1 /* 2 * QEMU i8255x (PRO100) emulation 3 * 4 * Copyright (C) 2006-2011 Stefan Weil 5 * 6 * Portions of the code are copies from grub / etherboot eepro100.c 7 * and linux e100.c. 8 * 9 * This program is free software: you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation, either version 2 of the License, or 12 * (at your option) version 3 or any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 * 22 * Tested features (i82559): 23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok 24 * Linux networking (i386) ok 25 * 26 * Untested: 27 * Windows networking 28 * 29 * References: 30 * 31 * Intel 8255x 10/100 Mbps Ethernet Controller Family 32 * Open Source Software Developer Manual 33 * 34 * TODO: 35 * * PHY emulation should be separated from nic emulation. 36 * Most nic emulations could share the same phy code. 37 * * i82550 is untested. It is programmed like the i82559. 38 * * i82562 is untested. It is programmed like the i82559. 39 * * Power management (i82558 and later) is not implemented. 40 * * Wake-on-LAN is not implemented. 41 */ 42 43 #include "qemu/osdep.h" 44 #include "hw/hw.h" 45 #include "hw/pci/pci.h" 46 #include "net/net.h" 47 #include "hw/nvram/eeprom93xx.h" 48 #include "sysemu/sysemu.h" 49 #include "sysemu/dma.h" 50 #include "qemu/bitops.h" 51 #include "qapi/error.h" 52 53 /* QEMU sends frames smaller than 60 bytes to ethernet nics. 54 * Such frames are rejected by real nics and their emulations. 55 * To avoid this behaviour, other nic emulations pad received 56 * frames. The following definition enables this padding for 57 * eepro100, too. We keep the define around in case it might 58 * become useful the future if the core networking is ever 59 * changed to pad short packets itself. */ 60 #define CONFIG_PAD_RECEIVED_FRAMES 61 62 #define KiB 1024 63 64 /* Debug EEPRO100 card. */ 65 #if 0 66 # define DEBUG_EEPRO100 67 #endif 68 69 #ifdef DEBUG_EEPRO100 70 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__) 71 #else 72 #define logout(fmt, ...) ((void)0) 73 #endif 74 75 /* Set flags to 0 to disable debug output. */ 76 #define INT 1 /* interrupt related actions */ 77 #define MDI 1 /* mdi related actions */ 78 #define OTHER 1 79 #define RXTX 1 80 #define EEPROM 1 /* eeprom related actions */ 81 82 #define TRACE(flag, command) ((flag) ? (command) : (void)0) 83 84 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n") 85 86 #define MAX_ETH_FRAME_SIZE 1514 87 88 /* This driver supports several different devices which are declared here. */ 89 #define i82550 0x82550 90 #define i82551 0x82551 91 #define i82557A 0x82557a 92 #define i82557B 0x82557b 93 #define i82557C 0x82557c 94 #define i82558A 0x82558a 95 #define i82558B 0x82558b 96 #define i82559A 0x82559a 97 #define i82559B 0x82559b 98 #define i82559C 0x82559c 99 #define i82559ER 0x82559e 100 #define i82562 0x82562 101 #define i82801 0x82801 102 103 /* Use 64 word EEPROM. TODO: could be a runtime option. */ 104 #define EEPROM_SIZE 64 105 106 #define PCI_MEM_SIZE (4 * KiB) 107 #define PCI_IO_SIZE 64 108 #define PCI_FLASH_SIZE (128 * KiB) 109 110 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m) 111 112 /* The SCB accepts the following controls for the Tx and Rx units: */ 113 #define CU_NOP 0x0000 /* No operation. */ 114 #define CU_START 0x0010 /* CU start. */ 115 #define CU_RESUME 0x0020 /* CU resume. */ 116 #define CU_STATSADDR 0x0040 /* Load dump counters address. */ 117 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */ 118 #define CU_CMD_BASE 0x0060 /* Load CU base address. */ 119 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */ 120 #define CU_SRESUME 0x00a0 /* CU static resume. */ 121 122 #define RU_NOP 0x0000 123 #define RX_START 0x0001 124 #define RX_RESUME 0x0002 125 #define RU_ABORT 0x0004 126 #define RX_ADDR_LOAD 0x0006 127 #define RX_RESUMENR 0x0007 128 #define INT_MASK 0x0100 129 #define DRVR_INT 0x0200 /* Driver generated interrupt. */ 130 131 typedef struct { 132 const char *name; 133 const char *desc; 134 uint16_t device_id; 135 uint8_t revision; 136 uint16_t subsystem_vendor_id; 137 uint16_t subsystem_id; 138 139 uint32_t device; 140 uint8_t stats_size; 141 bool has_extended_tcb_support; 142 bool power_management; 143 } E100PCIDeviceInfo; 144 145 /* Offsets to the various registers. 146 All accesses need not be longword aligned. */ 147 typedef enum { 148 SCBStatus = 0, /* Status Word. */ 149 SCBAck = 1, 150 SCBCmd = 2, /* Rx/Command Unit command and status. */ 151 SCBIntmask = 3, 152 SCBPointer = 4, /* General purpose pointer. */ 153 SCBPort = 8, /* Misc. commands and operands. */ 154 SCBflash = 12, /* Flash memory control. */ 155 SCBeeprom = 14, /* EEPROM control. */ 156 SCBCtrlMDI = 16, /* MDI interface control. */ 157 SCBEarlyRx = 20, /* Early receive byte count. */ 158 SCBFlow = 24, /* Flow Control. */ 159 SCBpmdr = 27, /* Power Management Driver. */ 160 SCBgctrl = 28, /* General Control. */ 161 SCBgstat = 29, /* General Status. */ 162 } E100RegisterOffset; 163 164 /* A speedo3 transmit buffer descriptor with two buffers... */ 165 typedef struct { 166 uint16_t status; 167 uint16_t command; 168 uint32_t link; /* void * */ 169 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */ 170 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */ 171 uint8_t tx_threshold; /* transmit threshold */ 172 uint8_t tbd_count; /* TBD number */ 173 #if 0 174 /* This constitutes two "TBD" entries: hdr and data */ 175 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */ 176 int32_t tx_buf_size0; /* Length of Tx hdr. */ 177 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */ 178 int32_t tx_buf_size1; /* Length of Tx data. */ 179 #endif 180 } eepro100_tx_t; 181 182 /* Receive frame descriptor. */ 183 typedef struct { 184 int16_t status; 185 uint16_t command; 186 uint32_t link; /* struct RxFD * */ 187 uint32_t rx_buf_addr; /* void * */ 188 uint16_t count; 189 uint16_t size; 190 /* Ethernet frame data follows. */ 191 } eepro100_rx_t; 192 193 typedef enum { 194 COMMAND_EL = BIT(15), 195 COMMAND_S = BIT(14), 196 COMMAND_I = BIT(13), 197 COMMAND_NC = BIT(4), 198 COMMAND_SF = BIT(3), 199 COMMAND_CMD = BITS(2, 0), 200 } scb_command_bit; 201 202 typedef enum { 203 STATUS_C = BIT(15), 204 STATUS_OK = BIT(13), 205 } scb_status_bit; 206 207 typedef struct { 208 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions, 209 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 210 tx_multiple_collisions, tx_total_collisions; 211 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors, 212 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 213 rx_short_frame_errors; 214 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 215 uint16_t xmt_tco_frames, rcv_tco_frames; 216 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */ 217 uint32_t reserved[4]; 218 } eepro100_stats_t; 219 220 typedef enum { 221 cu_idle = 0, 222 cu_suspended = 1, 223 cu_active = 2, 224 cu_lpq_active = 2, 225 cu_hqp_active = 3 226 } cu_state_t; 227 228 typedef enum { 229 ru_idle = 0, 230 ru_suspended = 1, 231 ru_no_resources = 2, 232 ru_ready = 4 233 } ru_state_t; 234 235 typedef struct { 236 PCIDevice dev; 237 /* Hash register (multicast mask array, multiple individual addresses). */ 238 uint8_t mult[8]; 239 MemoryRegion mmio_bar; 240 MemoryRegion io_bar; 241 MemoryRegion flash_bar; 242 NICState *nic; 243 NICConf conf; 244 uint8_t scb_stat; /* SCB stat/ack byte */ 245 uint8_t int_stat; /* PCI interrupt status */ 246 /* region must not be saved by nic_save. */ 247 uint16_t mdimem[32]; 248 eeprom_t *eeprom; 249 uint32_t device; /* device variant */ 250 /* (cu_base + cu_offset) address the next command block in the command block list. */ 251 uint32_t cu_base; /* CU base address */ 252 uint32_t cu_offset; /* CU address offset */ 253 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */ 254 uint32_t ru_base; /* RU base address */ 255 uint32_t ru_offset; /* RU address offset */ 256 uint32_t statsaddr; /* pointer to eepro100_stats_t */ 257 258 /* Temporary status information (no need to save these values), 259 * used while processing CU commands. */ 260 eepro100_tx_t tx; /* transmit buffer descriptor */ 261 uint32_t cb_address; /* = cu_base + cu_offset */ 262 263 /* Statistical counters. Also used for wake-up packet (i82559). */ 264 eepro100_stats_t statistics; 265 266 /* Data in mem is always in the byte order of the controller (le). 