1 /* 2 * QEMU ETRAX Ethernet Controller. 3 * 4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "hw/sysbus.h" 28 #include "net/net.h" 29 #include "hw/cris/etraxfs.h" 30 #include "qemu/error-report.h" 31 #include "qemu/module.h" 32 #include "trace.h" 33 #include "qom/object.h" 34 35 #define D(x) 36 37 /* Advertisement control register. */ 38 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ 39 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ 40 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ 41 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ 42 43 /* 44 * The MDIO extensions in the TDK PHY model were reversed engineered from the 45 * linux driver (PHYID and Diagnostics reg). 46 * TODO: Add friendly names for the register nums. 47 */ 48 struct qemu_phy 49 { 50 uint32_t regs[32]; 51 52 int link; 53 54 unsigned int (*read)(struct qemu_phy *phy, unsigned int req); 55 void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data); 56 }; 57 58 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req) 59 { 60 int regnum; 61 unsigned r = 0; 62 63 regnum = req & 0x1f; 64 65 switch (regnum) { 66 case 1: 67 if (!phy->link) { 68 break; 69 } 70 /* MR1. */ 71 /* Speeds and modes. */ 72 r |= (1 << 13) | (1 << 14); 73 r |= (1 << 11) | (1 << 12); 74 r |= (1 << 5); /* Autoneg complete. */ 75 r |= (1 << 3); /* Autoneg able. */ 76 r |= (1 << 2); /* link. */ 77 break; 78 case 5: 79 /* Link partner ability. 80 We are kind; always agree with whatever best mode 81 the guest advertises. */ 82 r = 1 << 14; /* Success. */ 83 /* Copy advertised modes. */ 84 r |= phy->regs[4] & (15 << 5); 85 /* Autoneg support. */ 86 r |= 1; 87 break; 88 case 18: 89 { 90 /* Diagnostics reg. */ 91 int duplex = 0; 92 int speed_100 = 0; 93 94 if (!phy->link) { 95 break; 96 } 97 98 /* Are we advertising 100 half or 100 duplex ? */ 99 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF); 100 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL); 101 102 /* Are we advertising 10 duplex or 100 duplex ? */ 103 duplex = !!(phy->regs[4] & ADVERTISE_100FULL); 104 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL); 105 r = (speed_100 << 10) | (duplex << 11); 106 } 107 break; 108 109 default: 110 r = phy->regs[regnum]; 111 break; 112 } 113 trace_mdio_phy_read(regnum, r); 114 return r; 115 } 116 117 static void 118 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data) 119 { 120 int regnum; 121 122 regnum = req & 0x1f; 123 trace_mdio_phy_write(regnum, data); 124 switch (regnum) { 125 default: 126 phy->regs[regnum] = data; 127 break; 128 } 129 } 130 131 static void 132 tdk_reset(struct qemu_phy *phy) 133 { 134 phy->regs[0] = 0x3100; 135 /* PHY Id. */ 136 phy->regs[2] = 0x0300; 137 phy->regs[3] = 0xe400; 138 /* Autonegotiation advertisement reg. */ 139 phy->regs[4] = 0x01E1; 140 phy->link = 1; 141 } 142 143 struct qemu_mdio 144 { 145 /* bus. */ 146 int mdc; 147 int mdio; 148 149 /* decoder. */ 150 enum { 151 PREAMBLE, 152 SOF, 153 OPC, 154 ADDR, 155 REQ, 156 TURNAROUND, 157 DATA 158 } state; 159 unsigned int drive; 160 161 unsigned int cnt; 162 unsigned int addr; 163 unsigned int opc; 164 unsigned int req; 165 unsigned int data; 166 167 struct qemu_phy *devs[32]; 168 }; 169 170 static