1 /* 2 * QEMU ETRAX Ethernet Controller. 3 * 4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include <stdio.h> 26 #include "hw/sysbus.h" 27 #include "net/net.h" 28 #include "hw/cris/etraxfs.h" 29 #include "qemu/error-report.h" 30 31 #define D(x) 32 33 /* Advertisement control register. */ 34 #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ 35 #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ 36 #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ 37 #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ 38 39 /* 40 * The MDIO extensions in the TDK PHY model were reversed engineered from the 41 * linux driver (PHYID and Diagnostics reg). 42 * TODO: Add friendly names for the register nums. 43 */ 44 struct qemu_phy 45 { 46 uint32_t regs[32]; 47 48 int link; 49 50 unsigned int (*read)(struct qemu_phy *phy, unsigned int req); 51 void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data); 52 }; 53 54 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req) 55 { 56 int regnum; 57 unsigned r = 0; 58 59 regnum = req & 0x1f; 60 61 switch (regnum) { 62 case 1: 63 if (!phy->link) { 64 break; 65 } 66 /* MR1. */ 67 /* Speeds and modes. */ 68 r |= (1 << 13) | (1 << 14); 69 r |= (1 << 11) | (1 << 12); 70 r |= (1 << 5); /* Autoneg complete. */ 71 r |= (1 << 3); /* Autoneg able. */ 72 r |= (1 << 2); /* link. */ 73 break; 74 case 5: 75 /* Link partner ability. 76 We are kind; always agree with whatever best mode 77 the guest advertises. */ 78 r = 1 << 14; /* Success. */ 79 /* Copy advertised modes. */ 80 r |= phy->regs[4] & (15 << 5); 81 /* Autoneg support. */ 82 r |= 1; 83 break; 84 case 18: 85 { 86 /* Diagnostics reg. */ 87 int duplex = 0; 88 int speed_100 = 0; 89 90 if (!phy->link) { 91 break; 92 } 93 94 /* Are we advertising 100 half or 100 duplex ? */ 95 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF); 96 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL); 97 98 /* Are we advertising 10 duplex or 100 duplex ? */ 99 duplex = !!(phy->regs[4] & ADVERTISE_100FULL); 100 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL); 101 r = (speed_100 << 10) | (duplex << 11); 102 } 103 break; 104 105 default: 106 r = phy->regs[regnum]; 107 break; 108 } 109 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum)); 110 return r; 111 } 112 113 static void 114 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data) 115 { 116 int regnum; 117 118 regnum = req & 0x1f; 119 D(printf("%s reg[%d] = %x\n", __func__, regnum, data)); 120 switch (regnum) { 121 default: 122 phy->regs[regnum] = data; 123 break; 124 } 125 } 126 127 static void 128 tdk_init(struct qemu_phy *phy) 129 { 130 phy->regs[0] = 0x3100; 131 /* PHY Id. */ 132 phy->regs[2] = 0x0300; 133 phy->regs[3] = 0xe400; 134 /* Autonegotiation advertisement reg. */ 135 phy->regs[4] = 0x01E1; 136 phy->link = 1; 137 138 phy->read = tdk_read; 139 phy->write = tdk_write; 140 } 141 142 struct qemu_mdio 143 { 144 /* bus. */ 145 int mdc; 146 int mdio; 147 148 /* decoder. */ 149 enum { 150 PREAMBLE, 151 SOF, 152 OPC, 153 ADDR, 154 REQ, 155 TURNAROUND, 156 DATA 157 } state; 158 unsigned int drive; 159 160 unsigned int cnt; 161 unsigned int addr; 162 unsigned int opc; 163 unsigned int req; 164 unsigned int data; 165 166 struct qemu_phy *devs[32]; 167 }; 168 169 static void 170 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) 171 { 172 bus->devs[addr & 0x1f] = phy; 173 } 174 175 #ifdef USE_THIS_DEAD_CODE 176 static void 177 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) 178 { 179 bus->devs[addr & 0x1f] = NULL; 180 } 181 #endif 182 183 static void mdio_read_req(struct qemu_mdio *bus) 184 { 185 struct qemu_phy *phy; 186 187 phy = bus->devs[bus->addr]; 188 if (phy && phy->read) { 189 bus->data = phy->read(phy, bus->req); 190 } else { 191 bus->data = 0xffff; 192 } 193 } 194 195 static void mdio_write_req(struct qemu_mdio *bus) 196 { 197 struct qemu_phy *phy; 198 199 phy = bus->devs[bus->addr]; 200 if (phy && phy->write) { 201 phy->write(phy, bus->req, bus->data); 202 } 203 } 204 205 static void mdio_cycle(struct qemu_mdio *bus) 206 { 207 bus->cnt++; 208 209 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n", 210 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive)); 211 #if 0 212 if (bus->mdc) { 213 printf("%d", bus->mdio); 214 } 215 #endif 216 switch (bus->state) { 217 case PREAMBLE: 218 if (bus->mdc) { 219 if (bus->cnt >= (32 * 2) && !bus->mdio) { 220 bus->cnt = 0; 221 bus->state = SOF; 222 bus->data = 0; 223 } 224 } 225 break; 226 case SOF: 227 if (bus->mdc) { 228 if (bus->mdio != 1) { 229 printf("WARNING: no SOF\n"); 230 } 231 if (bus->cnt == 1*2) { 232 bus->cnt = 0; 233 bus->opc = 0; 234 bus->state = OPC; 235 } 236 } 237 break; 238 case OPC: 239 if (bus->mdc) { 240 bus->opc <<= 1; 241 bus->opc |= bus->mdio & 1; 242 if (bus->cnt == 2*2) { 243 bus->cnt = 0; 244 bus->addr = 0; 245 bus->state = ADDR; 246 } 247 } 248 break; 249 case ADDR: 250 if (bus->mdc) { 251 bus->addr <<= 1; 252 bus->addr |= bus->mdio & 1; 253 254 if (bus->cnt == 5*2) { 255 bus->cnt = 0; 256 bus->req = 0; 257 bus->state = REQ; 258 } 259 } 260 break; 261 case REQ: 262 if (bus->mdc) { 263 bus->req <<= 1; 264 bus->req |= bus->mdio & 1; 265 if (bus->cnt == 5*2) { 266 bus->cnt = 0; 267 bus->state = TURNAROUND; 268 } 269 } 270 break; 271 case TURNAROUND: 272 if (bus->mdc && bus->cnt == 2*2) { 273 bus->mdio = 0; 274 bus->cnt = 0; 275 276 if (bus->opc == 2) { 277 bus->drive = 1; 278 mdio_read_req(bus); 279 bus->mdio = bus->data & 1; 280 } 281 bus->state = DATA; 282 } 283 break; 284 case DATA: 285 if (!bus->mdc) { 286 if (bus->drive) { 287 bus->mdio = !!(bus->data & (1 << 15)); 288 bus->data <<= 1; 289 } 290 } else { 291 if (!bus->drive) { 292 bus->data <<= 1; 293 bus->data |= bus->mdio; 294 } 295 if (bus->cnt == 16 * 2) { 296 bus->cnt = 0; 297 bus->state = PREAMBLE; 298 if (!bus->drive) { 299 mdio_write_req(bus); 300 } 301 bus->drive = 0; 302 } 303 } 304 break; 305 default: 306 break; 307 } 308 } 309 310 /* ETRAX-FS Ethernet MAC block starts here. */ 311 312 #define RW_MA0_LO 0x00 313 #define RW_MA0_HI 0x01 314 #define RW_MA1_LO 0x02 315 #define RW_MA1_HI 0x03 316 #define RW_GA_LO 0x04 317 #define RW_GA_HI 0x05 318 #define RW_GEN_CTRL 0x06 319 #define RW_REC_CTRL 0x07 320 #define RW_TR_CTRL 0x08 321 #define RW_CLR_ERR 0x09 322 #define RW_MGM_CTRL 0x0a 323 #define R_STAT 0x0b 324 #define FS_ETH_MAX_REGS 0x17 325 326 #define TYPE_ETRAX_FS_ETH "etraxfs-eth" 327 #define ETRAX_FS_ETH(obj) \ 328 OBJECT_CHECK(ETRAXFSEthState, (obj), TYPE_ETRAX_FS_ETH) 329 330 typedef struct ETRAXFSEthState 331 { 332 SysBusDevice parent_obj; 333 334 MemoryRegion mmio; 335 NICState *nic; 336 NICConf conf; 337 338 /* Two addrs in the filter. */ 339 uint8_t macaddr[2][6]; 340 uint32_t regs[FS_ETH_MAX_REGS]; 341 342 union { 343 void *vdma_out; 344 struct etraxfs_dma_client *dma_out; 345 }; 346 union { 347 void *vdma_in; 348 struct etraxfs_dma_client *dma_in; 349 }; 350 351 /* MDIO bus. */ 352 struct qemu_mdio mdio_bus; 353 unsigned int phyaddr; 354 int duplex_mismatch; 355 356 /* PHY. */ 357 struct qemu_phy phy; 358 } ETRAXFSEthState; 359 360 static void eth_validate_duplex(ETRAXFSEthState *eth) 361 { 362 struct qemu_phy *phy; 363 unsigned int phy_duplex; 364 unsigned int mac_duplex; 365 int new_mm = 0; 366 367 phy = eth->mdio_bus.devs[eth->phyaddr]; 368 phy_duplex = !!