267 * It must be dword aligned to allow direct access to 32 bit values. */ 268 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8))); 269 270 /* Configuration bytes. */ 271 uint8_t configuration[22]; 272 273 /* vmstate for each particular nic */ 274 VMStateDescription *vmstate; 275 276 /* Quasi static device properties (no need to save them). */ 277 uint16_t stats_size; 278 bool has_extended_tcb_support; 279 } EEPRO100State; 280 281 /* Word indices in EEPROM. */ 282 typedef enum { 283 EEPROM_CNFG_MDIX = 0x03, 284 EEPROM_ID = 0x05, 285 EEPROM_PHY_ID = 0x06, 286 EEPROM_VENDOR_ID = 0x0c, 287 EEPROM_CONFIG_ASF = 0x0d, 288 EEPROM_DEVICE_ID = 0x23, 289 EEPROM_SMBUS_ADDR = 0x90, 290 } EEPROMOffset; 291 292 /* Bit values for EEPROM ID word. */ 293 typedef enum { 294 EEPROM_ID_MDM = BIT(0), /* Modem */ 295 EEPROM_ID_STB = BIT(1), /* Standby Enable */ 296 EEPROM_ID_WMR = BIT(2), /* ??? */ 297 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */ 298 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */ 299 EEPROM_ID_ALT = BIT(7), /* */ 300 /* BITS(10, 8) device revision */ 301 EEPROM_ID_BD = BIT(11), /* boot disable */ 302 EEPROM_ID_ID = BIT(13), /* id bit */ 303 /* BITS(15, 14) signature */ 304 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */ 305 } eeprom_id_bit; 306 307 /* Default values for MDI (PHY) registers */ 308 static const uint16_t eepro100_mdi_default[] = { 309 /* MDI Registers 0 - 6, 7 */ 310 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000, 311 /* MDI Registers 8 - 15 */ 312 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 313 /* MDI Registers 16 - 31 */ 314 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 315 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 316 }; 317 318 /* Readonly mask for MDI (PHY) registers */ 319 static const uint16_t eepro100_mdi_mask[] = { 320 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000, 321 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 322 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 323 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 324 }; 325 326 #define POLYNOMIAL 0x04c11db6 327 328 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s); 329 330 /* From FreeBSD (locally modified). */ 331 static unsigned e100_compute_mcast_idx(const uint8_t *ep) 332 { 333 uint32_t crc; 334 int carry, i, j; 335 uint8_t b; 336 337 crc = 0xffffffff; 338 for (i = 0; i < 6; i++) { 339 b = *ep++; 340 for (j = 0; j < 8; j++) { 341 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01); 342 crc <<= 1; 343 b >>= 1; 344 if (carry) { 345 crc = ((crc ^ POLYNOMIAL) | carry); 346 } 347 } 348 } 349 return (crc & BITS(7, 2)) >> 2; 350 } 351 352 /* Read a 16 bit control/status (CSR) register. */ 353 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr) 354 { 355 assert(!((uintptr_t)&s->mem[addr] & 1)); 356 return lduw_le_p(&s->mem[addr]); 357 } 358 359 /* Read a 32 bit control/status (CSR) register. */ 360 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr) 361 { 362 assert(!((uintptr_t)&s->mem[addr] & 3)); 363 return ldl_le_p(&s->mem[addr]); 364 } 365 366 /* Write a 16 bit control/status (CSR) register. */ 367 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr, 368 uint16_t val) 369 { 370 assert(!((uintptr_t)&s->mem[addr] & 1)); 371 stw_le_p(&s->mem[addr], val); 372 } 373 374 /* Read a 32 bit control/status (CSR) register. */ 375 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr, 376 uint32_t val) 377 { 378 assert(!((uintptr_t)&s->mem[addr] & 3)); 379 stl_le_p(&s->mem[addr], val); 380 } 381 382 #if defined(DEBUG_EEPRO100) 383 static const char *nic_dump(const uint8_t * buf, unsigned size) 384 { 385 static char dump[3 * 16 + 1]; 386 char *p = &dump[0]; 387 if (size > 16) { 388 size = 16; 389 } 390 while (size-- > 0) { 391 p += sprintf(p, " %02x", *buf++); 392 } 393 return dump; 394 } 395 #endif /* DEBUG_EEPRO100 */ 396 397 enum scb_stat_ack { 398 stat_ack_not_ours = 0x00, 399 stat_ack_sw_gen = 0x04, 400 stat_ack_rnr = 0x10, 401 stat_ack_cu_idle = 0x20, 402 stat_ack_frame_rx = 0x40, 403 stat_ack_cu_cmd_done = 0x80, 404 stat_ack_not_present = 0xFF, 405 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 406 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 407 }; 408 409 static void disable_interrupt(EEPRO100State * s) 410 { 411 if (s->int_stat) { 412 TRACE(INT, logout("interrupt disabled\n")); 413 pci_irq_deassert(&s->dev); 414 s->int_stat = 0; 415 } 416 } 417 418 static void enable_interrupt(EEPRO100State * s) 419 { 420 if (!s->int_stat) { 421 TRACE(INT, logout("interrupt enabled\n")); 422 pci_irq_assert(&s->dev); 423 s->int_stat = 1; 424 } 425 } 426 427 static void eepro100_acknowledge(EEPRO100State * s) 428 { 429 s->scb_stat &= ~s->mem[SCBAck]; 430 s->mem[SCBAck] = s->scb_stat; 431 if (s->scb_stat == 0) { 432 disable_interrupt(s); 433 } 434 } 435 436 static void eepro100_interrupt(EEPRO100State * s, uint8_t status) 437 { 438 uint8_t mask = ~s->mem[SCBIntmask]; 439 s->mem[SCBAck] |= status; 440 status = s->scb_stat = s->mem[SCBAck]; 441 status &= (mask | 0x0f); 442 #if 0 443 status &= (~s->mem[SCBIntmask] | 0x0xf); 444 #endif 445 if (status && (mask & 0x01)) { 446 /* SCB mask and SCB Bit M do not disable interrupt. */ 447 enable_interrupt(s); 448 } else if (s->int_stat) { 449 disable_interrupt(s); 450 } 451 } 452 453 static void eepro100_cx_interrupt(EEPRO100State * s) 454 { 455 /* CU completed action command. */ 456 /* Transmit not ok (82557 only, not in emulation). */ 457 eepro100_interrupt(s, 0x80); 458 } 459 460 static void eepro100_cna_interrupt(EEPRO100State * s) 461 { 462 /* CU left the active state. */ 463 eepro100_interrupt(s, 0x20); 464 } 465 466 static void eepro100_fr_interrupt(EEPRO100State * s) 467 { 468 /* RU received a complete frame. */ 469 eepro100_interrupt(s, 0x40); 470 } 471 472 static void eepro100_rnr_interrupt(EEPRO100State * s) 473 { 474 /* RU is not ready. */ 475 eepro100_interrupt(s, 0x10); 476 } 477 478 static void eepro100_mdi_interrupt(EEPRO100State * s) 479 { 480 /* MDI completed read or write cycle. */ 481 eepro100_interrupt(s, 0x08); 482 } 483 484 static void eepro100_swi_interrupt(EEPRO100State * s) 485 { 486 /* Software has requested an interrupt. */ 487 eepro100_interrupt(s, 0x04); 488 } 489 490 #if 0 491 static void eepro100_fcp_interrupt(EEPRO100State * s) 492 { 493 /* Flow control pause interrupt (82558 and later). */ 494 eepro100_interrupt(s, 0x01); 495 } 496 #endif 497 498 static void e100_pci_reset(EEPRO100State *s, Error **errp) 499 { 500 E100PCIDeviceInfo *info = eepro100_get_class(s); 501 uint32_t device = s->device; 502 uint8_t *pci_conf = s->dev.config; 503 504 TRACE(OTHER, logout("%p\n", s)); 505 506 /* PCI Status */ 507 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM | 508 PCI_STATUS_FAST_BACK); 509 /* PCI Latency Timer */ 510 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */ 511 /* Capability Pointer is set by PCI framework. */ 512 /* Interrupt Line */ 513 /* Interrupt Pin */ 514 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */ 515 /* Minimum Grant */ 516 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08); 517 /* Maximum Latency */ 518 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18); 519 520 s->stats_size = info->stats_size; 521 s->has_extended_tcb_support = info->has_extended_tcb_support; 522 523 switch (device) { 524 case i82550: 525 case i82551: 526 case i82557A: 527 case i82557B: 528 case i82557C: 529 case i82558A: 530 case i82558B: 531 case i82559A: 532 case i82559B: 533 case i82559ER: 534 case i82562: 535 case i82801: 536 case i82559C: 537 break; 538 default: 539 logout("Device %X is undefined!