void 171 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) 172 { 173 bus->devs[addr & 0x1f] = phy; 174 } 175 176 #ifdef USE_THIS_DEAD_CODE 177 static void 178 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) 179 { 180 bus->devs[addr & 0x1f] = NULL; 181 } 182 #endif 183 184 static void mdio_read_req(struct qemu_mdio *bus) 185 { 186 struct qemu_phy *phy; 187 188 phy = bus->devs[bus->addr]; 189 if (phy && phy->read) { 190 bus->data = phy->read(phy, bus->req); 191 } else { 192 bus->data = 0xffff; 193 } 194 } 195 196 static void mdio_write_req(struct qemu_mdio *bus) 197 { 198 struct qemu_phy *phy; 199 200 phy = bus->devs[bus->addr]; 201 if (phy && phy->write) { 202 phy->write(phy, bus->req, bus->data); 203 } 204 } 205 206 static void mdio_cycle(struct qemu_mdio *bus) 207 { 208 bus->cnt++; 209 210 trace_mdio_bitbang(bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive); 211 #if 0 212 if (bus->mdc) { 213 printf("%d", bus->mdio); 214 } 215 #endif 216 switch (bus->state) { 217 case PREAMBLE: 218 if (bus->mdc) { 219 if (bus->cnt >= (32 * 2) && !bus->mdio) { 220 bus->cnt = 0; 221 bus->state = SOF; 222 bus->data = 0; 223 } 224 } 225 break; 226 case SOF: 227 if (bus->mdc) { 228 if (bus->mdio != 1) { 229 printf("WARNING: no SOF\n"); 230 } 231 if (bus->cnt == 1*2) { 232 bus->cnt = 0; 233 bus->opc = 0; 234 bus->state = OPC; 235 } 236 } 237 break; 238 case OPC: 239 if (bus->mdc) { 240 bus->opc <<= 1; 241 bus->opc |= bus->mdio & 1; 242 if (bus->cnt == 2*2) { 243 bus->cnt = 0; 244 bus->addr = 0; 245 bus->state = ADDR; 246 } 247 } 248 break; 249 case ADDR: 250 if (bus->mdc) { 251 bus->addr <<= 1; 252 bus->addr |= bus->mdio & 1; 253 254 if (bus->cnt == 5*2) { 255 bus->cnt = 0; 256 bus->req = 0; 257 bus->state = REQ; 258 } 259 } 260 break; 261 case REQ: 262 if (bus->mdc) { 263 bus->req <<= 1; 264 bus->req |= bus->mdio & 1; 265 if (bus->cnt == 5*2) { 266 bus->cnt = 0; 267 bus->state = TURNAROUND; 268 } 269 } 270 break; 271 case TURNAROUND: 272 if (bus->mdc && bus->cnt == 2*2) { 273 bus->mdio = 0; 274 bus->cnt = 0; 275 276 if (bus->opc == 2) { 277 bus->drive = 1; 278 mdio_read_req(bus); 279 bus->mdio = bus->data & 1; 280 } 281 bus->state = DATA; 282 } 283 break; 284 case DATA: 285 if (!bus->mdc) { 286 if (bus->drive) { 287 bus->mdio = !!(bus->data & (1 << 15)); 288 bus->data <<= 1; 289 } 290 } else { 291 if (!bus->drive) { 292 bus->data <<= 1; 293 bus->data |= bus->mdio; 294 } 295 if (bus->cnt == 16 * 2) { 296 bus->cnt = 0; 297 bus->state = PREAMBLE; 298 if (!bus->drive) { 299 mdio_write_req(bus); 300 } 301 bus->drive = 0; 302 } 303 } 304 break; 305 default: 306 break; 307 } 308 } 309 310 /* ETRAX-FS Ethernet MAC block starts here. */ 311 312 #define RW_MA0_LO 0x00 313 #define RW_MA0_HI 0x01 314 #define RW_MA1_LO 0x02 315 #define RW_MA1_HI 0x03 316 #define RW_GA_LO 0x04 317 #define RW_GA_HI 0x05 318 #define RW_GEN_CTRL 0x06 319 #define RW_REC_CTRL 0x07 320 #define RW_TR_CTRL 0x08 321 #define RW_CLR_ERR 0x09 322 #define RW_MGM_CTRL 0x0a 323 #define R_STAT 0x0b 324 #define FS_ETH_MAX_REGS 0x17 325 326 #define TYPE_ETRAX_FS_ETH "etraxfs-eth" 327 OBJECT_DECLARE_SIMPLE_TYPE(ETRAXFSEthState, ETRAX_FS_ETH) 328 329 struct ETRAXFSEthState { 330 SysBusDevice parent_obj; 331 332 