1 /* 2 * QEMU i8255x (PRO100) emulation 3 * 4 * Copyright (C) 2006-2011 Stefan Weil 5 * 6 * Portions of the code are copies from grub / etherboot eepro100.c 7 * and linux e100.c. 8 * 9 * This program is free software: you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation, either version 2 of the License, or 12 * (at your option) version 3 or any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 * 22 * Tested features (i82559): 23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok 24 * Linux networking (i386) ok 25 * 26 * Untested: 27 * Windows networking 28 * 29 * References: 30 * 31 * Intel 8255x 10/100 Mbps Ethernet Controller Family 32 * Open Source Software Developer Manual 33 * 34 * TODO: 35 * * PHY emulation should be separated from nic emulation. 36 * Most nic emulations could share the same phy code. 37 * * i82550 is untested. It is programmed like the i82559. 38 * * i82562 is untested. It is programmed like the i82559. 39 * * Power management (i82558 and later) is not implemented. 40 * * Wake-on-LAN is not implemented. 41 */ 42 43 #include "qemu/osdep.h" 44 #include "hw/hw.h" 45 #include "hw/pci/pci.h" 46 #include "net/net.h" 47 #include "hw/nvram/eeprom93xx.h" 48 #include "sysemu/sysemu.h" 49 #include "sysemu/dma.h" 50 #include "qemu/bitops.h" 51 52 /* QEMU sends frames smaller than 60 bytes to ethernet nics. 53 * Such frames are rejected by real nics and their emulations. 54 * To avoid this behaviour, other nic emulations pad received 55 * frames. The following definition enables this padding for 56 * eepro100, too. We keep the define around in case it might 57 * become useful the future if the core networking is ever 58 * changed to pad short packets itself. */ 59 #define CONFIG_PAD_RECEIVED_FRAMES 60 61 #define KiB 1024 62 63 /* Debug EEPRO100 card. */ 64 #if 0 65 # define DEBUG_EEPRO100 66 #endif 67 68 #ifdef DEBUG_EEPRO100 69 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__) 70 #else 71 #define logout(fmt, ...) ((void)0) 72 #endif 73 74 /* Set flags to 0 to disable debug output. */ 75 #define INT 1 /* interrupt related actions */ 76 #define MDI 1 /* mdi related actions */ 77 #define OTHER 1 78 #define RXTX 1 79 #define EEPROM 1 /* eeprom related actions */ 80 81 #define TRACE(flag, command) ((flag) ? (command) : (void)0) 82 83 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n") 84 85 #define MAX_ETH_FRAME_SIZE 1514 86 87 /* This driver supports several different devices which are declared here. */ 88 #define i82550 0x82550 89 #define i82551 0x82551 90 #define i82557A 0x82557a 91 #define i82557B 0x82557b 92 #define i82557C 0x82557c 93 #define i82558A 0x82558a 94 #define i82558B 0x82558b 95 #define i82559A 0x82559a 96 #define i82559B 0x82559b 97 #define i82559C 0x82559c 98 #define i82559ER 0x82559e 99 #define i82562 0x82562 100 #define i82801 0x82801 101 102 /* Use 64 word EEPROM. TODO: could be a runtime option. */ 103 #define EEPROM_SIZE 64 104 105 #define PCI_MEM_SIZE (4 * KiB) 106 #define PCI_IO_SIZE 64 107 #define PCI_FLASH_SIZE (128 * KiB) 108 109 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m) 110 111 /* The SCB accepts the following controls for the Tx and Rx units: */ 112 #define CU_NOP 0x0000 /* No operation. */ 113 #define CU_START 0x0010 /* CU start. */ 114 #define CU_RESUME 0x0020 /* CU resume. */ 115 #define CU_STATSADDR 0x0040 /* Load dump counters address. */ 116 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */ 117 #define CU_CMD_BASE 0x0060 /* Load CU base address. */ 118 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */ 119 #define CU_SRESUME 0x00a0 /* CU static resume. */ 120 121 #define RU_NOP 0x0000 122 #define RX_START 0x0001 123 #define RX_RESUME 0x0002 124 #define RU_ABORT 0x0004 125 #define RX_ADDR_LOAD 0x0006 126 #define RX_RESUMENR 0x0007 127 #define INT_MASK 0x0100 128 #define DRVR_INT 0x0200 /* Driver generated interrupt. */ 129 130 typedef struct { 131 const char *name; 132 const char *desc; 133 uint16_t device_id; 134 uint8_t revision; 135 uint16_t subsystem_vendor_id; 136 uint16_t subsystem_id; 137 138 uint32_t device; 139 uint8_t stats_size; 140 bool has_extended_tcb_support; 141 bool power_management; 142 } E100PCIDeviceInfo; 143 144 /* Offsets to the various registers. 145 All accesses need not be longword aligned. */ 146 typedef enum { 147 SCBStatus = 0, /* Status Word. */ 148 SCBAck = 1, 149 SCBCmd = 2, /* Rx/Command Unit command and status. */ 150 SCBIntmask = 3, 151 SCBPointer = 4, /* General purpose pointer. */ 152 SCBPort = 8, /* Misc. commands and operands. */ 153 SCBflash = 12, /* Flash memory control. */ 154 SCBeeprom = 14, /* EEPROM control. */ 155 SCBCtrlMDI = 16, /* MDI interface control. */ 156 SCBEarlyRx = 20, /* Early receive byte count. */ 157 SCBFlow = 24, /* Flow Control. */ 158 SCBpmdr = 27, /* Power Management Driver. */ 159 SCBgctrl = 28, /* General Control. */ 160 SCBgstat = 29, /* General Status. */ 161 } E100RegisterOffset; 162 163 /* A speedo3 transmit buffer descriptor with two buffers... */ 164 typedef struct { 165 uint16_t status; 166 uint16_t command; 167 uint32_t link; /* void * */ 168 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */ 169 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */ 170 uint8_t tx_threshold; /* transmit threshold */ 171 uint8_t tbd_count; /* TBD number */ 172 #if 0 173 /* This constitutes two "TBD" entries: hdr and data */ 174 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */ 175 int32_t tx_buf_size0; /* Length of Tx