xref: /openbmc/qemu/hw/net/etraxfs_eth.c (revision d341d9f3)
1 /*
2  * QEMU ETRAX Ethernet Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include <stdio.h>
26 #include "hw/sysbus.h"
27 #include "net/net.h"
28 #include "hw/cris/etraxfs.h"
29 #include "qemu/error-report.h"
30 
31 #define D(x)
32 
33 /* Advertisement control register. */
34 #define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
35 #define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
36 #define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
37 #define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
38 
39 /*
40  * The MDIO extensions in the TDK PHY model were reversed engineered from the
41  * linux driver (PHYID and Diagnostics reg).
42  * TODO: Add friendly names for the register nums.
43  */
44 struct qemu_phy
45 {
46     uint32_t regs[32];
47 
48     int link;
49 
50     unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
51     void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
52 };
53 
54 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
55 {
56     int regnum;
57     unsigned r = 0;
58 
59     regnum = req & 0x1f;
60 
61     switch (regnum) {
62     case 1:
63         if (!phy->link) {
64             break;
65         }
66         /* MR1.     */
67         /* Speeds and modes.  */
68         r |= (1 << 13) | (1 << 14);
69         r |= (1 << 11) | (1 << 12);
70         r |= (1 << 5); /* Autoneg complete.  */
71         r |= (1 << 3); /* Autoneg able.     */
72         r |= (1 << 2); /* link.     */
73         break;
74     case 5:
75         /* Link partner ability.
76            We are kind; always agree with whatever best mode
77            the guest advertises.  */
78         r = 1 << 14; /* Success.  */
79         /* Copy advertised modes.  */
80         r |= phy->regs[4] & (15 << 5);
81         /* Autoneg support.  */
82         r |= 1;
83         break;
84     case 18:
85     {
86         /* Diagnostics reg.  */
87         int duplex = 0;
88         int speed_100 = 0;
89 
90         if (!phy->link) {
91             break;
92         }
93 
94         /* Are we advertising 100 half or 100 duplex ? */
95         speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
96         speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
97 
98         /* Are we advertising 10 duplex or 100 duplex ? */
99         duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
100         duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
101         r = (speed_100 << 10) | (duplex << 11);
102     }
103     break;
104 
105     default:
106         r = phy->regs[regnum];
107         break;
108     }
109     D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
110     return r;
111 }
112 
113 static void
114 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
115 {
116     int regnum;
117 
118     regnum = req & 0x1f;
119     D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
120     switch (regnum) {
121     default:
122         phy->regs[regnum] = data;
123         break;
124     }
125 }
126 
127 static void
128 tdk_init(struct qemu_phy *phy)
129 {
130     phy->regs[0] = 0x3100;
131     /* PHY Id.  */
132     phy->regs[2] = 0x0300;
133     phy->regs[3] = 0xe400;
134     /* Autonegotiation advertisement reg.  */
135     phy->regs[4] = 0x01E1;
136     phy->link = 1;
137 
138     phy->read = tdk_read;
139     phy->write = tdk_write;
140 }
141 
142 struct qemu_mdio
143 {
144     /* bus.     */
145     int mdc;
146     int mdio;
147 
148     /* decoder.  */
149     enum {
150         PREAMBLE,
151         SOF,
152         OPC,
153         ADDR,
154         REQ,
155         TURNAROUND,
156         DATA
157     } state;
158     unsigned int drive;
159 
160     unsigned int cnt;
161     unsigned int addr;
162     unsigned int opc;
163     unsigned int req;
164     unsigned int data;
165 
166     struct qemu_phy *devs[32];
167 };
168 
169 static void
170 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
171 {
172     bus->devs[addr & 0x1f] = phy;
173 }
174 
175 #ifdef USE_THIS_DEAD_CODE
176 static void
177 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
178 {
179     bus->devs[addr & 0x1f] = NULL;
180 }
181 #endif
182 
183 static void mdio_read_req(struct qemu_mdio *bus)
184 {
185     struct qemu_phy *phy;
186 
187     phy = bus->devs[bus->addr];
188     if (phy && phy->read) {
189         bus->data = phy->read(phy, bus->req);
190     } else {
191         bus->data = 0xffff;
192     }
193 }
194 
195 static void mdio_write_req(struct qemu_mdio *bus)