MemoryRegion mmio; 333 NICState *nic; 334 NICConf conf; 335 336 /* Two addrs in the filter. */ 337 uint8_t macaddr[2][6]; 338 uint32_t regs[FS_ETH_MAX_REGS]; 339 340 struct etraxfs_dma_client *dma_out; 341 struct etraxfs_dma_client *dma_in; 342 343 /* MDIO bus. */ 344 struct qemu_mdio mdio_bus; 345 unsigned int phyaddr; 346 int duplex_mismatch; 347 348 /* PHY. */ 349 struct qemu_phy phy; 350 }; 351 352 static void eth_validate_duplex(ETRAXFSEthState *eth) 353 { 354 struct qemu_phy *phy; 355 unsigned int phy_duplex; 356 unsigned int mac_duplex; 357 int new_mm = 0; 358 359 phy = eth->mdio_bus.devs[eth->phyaddr]; 360 phy_duplex = !!(phy->read(phy, 18) & (1 << 11)); 361 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128); 362 363 if (mac_duplex != phy_duplex) { 364 new_mm = 1; 365 } 366 367 if (eth->regs[RW_GEN_CTRL] & 1) { 368 if (new_mm != eth->duplex_mismatch) { 369 if (new_mm) { 370 printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n", 371 mac_duplex, phy_duplex); 372 } else { 373 printf("HW: ETH duplex ok.\n"); 374 } 375 } 376 eth->duplex_mismatch = new_mm; 377 } 378 } 379 380 static uint64_t 381 eth_read(void *opaque, hwaddr addr, unsigned int size) 382 { 383 ETRAXFSEthState *eth = opaque; 384 uint32_t r = 0; 385 386 addr >>= 2; 387 388 switch (addr) { 389 case R_STAT: 390 r = eth->mdio_bus.mdio & 1; 391 break; 392 default: 393 r = eth->regs[addr]; 394 D(printf("%s %x\n", __func__, addr * 4)); 395 break; 396 } 397 return r; 398 } 399 400 static void eth_update_ma(ETRAXFSEthState *eth, int ma) 401 { 402 int reg; 403 int i = 0; 404 405 ma &= 1; 406 407 reg = RW_MA0_LO; 408 if (ma) { 409 reg = RW_MA1_LO; 410 } 411 412 eth->macaddr[ma][i++] = eth->regs[reg]; 413 eth->macaddr[ma][i++] = eth->regs[reg] >> 8; 414 eth->macaddr[ma][i++] = eth->regs[reg] >> 16; 415 eth->macaddr[ma][i++] = eth->regs[reg] >> 24; 416 eth->macaddr[ma][i++] = eth->regs[reg + 1]; 417 eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8; 418 419 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma, 420 eth->macaddr[ma][0], eth->macaddr[ma][1], 421 eth->macaddr[ma][2], eth->macaddr[ma][3], 422 eth->macaddr[ma][4], eth->macaddr[ma][5])); 423 } 424 425 static void 426 eth_write(void *opaque, hwaddr addr, 427 uint64_t val64, unsigned int size) 428 { 429 ETRAXFSEthState *eth = opaque; 430 uint32_t value = val64; 431 432 addr >>= 2; 433 switch (addr) { 434 case RW_MA0_LO: 435 case RW_MA0_HI: 436 eth->regs[addr] = value; 437 eth_update_ma(eth, 0); 438 break; 439 case RW_MA1_LO: 440 case RW_MA1_HI: 441 eth->regs[addr] = value; 442 eth_update_ma(eth, 1); 443 break; 444 445 case RW_MGM_CTRL: 446 /* Attach an MDIO/PHY abstraction. */ 447 if (value & 2) { 448 eth->mdio_bus.mdio = value & 1; 449 } 450 if (eth->mdio_bus.mdc != (value & 4)) { 451 mdio_cycle(ð->mdio_bus); 452 eth_validate_duplex(eth); 453 } 454 eth->mdio_bus.mdc = !!