hdr. */ 176 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */ 177 int32_t tx_buf_size1; /* Length of Tx data. */ 178 #endif 179 } eepro100_tx_t; 180 181 /* Receive frame descriptor. */ 182 typedef struct { 183 int16_t status; 184 uint16_t command; 185 uint32_t link; /* struct RxFD * */ 186 uint32_t rx_buf_addr; /* void * */ 187 uint16_t count; 188 uint16_t size; 189 /* Ethernet frame data follows. */ 190 } eepro100_rx_t; 191 192 typedef enum { 193 COMMAND_EL = BIT(15), 194 COMMAND_S = BIT(14), 195 COMMAND_I = BIT(13), 196 COMMAND_NC = BIT(4), 197 COMMAND_SF = BIT(3), 198 COMMAND_CMD = BITS(2, 0), 199 } scb_command_bit; 200 201 typedef enum { 202 STATUS_C = BIT(15), 203 STATUS_OK = BIT(13), 204 } scb_status_bit; 205 206 typedef struct { 207 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions, 208 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 209 tx_multiple_collisions, tx_total_collisions; 210 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors, 211 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 212 rx_short_frame_errors; 213 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 214 uint16_t xmt_tco_frames, rcv_tco_frames; 215 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */ 216 uint32_t reserved[4]; 217 } eepro100_stats_t; 218 219 typedef enum { 220 cu_idle = 0, 221 cu_suspended = 1, 222 cu_active = 2, 223 cu_lpq_active = 2, 224 cu_hqp_active = 3 225 } cu_state_t; 226 227 typedef enum { 228 ru_idle = 0, 229 ru_suspended = 1, 230 ru_no_resources = 2, 231 ru_ready = 4 232 } ru_state_t; 233 234 typedef struct { 235 PCIDevice dev; 236 /* Hash register (multicast mask array, multiple individual addresses). */ 237 uint8_t mult[8]; 238 MemoryRegion mmio_bar; 239 MemoryRegion io_bar; 240 MemoryRegion flash_bar; 241 NICState *nic; 242 NICConf conf; 243 uint8_t scb_stat; /* SCB stat/ack byte */ 244 uint8_t int_stat; /* PCI interrupt status */ 245 /* region must not be saved by nic_save. */ 246 uint16_t mdimem[32]; 247 eeprom_t *eeprom; 248 uint32_t device; /* device variant */ 249 /* (cu_base + cu_offset) address the next command block in the command block list. */ 250 uint32_t cu_base; /* CU base address */ 251 uint32_t cu_offset; /* CU address offset */ 252 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */ 253 uint32_t ru_base; /* RU base address */ 254 uint32_t ru_offset; /* RU address offset */ 255 uint32_t statsaddr; /* pointer to eepro100_stats_t */ 256 257 /* Temporary status information (no need to save these values), 258 * used while processing CU commands. */ 259 eepro100_tx_t tx; /* transmit buffer descriptor */ 260 uint32_t cb_address; /* = cu_base + cu_offset */ 261 262 /* Statistical counters. Also used for wake-up packet (i82559). */ 263 eepro100_stats_t statistics; 264 265 /* Data in mem is always in the byte order of the controller (le). 266 * It must be dword aligned to allow direct access to 32 bit values. */ 267 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8))); 268 269 /* Configuration bytes. */ 270 uint8_t configuration[22]; 271 272 /* vmstate for each particular nic */ 273 VMStateDescription *vmstate; 274 275 /* Quasi static device properties (no need to save them). */ 276 uint16_t stats_size; 277 bool has_extended_tcb_support; 278 } EEPRO100State; 279 280 /* Word indices in EEPROM. */ 281 typedef enum { 282 EEPROM_CNFG_MDIX = 0x03, 283 EEPROM_ID = 0x05, 284 EEPROM_PHY_ID = 0x06, 285 EEPROM_VENDOR_ID = 0x0c, 286 EEPROM_CONFIG_ASF = 0x0d, 287 EEPROM_DEVICE_ID = 0x23, 288 EEPROM_SMBUS_ADDR = 0x90, 289 } EEPROMOffset; 290 291 /* Bit values for EEPROM ID word. */ 292 typedef enum { 293 EEPROM_ID_MDM = BIT(0), /* Modem */ 294 EEPROM_ID_STB = BIT(1), /* Standby Enable */ 295 EEPROM_ID_WMR = BIT(2), /* ??? */ 296 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */ 297 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */ 298 EEPROM_ID_ALT = BIT(7), /* */ 299 /* BITS(10, 8) device revision */ 300 EEPROM_ID_BD = BIT(11), /* boot disable */ 301 EEPROM_ID_ID = BIT(13), /* id bit */ 302 /* BITS(15, 14) signature */ 303 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */ 304 } eeprom_id_bit; 305 306 /* Default values for MDI (PHY) registers */ 307 static const uint16_t eepro100_mdi_default[] = { 308 /* MDI Registers 0 - 6, 7 */ 309 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000, 310 /* MDI Registers 8 - 15 */ 311 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 312 /* MDI Registers 16 - 31 */ 313 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 314 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 315 }; 316 317 /* Readonly mask for MDI (PHY) registers */ 318 static const uint16_t eepro100_mdi_mask[] = { 319 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000, 320 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 321 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 322 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 323 }; 324 325 #define POLYNOMIAL 0x04c11db6 326 327 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s); 328 329 /* From FreeBSD (locally modified). */ 330 static unsigned e100_compute_mcast_idx(const uint8_t *ep) 331 { 332 uint32_t crc; 333 int carry, i, j; 334 uint8_t b; 335 336 crc = 0xffffffff; 337 for (i = 0; i < 6; i++) { 338 b = *ep++; 339 for (j = 0; j < 8; j++) { 340 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01); 341 crc <<= 1; 342 b >>= 1; 343 if (carry) { 344 crc = ((crc ^ POLYNOMIAL) | carry); 345 } 346 } 347 } 348 return (crc & BITS(7, 2)) >> 2; 349 } 350 351 /* Read a 16 bit control/status (CSR) register. */ 352 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr) 353 { 354 assert(!