\n", device); 540 } 541 542 /* Standard TxCB. */ 543 s->configuration[6] |= BIT(4); 544 545 /* Standard statistical counters. */ 546 s->configuration[6] |= BIT(5); 547 548 if (s->stats_size == 80) { 549 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */ 550 if (s->configuration[6] & BIT(2)) { 551 /* TCO statistical counters. */ 552 assert(s->configuration[6] & BIT(5)); 553 } else { 554 if (s->configuration[6] & BIT(5)) { 555 /* No extended statistical counters, i82557 compatible. */ 556 s->stats_size = 64; 557 } else { 558 /* i82558 compatible. */ 559 s->stats_size = 76; 560 } 561 } 562 } else { 563 if (s->configuration[6] & BIT(5)) { 564 /* No extended statistical counters. */ 565 s->stats_size = 64; 566 } 567 } 568 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics)); 569 570 if (info->power_management) { 571 /* Power Management Capabilities */ 572 int cfg_offset = 0xdc; 573 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM, 574 cfg_offset, PCI_PM_SIZEOF, 575 errp); 576 if (r < 0) { 577 return; 578 } 579 580 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21); 581 #if 0 /* TODO: replace dummy code for power management emulation. */ 582 /* TODO: Power Management Control / Status. */ 583 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000); 584 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */ 585 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000); 586 #endif 587 } 588 589 #if EEPROM_SIZE > 0 590 if (device == i82557C || device == i82558B || device == i82559C) { 591 /* 592 TODO: get vendor id from EEPROM for i82557C or later. 593 TODO: get device id from EEPROM for i82557C or later. 594 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559. 595 TODO: header type is determined by EEPROM for i82559. 596 TODO: get subsystem id from EEPROM for i82557C or later. 597 TODO: get subsystem vendor id from EEPROM for i82557C or later. 598 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later. 599 TODO: capability pointer depends on EEPROM for i82558. 600 */ 601 logout("Get device id and revision from EEPROM!!!\n"); 602 } 603 #endif /* EEPROM_SIZE > 0 */ 604 } 605 606 static void nic_selective_reset(EEPRO100State * s) 607 { 608 size_t i; 609 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom); 610 #if 0 611 eeprom93xx_reset(s->eeprom); 612 #endif 613 memcpy(eeprom_contents, s->conf.macaddr.a, 6); 614 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID; 615 if (s->device == i82557B || s->device == i82557C) 616 eeprom_contents[5] = 0x0100; 617 eeprom_contents[EEPROM_PHY_ID] = 1; 618 uint16_t sum = 0; 619 for (i = 0; i < EEPROM_SIZE - 1; i++) { 620 sum += eeprom_contents[i]; 621 } 622 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum; 623 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1])); 624 625 memset(s->mem, 0, sizeof(s->mem)); 626 e100_write_reg4(s, SCBCtrlMDI, BIT(21)); 627 628 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default)); 629 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem)); 630 } 631 632 static void nic_reset(void *opaque) 633 { 634 EEPRO100State *s = opaque; 635 TRACE(OTHER, logout("%p\n", s)); 636 /* TODO: Clearing of hash register for selective reset, too? */ 637 memset(&s->mult[0], 0, sizeof(s->mult)); 638 nic_selective_reset(s); 639 } 640 641 #if defined(DEBUG_EEPRO100) 642 static const char * const e100_reg[PCI_IO_SIZE / 4] = { 643 "Command/Status", 644 "General Pointer", 645 "Port", 646 "EEPROM/Flash Control", 647 "MDI Control", 648 "Receive DMA Byte Count", 649 "Flow Control", 650 "General Status/Control" 651 }; 652 653 static char *regname(uint32_t addr) 654 { 655 static char buf[32]; 656 if (addr < PCI_IO_SIZE) { 657 const char *r = e100_reg[addr / 4]; 658 if (r != 0) { 659 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4); 660 } else { 661 snprintf(buf, sizeof(buf), "0x%02x", addr); 662 } 663 } else { 664 snprintf(buf, sizeof(buf), "??? 0x%08x", addr); 665 } 666 return buf; 667 } 668 #endif /* DEBUG_EEPRO100 */ 669 670 /***************************************************************************** 671 * 672 * Command emulation. 673 * 674 ****************************************************************************/ 675 676 #if 0 677 static uint16_t eepro100_read_command(EEPRO100State * s) 678 { 679 uint16_t val = 0xffff; 680 TRACE(OTHER, logout("val=0x%04x\n", val)); 681 return val; 682 } 683 #endif 684 685 /* Commands that can be put in a command list entry. */ 686 enum commands { 687 CmdNOp = 0, 688 CmdIASetup = 1, 689 CmdConfigure = 2, 690 CmdMulticastList = 3, 691 CmdTx = 4, 692 CmdTDR = 5, /* load microcode */ 693 CmdDump = 6, 694 CmdDiagnose = 7, 695 696 /* And some extra flags: */ 697 CmdSuspend = 0x4000, /* Suspend after completion. */ 698 CmdIntr = 0x2000, /* Interrupt after completion. */ 699 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */ 700 }; 701 702 static cu_state_t get_cu_state(EEPRO100State * s) 703 { 704 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6); 705 } 706 707 static void set_cu_state(EEPRO100State * s, cu_state_t state) 708 { 709 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6); 710 } 711 712 static ru_state_t get_ru_state(EEPRO100State * s) 713 { 714 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2); 715 } 716 717 static void set_ru_state(EEPRO100State * s, ru_state_t state) 718 { 719 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2); 720 } 721 722 static void dump_statistics(EEPRO100State * s) 723 { 724 /* Dump statistical data. Most data is never changed by the emulation 725 * and always 0, so we first just copy the whole block and then those 726 * values which really matter. 727 * Number of data should check configuration!!! 728 */ 729 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size); 730 stl_le_pci_dma(&s->dev, s->statsaddr + 0, 731 s->statistics.tx_good_frames); 732 stl_le_pci_dma(&s->dev, s->statsaddr + 36, 733 s->statistics.rx_good_frames); 734 stl_le_pci_dma(&s->dev, s->statsaddr + 48, 735 s->statistics.rx_resource_errors); 736 stl_le_pci_dma(&s->dev, s->statsaddr + 60, 737 s->statistics.rx_short_frame_errors); 738 #if 0 739 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames); 740 stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames); 741 missing("CU dump statistical counters"); 742 #endif 743 } 744 745 static void read_cb(EEPRO100State *s) 746 { 747 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx)); 748 s->tx.status = le16_to_cpu(s->tx.status); 749 s->tx.command = le16_to_cpu(s->tx.command); 750 s->tx.link = le32_to_cpu(s->tx.link); 751 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr); 752 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes); 753 } 754 755 static void tx_command(EEPRO100State *s) 756 { 757 uint32_t tbd_array = s->tx.tbd_array_addr; 758 uint16_t tcb_bytes = s->tx.tcb_bytes & 0x3fff; 759 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */ 760 uint8_t buf[2600]; 761 uint16_t size = 0; 762 uint32_t tbd_address = s->cb_address + 0x10; 763 TRACE(RXTX, logout 764 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n", 765 tbd_array, tcb_bytes, s->tx.tbd_count)); 766 767 if (tcb_bytes > 2600) { 768 logout("TCB byte count too large, using 2600\n"); 769 tcb_bytes = 2600; 770 } 771 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) { 772 logout 773 ("illegal values of TBD array address and TCB byte count!\n"); 774 } 775 assert(tcb_bytes <= sizeof(buf)); 776 while (size < tcb_bytes) { 777 TRACE(RXTX, logout 778 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n", 779 tbd_address, tcb_bytes)); 780 pci_dma_read(&s->dev, tbd_address, &buf[size], tcb_bytes); 781 size += tcb_bytes; 782 } 783 if (tbd_array == 0xffffffff) { 784 /* Simplified mode. Was already handled by code above. */ 785 } else { 786 /* Flexible mode. */ 787 uint8_t tbd_count = 0; 788 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) { 789 /* Extended Flexible TCB. */ 790 for (; tbd_count < 2; tbd_count++) { 791 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, 792 tbd_address); 793 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, 794 tbd_address + 4); 795 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, 796 tbd_address + 6); 797 tbd_address += 8; 798 TRACE(RXTX, logout 799 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n", 800 tx_buffer_address, tx_buffer_size)); 801 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 802 pci_dma_read(&s->dev, tx_buffer_address, 803 &buf[size], tx_buffer_size); 804 size += tx_buffer_size; 805 if (tx_buffer_el & 1) { 806 break; 807 } 808 } 809 } 810 tbd_address = tbd_array; 811 for (; tbd_count < s->tx.tbd_count; tbd_count++) { 812 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address); 813 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4); 814 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6); 815 tbd_address += 8; 816 TRACE(RXTX, logout 817 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n", 818 tx_buffer_address, tx_buffer_size)); 819 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 820 pci_dma_read(&s->dev, tx_buffer_address, 821 &buf[size], tx_buffer_size); 822 size += tx_buffer_size; 823 if (tx_buffer_el & 1) { 824 break; 825 } 826 } 827 } 828 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size))); 829 qemu_send_packet(qemu_get_queue(s->nic), buf, size); 830 s->statistics.tx_good_frames++; 831 /* Transmit with bad status would raise an CX/TNO interrupt. 