(phy->read(phy, 18) & (1 << 11)); 369 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128); 370 371 if (mac_duplex != phy_duplex) { 372 new_mm = 1; 373 } 374 375 if (eth->regs[RW_GEN_CTRL] & 1) { 376 if (new_mm != eth->duplex_mismatch) { 377 if (new_mm) { 378 printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n", 379 mac_duplex, phy_duplex); 380 } else { 381 printf("HW: ETH duplex ok.\n"); 382 } 383 } 384 eth->duplex_mismatch = new_mm; 385 } 386 } 387 388 static uint64_t 389 eth_read(void *opaque, hwaddr addr, unsigned int size) 390 { 391 ETRAXFSEthState *eth = opaque; 392 uint32_t r = 0; 393 394 addr >>= 2; 395 396 switch (addr) { 397 case R_STAT: 398 r = eth->mdio_bus.mdio & 1; 399 break; 400 default: 401 r = eth->regs[addr]; 402 D(printf("%s %x\n", __func__, addr * 4)); 403 break; 404 } 405 return r; 406 } 407 408 static void eth_update_ma(ETRAXFSEthState *eth, int ma) 409 { 410 int reg; 411 int i = 0; 412 413 ma &= 1; 414 415 reg = RW_MA0_LO; 416 if (ma) { 417 reg = RW_MA1_LO; 418 } 419 420 eth->macaddr[ma][i++] = eth->regs[reg]; 421 eth->macaddr[ma][i++] = eth->regs[reg] >> 8; 422 eth->macaddr[ma][i++] = eth->regs[reg] >> 16; 423 eth->macaddr[ma][i++] = eth->regs[reg] >> 24; 424 eth->macaddr[ma][i++] = eth->regs[reg + 1]; 425 eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8; 426 427 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma, 428 eth->macaddr[ma][0], eth->macaddr[ma][1], 429 eth->macaddr[ma][2], eth->macaddr[ma][3], 430 eth->macaddr[ma][4], eth->macaddr[ma][5])); 431 } 432 433 static void 434 eth_write(void *opaque, hwaddr addr, 435 uint64_t val64, unsigned int size) 436 { 437 ETRAXFSEthState *eth = opaque; 438 uint32_t value = val64; 439 440 addr >>= 2; 441 switch (addr) { 442 case RW_MA0_LO: 443 case RW_MA0_HI: 444 eth->regs[addr] = value; 445 eth_update_ma(eth, 0); 446 break; 447 case RW_MA1_LO: 448 case RW_MA1_HI: 449 eth->regs[addr] = value; 450 eth_update_ma(eth, 1); 451 break; 452 453 case RW_MGM_CTRL: 454 /* Attach an MDIO/PHY abstraction. */ 455 if (value & 2) { 456 eth->mdio_bus.mdio = value & 1; 457 } 458 if (eth->mdio_bus.mdc != (value & 4)) { 459 mdio_cycle(ð->mdio_bus); 460 eth_validate_duplex(eth); 461 } 462 eth->mdio_bus.mdc = !!(value & 4); 463 eth->regs[addr] = value; 464 break; 465 466 case RW_REC_CTRL: 467 eth->regs[addr] = value; 468 eth_validate_duplex(eth); 469 break; 470 471 default: 472 eth->regs[addr] = value; 473 D(printf("%s %x %x\n", __func__, addr, value)); 474 break; 475 } 476 } 477 478 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom 479 filter dropping group addresses we have not joined. The filter has 64 480 bits (m). The has function is a simple nible xor of the group addr. */ 481 static int eth_match_groupaddr(ETRAXFSEthState *eth, const unsigned char *sa) 482 { 483 unsigned int hsh; 484 int m_individual = eth->regs[RW_REC_CTRL] & 4; 485 int match; 486 487 /* First bit on the wire of a MAC address signals multicast or 488 physical address. */ 489 if (!m_individual && !(sa[0] & 1)) { 490 return 0; 491 } 492 493 /* Calculate the hash index for the GA registers. */ 494 hsh = 0; 495 hsh ^= (*sa) & 0x3f; 496 hsh ^= ((*sa) >> 6) & 0x03; 497 ++sa; 498 hsh ^= ((*sa) << 2) & 0x03c; 499 hsh ^= ((*sa) >> 4) & 0xf; 500 ++sa; 501 hsh ^= ((*sa) << 4) & 0x30; 502 hsh ^= ((*sa) >> 2) & 0x3f; 503 ++sa; 504 hsh ^= (*sa) & 0x3f; 505 hsh ^= ((*sa) >> 6) & 0x03; 506 ++sa; 507 hsh ^= ((*sa) << 2) & 0x03c; 508 hsh ^= ((*sa) >> 4) & 0xf; 509 ++sa; 510 hsh ^= ((*sa) << 4) & 0x30; 511 hsh ^= ((*sa) >> 2) & 0x3f; 512 513 hsh &= 63; 514 if (hsh > 31) { 515 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32)); 516 } else { 517 match = eth->regs[RW_GA_LO] & (1 << hsh); 518 } 519 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh, 520 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match)); 521 return match; 522 } 523 524 static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size) 