((uintptr_t)&s->mem[addr] & 1)); 355 return lduw_le_p(&s->mem[addr]); 356 } 357 358 /* Read a 32 bit control/status (CSR) register. */ 359 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr) 360 { 361 assert(!((uintptr_t)&s->mem[addr] & 3)); 362 return ldl_le_p(&s->mem[addr]); 363 } 364 365 /* Write a 16 bit control/status (CSR) register. */ 366 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr, 367 uint16_t val) 368 { 369 assert(!((uintptr_t)&s->mem[addr] & 1)); 370 stw_le_p(&s->mem[addr], val); 371 } 372 373 /* Read a 32 bit control/status (CSR) register. */ 374 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr, 375 uint32_t val) 376 { 377 assert(!((uintptr_t)&s->mem[addr] & 3)); 378 stl_le_p(&s->mem[addr], val); 379 } 380 381 #if defined(DEBUG_EEPRO100) 382 static const char *nic_dump(const uint8_t * buf, unsigned size) 383 { 384 static char dump[3 * 16 + 1]; 385 char *p = &dump[0]; 386 if (size > 16) { 387 size = 16; 388 } 389 while (size-- > 0) { 390 p += sprintf(p, " %02x", *buf++); 391 } 392 return dump; 393 } 394 #endif /* DEBUG_EEPRO100 */ 395 396 enum scb_stat_ack { 397 stat_ack_not_ours = 0x00, 398 stat_ack_sw_gen = 0x04, 399 stat_ack_rnr = 0x10, 400 stat_ack_cu_idle = 0x20, 401 stat_ack_frame_rx = 0x40, 402 stat_ack_cu_cmd_done = 0x80, 403 stat_ack_not_present = 0xFF, 404 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 405 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 406 }; 407 408 static void disable_interrupt(EEPRO100State * s) 409 { 410 if (s->int_stat) { 411 TRACE(INT, logout("interrupt disabled\n")); 412 pci_irq_deassert(&s->dev); 413 s->int_stat = 0; 414 } 415 } 416 417 static void enable_interrupt(EEPRO100State * s) 418 { 419 if (!s->int_stat) { 420 TRACE(INT, logout("interrupt enabled\n")); 421 pci_irq_assert(&s->dev); 422 s->int_stat = 1; 423 } 424 } 425 426 static void eepro100_acknowledge(EEPRO100State * s) 427 { 428 s->scb_stat &= ~s->mem[SCBAck]; 429 s->mem[SCBAck] = s->scb_stat; 430 if (s->scb_stat == 0) { 431 disable_interrupt(s); 432 } 433 } 434 435 static void eepro100_interrupt(EEPRO100State * s, uint8_t status) 436 { 437 uint8_t mask = ~s->mem[SCBIntmask]; 438 s->mem[SCBAck] |= status; 439 status = s->scb_stat = s->mem[SCBAck]; 440 status &= (mask | 0x0f); 441 #if 0 442 status &= (~s->mem[SCBIntmask] | 0x0xf); 443 #endif 444 if (status && (mask & 0x01)) { 445 /* SCB mask and SCB Bit M do not disable interrupt. */ 446 enable_interrupt(s); 447 } else if (s->int_stat) { 448 disable_interrupt(s); 449 } 450 } 451 452 static void eepro100_cx_interrupt(EEPRO100State * s) 453 { 454 /* CU completed action command. */ 455 /* Transmit not ok (82557 only, not in emulation). */ 456 eepro100_interrupt(s, 0x80); 457 } 458 459 static void eepro100_cna_interrupt(EEPRO100State * s) 460 { 461 /* CU left the active state. */ 462 eepro100_interrupt(s, 0x20); 463 } 464 465 static void eepro100_fr_interrupt(EEPRO100State * s) 466 { 467 /* RU received a complete frame. */ 468 eepro100_interrupt(s, 0x40); 469 } 470 471 static void eepro100_rnr_interrupt(EEPRO100State * s) 472 { 473 /* RU is not ready. */ 474 eepro100_interrupt(s, 0x10); 475 } 476 477 static void eepro100_mdi_interrupt(EEPRO100State * s) 478 { 479 /* MDI completed read or write cycle. */ 480 eepro100_interrupt(s, 0x08); 481 } 482 483 static void eepro100_swi_interrupt(EEPRO100State * s) 484 { 485 /* Software has requested an interrupt. */ 486 eepro100_interrupt(s, 0x04); 487 } 488 489 #if 0 490 static void eepro100_fcp_interrupt(EEPRO100State * s) 491 { 492 /* Flow control pause interrupt (82558 and later). */ 493 eepro100_interrupt(s, 0x01); 494 } 495 #endif 496 497 static void e100_pci_reset(EEPRO100State * s) 498 { 499 E100PCIDeviceInfo *info = eepro100_get_class(s); 500 uint32_t device = s->device; 501 uint8_t *pci_conf = s->dev.config; 502 503 TRACE(OTHER, logout("%p\n", s)); 504 505 /* PCI Status */ 506 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM | 507 PCI_STATUS_FAST_BACK); 508 /* PCI Latency Timer */ 509 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */ 510 /* Capability Pointer is set by PCI framework. */ 511 /* Interrupt Line */ 512 /* Interrupt Pin */ 513 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */ 514 /* Minimum Grant */ 515 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08); 516 /* Maximum Latency */ 517 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18); 518 519 s->stats_size = info->stats_size; 520 s->has_extended_tcb_support = info->has_extended_tcb_support; 521 522 switch (device) { 523 case i82550: 524 case i82551: 525 case i82557A: 526 case i82557B: 527 case i82557C: 528 case i82558A: 529 case i82558B: 530 case i82559A: 531 case i82559B: 532 case i82559ER: 533 case i82562: 534 case i82801: 535 case i82559C: 536 break; 537 default: 538 logout("Device %X is undefined!