832 * (82557 only). Emulation never has bad status. */ 833 #if 0 834 eepro100_cx_interrupt(s); 835 #endif 836 } 837 838 static void set_multicast_list(EEPRO100State *s) 839 { 840 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0); 841 uint16_t i; 842 memset(&s->mult[0], 0, sizeof(s->mult)); 843 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count)); 844 for (i = 0; i < multicast_count; i += 6) { 845 uint8_t multicast_addr[6]; 846 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6); 847 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6))); 848 unsigned mcast_idx = e100_compute_mcast_idx(multicast_addr); 849 assert(mcast_idx < 64); 850 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7)); 851 } 852 } 853 854 static void action_command(EEPRO100State *s) 855 { 856 /* The loop below won't stop if it gets special handcrafted data. 857 Therefore we limit the number of iterations. */ 858 unsigned max_loop_count = 16; 859 860 for (;;) { 861 bool bit_el; 862 bool bit_s; 863 bool bit_i; 864 bool bit_nc; 865 uint16_t ok_status = STATUS_OK; 866 s->cb_address = s->cu_base + s->cu_offset; 867 read_cb(s); 868 bit_el = ((s->tx.command & COMMAND_EL) != 0); 869 bit_s = ((s->tx.command & COMMAND_S) != 0); 870 bit_i = ((s->tx.command & COMMAND_I) != 0); 871 bit_nc = ((s->tx.command & COMMAND_NC) != 0); 872 #if 0 873 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0); 874 #endif 875 876 if (max_loop_count-- == 0) { 877 /* Prevent an endless loop. */ 878 logout("loop in %s:%u\n", __FILE__, __LINE__); 879 break; 880 } 881 882 s->cu_offset = s->tx.link; 883 TRACE(OTHER, 884 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n", 885 s->tx.status, s->tx.command, s->tx.link)); 886 switch (s->tx.command & COMMAND_CMD) { 887 case CmdNOp: 888 /* Do nothing. */ 889 break; 890 case CmdIASetup: 891 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6); 892 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6))); 893 break; 894 case CmdConfigure: 895 pci_dma_read(&s->dev, s->cb_address + 8, 896 &s->configuration[0], sizeof(s->configuration)); 897 TRACE(OTHER, logout("configuration: %s\n", 898 nic_dump(&s->configuration[0], 16))); 899 TRACE(OTHER, logout("configuration: %s\n", 900 nic_dump(&s->configuration[16], 901 ARRAY_SIZE(s->configuration) - 16))); 902 if (s->configuration[20] & BIT(6)) { 903 TRACE(OTHER, logout("Multiple IA bit\n")); 904 } 905 break; 906 case CmdMulticastList: 907 set_multicast_list(s); 908 break; 909 case CmdTx: 910 if (bit_nc) { 911 missing("CmdTx: NC = 0"); 912 ok_status = 0; 913 break; 914 } 915 tx_command(s); 916 break; 917 case CmdTDR: 918 TRACE(OTHER, logout("load microcode\n")); 919 /* Starting with offset 8, the command contains 920 * 64 dwords microcode which we just ignore here. */ 921 break; 922 case CmdDiagnose: 923 TRACE(OTHER, logout("diagnose\n")); 924 /* Make sure error flag is not set. */ 925 s->tx.status = 0; 926 break; 927 default: 928 missing("undefined command"); 929 ok_status = 0; 930 break; 931 } 932 /* Write new status. */ 933 stw_le_pci_dma(&s->dev, s->cb_address, 934 s->tx.status | ok_status | STATUS_C); 935 if (bit_i) { 936 /* CU completed action. */ 937 eepro100_cx_interrupt(s); 938 } 939 if (bit_el) { 940 /* CU becomes idle. Terminate command loop. */ 941 set_cu_state(s, cu_idle); 942 eepro100_cna_interrupt(s); 943 break; 944 } else if (bit_s) { 945 /* CU becomes suspended. Terminate command loop. */ 946 set_cu_state(s, cu_suspended); 947 eepro100_cna_interrupt(s); 948 break; 949 } else { 950 /* More entries in list. */ 951 TRACE(OTHER, logout("CU list with at least one more entry\n")); 952 } 953 } 954 TRACE(OTHER, logout("CU list empty\n")); 955 /* List is empty. Now CU is idle or suspended. */ 956 } 957 958 static void eepro100_cu_command(EEPRO100State * s, uint8_t val) 959 { 960 cu_state_t cu_state; 961 switch (val) { 962 case CU_NOP: 963 /* No operation. */ 964 break; 965 case CU_START: 966 cu_state = get_cu_state(s); 967 if (cu_state != cu_idle && cu_state != cu_suspended) { 968 /* Intel documentation says that CU must be idle or suspended 969 * for the CU start command. */ 970 logout("unexpected CU state is %u\n", cu_state); 971 } 972 set_cu_state(s, cu_active); 973 s->cu_offset = e100_read_reg4(s, SCBPointer); 974 action_command(s); 975 break; 976 case CU_RESUME: 977 if (get_cu_state(s) != cu_suspended) { 978 logout("bad CU resume from CU state %u\n", get_cu_state(s)); 979 /* Workaround for bad Linux eepro100 driver which resumes 980 * from idle state. */ 981 #if 0 982 missing("cu resume"); 983 #endif 984 set_cu_state(s, cu_suspended); 985 } 986 if (get_cu_state(s) == cu_suspended) { 987 TRACE(OTHER, logout("CU resuming\n")); 988 set_cu_state(s, cu_active); 989 action_command(s); 990 } 991 break; 992 case CU_STATSADDR: 993 /* Load dump counters address. */ 994 s->statsaddr = e100_read_reg4(s, SCBPointer); 995 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val)); 996 if (s->statsaddr & 3) { 997 /* Memory must be Dword aligned. */ 998 logout("unaligned dump counters address\n"); 999 /* Handling of misaligned addresses is undefined. 1000 * Here we align the address by ignoring the lower bits. */ 1001 /* TODO: Test unaligned dump counter address on real hardware. */ 1002 s->statsaddr &= ~3; 1003 } 1004 break; 1005 case CU_SHOWSTATS: 1006 /* Dump statistical counters. */ 1007 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val)); 1008 dump_statistics(s); 1009 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005); 1010 break; 1011 case CU_CMD_BASE: 1012 /* Load CU base. */ 1013 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val)); 1014 s->cu_base = e100_read_reg4(s, SCBPointer); 1015 break; 1016 case CU_DUMPSTATS: 1017 /* Dump and reset statistical counters. */ 1018 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val)); 1019 dump_statistics(s); 1020 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007); 1021 memset(&s->statistics, 0, sizeof(s->statistics)); 1022 break; 1023 case CU_SRESUME: 1024 /* CU static resume. */ 1025 missing("CU static resume"); 1026 break; 1027 default: 1028 missing("Undefined CU command"); 1029 } 1030 } 1031 1032 static void eepro100_ru_command(EEPRO100State * s, uint8_t val) 1033 { 1034 switch (val) { 1035 case RU_NOP: 1036 /* No operation. */ 1037 break; 1038 case RX_START: 1039 /* RU start. */ 1040 if (get_ru_state(s) != ru_idle) { 1041 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle); 1042 #if 0 1043 assert(!"wrong RU state"); 1044 #endif 1045 } 1046 set_ru_state(s, ru_ready); 1047 s->ru_offset = e100_read_reg4(s, SCBPointer); 1048 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1049 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val)); 1050 break; 1051 case RX_RESUME: 1052 /* Restart RU. */ 1053 if (get_ru_state(s) != ru_suspended) { 1054 logout("RU state is %u, should be %u\n", get_ru_state(s), 1055 ru_suspended); 1056 #if 0 1057 assert(!"wrong RU state"); 1058 #endif 1059 } 1060 set_ru_state(s, ru_ready); 1061 break; 1062 case RU_ABORT: 1063 /* RU abort. */ 1064 if (get_ru_state(s) == ru_ready) { 1065 eepro100_rnr_interrupt(s); 1066 } 1067 set_ru_state(s, ru_idle); 1068 break; 1069 case RX_ADDR_LOAD: 1070 /* Load RU base. */ 1071 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val)); 1072 s->ru_base = e100_read_reg4(s, SCBPointer); 1073 break; 1074 default: 1075 logout("val=0x%02x (undefined RU command)\n", val); 1076 missing("Undefined SU command"); 1077 } 1078 } 1079 1080 static void eepro100_write_command(EEPRO100State * s, uint8_t val) 1081 { 1082 eepro100_ru_command(s, val & 0x0f); 1083 eepro100_cu_command(s, val & 0xf0); 1084 if ((val) == 0) { 1085 TRACE(OTHER, logout("val=0x%02x\n", val)); 1086 } 1087 /* Clear command byte after command was accepted. */ 1088 s->mem[SCBCmd] = 0; 1089 } 1090 1091 /***************************************************************************** 1092 * 1093 * EEPROM emulation. 