525 { 526 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 527 ETRAXFSEthState *eth = qemu_get_nic_opaque(nc); 528 int use_ma0 = eth->regs[RW_REC_CTRL] & 1; 529 int use_ma1 = eth->regs[RW_REC_CTRL] & 2; 530 int r_bcast = eth->regs[RW_REC_CTRL] & 8; 531 532 if (size < 12) { 533 return -1; 534 } 535 536 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n", 537 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], 538 use_ma0, use_ma1, r_bcast)); 539 540 /* Does the frame get through the address filters? */ 541 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6)) 542 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6)) 543 && (!r_bcast || memcmp(buf, sa_bcast, 6)) 544 && !eth_match_groupaddr(eth, buf)) { 545 return size; 546 } 547 548 /* FIXME: Find another way to pass on the fake csum. */ 549 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1); 550 551 return size; 552 } 553 554 static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop) 555 { 556 ETRAXFSEthState *eth = opaque; 557 558 D(printf("%s buf=%p len=%d\n", __func__, buf, len)); 559 qemu_send_packet(qemu_get_queue(eth->nic), buf, len); 560 return len; 561 } 562 563 static void eth_set_link(NetClientState *nc) 564 { 565 ETRAXFSEthState *eth = qemu_get_nic_opaque(nc); 566 D(printf("%s %d\n", __func__, nc->link_down)); 567 eth->phy.link = !nc->link_down; 568 } 569 570 static const MemoryRegionOps eth_ops = { 571 .read = eth_read, 572 .write = eth_write, 573 .endianness = DEVICE_LITTLE_ENDIAN, 574 .valid = { 575 .min_access_size = 4, 576 .max_access_size = 4 577 } 578 }; 579 580 static NetClientInfo net_etraxfs_info = { 581 .type = NET_CLIENT_OPTIONS_KIND_NIC, 582 .size = sizeof(NICState), 583 .receive = eth_receive, 584 .link_status_changed = eth_set_link, 585 }; 586 587 static int fs_eth_init(SysBusDevice *sbd) 588 { 589 DeviceState *dev = DEVICE(sbd); 590 ETRAXFSEthState *s = ETRAX_FS_ETH(dev); 591 592 if (!s->dma_out || !s->dma_in) { 593 error_report("Unconnected ETRAX-FS Ethernet MAC"); 594 return -1; 595 } 596 597 s->dma_out->client.push = eth_tx_push; 598 s->dma_out->client.opaque = s; 599 s->dma_in->client.opaque = s; 600 s->dma_in->client.pull = NULL; 601 602 memory_region_init_io(&s->mmio, OBJECT(dev), ð_ops, s, 603 "etraxfs-eth", 0x5c); 604 sysbus_init_mmio(sbd, &s->mmio); 605 606 qemu_macaddr_default_if_unset(&s->conf.macaddr); 607 s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf, 608 object_get_typename(OBJECT(s)), dev->id, s); 609 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 610 611 612 tdk_init(&s->phy); 613 mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr); 614 return 0; 615 } 616 617 static Property etraxfs_eth_properties[] = { 618 DEFINE_PROP_UINT32("phyaddr", ETRAXFSEthState, phyaddr, 1), 619 DEFINE_PROP_PTR("dma_out", ETRAXFSEthState, vdma_out), 620 DEFINE_PROP_PTR("dma_in", ETRAXFSEthState, vdma_in), 621 DEFINE_NIC_PROPERTIES(ETRAXFSEthState, conf), 622 DEFINE_PROP_END_OF_LIST(), 623 }; 624 625 static void etraxfs_eth_class_init(ObjectClass *klass, void *data) 626 { 627 DeviceClass *dc = DEVICE_CLASS(klass); 628 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 629 630 k->init = fs_eth_init; 631 dc->props = etraxfs_eth_properties; 632 /* Reason: pointer properties "dma_out", "dma_in" */ 633 dc->cannot_instantiate_with_device_add_yet = true; 634 } 635 636 static const TypeInfo etraxfs_eth_info = { 637 .name = TYPE_ETRAX_FS_ETH, 638 .parent = TYPE_SYS_BUS_DEVICE, 639 .instance_size = sizeof(ETRAXFSEthState), 640 .class_init = etraxfs_eth_class_init, 641 }; 642 643 static void etraxfs_eth_register_types(void) 644 { 645 type_register_static(&etraxfs_eth_info); 646 } 647 648 type_init(etraxfs_eth_register_types) 649