\n", device); 539 } 540 541 /* Standard TxCB. */ 542 s->configuration[6] |= BIT(4); 543 544 /* Standard statistical counters. */ 545 s->configuration[6] |= BIT(5); 546 547 if (s->stats_size == 80) { 548 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */ 549 if (s->configuration[6] & BIT(2)) { 550 /* TCO statistical counters. */ 551 assert(s->configuration[6] & BIT(5)); 552 } else { 553 if (s->configuration[6] & BIT(5)) { 554 /* No extended statistical counters, i82557 compatible. */ 555 s->stats_size = 64; 556 } else { 557 /* i82558 compatible. */ 558 s->stats_size = 76; 559 } 560 } 561 } else { 562 if (s->configuration[6] & BIT(5)) { 563 /* No extended statistical counters. */ 564 s->stats_size = 64; 565 } 566 } 567 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics)); 568 569 if (info->power_management) { 570 /* Power Management Capabilities */ 571 int cfg_offset = 0xdc; 572 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM, 573 cfg_offset, PCI_PM_SIZEOF); 574 assert(r >= 0); 575 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21); 576 #if 0 /* TODO: replace dummy code for power management emulation. */ 577 /* TODO: Power Management Control / Status. */ 578 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000); 579 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */ 580 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000); 581 #endif 582 } 583 584 #if EEPROM_SIZE > 0 585 if (device == i82557C || device == i82558B || device == i82559C) { 586 /* 587 TODO: get vendor id from EEPROM for i82557C or later. 588 TODO: get device id from EEPROM for i82557C or later. 589 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559. 590 TODO: header type is determined by EEPROM for i82559. 591 TODO: get subsystem id from EEPROM for i82557C or later. 592 TODO: get subsystem vendor id from EEPROM for i82557C or later. 593 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later. 594 TODO: capability pointer depends on EEPROM for i82558. 595 */ 596 logout("Get device id and revision from EEPROM!!!\n"); 597 } 598 #endif /* EEPROM_SIZE > 0 */ 599 } 600 601 static void nic_selective_reset(EEPRO100State * s) 602 { 603 size_t i; 604 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom); 605 #if 0 606 eeprom93xx_reset(s->eeprom); 607 #endif 608 memcpy(eeprom_contents, s->conf.macaddr.a, 6); 609 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID; 610 if (s->device == i82557B || s->device == i82557C) 611 eeprom_contents[5] = 0x0100; 612 eeprom_contents[EEPROM_PHY_ID] = 1; 613 uint16_t sum = 0; 614 for (i = 0; i < EEPROM_SIZE - 1; i++) { 615 sum += eeprom_contents[i]; 616 } 617 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum; 618 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1])); 619 620 memset(s->mem, 0, sizeof(s->mem)); 621 e100_write_reg4(s, SCBCtrlMDI, BIT(21)); 622 623 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default)); 624 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem)); 625 } 626 627 static void nic_reset(void *opaque) 628 { 629 EEPRO100State *s = opaque; 630 TRACE(OTHER, logout("%p\n", s)); 631 /* TODO: Clearing of hash register for selective reset, too? */ 632 memset(&s->mult[0], 0, sizeof(s->mult)); 633 nic_selective_reset(s); 634 } 635 636 #if defined(DEBUG_EEPRO100) 637 static const char * const e100_reg[PCI_IO_SIZE / 4] = { 638 "Command/Status", 639 "General Pointer", 640 "Port", 641 "EEPROM/Flash Control", 642 "MDI Control", 643 "Receive DMA Byte Count", 644 "Flow Control", 645 "General Status/Control" 646 }; 647 648 static char *regname(uint32_t addr) 649 { 650 static char buf[32]; 651 if (addr < PCI_IO_SIZE) { 652 const char *r = e100_reg[addr / 4]; 653 if (r != 0) { 654 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4); 655 } else { 656 snprintf(buf, sizeof(buf), "0x%02x", addr); 657 } 658 } else { 659 snprintf(buf, sizeof(buf), "??? 0x%08x", addr); 660 } 661 return buf; 662 } 663 #endif /* DEBUG_EEPRO100 */ 664 665 /***************************************************************************** 666 * 667 * Command emulation. 668 * 669 ****************************************************************************/ 670 671 #if 0 672 static uint16_t eepro100_read_command(EEPRO100State * s) 673 { 674 uint16_t val = 0xffff; 675 TRACE(OTHER, logout("val=0x%04x\n", val)); 676 return val; 677 } 678 #endif 679 680 /* Commands that can be put in a command list entry. */ 681 enum commands { 682 CmdNOp = 0, 683 CmdIASetup = 1, 684 CmdConfigure = 2, 685 CmdMulticastList = 3, 686 CmdTx = 4, 687 CmdTDR = 5, /* load microcode */ 688 CmdDump = 6, 689 CmdDiagnose = 7, 690 691 /* And some extra flags: */ 692 CmdSuspend = 0x4000, /* Suspend after completion. */ 693 CmdIntr = 0x2000, /* Interrupt after completion. */ 694 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */ 695 }; 696 697 static cu_state_t get_cu_state(EEPRO100State * s) 698 { 699 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6); 700 } 701 702 static void set_cu_state(EEPRO100State * s, cu_state_t state) 703 { 704 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6); 705 } 706 707 static ru_state_t get_ru_state(EEPRO100State * s) 708 { 709 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2); 710 } 711 712 static void set_ru_state(EEPRO100State * s, ru_state_t state) 713 { 714 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2); 715 } 716 717 static void dump_statistics(EEPRO100State * s) 718 { 719 /* Dump statistical data. Most data is never changed by the emulation 720 * and always 0, so we first just copy the whole block and then those 721 * values which really matter. 722 * Number of data should check configuration!!! 