(value & 4); 455 eth->regs[addr] = value; 456 break; 457 458 case RW_REC_CTRL: 459 eth->regs[addr] = value; 460 eth_validate_duplex(eth); 461 break; 462 463 default: 464 eth->regs[addr] = value; 465 D(printf("%s %x %x\n", __func__, addr, value)); 466 break; 467 } 468 } 469 470 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom 471 filter dropping group addresses we have not joined. The filter has 64 472 bits (m). The has function is a simple nible xor of the group addr. */ 473 static int eth_match_groupaddr(ETRAXFSEthState *eth, const unsigned char *sa) 474 { 475 unsigned int hsh; 476 int m_individual = eth->regs[RW_REC_CTRL] & 4; 477 int match; 478 479 /* First bit on the wire of a MAC address signals multicast or 480 physical address. */ 481 if (!m_individual && !(sa[0] & 1)) { 482 return 0; 483 } 484 485 /* Calculate the hash index for the GA registers. */ 486 hsh = 0; 487 hsh ^= (*sa) & 0x3f; 488 hsh ^= ((*sa) >> 6) & 0x03; 489 ++sa; 490 hsh ^= ((*sa) << 2) & 0x03c; 491 hsh ^= ((*sa) >> 4) & 0xf; 492 ++sa; 493 hsh ^= ((*sa) << 4) & 0x30; 494 hsh ^= ((*sa) >> 2) & 0x3f; 495 ++sa; 496 hsh ^= (*sa) & 0x3f; 497 hsh ^= ((*sa) >> 6) & 0x03; 498 ++sa; 499 hsh ^= ((*sa) << 2) & 0x03c; 500 hsh ^= ((*sa) >> 4) & 0xf; 501 ++sa; 502 hsh ^= ((*sa) << 4) & 0x30; 503 hsh ^= ((*sa) >> 2) & 0x3f; 504 505 hsh &= 63; 506 if (hsh > 31) { 507 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32)); 508 } else { 509 match = eth->regs[RW_GA_LO] & (1 << hsh); 510 } 511 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh, 512 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match)); 513 return match; 514 } 515 516 static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size) 517 { 518 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 519 ETRAXFSEthState *eth = qemu_get_nic_opaque(nc); 520 int use_ma0 = eth->regs[RW_REC_CTRL] & 1; 521 int use_ma1 = eth->regs[RW_REC_CTRL] & 2; 522 int r_bcast = eth->regs[RW_REC_CTRL] & 8; 523 524 if (size < 12) { 525 return -1; 526 } 527 528 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n", 529 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 530 use_ma0, use_ma1, r_bcast)); 531 532 /* Does the frame get through the address filters? */ 533 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6)) 534 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6)) 535 && (!r_bcast || memcmp(buf, sa_bcast, 6)) 536 && !eth_match_groupaddr(eth, buf)) { 537 return size; 538 } 539 540 /* FIXME: Find another way to pass on the fake csum. */ 541 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1); 542 543 return size; 544 } 545 546 static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop) 547 { 548 ETRAXFSEthState *eth = opaque; 549 550 D(printf("%s buf=%p len=%d\n", __func__, buf, len)); 551 qemu_send_packet(qemu_get_queue(eth->nic), buf, len); 552 return len; 553 } 554 555 static void eth_set_link(NetClientState *nc) 556 { 557 ETRAXFSEthState *eth = qemu_get_nic_opaque(nc); 558 D(printf("%s %d\n", __func__, nc->link_down)); 559 eth->phy.link = !nc->link_down; 560 } 561 562 static const MemoryRegionOps eth_ops = { 563 .read = eth_read, 564 .write = eth_write, 565 .endianness = DEVICE_LITTLE_ENDIAN, 566 .valid = { 567 .min_access_size = 4, 568 .max_access_size = 4 569 } 570 }; 571 572 static NetClientInfo net_etraxfs_info = { 573 .type = NET_CLIENT_DRIVER_NIC, 574 .size = sizeof(NICState), 575 .receive = eth_receive, 576 .link_status_changed = eth_set_link, 577 }; 578 579 static void etraxfs_eth_reset(DeviceState *dev) 580 { 581 ETRAXFSEthState *s = ETRAX_FS_ETH(dev); 582 583 memset(s->regs, 