196 {
197     struct qemu_phy *phy;
198 
199     phy = bus->devs[bus->addr];
200     if (phy && phy->write) {
201         phy->write(phy, bus->req, bus->data);
202     }
203 }
204 
205 static void mdio_cycle(struct qemu_mdio *bus)
206 {
207     bus->cnt++;
208 
209     D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
210         bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
211 #if 0
212     if (bus->mdc) {
213         printf("%d", bus->mdio);
214     }
215 #endif
216     switch (bus->state) {
217     case PREAMBLE:
218         if (bus->mdc) {
219             if (bus->cnt >= (32 * 2) && !bus->mdio) {
220                 bus->cnt = 0;
221                 bus->state = SOF;
222                 bus->data = 0;
223             }
224         }
225         break;
226     case SOF:
227         if (bus->mdc) {
228             if (bus->mdio != 1) {
229                 printf("WARNING: no SOF\n");
230             }
231             if (bus->cnt == 1*2) {
232                 bus->cnt = 0;
233                 bus->opc = 0;
234                 bus->state = OPC;
235             }
236         }
237         break;
238     case OPC:
239         if (bus->mdc) {
240             bus->opc <<= 1;
241             bus->opc |= bus->mdio & 1;
242             if (bus->cnt == 2*2) {
243                 bus->cnt = 0;
244                 bus->addr = 0;
245                 bus->state = ADDR;
246             }
247         }
248         break;
249     case ADDR:
250         if (bus->mdc) {
251             bus->addr <<= 1;
252             bus->addr |= bus->mdio & 1;
253 
254             if (bus->cnt == 5*2) {
255                 bus->cnt = 0;
256                 bus->req = 0;
257                 bus->state = REQ;
258             }
259         }
260         break;
261     case REQ:
262         if (bus->mdc) {
263             bus->req <<= 1;
264             bus->req |= bus->mdio & 1;
265             if (bus->cnt == 5*2) {
266                 bus->cnt = 0;
267                 bus->state = TURNAROUND;
268             }
269         }
270         break;
271     case TURNAROUND:
272         if (bus->mdc && bus->cnt == 2*2) {
273             bus->mdio = 0;
274             bus->cnt = 0;
275 
276             if (bus->opc == 2) {
277                 bus->drive = 1;
278                 mdio_read_req(bus);
279                 bus->mdio = bus->data & 1;
280             }
281             bus->state = DATA;
282         }
283         break;
284     case DATA:
285         if (!bus->mdc) {
286             if (bus->drive) {
287                 bus->mdio = !!(bus->data & (1 << 15));
288                 bus->data <<= 1;
289             }
290         } else {
291             if (!bus->drive) {
292                 bus->data <<= 1;
293                 bus->data |= bus->mdio;
294             }
295             if (bus->cnt == 16 * 2) {
296                 bus->cnt = 0;
297                 bus->state = PREAMBLE;
298                 if (!bus->drive) {
299                     mdio_write_req(bus);
300                 }
301                 bus->drive = 0;
302             }
303         }
304         break;
305     default:
306         break;
307     }
308 }
309 
310 /* ETRAX-FS Ethernet MAC block starts here.  */
311 
312 #define RW_MA0_LO      0x00
313 #define RW_MA0_HI      0x01
314 #define RW_MA1_LO      0x02
315 #define RW_MA1_HI      0x03
316 #define RW_GA_LO      0x04
317 #define RW_GA_HI      0x05
318 #define RW_GEN_CTRL      0x06
319 #define RW_REC_CTRL      0x07
320 #define RW_TR_CTRL      0x08
321 #define RW_CLR_ERR      0x09
322 #define RW_MGM_CTRL      0x0a
323 #define R_STAT          0x0b
324 #define FS_ETH_MAX_REGS      0x17
325 
326 #define TYPE_ETRAX_FS_ETH "etraxfs-eth"
327 #define ETRAX_FS_ETH(obj) \
328     OBJECT_CHECK(ETRAXFSEthState, (obj), TYPE_ETRAX_FS_ETH)
329 
330 typedef struct ETRAXFSEthState
331 {
332     SysBusDevice parent_obj;
333 
334     MemoryRegion mmio;
335     NICState *nic;
336     NICConf conf;
337 
338     /* Two addrs in the filter.  */
339     uint8_t macaddr[2][6];
340     uint32_t regs[FS_ETH_MAX_REGS];
341 
342     union {
343         void *vdma_out;
344         struct etraxfs_dma_client *dma_out;
345     };
346     union {
347         void *vdma_in;
348         struct etraxfs_dma_client *dma_in;
349     };
350 
351     /* MDIO bus.  */
352     struct qemu_mdio mdio_bus;
353     unsigned int phyaddr;
354     int duplex_mismatch;
355 
356     /* PHY.     */
357     struct qemu_phy phy;
358 } ETRAXFSEthState;
359 
360 static void eth_validate_duplex(ETRAXFSEthState *eth)