723 */ 724 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size); 725 stl_le_pci_dma(&s->dev, s->statsaddr + 0, 726 s->statistics.tx_good_frames); 727 stl_le_pci_dma(&s->dev, s->statsaddr + 36, 728 s->statistics.rx_good_frames); 729 stl_le_pci_dma(&s->dev, s->statsaddr + 48, 730 s->statistics.rx_resource_errors); 731 stl_le_pci_dma(&s->dev, s->statsaddr + 60, 732 s->statistics.rx_short_frame_errors); 733 #if 0 734 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames); 735 stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames); 736 missing("CU dump statistical counters"); 737 #endif 738 } 739 740 static void read_cb(EEPRO100State *s) 741 { 742 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx)); 743 s->tx.status = le16_to_cpu(s->tx.status); 744 s->tx.command = le16_to_cpu(s->tx.command); 745 s->tx.link = le32_to_cpu(s->tx.link); 746 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr); 747 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes); 748 } 749 750 static void tx_command(EEPRO100State *s) 751 { 752 uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr); 753 uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff); 754 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */ 755 uint8_t buf[2600]; 756 uint16_t size = 0; 757 uint32_t tbd_address = s->cb_address + 0x10; 758 TRACE(RXTX, logout 759 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n", 760 tbd_array, tcb_bytes, s->tx.tbd_count)); 761 762 if (tcb_bytes > 2600) { 763 logout("TCB byte count too large, using 2600\n"); 764 tcb_bytes = 2600; 765 } 766 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) { 767 logout 768 ("illegal values of TBD array address and TCB byte count!\n"); 769 } 770 assert(tcb_bytes <= sizeof(buf)); 771 while (size < tcb_bytes) { 772 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address); 773 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4); 774 #if 0 775 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6); 776 #endif 777 if (tx_buffer_size == 0) { 778 /* Prevent an endless loop. */ 779 logout("loop in %s:%u\n", __FILE__, __LINE__); 780 break; 781 } 782 tbd_address += 8; 783 TRACE(RXTX, logout 784 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n", 785 tx_buffer_address, tx_buffer_size)); 786 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 787 pci_dma_read(&s->dev, tx_buffer_address, &buf[size], tx_buffer_size); 788 size += tx_buffer_size; 789 } 790 if (tbd_array == 0xffffffff) { 791 /* Simplified mode. Was already handled by code above. */ 792 } else { 793 /* Flexible mode. */ 794 uint8_t tbd_count = 0; 795 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) { 796 /* Extended Flexible TCB. */ 797 for (; tbd_count < 2; tbd_count++) { 798 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, 799 tbd_address); 800 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, 801 tbd_address + 4); 802 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, 803 tbd_address + 6); 804 tbd_address += 8; 805 TRACE(RXTX, logout 806 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n", 807 tx_buffer_address, tx_buffer_size)); 808 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 809 pci_dma_read(&s->dev, tx_buffer_address, 810 &buf[size], tx_buffer_size); 811 size += tx_buffer_size; 812 if (tx_buffer_el & 1) { 813 break; 814 } 815 } 816 } 817 tbd_address = tbd_array; 818 for (; tbd_count < s->tx.tbd_count; tbd_count++) { 819 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address); 820 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4); 821 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6); 822 tbd_address += 8; 823 TRACE(RXTX, logout 824 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n", 825 tx_buffer_address, tx_buffer_size)); 826 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 827 pci_dma_read(&s->dev, tx_buffer_address, 828 &buf[size], tx_buffer_size); 829 size += tx_buffer_size; 830 if (tx_buffer_el & 1) { 831 break; 832 } 833 } 834 } 835 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size))); 836 qemu_send_packet(qemu_get_queue(s->nic), buf, size); 837 s->statistics.tx_good_frames++; 838 /* Transmit with bad status would raise an CX/TNO interrupt. 839 * (82557 only). Emulation never has bad status. */ 840 #if 0 841 eepro100_cx_interrupt(s); 842 #endif 843 } 844 845 static void set_multicast_list(EEPRO100State *s) 846 { 847 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0); 848 uint16_t i; 849 memset(&s->mult[0], 0, sizeof(s->mult)); 850 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count)); 851 for (i = 0; i < multicast_count; i += 6) { 852 uint8_t multicast_addr[6]; 853 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6); 854 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6))); 855 unsigned mcast_idx = e100_compute_mcast_idx(multicast_addr); 856 assert(mcast_idx < 64); 857 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7)); 858 } 859 } 860 861 static void action_command(EEPRO100State *s) 862 { 863 /* The loop below won't stop if it gets special handcrafted data. 864 Therefore we limit the number of iterations. */ 865 unsigned max_loop_count = 16; 866 867 for (;;) { 868 bool bit_el; 869 bool bit_s; 870 bool bit_i; 871 bool bit_nc; 872 uint16_t ok_status = STATUS_OK; 873 s->cb_address = s->cu_base + s->cu_offset; 874 read_cb(s); 875 bit_el = ((s->tx.command & COMMAND_EL) != 0); 876 bit_s = ((s->tx.command & COMMAND_S) != 0); 877 bit_i = ((s->tx.command & COMMAND_I) != 0); 878 bit_nc = ((s->tx.command & COMMAND_NC) != 0); 879 #if 0 880 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0); 881 #endif 882 883 if (max_loop_count-- == 0) { 884 /* Prevent an endless loop. */ 885 logout("loop in %s:%u\n", __FILE__, __LINE__); 886 break; 887 } 888 889 s->cu_offset = s->tx.link; 890 TRACE(OTHER, 891 