1094 * 1095 ****************************************************************************/ 1096 1097 #define EEPROM_CS 0x02 1098 #define EEPROM_SK 0x01 1099 #define EEPROM_DI 0x04 1100 #define EEPROM_DO 0x08 1101 1102 static uint16_t eepro100_read_eeprom(EEPRO100State * s) 1103 { 1104 uint16_t val = e100_read_reg2(s, SCBeeprom); 1105 if (eeprom93xx_read(s->eeprom)) { 1106 val |= EEPROM_DO; 1107 } else { 1108 val &= ~EEPROM_DO; 1109 } 1110 TRACE(EEPROM, logout("val=0x%04x\n", val)); 1111 return val; 1112 } 1113 1114 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val) 1115 { 1116 TRACE(EEPROM, logout("val=0x%02x\n", val)); 1117 1118 /* mask unwritable bits */ 1119 #if 0 1120 val = SET_MASKED(val, 0x31, eeprom->value); 1121 #endif 1122 1123 int eecs = ((val & EEPROM_CS) != 0); 1124 int eesk = ((val & EEPROM_SK) != 0); 1125 int eedi = ((val & EEPROM_DI) != 0); 1126 eeprom93xx_write(eeprom, eecs, eesk, eedi); 1127 } 1128 1129 /***************************************************************************** 1130 * 1131 * MDI emulation. 1132 * 1133 ****************************************************************************/ 1134 1135 #if defined(DEBUG_EEPRO100) 1136 static const char * const mdi_op_name[] = { 1137 "opcode 0", 1138 "write", 1139 "read", 1140 "opcode 3" 1141 }; 1142 1143 static const char * const mdi_reg_name[] = { 1144 "Control", 1145 "Status", 1146 "PHY Identification (Word 1)", 1147 "PHY Identification (Word 2)", 1148 "Auto-Negotiation Advertisement", 1149 "Auto-Negotiation Link Partner Ability", 1150 "Auto-Negotiation Expansion" 1151 }; 1152 1153 static const char *reg2name(uint8_t reg) 1154 { 1155 static char buffer[10]; 1156 const char *p = buffer; 1157 if (reg < ARRAY_SIZE(mdi_reg_name)) { 1158 p = mdi_reg_name[reg]; 1159 } else { 1160 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg); 1161 } 1162 return p; 1163 } 1164 #endif /* DEBUG_EEPRO100 */ 1165 1166 static uint32_t eepro100_read_mdi(EEPRO100State * s) 1167 { 1168 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1169 1170 #ifdef DEBUG_EEPRO100 1171 uint8_t raiseint = (val & BIT(29)) >> 29; 1172 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1173 uint8_t phy = (val & BITS(25, 21)) >> 21; 1174 uint8_t reg = (val & BITS(20, 16)) >> 16; 1175 uint16_t data = (val & BITS(15, 0)); 1176 #endif 1177 /* Emulation takes no time to finish MDI transaction. */ 1178 val |= BIT(28); 1179 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1180 val, raiseint, mdi_op_name[opcode], phy, 1181 reg2name(reg), data)); 1182 return val; 1183 } 1184 1185 static void eepro100_write_mdi(EEPRO100State *s) 1186 { 1187 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1188 uint8_t raiseint = (val & BIT(29)) >> 29; 1189 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1190 uint8_t phy = (val & BITS(25, 21)) >> 21; 1191 uint8_t reg = (val & BITS(20, 16)) >> 16; 1192 uint16_t data = (val & BITS(15, 0)); 1193 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1194 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data)); 1195 if (phy != 1) { 1196 /* Unsupported PHY address. */ 1197 #if 0 1198 logout("phy must be 1 but is %u\n", phy); 1199 #endif 1200 data = 0; 1201 } else if (opcode != 1 && opcode != 2) { 1202 /* Unsupported opcode. */ 1203 logout("opcode must be 1 or 2 but is %u\n", opcode); 1204 data = 0; 1205 } else if (reg > 6) { 1206 /* Unsupported register. */ 1207 logout("register must be 0...6 but is %u\n", reg); 1208 data = 0; 1209 } else { 1210 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1211 val, raiseint, mdi_op_name[opcode], phy, 1212 reg2name(reg), data)); 1213 if (opcode == 1) { 1214 /* MDI write */ 1215 switch (reg) { 1216 case 0: /* Control Register */ 1217 if (data & 0x8000) { 1218 /* Reset status and control registers to default. */ 1219 s->mdimem[0] = eepro100_mdi_default[0]; 1220 s->mdimem[1] = eepro100_mdi_default[1]; 1221 data = s->mdimem[reg]; 1222 } else { 1223 /* Restart Auto Configuration = Normal Operation */ 1224 data &= ~0x0200; 1225 } 1226 break; 1227 case 1: /* Status Register */ 1228 missing("not writable"); 1229 break; 1230 case 2: /* PHY Identification Register (Word 1) */ 1231 case 3: /* PHY Identification Register (Word 2) */ 1232 missing("not implemented"); 1233 break; 1234 case 4: /* Auto-Negotiation Advertisement Register */ 1235 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1236 break; 1237 case 6: /* Auto-Negotiation Expansion Register */ 1238 default: 1239 missing("not implemented"); 1240 } 1241 s->mdimem[reg] &= eepro100_mdi_mask[reg]; 1242 s->mdimem[reg] |= data & ~eepro100_mdi_mask[reg]; 1243 } else if (opcode == 2) { 1244 /* MDI read */ 1245 switch (reg) { 1246 case 0: /* Control Register */ 1247 if (data & 0x8000) { 1248 /* Reset status and control registers to default. */ 1249 s->mdimem[0] = eepro100_mdi_default[0]; 1250 s->mdimem[1] = eepro100_mdi_default[1]; 1251 } 1252 break; 1253 case 1: /* Status Register */ 1254 s->mdimem[reg] |= 0x0020; 1255 break; 1256 case 2: /* PHY Identification Register (Word 1) */ 1257 case 3: /* PHY Identification Register (Word 2) */ 1258 case 4: /* Auto-Negotiation Advertisement Register */ 1259 break; 1260 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1261 s->mdimem[reg] = 0x41fe; 1262 break; 1263 case 6: /* Auto-Negotiation Expansion Register */ 1264 s->mdimem[reg] = 0x0001; 1265 break; 1266 } 1267 data = s->mdimem[reg]; 1268 } 1269 /* Emulation takes no time to finish MDI transaction. 1270 * Set MDI bit in SCB status register. */ 1271 s->mem[SCBAck] |= 0x08; 1272 val |= BIT(28); 1273 if (raiseint) { 1274 eepro100_mdi_interrupt(s); 1275 } 1276 } 1277 val = (val & 0xffff0000) + data; 1278 e100_write_reg4(s, SCBCtrlMDI, val); 1279 } 1280 1281 /***************************************************************************** 1282 * 1283 * Port emulation. 1284 * 1285 ****************************************************************************/ 1286 1287 #define PORT_SOFTWARE_RESET 0 1288 #define PORT_SELFTEST 1 1289 #define PORT_SELECTIVE_RESET 2 1290 #define PORT_DUMP 3 1291 #define PORT_SELECTION_MASK 3 1292 1293 typedef struct { 1294 uint32_t st_sign; /* Self Test Signature */ 1295 uint32_t st_result; /* Self Test Results */ 1296 } eepro100_selftest_t; 1297 1298 static uint32_t eepro100_read_port(EEPRO100State * s) 1299 { 1300 return 0; 1301 } 1302 1303 static void eepro100_write_port(EEPRO100State *s) 1304 { 1305 uint32_t val = e100_read_reg4(s, SCBPort); 1306 uint32_t address = (val & ~PORT_SELECTION_MASK); 1307 uint8_t selection = (val & PORT_SELECTION_MASK); 1308 switch (selection) { 1309 case PORT_SOFTWARE_RESET: 1310 nic_reset(s); 1311 break; 1312 case PORT_SELFTEST: 1313 TRACE(OTHER, logout("selftest address=0x%08x\n", address)); 1314 eepro100_selftest_t data; 1315 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1316 data.st_sign = 0xffffffff; 1317 data.st_result = 0; 1318 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1319 break; 1320 case PORT_SELECTIVE_RESET: 1321 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address)); 1322 nic_selective_reset(s); 1323 break; 1324 default: 1325 logout("val=0x%08x\n", val); 1326 missing("unknown port selection"); 1327 } 1328 } 1329 1330 /***************************************************************************** 1331 * 1332 * General hardware emulation. 