361 {
362     struct qemu_phy *phy;
363     unsigned int phy_duplex;
364     unsigned int mac_duplex;
365     int new_mm = 0;
366 
367     phy = eth->mdio_bus.devs[eth->phyaddr];
368     phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
369     mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
370 
371     if (mac_duplex != phy_duplex) {
372         new_mm = 1;
373     }
374 
375     if (eth->regs[RW_GEN_CTRL] & 1) {
376         if (new_mm != eth->duplex_mismatch) {
377             if (new_mm) {
378                 printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n",
379                        mac_duplex, phy_duplex);
380             } else {
381                 printf("HW: ETH duplex ok.\n");
382             }
383         }
384         eth->duplex_mismatch = new_mm;
385     }
386 }
387 
388 static uint64_t
389 eth_read(void *opaque, hwaddr addr, unsigned int size)
390 {
391     ETRAXFSEthState *eth = opaque;
392     uint32_t r = 0;
393 
394     addr >>= 2;
395 
396     switch (addr) {
397     case R_STAT:
398         r = eth->mdio_bus.mdio & 1;
399         break;
400     default:
401         r = eth->regs[addr];
402         D(printf("%s %x\n", __func__, addr * 4));
403         break;
404     }
405     return r;
406 }
407 
408 static void eth_update_ma(ETRAXFSEthState *eth, int ma)
409 {
410     int reg;
411     int i = 0;
412 
413     ma &= 1;
414 
415     reg = RW_MA0_LO;
416     if (ma) {
417         reg = RW_MA1_LO;
418     }
419 
420     eth->macaddr[ma][i++] = eth->regs[reg];
421     eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
422     eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
423     eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
424     eth->macaddr[ma][i++] = eth->regs[reg + 1];
425     eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
426 
427     D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
428              eth->macaddr[ma][0], eth->macaddr[ma][1],
429              eth->macaddr[ma][2], eth->macaddr[ma][3],
430              eth->macaddr[ma][4], eth->macaddr[ma][5]));
431 }
432 
433 static void
434 eth_write(void *opaque, hwaddr addr,
435           uint64_t val64, unsigned int size)
436 {
437     ETRAXFSEthState *eth = opaque;
438     uint32_t value = val64;
439 
440     addr >>= 2;
441     switch (addr) {
442     case RW_MA0_LO:
443     case RW_MA0_HI:
444         eth->regs[addr] = value;
445         eth_update_ma(eth, 0);
446         break;
447     case RW_MA1_LO:
448     case RW_MA1_HI:
449         eth->regs[addr] = value;
450         eth_update_ma(eth, 1);
451         break;
452 
453     case RW_MGM_CTRL:
454         /* Attach an MDIO/PHY abstraction.  */
455         if (value & 2) {
456             eth->mdio_bus.mdio = value & 1;
457         }
458         if (eth->mdio_bus.mdc != (value & 4)) {
459             mdio_cycle(&eth->mdio_bus);
460             eth_validate_duplex(eth);
461         }
462         eth->mdio_bus.mdc = !!(value & 4);
463         eth->regs[addr] = value;
464         break;
465 
466     case RW_REC_CTRL:
467         eth->regs[addr] = value;
468         eth_validate_duplex(eth);
469         break;
470 
471     default:
472         eth->regs[addr] = value;
473         D(printf("%s %x %x\n", __func__, addr, value));
474         break;
475     }
476 }
477 
478 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
479    filter dropping group addresses we have not joined.    The filter has 64
480    bits (m). The has function is a simple nible xor of the group addr.    */
481 static int eth_match_groupaddr(ETRAXFSEthState *eth, const unsigned char *sa)
482 {
483     unsigned int hsh;
484     int m_individual = eth->regs[RW_REC_CTRL] & 4;
485     int match;
486 
487     /* First bit on the wire of a MAC address signals multicast or
488        physical address.  */
489     if (!m_individual && !(sa[0] & 1)) {
490         return 0;
491     }
492 
493     /* Calculate the hash index for the GA registers. */
494     hsh = 0;
495     hsh ^= (*sa) & 0x3f;
496     hsh ^= ((*sa) >> 6) & 0x03;
497     ++sa;
498     hsh ^= ((*sa) << 2) & 0x03c;
499     hsh ^= ((*sa) >> 4) & 0xf;
500     ++sa;
501     hsh ^= ((*sa) << 4) & 0x30;
502     hsh ^= ((*sa) >> 2) & 0x3f;
503     ++sa;
504     hsh ^= (*sa) & 0x3f;
505     hsh ^= ((*sa) >> 6) & 0x03;
506     ++sa;
507     hsh ^= ((*sa) << 2) & 0x03c;
508     hsh ^= ((*sa) >> 4) & 0xf;
509     ++sa;
510     hsh ^= ((*sa) << 4) & 0x30;
511     hsh ^= ((*sa) >> 2) & 0x3f;
512 
513     hsh &= 63;
514     if (hsh > 31) {