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n", 892 s->tx.status, s->tx.command, s->tx.link)); 893 switch (s->tx.command & COMMAND_CMD) { 894 case CmdNOp: 895 /* Do nothing. */ 896 break; 897 case CmdIASetup: 898 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6); 899 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6))); 900 break; 901 case CmdConfigure: 902 pci_dma_read(&s->dev, s->cb_address + 8, 903 &s->configuration[0], sizeof(s->configuration)); 904 TRACE(OTHER, logout("configuration: %s\n", 905 nic_dump(&s->configuration[0], 16))); 906 TRACE(OTHER, logout("configuration: %s\n", 907 nic_dump(&s->configuration[16], 908 ARRAY_SIZE(s->configuration) - 16))); 909 if (s->configuration[20] & BIT(6)) { 910 TRACE(OTHER, logout("Multiple IA bit\n")); 911 } 912 break; 913 case CmdMulticastList: 914 set_multicast_list(s); 915 break; 916 case CmdTx: 917 if (bit_nc) { 918 missing("CmdTx: NC = 0"); 919 ok_status = 0; 920 break; 921 } 922 tx_command(s); 923 break; 924 case CmdTDR: 925 TRACE(OTHER, logout("load microcode\n")); 926 /* Starting with offset 8, the command contains 927 * 64 dwords microcode which we just ignore here. */ 928 break; 929 case CmdDiagnose: 930 TRACE(OTHER, logout("diagnose\n")); 931 /* Make sure error flag is not set. */ 932 s->tx.status = 0; 933 break; 934 default: 935 missing("undefined command"); 936 ok_status = 0; 937 break; 938 } 939 /* Write new status. */ 940 stw_le_pci_dma(&s->dev, s->cb_address, 941 s->tx.status | ok_status | STATUS_C); 942 if (bit_i) { 943 /* CU completed action. */ 944 eepro100_cx_interrupt(s); 945 } 946 if (bit_el) { 947 /* CU becomes idle. Terminate command loop. */ 948 set_cu_state(s, cu_idle); 949 eepro100_cna_interrupt(s); 950 break; 951 } else if (bit_s) { 952 /* CU becomes suspended. Terminate command loop. */ 953 set_cu_state(s, cu_suspended); 954 eepro100_cna_interrupt(s); 955 break; 956 } else { 957 /* More entries in list. */ 958 TRACE(OTHER, logout("CU list with at least one more entry\n")); 959 } 960 } 961 TRACE(OTHER, logout("CU list empty\n")); 962 /* List is empty. Now CU is idle or suspended. */ 963 } 964 965 static void eepro100_cu_command(EEPRO100State * s, uint8_t val) 966 { 967 cu_state_t cu_state; 968 switch (val) { 969 case CU_NOP: 970 /* No operation. */ 971 break; 972 case CU_START: 973 cu_state = get_cu_state(s); 974 if (cu_state != cu_idle && cu_state != cu_suspended) { 975 /* Intel documentation says that CU must be idle or suspended 976 * for the CU start command. */ 977 logout("unexpected CU state is %u\n", cu_state); 978 } 979 set_cu_state(s, cu_active); 980 s->cu_offset = e100_read_reg4(s, SCBPointer); 981 action_command(s); 982 break; 983 case CU_RESUME: 984 if (get_cu_state(s) != cu_suspended) { 985 logout("bad CU resume from CU state %u\n", get_cu_state(s)); 986 /* Workaround for bad Linux eepro100 driver which resumes 987 * from idle state. */ 988 #if 0 989 missing("cu resume"); 990 #endif 991 set_cu_state(s, cu_suspended); 992 } 993 if (get_cu_state(s) == cu_suspended) { 994 TRACE(OTHER, logout("CU resuming\n")); 995 set_cu_state(s, cu_active); 996 action_command(s); 997 } 998 break; 999 case CU_STATSADDR: 1000 /* Load dump counters address. */ 1001 s->statsaddr = e100_read_reg4(s, SCBPointer); 1002 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val)); 1003 if (s->statsaddr & 3) { 1004 /* Memory must be Dword aligned. */ 1005 logout("unaligned dump counters address\n"); 1006 /* Handling of misaligned addresses is undefined. 1007 * Here we align the address by ignoring the lower bits. */ 1008 /* TODO: Test unaligned dump counter address on real hardware. */ 1009 s->statsaddr &= ~3; 1010 } 1011 break; 1012 case CU_SHOWSTATS: 1013 /* Dump statistical counters. */ 1014 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val)); 1015 dump_statistics(s); 1016 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005); 1017 break; 1018 case CU_CMD_BASE: 1019 /* Load CU base. */ 1020 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val)); 1021 s->cu_base = e100_read_reg4(s, SCBPointer); 1022 break; 1023 case CU_DUMPSTATS: 1024 /* Dump and reset statistical counters. */ 1025 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val)); 1026 dump_statistics(s); 1027 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007); 1028 memset(&s->statistics, 0, sizeof(s->statistics)); 1029 break; 1030 case CU_SRESUME: 1031 /* CU static resume. */ 1032 missing("CU static resume"); 1033 break; 1034 default: 1035 missing("Undefined CU command"); 1036 } 1037 } 1038 1039 static void eepro100_ru_command(EEPRO100State * s, uint8_t val) 1040 { 1041 switch (val) { 1042 case RU_NOP: 1043 /* No operation. */ 1044 break; 1045 case RX_START: 1046 /* RU start. */ 1047 if (get_ru_state(s) != ru_idle) { 1048 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle); 1049 #if 0 1050 assert(!"wrong RU state"); 1051 #endif 1052 } 1053 set_ru_state(s, ru_ready); 1054 s->ru_offset = e100_read_reg4(s, SCBPointer); 1055 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1056 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val)); 1057 break; 1058 case RX_RESUME: 1059 /* Restart RU. */ 1060 if (get_ru_state(s) != ru_suspended) { 1061 logout("RU state is %u, should be %u\n", get_ru_state(s), 1062 ru_suspended); 1063 #if 0 1064 assert(!"wrong RU state"); 1065 #endif 1066 } 1067 set_ru_state(s, ru_ready); 1068 break; 1069 case RU_ABORT: 1070 /* RU abort. */ 1071 if (get_ru_state(s) == ru_ready) { 1072 eepro100_rnr_interrupt(s); 1073 } 1074 set_ru_state(s, ru_idle); 1075 break; 1076 case RX_ADDR_LOAD: 1077 /* Load RU base. */ 1078 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val)); 1079 s->ru_base = e100_read_reg4(s, SCBPointer); 1080 break; 1081 default: 1082 logout("val=0x%02x (undefined RU command)\n", val); 1083 missing("Undefined SU command"); 1084 } 1085 } 1086 1087 static void eepro100_write_command(EEPRO100State * s, uint8_t val) 1088 { 1089 eepro100_ru_command(s, val & 0x0f); 1090 eepro100_cu_command(s, val & 0xf0); 1091 if ((val) == 0) { 1092 TRACE(OTHER, logout("val=0x%02x\n", val)); 1093 } 1094 /* Clear command byte after command was accepted. */ 1095 s->mem[SCBCmd] = 0; 1096 } 1097 1098 /***************************************************************************** 1099 * 1100 * EEPROM emulation. 