEED_MII_PHYCR_PHY(x) (((x) >> 21) & 0x1f) 1102 #define ASPEED_MII_PHYCR_REG(x) (((x) >> 16) & 0x1f) 1103 1104 #define ASPEED_MII_PHYDATA_IDLE BIT(16) 1105 1106 static void aspeed_mii_transition(AspeedMiiState *s, bool fire) 1107 { 1108 if (fire) { 1109 s->phycr |= ASPEED_MII_PHYCR_FIRE; 1110 s->phydata &= ~ASPEED_MII_PHYDATA_IDLE; 1111 } else { 1112 s->phycr &= ~ASPEED_MII_PHYCR_FIRE; 1113 s->phydata |= ASPEED_MII_PHYDATA_IDLE; 1114 } 1115 } 1116 1117 static void aspeed_mii_do_phy_ctl(AspeedMiiState *s) 1118 { 1119 uint8_t reg; 1120 uint16_t data; 1121 1122 if (!(s->phycr & ASPEED_MII_PHYCR_ST_22)) { 1123 aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE); 1124 qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__); 1125 return; 1126 } 1127 1128 /* Nothing to do */ 1129 if (!(s->phycr & ASPEED_MII_PHYCR_FIRE)) { 1130 return; 1131 } 1132 1133 reg = ASPEED_MII_PHYCR_REG(s->phycr); 1134 data = ASPEED_MII_PHYCR_DATA(s->phycr); 1135 1136 switch (ASPEED_MII_PHYCR_OP(s->phycr)) { 1137 case ASPEED_MII_PHYCR_OP_WRITE: 1138 do_phy_write(s->nic, reg, data); 1139 break; 1140 case ASPEED_MII_PHYCR_OP_READ: 1141 s->phydata = (s->phydata & ~0xffff) | do_phy_read(s->nic, reg); 1142 break; 1143 default: 1144 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n", 1145 __func__, s->phycr); 1146 } 1147 1148 aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE); 1149 } 1150 1151 static uint64_t aspeed_mii_read(void *opaque, hwaddr addr, unsigned size) 1152 { 1153 AspeedMiiState *s = ASPEED_MII(opaque); 1154 1155 switch (addr) { 1156 case 0x0: 1157 return s->phycr; 1158 case 0x4: 1159 return s->phydata; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 } 1164 1165 static void aspeed_mii_write(void *opaque, hwaddr addr, 1166 uint64_t value, unsigned size) 1167 { 1168 AspeedMiiState *s = ASPEED_MII(opaque); 1169 1170 switch (addr) { 1171 case 0x0: 1172 s->phycr = value & ~(s->phycr & ASPEED_MII_PHYCR_FIRE); 1173 break; 1174 case 0x4: 1175 s->phydata = value & ~(0xffff | ASPEED_MII_PHYDATA_IDLE); 1176 break; 1177 default: 1178 g_assert_not_reached(); 1179 } 1180 1181 aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE)); 1182 aspeed_mii_do_phy_ctl(s); 1183 } 1184 1185 static const MemoryRegionOps aspeed_mii_ops = { 1186 .read = aspeed_mii_read, 1187 .write = aspeed_mii_write, 1188 .valid.min_access_size = 4, 1189 .valid.max_access_size = 4, 1190 .endianness = DEVICE_LITTLE_ENDIAN, 1191 }; 1192 1193 static void aspeed_mii_reset(DeviceState *dev) 1194 { 1195 AspeedMiiState *s = ASPEED_MII(dev); 1196 1197 s->phycr = 0; 1198 s->phydata = 0; 1199 1200 aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE)); 1201 }; 1202 1203 static void aspeed_mii_realize(DeviceState *dev, Error **errp) 1204 { 1205 AspeedMiiState *s = ASPEED_MII(dev); 1206 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1207 1208 assert(s->nic); 1209 1210 memory_region_init_io(&s->iomem, OBJECT(dev), &aspeed_mii_ops, s, 1211 TYPE_ASPEED_MII, 0x8); 1212 sysbus_init_mmio(sbd, &s->iomem); 1213 } 1214 1215 static const VMStateDescription vmstate_aspeed_mii = { 1216 .name = TYPE_ASPEED_MII, 1217 .version_id = 1, 1218 .minimum_version_id = 1, 1219 .fields = (VMStateField[]) { 1220 VMSTATE_UINT32(phycr, FTGMAC100State), 1221 VMSTATE_UINT32(phydata, FTGMAC100State), 1222 VMSTATE_END_OF_LIST() 1223 } 1224 }; 1225 1226 static Property aspeed_mii_properties[] = { 1227 DEFINE_PROP_LINK("nic", AspeedMiiState, nic, TYPE_FTGMAC100, 1228 FTGMAC100State *), 1229 DEFINE_PROP_END_OF_LIST(), 1230 }; 1231 1232 static void aspeed_mii_class_init(ObjectClass *klass, void *data) 1233 { 1234 DeviceClass *dc = DEVICE_CLASS(klass); 1235 1236 dc->vmsd = &vmstate_aspeed_mii; 1237 dc->reset = aspeed_mii_reset; 1238 dc->realize = aspeed_mii_realize; 1239 dc->desc = "Aspeed MII controller"; 1240 dc->props = aspeed_mii_properties; 1241 } 1242 1243 static const TypeInfo aspeed_mii_info = { 1244 .name = TYPE_ASPEED_MII, 1245 .parent = TYPE_SYS_BUS_DEVICE, 1246 .instance_size = sizeof(AspeedMiiState), 1247 .class_init = aspeed_mii_class_init, 1248 }; 1249 1250 static void ftgmac100_register_types(void) 1251 { 1252 type_register_static(&ftgmac100_info); 1253 type_register_static(&aspeed_mii_info); 1254 } 1255 1256 type_init(ftgmac100_register_types) 1257