515         match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
516     } else {
517         match = eth->regs[RW_GA_LO] & (1 << hsh);
518     }
519     D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
520              eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
521     return match;
522 }
523 
524 static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size)
525 {
526     unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
527     ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
528     int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
529     int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
530     int r_bcast = eth->regs[RW_REC_CTRL] & 8;
531 
532     if (size < 12) {
533         return -1;
534     }
535 
536     D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
537          buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
538          use_ma0, use_ma1, r_bcast));
539 
540     /* Does the frame get through the address filters?  */
541     if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
542         && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
543         && (!r_bcast || memcmp(buf, sa_bcast, 6))
544         && !eth_match_groupaddr(eth, buf)) {
545         return size;
546     }
547 
548     /* FIXME: Find another way to pass on the fake csum.  */
549     etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
550 
551     return size;
552 }
553 
554 static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop)
555 {
556     ETRAXFSEthState *eth = opaque;
557 
558     D(printf("%s buf=%p len=%d\n", __func__, buf, len));
559     qemu_send_packet(qemu_get_queue(eth->nic), buf, len);
560     return len;
561 }
562 
563 static void eth_set_link(NetClientState *nc)
564 {
565     ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
566     D(printf("%s %d\n", __func__, nc->link_down));
567     eth->phy.link = !nc->link_down;
568 }
569 
570 static const MemoryRegionOps eth_ops = {
571     .read = eth_read,
572     .write = eth_write,
573     .endianness = DEVICE_LITTLE_ENDIAN,
574     .valid = {
575         .min_access_size = 4,
576         .max_access_size = 4
577     }
578 };
579 
580 static NetClientInfo net_etraxfs_info = {
581     .type = NET_CLIENT_OPTIONS_KIND_NIC,
582     .size = sizeof(NICState),
583     .receive = eth_receive,
584     .link_status_changed = eth_set_link,
585 };
586 
587 static int fs_eth_init(SysBusDevice *sbd)
588 {
589     DeviceState *dev = DEVICE(sbd);
590     ETRAXFSEthState *s = ETRAX_FS_ETH(dev);
591 
592     if (!s->dma_out || !s->dma_in) {
593         error_report("Unconnected ETRAX-FS Ethernet MAC");
594         return -1;
595     }
596 
597     s->dma_out->client.push = eth_tx_push;
598     s->dma_out->client.opaque = s;
599     s->dma_in->client.opaque = s;
600     s->dma_in->client.pull = NULL;
601 
602     memory_region_init_io(&s->mmio, OBJECT(dev), &eth_ops, s,
603                           "etraxfs-eth", 0x5c);
604     sysbus_init_mmio(sbd, &s->mmio);
605 
606     qemu_macaddr_default_if_unset(&s->conf.macaddr);
607     s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
608                           object_get_typename(OBJECT(s)), dev->id, s);
609     qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
610 
611 
612     tdk_init(&s->phy);
613     mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
614     return 0;
615 }
616 
617 static Property etraxfs_eth_properties[] = {
618     DEFINE_PROP_UINT32("phyaddr", ETRAXFSEthState, phyaddr, 1),
619     DEFINE_PROP_PTR("dma_out", ETRAXFSEthState, vdma_out),
620     DEFINE_PROP_PTR("dma_in", ETRAXFSEthState, vdma_in),
621     DEFINE_NIC_PROPERTIES(ETRAXFSEthState, conf),
622     DEFINE_PROP_END_OF_LIST(),
623 };
624 
625 static void etraxfs_eth_class_init(ObjectClass *klass, void *data)
626 {
627     DeviceClass *dc = DEVICE_CLASS(klass);
628     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
629 
630     k->init = fs_eth_init;
631     dc->props = etraxfs_eth_properties;
632     /* Reason: pointer properties "dma_out", "dma_in" */
633     dc->cannot_instantiate_with_device_add_yet = true;
634 }
635 
636 static const TypeInfo etraxfs_eth_info = {
637     .name          = TYPE_ETRAX_FS_ETH,
638     .parent        = TYPE_SYS_BUS_DEVICE,
639     .instance_size = sizeof(ETRAXFSEthState),
640     .class_init    = etraxfs_eth_class_init,
641 };
642 
643 static void etraxfs_eth_register_types(void)
644 {
645     type_register_static(&etraxfs_eth_info);
646 }
647 
648 type_init(etraxfs_eth_register_types)
649