1101 * 1102 ****************************************************************************/ 1103 1104 #define EEPROM_CS 0x02 1105 #define EEPROM_SK 0x01 1106 #define EEPROM_DI 0x04 1107 #define EEPROM_DO 0x08 1108 1109 static uint16_t eepro100_read_eeprom(EEPRO100State * s) 1110 { 1111 uint16_t val = e100_read_reg2(s, SCBeeprom); 1112 if (eeprom93xx_read(s->eeprom)) { 1113 val |= EEPROM_DO; 1114 } else { 1115 val &= ~EEPROM_DO; 1116 } 1117 TRACE(EEPROM, logout("val=0x%04x\n", val)); 1118 return val; 1119 } 1120 1121 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val) 1122 { 1123 TRACE(EEPROM, logout("val=0x%02x\n", val)); 1124 1125 /* mask unwritable bits */ 1126 #if 0 1127 val = SET_MASKED(val, 0x31, eeprom->value); 1128 #endif 1129 1130 int eecs = ((val & EEPROM_CS) != 0); 1131 int eesk = ((val & EEPROM_SK) != 0); 1132 int eedi = ((val & EEPROM_DI) != 0); 1133 eeprom93xx_write(eeprom, eecs, eesk, eedi); 1134 } 1135 1136 /***************************************************************************** 1137 * 1138 * MDI emulation. 1139 * 1140 ****************************************************************************/ 1141 1142 #if defined(DEBUG_EEPRO100) 1143 static const char * const mdi_op_name[] = { 1144 "opcode 0", 1145 "write", 1146 "read", 1147 "opcode 3" 1148 }; 1149 1150 static const char * const mdi_reg_name[] = { 1151 "Control", 1152 "Status", 1153 "PHY Identification (Word 1)", 1154 "PHY Identification (Word 2)", 1155 "Auto-Negotiation Advertisement", 1156 "Auto-Negotiation Link Partner Ability", 1157 "Auto-Negotiation Expansion" 1158 }; 1159 1160 static const char *reg2name(uint8_t reg) 1161 { 1162 static char buffer[10]; 1163 const char *p = buffer; 1164 if (reg < ARRAY_SIZE(mdi_reg_name)) { 1165 p = mdi_reg_name[reg]; 1166 } else { 1167 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg); 1168 } 1169 return p; 1170 } 1171 #endif /* DEBUG_EEPRO100 */ 1172 1173 static uint32_t eepro100_read_mdi(EEPRO100State * s) 1174 { 1175 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1176 1177 #ifdef DEBUG_EEPRO100 1178 uint8_t raiseint = (val & BIT(29)) >> 29; 1179 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1180 uint8_t phy = (val & BITS(25, 21)) >> 21; 1181 uint8_t reg = (val & BITS(20, 16)) >> 16; 1182 uint16_t data = (val & BITS(15, 0)); 1183 #endif 1184 /* Emulation takes no time to finish MDI transaction. */ 1185 val |= BIT(28); 1186 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1187 val, raiseint, mdi_op_name[opcode], phy, 1188 reg2name(reg), data)); 1189 return val; 1190 } 1191 1192 static void eepro100_write_mdi(EEPRO100State *s) 1193 { 1194 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1195 uint8_t raiseint = (val & BIT(29)) >> 29; 1196 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1197 uint8_t phy = (val & BITS(25, 21)) >> 21; 1198 uint8_t reg = (val & BITS(20, 16)) >> 16; 1199 uint16_t data = (val & BITS(15, 0)); 1200 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1201 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data)); 1202 if (phy != 1) { 1203 /* Unsupported PHY address. */ 1204 #if 0 1205 logout("phy must be 1 but is %u\n", phy); 1206 #endif 1207 data = 0; 1208 } else if (opcode != 1 && opcode != 2) { 1209 /* Unsupported opcode. */ 1210 logout("opcode must be 1 or 2 but is %u\n", opcode); 1211 data = 0; 1212 } else if (reg > 6) { 1213 /* Unsupported register. */ 1214 logout("register must be 0...6 but is %u\n", reg); 1215 data = 0; 1216 } else { 1217 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1218 val, raiseint, mdi_op_name[opcode], phy, 1219 reg2name(reg), data)); 1220 if (opcode == 1) { 1221 /* MDI write */ 1222 switch (reg) { 1223 case 0: /* Control Register */ 1224 if (data & 0x8000) { 1225 /* Reset status and control registers to default. */ 1226 s->mdimem[0] = eepro100_mdi_default[0]; 1227 s->mdimem[1] = eepro100_mdi_default[1]; 1228 data = s->mdimem[reg]; 1229 } else { 1230 /* Restart Auto Configuration = Normal Operation */ 1231 data &= ~0x0200; 1232 } 1233 break; 1234 case 1: /* Status Register */ 1235 missing("not writable"); 1236 break; 1237 case 2: /* PHY Identification Register (Word 1) */ 1238 case 3: /* PHY Identification Register (Word 2) */ 1239 missing("not implemented"); 1240 break; 1241 case 4: /* Auto-Negotiation Advertisement Register */ 1242 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1243 break; 1244 case 6: /* Auto-Negotiation Expansion Register */ 1245 default: 1246 missing("not implemented"); 1247 } 1248 s->mdimem[reg] &= eepro100_mdi_mask[reg]; 1249 s->mdimem[reg] |= data & ~eepro100_mdi_mask[reg]; 1250 } else if (opcode == 2) { 1251 /* MDI read */ 1252 switch (reg) { 1253 case 0: /* Control Register */ 1254 if (data & 0x8000) { 1255 /* Reset status and control registers to default. */ 1256 s->mdimem[0] = eepro100_mdi_default[0]; 1257 s->mdimem[1] = eepro100_mdi_default[1]; 1258 } 1259 break; 1260 case 1: /* Status Register */ 1261 s->mdimem[reg] |= 0x0020; 1262 break; 1263 case 2: /* PHY Identification Register (Word 1) */ 1264 case 3: /* PHY Identification Register (Word 2) */ 1265 case 4: /* Auto-Negotiation Advertisement Register */ 1266 break; 1267 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1268 s->mdimem[reg] = 0x41fe; 1269 break; 1270 case 6: /* Auto-Negotiation Expansion Register */ 1271 s->mdimem[reg] = 0x0001; 1272 break; 1273 } 1274 data = s->mdimem[reg]; 1275 } 1276 /* Emulation takes no time to finish MDI transaction. 