1333 * 1334 ****************************************************************************/ 1335 1336 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr) 1337 { 1338 uint8_t val = 0; 1339 if (addr <= sizeof(s->mem) - sizeof(val)) { 1340 val = s->mem[addr]; 1341 } 1342 1343 switch (addr) { 1344 case SCBStatus: 1345 case SCBAck: 1346 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1347 break; 1348 case SCBCmd: 1349 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1350 #if 0 1351 val = eepro100_read_command(s); 1352 #endif 1353 break; 1354 case SCBIntmask: 1355 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1356 break; 1357 case SCBPort + 3: 1358 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1359 break; 1360 case SCBeeprom: 1361 val = eepro100_read_eeprom(s); 1362 break; 1363 case SCBCtrlMDI: 1364 case SCBCtrlMDI + 1: 1365 case SCBCtrlMDI + 2: 1366 case SCBCtrlMDI + 3: 1367 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1368 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1369 break; 1370 case SCBpmdr: /* Power Management Driver Register */ 1371 val = 0; 1372 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1373 break; 1374 case SCBgctrl: /* General Control Register */ 1375 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1376 break; 1377 case SCBgstat: /* General Status Register */ 1378 /* 100 Mbps full duplex, valid link */ 1379 val = 0x07; 1380 TRACE(OTHER, logout("addr=General Status val=%02x\n", val)); 1381 break; 1382 default: 1383 logout("addr=%s val=0x%02x\n", regname(addr), val); 1384 missing("unknown byte read"); 1385 } 1386 return val; 1387 } 1388 1389 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr) 1390 { 1391 uint16_t val = 0; 1392 if (addr <= sizeof(s->mem) - sizeof(val)) { 1393 val = e100_read_reg2(s, addr); 1394 } 1395 1396 switch (addr) { 1397 case SCBStatus: 1398 case SCBCmd: 1399 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1400 break; 1401 case SCBeeprom: 1402 val = eepro100_read_eeprom(s); 1403 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1404 break; 1405 case SCBCtrlMDI: 1406 case SCBCtrlMDI + 2: 1407 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1408 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1409 break; 1410 default: 1411 logout("addr=%s val=0x%04x\n", regname(addr), val); 1412 missing("unknown word read"); 1413 } 1414 return val; 1415 } 1416 1417 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr) 1418 { 1419 uint32_t val = 0; 1420 if (addr <= sizeof(s->mem) - sizeof(val)) { 1421 val = e100_read_reg4(s, addr); 1422 } 1423 1424 switch (addr) { 1425 case SCBStatus: 1426 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1427 break; 1428 case SCBPointer: 1429 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1430 break; 1431 case SCBPort: 1432 val = eepro100_read_port(s); 1433 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1434 break; 1435 case SCBflash: 1436 val = eepro100_read_eeprom(s); 1437 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1438 break; 1439 case SCBCtrlMDI: 1440 val = eepro100_read_mdi(s); 1441 break; 1442 default: 1443 logout("addr=%s val=0x%08x\n", regname(addr), val); 1444 missing("unknown longword read"); 1445 } 1446 return val; 1447 } 1448 1449 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val) 1450 { 1451 /* SCBStatus is readonly. */ 1452 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1453 s->mem[addr] = val; 1454 } 1455 1456 switch (addr) { 1457 case SCBStatus: 1458 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1459 break; 1460 case SCBAck: 1461 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1462 eepro100_acknowledge(s); 1463 break; 1464 case SCBCmd: 1465 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1466 eepro100_write_command(s, val); 1467 break; 1468 case SCBIntmask: 1469 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1470 if (val & BIT(1)) { 1471 eepro100_swi_interrupt(s); 1472 } 1473 eepro100_interrupt(s, 0); 1474 break; 1475 case SCBPointer: 1476 case SCBPointer + 1: 1477 case SCBPointer + 2: 1478 case SCBPointer + 3: 1479 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1480 break; 1481 case SCBPort: 1482 case SCBPort + 1: 1483 case SCBPort + 2: 1484 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1485 break; 1486 case SCBPort + 3: 1487 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1488 eepro100_write_port(s); 1489 break; 1490 case SCBFlow: /* does not exist on 82557 */ 1491 case SCBFlow + 1: 1492 case SCBFlow + 2: 1493 case SCBpmdr: /* does not exist on 82557 */ 1494 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1495 break; 1496 case SCBeeprom: 1497 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1498 eepro100_write_eeprom(s->eeprom, val); 1499 break; 1500 case SCBCtrlMDI: 1501 case SCBCtrlMDI + 1: 1502 case SCBCtrlMDI + 2: 1503 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1504 break; 1505 case SCBCtrlMDI + 3: 1506 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1507 eepro100_write_mdi(s); 1508 break; 1509 default: 1510 logout("addr=%s val=0x%02x\n", regname(addr), val); 1511 missing("unknown byte write"); 1512 } 1513 } 1514 1515 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val) 1516 { 1517 /* SCBStatus is readonly. */ 1518 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1519 e100_write_reg2(s, addr, val); 1520 } 1521 1522 switch (addr) { 1523 case SCBStatus: 1524 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1525 s->mem[SCBAck] = (val >> 8); 1526 eepro100_acknowledge(s); 1527 break; 1528 case SCBCmd: 1529 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1530 eepro100_write_command(s, val); 1531 eepro100_write1(s, SCBIntmask, val >> 8); 1532 break; 1533 case SCBPointer: 1534 case SCBPointer + 2: 1535 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1536 break; 1537 case SCBPort: 1538 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1539 break; 1540 case SCBPort + 2: 1541 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1542 eepro100_write_port(s); 1543 break; 1544 case SCBeeprom: 1545 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1546 eepro100_write_eeprom(s->eeprom, val); 1547 break; 1548 case SCBCtrlMDI: 1549 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1550 break; 1551 case SCBCtrlMDI + 2: 1552 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1553 eepro100_write_mdi(s); 1554 break; 1555 default: 1556 logout("addr=%s val=0x%04x\n", regname(addr), val); 1557 missing("unknown word write"); 1558 } 1559 } 1560 1561 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val) 1562 { 1563 if (addr <= sizeof(s->mem) - sizeof(val)) { 1564 e100_write_reg4(s, addr, val); 1565 } 1566 1567 switch (addr) { 1568 case SCBPointer: 1569 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1570 break; 1571 case SCBPort: 1572 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1573 eepro100_write_port(s); 1574 break; 1575 case SCBflash: 1576 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1577 val = val >> 16; 1578 eepro100_write_eeprom(s->eeprom, val); 1579 break; 1580 case SCBCtrlMDI: 1581 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1582 eepro100_write_mdi(s); 1583 break; 1584 default: 1585 logout("addr=%s val=0x%08x\n", regname(addr), val); 1586 missing("unknown longword write"); 1587 } 1588 } 1589 1590 static uint64_t eepro100_read(void *opaque, hwaddr addr, 1591 unsigned size) 1592 { 1593 EEPRO100State *s = opaque; 1594 1595 switch (size) { 1596 case 1: return eepro100_read1(s, addr); 1597 case 2: return eepro100_read2(s, addr); 1598 case 4: return eepro100_read4(s, addr); 1599 default: abort(); 1600 } 1601 } 1602 1603 static void eepro100_write(void *opaque, hwaddr addr, 1604 uint64_t data, unsigned size) 1605 { 1606 EEPRO100State *s = opaque; 1607 1608 switch (size) { 1609 case 1: 1610 eepro100_write1(s, addr, data); 1611 break; 1612 case 2: 1613 eepro100_write2(s, addr, data); 1614 break; 1615 case 4: 1616 eepro100_write4(s, addr, data); 1617 break; 1618 default: 1619 abort(); 1620 } 1621 } 1622 1623 static const MemoryRegionOps eepro100_ops = { 1624 .read = eepro100_read, 1625 .write = eepro100_write, 1626 .endianness = DEVICE_LITTLE_ENDIAN, 1627 }; 1628 1629 static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size) 1630 { 1631 /* TODO: 1632 * - Magic packets should set bit 30 in power management driver register. 1633 * - Interesting packets should set bit 29 in power management driver register. 