0, sizeof(s->regs)); 584 memset(s->macaddr, 0, sizeof(s->macaddr)); 585 s->duplex_mismatch = 0; 586 587 s->mdio_bus.mdc = 0; 588 s->mdio_bus.mdio = 0; 589 s->mdio_bus.state = 0; 590 s->mdio_bus.drive = 0; 591 s->mdio_bus.cnt = 0; 592 s->mdio_bus.addr = 0; 593 s->mdio_bus.opc = 0; 594 s->mdio_bus.req = 0; 595 s->mdio_bus.data = 0; 596 597 tdk_reset(&s->phy); 598 } 599 600 static void etraxfs_eth_realize(DeviceState *dev, Error **errp) 601 { 602 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 603 ETRAXFSEthState *s = ETRAX_FS_ETH(dev); 604 605 if (!s->dma_out || !s->dma_in) { 606 error_setg(errp, "Unconnected ETRAX-FS Ethernet MAC"); 607 return; 608 } 609 610 s->dma_out->client.push = eth_tx_push; 611 s->dma_out->client.opaque = s; 612 s->dma_in->client.opaque = s; 613 s->dma_in->client.pull = NULL; 614 615 memory_region_init_io(&s->mmio, OBJECT(dev), ð_ops, s, 616 "etraxfs-eth", 0x5c); 617 sysbus_init_mmio(sbd, &s->mmio); 618 619 qemu_macaddr_default_if_unset(&s->conf.macaddr); 620 s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf, 621 object_get_typename(OBJECT(s)), dev->id, s); 622 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 623 624 s->phy.read = tdk_read; 625 s->phy.write = tdk_write; 626 mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr); 627 } 628 629 static Property etraxfs_eth_properties[] = { 630 DEFINE_PROP_UINT32("phyaddr", ETRAXFSEthState, phyaddr, 1), 631 DEFINE_NIC_PROPERTIES(ETRAXFSEthState, conf), 632 DEFINE_PROP_END_OF_LIST(), 633 }; 634 635 static void etraxfs_eth_class_init(ObjectClass *klass, void *data) 636 { 637 DeviceClass *dc = DEVICE_CLASS(klass); 638 639 dc->realize = etraxfs_eth_realize; 640 dc->reset = etraxfs_eth_reset; 641 device_class_set_props(dc, etraxfs_eth_properties); 642 /* Reason: dma_out, dma_in are not user settable */ 643 dc->user_creatable = false; 644 } 645 646 647 /* Instantiate an ETRAXFS Ethernet MAC. */ 648 DeviceState * 649 etraxfs_eth_init(NICInfo *nd, hwaddr base, int phyaddr, 650 struct etraxfs_dma_client *dma_out, 651 struct etraxfs_dma_client *dma_in) 652 { 653 DeviceState *dev; 654 qemu_check_nic_model(nd, "fseth"); 655 656 dev = qdev_new("etraxfs-eth"); 657 qdev_set_nic_properties(dev, nd); 658 qdev_prop_set_uint32(dev, "phyaddr", phyaddr); 659 660 /* 661 * TODO: QOM design, define a QOM interface for "I am an etraxfs 662 * DMA client" (which replaces the current 'struct 663 * etraxfs_dma_client' ad-hoc interface), implement it on the 664 * ethernet device, and then have QOM link properties on the DMA 665 * controller device so that you can pass the interface 666 * implementations to it. 667 */ 668 ETRAX_FS_ETH(dev)->dma_out = dma_out; 669 ETRAX_FS_ETH(dev)->dma_in = dma_in; 670 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 671 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); 672 673 return dev; 674 } 675 676 static const TypeInfo etraxfs_eth_info = { 677 .name = TYPE_ETRAX_FS_ETH, 678 .parent = TYPE_SYS_BUS_DEVICE, 679 .instance_size = sizeof(ETRAXFSEthState), 680 .class_init = etraxfs_eth_class_init, 681 }; 682 683 static void etraxfs_eth_register_types(void) 684 { 685 type_register_static(&etraxfs_eth_info); 686 } 687 688 type_init(etraxfs_eth_register_types) 689