1634 */ 1635 EEPRO100State *s = qemu_get_nic_opaque(nc); 1636 uint16_t rfd_status = 0xa000; 1637 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1638 uint8_t min_buf[60]; 1639 #endif 1640 static const uint8_t broadcast_macaddr[6] = 1641 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1642 1643 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1644 /* Pad to minimum Ethernet frame length */ 1645 if (size < sizeof(min_buf)) { 1646 memcpy(min_buf, buf, size); 1647 memset(&min_buf[size], 0, sizeof(min_buf) - size); 1648 buf = min_buf; 1649 size = sizeof(min_buf); 1650 } 1651 #endif 1652 1653 if (s->configuration[8] & 0x80) { 1654 /* CSMA is disabled. */ 1655 logout("%p received while CSMA is disabled\n", s); 1656 return -1; 1657 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1658 } else if (size < 64 && (s->configuration[7] & BIT(0))) { 1659 /* Short frame and configuration byte 7/0 (discard short receive) set: 1660 * Short frame is discarded */ 1661 logout("%p received short frame (%zu byte)\n", s, size); 1662 s->statistics.rx_short_frame_errors++; 1663 return -1; 1664 #endif 1665 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) { 1666 /* Long frame and configuration byte 18/3 (long receive ok) not set: 1667 * Long frames are discarded. */ 1668 logout("%p received long frame (%zu byte), ignored\n", s, size); 1669 return -1; 1670 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */ 1671 /* Frame matches individual address. */ 1672 /* TODO: check configuration byte 15/4 (ignore U/L). */ 1673 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size)); 1674 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) { 1675 /* Broadcast frame. */ 1676 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size)); 1677 rfd_status |= 0x0002; 1678 } else if (buf[0] & 0x01) { 1679 /* Multicast frame. */ 1680 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size))); 1681 if (s->configuration[21] & BIT(3)) { 1682 /* Multicast all bit is set, receive all multicast frames. */ 1683 } else { 1684 unsigned mcast_idx = e100_compute_mcast_idx(buf); 1685 assert(mcast_idx < 64); 1686 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1687 /* Multicast frame is allowed in hash table. */ 1688 } else if (s->configuration[15] & BIT(0)) { 1689 /* Promiscuous: receive all. */ 1690 rfd_status |= 0x0004; 1691 } else { 1692 TRACE(RXTX, logout("%p multicast ignored\n", s)); 1693 return -1; 1694 } 1695 } 1696 /* TODO: Next not for promiscuous mode? */ 1697 rfd_status |= 0x0002; 1698 } else if (s->configuration[15] & BIT(0)) { 1699 /* Promiscuous: receive all. */ 1700 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size)); 1701 rfd_status |= 0x0004; 1702 } else if (s->configuration[20] & BIT(6)) { 1703 /* Multiple IA bit set. */ 1704 unsigned mcast_idx = compute_mcast_idx(buf); 1705 assert(mcast_idx < 64); 1706 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1707 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s)); 1708 } else { 1709 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s)); 1710 return -1; 1711 } 1712 } else { 1713 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size, 1714 nic_dump(buf, size))); 1715 return size; 1716 } 1717 1718 if (get_ru_state(s) != ru_ready) { 1719 /* No resources available. */ 1720 logout("no resources, state=%u\n", get_ru_state(s)); 1721 /* TODO: RNR interrupt only at first failed frame? */ 1722 eepro100_rnr_interrupt(s); 1723 s->statistics.rx_resource_errors++; 1724 #if 0 1725 assert(!"no resources"); 1726 #endif 1727 return -1; 1728 } 1729 /* !!! */ 1730 eepro100_rx_t rx; 1731 pci_dma_read(&s->dev, s->ru_base + s->ru_offset, 1732 &rx, sizeof(eepro100_rx_t)); 1733 uint16_t rfd_command = le16_to_cpu(rx.command); 1734 uint16_t rfd_size = le16_to_cpu(rx.size); 1735 1736 if (size > rfd_size) { 1737 logout("Receive buffer (%" PRId16 " bytes) too small for data " 1738 "(%zu bytes); data truncated\n", rfd_size, size); 1739 size = rfd_size; 1740 } 1741 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1742 if (size < 64) { 1743 rfd_status |= 0x0080; 1744 } 1745 #endif 1746 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", 1747 rfd_command, rx.link, rx.rx_buf_addr, rfd_size)); 1748 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1749 offsetof(eepro100_rx_t, status), rfd_status); 1750 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1751 offsetof(eepro100_rx_t, count), size); 1752 /* Early receive interrupt not supported. */ 1753 #if 0 1754 eepro100_er_interrupt(s); 1755 #endif 1756 /* Receive CRC Transfer not supported. */ 1757 if (s->configuration[18] & BIT(2)) { 1758 missing("Receive CRC Transfer"); 1759 return -1; 1760 } 1761 /* TODO: check stripping enable bit. */ 1762 #if 0 1763 assert(!(s->configuration[17] & BIT(0))); 1764 #endif 1765 pci_dma_write(&s->dev, s->ru_base + s->ru_offset + 1766 sizeof(eepro100_rx_t), buf, size); 1767 s->statistics.rx_good_frames++; 1768 eepro100_fr_interrupt(s); 1769 s->ru_offset = le32_to_cpu(rx.link); 1770 if (rfd_command & COMMAND_EL) { 1771 /* EL bit is set, so this was the last frame. */ 1772 logout("receive: Running out of frames\n"); 1773 set_ru_state(s, ru_no_resources); 1774 eepro100_rnr_interrupt(s); 1775 } 1776 if (rfd_command & COMMAND_S) { 1777 /* S bit is set. */ 1778 set_ru_state(s, ru_suspended); 1779 } 1780 return size; 1781 } 1782 1783 static const VMStateDescription vmstate_eepro100 = { 1784 .version_id = 3, 1785 .minimum_version_id = 2, 1786 .fields = (VMStateField[]) { 1787 VMSTATE_PCI_DEVICE(dev, EEPRO100State), 1788 VMSTATE_UNUSED(32), 1789 VMSTATE_BUFFER(mult, EEPRO100State), 1790 VMSTATE_BUFFER(mem, EEPRO100State), 1791 /* Save all members of struct between scb_stat and mem. */ 1792 VMSTATE_UINT8(scb_stat, EEPRO100State), 1793 VMSTATE_UINT8(int_stat, EEPRO100State), 1794 VMSTATE_UNUSED(3*4), 1795 VMSTATE_MACADDR(conf.macaddr, EEPRO100State), 1796 VMSTATE_UNUSED(19*4), 1797 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32), 1798 /* The eeprom should be saved and restored by its own routines. */ 1799 VMSTATE_UINT32(device, EEPRO100State), 1800 /* TODO check device. */ 1801 VMSTATE_UINT32(cu_base, EEPRO100State), 1802 VMSTATE_UINT32(cu_offset, EEPRO100State), 1803 VMSTATE_UINT32(ru_base, EEPRO100State), 1804 VMSTATE_UINT32(ru_offset, EEPRO100State), 1805 VMSTATE_UINT32(statsaddr, EEPRO100State), 1806 /* Save eepro100_stats_t statistics. */ 1807 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State), 1808 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State), 1809 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State), 1810 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State), 1811 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State), 1812 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State), 1813 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State), 1814 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State), 1815 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State), 1816 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State), 1817 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State), 1818 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State), 1819 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State), 1820 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State), 1821 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State), 1822 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State), 1823 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State), 1824 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State), 1825 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State), 1826 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State), 1827 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State), 1828 /* Configuration bytes. */ 1829 VMSTATE_BUFFER(configuration, EEPRO100State), 1830 VMSTATE_END_OF_LIST() 1831 } 1832 }; 1833 1834 static void pci_nic_uninit(PCIDevice *pci_dev) 1835 { 1836 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1837 1838 vmstate_unregister(&pci_dev->qdev, s->vmstate, s); 1839 g_free(s->vmstate); 1840 eeprom93xx_free(&pci_dev->qdev, s->eeprom); 1841 qemu_del_nic(s->nic); 1842 } 1843 1844 static NetClientInfo net_eepro100_info = { 1845 .type = NET_CLIENT_DRIVER_NIC, 1846 .size = sizeof(NICState), 1847 .receive = nic_receive, 1848 }; 1849 1850 static void e100_nic_realize(PCIDevice *pci_dev, Error **errp) 1851 { 1852 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1853 E100PCIDeviceInfo *info = eepro100_get_class(s); 1854 Error *local_err = NULL; 1855 1856 TRACE(OTHER, logout("\n")); 1857 1858 s->device = info->device; 1859 1860 e100_pci_reset(s, &local_err); 1861 if (local_err) { 1862 error_propagate(errp, local_err); 1863 return; 1864 } 1865 1866 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM, 1867 * i82559 and later support 64 or 256 word EEPROM. */ 1868 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE); 1869 1870 /* Handler for memory-mapped I/O */ 1871 memory_region_init_io(&s->mmio_bar, OBJECT(s), &eepro100_ops, s, 1872 "eepro100-mmio", PCI_MEM_SIZE); 1873 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar); 1874 memory_region_init_io(&s->io_bar, OBJECT(s), &eepro100_ops, s, 1875 "eepro100-io", PCI_IO_SIZE); 1876 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar); 1877 /* FIXME: flash aliases to mmio?! */ 1878 memory_region_init_io(&s->flash_bar, OBJECT(s), &eepro100_ops, s, 1879 "eepro100-flash", PCI_FLASH_SIZE); 1880 pci_register_bar(&s->dev, 2, 0, &s->flash_bar); 1881 1882 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1883 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)); 1884 1885 nic_reset(s); 1886 1887 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf, 1888 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s); 1889 1890 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 1891 TRACE(OTHER, logout("%s\n", qemu_get_queue(s->nic)->info_str)); 1892 1893 qemu_register_reset(nic_reset, s); 1894 1895 s->vmstate = g_memdup(&vmstate_eepro100, sizeof(vmstate_eepro100)); 1896 s->vmstate->name = qemu_get_queue(s->nic)->model; 1897 vmstate_register(&pci_dev->qdev, -1, s->vmstate, s); 1898 } 1899 1900 static void eepro100_instance_init(Object *obj) 1901 { 1902 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, PCI_DEVICE(obj)); 1903 device_add_bootindex_property(obj, &s->conf.bootindex, 1904 "bootindex", "/ethernet-phy@0", 1905 DEVICE(s), NULL); 1906 } 1907 1908 static E100PCIDeviceInfo e100_devices[] = { 1909 { 1910 .name = "i82550", 1911 .desc = "Intel i82550 Ethernet", 1912 .device = i82550, 1913 /* TODO: check device id. */ 1914 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1915 /* Revision ID: 0x0c, 0x0d, 0x0e. */ 1916 .revision = 0x0e, 1917 /* TODO: check size of statistical counters. */ 1918 .stats_size = 80, 1919 /* TODO: check extended tcb support. */ 1920 .has_extended_tcb_support = true, 1921 .power_management = true, 1922 },{ 1923 .name = "i82551", 1924 .desc = "Intel i82551 Ethernet", 1925 .device = i82551, 1926 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1927 /* Revision ID: 0x0f, 0x10. */ 1928 .revision = 0x0f, 1929 /* TODO: check size of statistical counters. */ 1930 .stats_size = 80, 1931 .has_extended_tcb_support = true, 1932 .power_management = true, 1933 },{ 1934 .name = "i82557a", 1935 .desc = "Intel i82557A Ethernet", 1936 .device = i82557A, 1937 .device_id = PCI_DEVICE_ID_INTEL_82557, 1938 .revision = 0x01, 1939 .power_management = false, 1940 },{ 1941 .name = "i82557b", 1942 .desc = "Intel i82557B Ethernet", 1943 .device = i82557B, 1944 .device_id = PCI_DEVICE_ID_INTEL_82557, 1945 .revision = 0x02, 1946 .power_management = false, 1947 },{ 1948 .name = "i82557c", 1949 .desc = "Intel i82557C Ethernet", 1950 .device = i82557C, 1951 .device_id = PCI_DEVICE_ID_INTEL_82557, 1952 .revision = 0x03, 1953 .power_management = false, 1954 },{ 1955 .name = "i82558a", 1956 .desc = "Intel i82558A Ethernet", 1957 .device = i82558A, 1958 .device_id = PCI_DEVICE_ID_INTEL_82557, 1959 .revision = 0x04, 1960 .stats_size = 76, 1961 .has_extended_tcb_support = true, 1962 .power_management = true, 1963 },{ 1964 .name = "i82558b", 1965 .desc = "Intel i82558B Ethernet", 1966 .device = i82558B, 1967 .device_id = PCI_DEVICE_ID_INTEL_82557, 1968 .revision = 0x05, 1969 .stats_size = 76, 1970 .has_extended_tcb_support = true, 1971 .power_management = true, 1972 },{ 1973 .name = "i82559a", 1974 .desc = "Intel i82559A Ethernet", 1975 .device = i82559A, 1976 .device_id = PCI_DEVICE_ID_INTEL_82557, 1977 .revision = 0x06, 1978 .stats_size = 80, 1979 .has_extended_tcb_support = true, 1980 .power_management = true, 1981 },{ 1982 .name = "i82559b", 1983 .desc = "Intel i82559B Ethernet", 1984 .device = i82559B, 1985 .device_id = PCI_DEVICE_ID_INTEL_82557, 1986 .revision = 0x07, 1987 .stats_size = 80, 1988 .has_extended_tcb_support = true, 1989 .power_management = true, 1990 },{ 1991 .name = "i82559c", 1992 .desc = "Intel i82559C Ethernet", 1993 .device = i82559C, 1994 .device_id = PCI_DEVICE_ID_INTEL_82557, 1995 #if 0 1996 .revision = 0x08, 1997 #endif 1998 /* TODO: Windows wants revision id 0x0c. */ 1999 .revision = 0x0c, 2000 #if EEPROM_SIZE > 0 2001 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL, 2002 .subsystem_id = 0x0040, 2003 #endif 2004 .stats_size = 80, 2005 .has_extended_tcb_support = true, 2006 .power_management = true, 2007 },{ 2008 .name = "i82559er", 2009 .desc = "Intel i82559ER Ethernet", 2010 .device = i82559ER, 2011 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 2012 .revision = 0x09, 2013 .stats_size = 80, 2014 .has_extended_tcb_support = true, 2015 .power_management = true, 2016 },{ 2017 .name = "i82562", 2018 .desc = "Intel i82562 Ethernet", 2019 .device = i82562, 2020 /* TODO: check device id. */ 2021 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 2022 /* TODO: wrong revision id. */ 2023 .revision = 0x0e, 2024 .stats_size = 80, 2025 .has_extended_tcb_support = true, 2026 .power_management = true, 2027 },{ 2028 /* Toshiba Tecra 8200. */ 2029 .name = "i82801", 2030 .desc = "Intel i82801 Ethernet", 2031 .device = i82801, 2032 .device_id = 0x2449, 2033 .revision = 0x03, 2034 .stats_size = 80, 2035 .has_extended_tcb_support = true, 2036 .power_management = true, 2037 } 2038 }; 2039 2040 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename) 2041 { 2042 E100PCIDeviceInfo *info = NULL; 2043 int i; 2044 2045 /* This is admittedly awkward but also temporary. QOM allows for 2046 * parameterized typing and for subclassing both of which would suitable 2047 * handle what's going on here. But class_data is already being used as 2048 * a stop-gap hack to allow incremental qdev conversion so we cannot use it 2049 * right now. Once we merge the final QOM series, we can come back here and 2050 * do this in a much more elegant fashion. 2051 */ 2052 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2053 if (strcmp(e100_devices[i].name, typename) == 0) { 2054 info = &e100_devices[i]; 2055 break; 2056 } 2057 } 2058 assert(info != NULL); 2059 2060 return info; 2061 } 2062 2063 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s) 2064 { 2065 return eepro100_get_class_by_name(object_get_typename(OBJECT(s))); 2066 } 2067 2068 static Property e100_properties[] = { 2069 DEFINE_NIC_PROPERTIES(EEPRO100State, conf), 2070 DEFINE_PROP_END_OF_LIST(), 2071 }; 2072 2073 static void eepro100_class_init(ObjectClass *klass, void *data) 2074 { 2075 DeviceClass *dc = DEVICE_CLASS(klass); 2076 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 2077 E100PCIDeviceInfo *info; 2078 2079 info = eepro100_get_class_by_name(object_class_get_name(klass)); 2080 2081 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 2082 dc->props = e100_properties; 2083 dc->desc = info->desc; 2084 k->vendor_id = PCI_VENDOR_ID_INTEL; 2085 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 2086 k->romfile = "pxe-eepro100.rom"; 2087 k->realize = e100_nic_realize; 2088 k->exit = pci_nic_uninit; 2089 k->device_id = info->device_id; 2090 k->revision = info->revision; 2091 k->subsystem_vendor_id = info->subsystem_vendor_id; 2092 k->subsystem_id = info->subsystem_id; 2093 } 2094 2095 static void eepro100_register_types(void) 2096 { 2097 size_t i; 2098 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2099 TypeInfo type_info = {}; 2100 E100PCIDeviceInfo *info = &e100_devices[i]; 2101 2102 type_info.name = info->name; 2103 type_info.parent = TYPE_PCI_DEVICE; 2104 type_info.class_init = eepro100_class_init; 2105 type_info.instance_size = sizeof(EEPRO100State); 2106 type_info.instance_init = eepro100_instance_init; 2107 type_info.interfaces = (InterfaceInfo[]) { 2108 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 2109 { }, 2110 }; 2111 2112 type_register(&type_info); 2113 } 2114 } 2115 2116 type_init(eepro100_register_types) 2117