1277 * Set MDI bit in SCB status register. */ 1278 s->mem[SCBAck] |= 0x08; 1279 val |= BIT(28); 1280 if (raiseint) { 1281 eepro100_mdi_interrupt(s); 1282 } 1283 } 1284 val = (val & 0xffff0000) + data; 1285 e100_write_reg4(s, SCBCtrlMDI, val); 1286 } 1287 1288 /***************************************************************************** 1289 * 1290 * Port emulation. 1291 * 1292 ****************************************************************************/ 1293 1294 #define PORT_SOFTWARE_RESET 0 1295 #define PORT_SELFTEST 1 1296 #define PORT_SELECTIVE_RESET 2 1297 #define PORT_DUMP 3 1298 #define PORT_SELECTION_MASK 3 1299 1300 typedef struct { 1301 uint32_t st_sign; /* Self Test Signature */ 1302 uint32_t st_result; /* Self Test Results */ 1303 } eepro100_selftest_t; 1304 1305 static uint32_t eepro100_read_port(EEPRO100State * s) 1306 { 1307 return 0; 1308 } 1309 1310 static void eepro100_write_port(EEPRO100State *s) 1311 { 1312 uint32_t val = e100_read_reg4(s, SCBPort); 1313 uint32_t address = (val & ~PORT_SELECTION_MASK); 1314 uint8_t selection = (val & PORT_SELECTION_MASK); 1315 switch (selection) { 1316 case PORT_SOFTWARE_RESET: 1317 nic_reset(s); 1318 break; 1319 case PORT_SELFTEST: 1320 TRACE(OTHER, logout("selftest address=0x%08x\n", address)); 1321 eepro100_selftest_t data; 1322 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1323 data.st_sign = 0xffffffff; 1324 data.st_result = 0; 1325 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1326 break; 1327 case PORT_SELECTIVE_RESET: 1328 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address)); 1329 nic_selective_reset(s); 1330 break; 1331 default: 1332 logout("val=0x%08x\n", val); 1333 missing("unknown port selection"); 1334 } 1335 } 1336 1337 /***************************************************************************** 1338 * 1339 * General hardware emulation. 1340 * 1341 ****************************************************************************/ 1342 1343 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr) 1344 { 1345 uint8_t val = 0; 1346 if (addr <= sizeof(s->mem) - sizeof(val)) { 1347 val = s->mem[addr]; 1348 } 1349 1350 switch (addr) { 1351 case SCBStatus: 1352 case SCBAck: 1353 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1354 break; 1355 case SCBCmd: 1356 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1357 #if 0 1358 val = eepro100_read_command(s); 1359 #endif 1360 break; 1361 case SCBIntmask: 1362 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1363 break; 1364 case SCBPort + 3: 1365 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1366 break; 1367 case SCBeeprom: 1368 val = eepro100_read_eeprom(s); 1369 break; 1370 case SCBCtrlMDI: 1371 case SCBCtrlMDI + 1: 1372 case SCBCtrlMDI + 2: 1373 case SCBCtrlMDI + 3: 1374 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1375 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1376 break; 1377 case SCBpmdr: /* Power Management Driver Register */ 1378 val = 0; 1379 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1380 break; 1381 case SCBgctrl: /* General Control Register */ 1382 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1383 break; 1384 case SCBgstat: /* General Status Register */ 1385 /* 100 Mbps full duplex, valid link */ 1386 val = 0x07; 1387 TRACE(OTHER, logout("addr=General Status val=%02x\n", val)); 1388 break; 1389 default: 1390 logout("addr=%s val=0x%02x\n", regname(addr), val); 1391 missing("unknown byte read"); 1392 } 1393 return val; 1394 } 1395 1396 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr) 1397 { 1398 uint16_t val = 0; 1399 if (addr <= sizeof(s->mem) - sizeof(val)) { 1400 val = e100_read_reg2(s, addr); 1401 } 1402 1403 switch (addr) { 1404 case SCBStatus: 1405 case SCBCmd: 1406 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1407 break; 1408 case SCBeeprom: 1409 val = eepro100_read_eeprom(s); 1410 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1411 break; 1412 case SCBCtrlMDI: 1413 case SCBCtrlMDI + 2: 1414 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1415 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1416 break; 1417 default: 1418 logout("addr=%s val=0x%04x\n", regname(addr), val); 1419 missing("unknown word read"); 1420 } 1421 return val; 1422 } 1423 1424 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr) 1425 { 1426 uint32_t val = 0; 1427 if (addr <= sizeof(s->mem) - sizeof(val)) { 1428 val = e100_read_reg4(s, addr); 1429 } 1430 1431 switch (addr) { 1432 case SCBStatus: 1433 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1434 break; 1435 case SCBPointer: 1436 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1437 break; 1438 case SCBPort: 1439 val = eepro100_read_port(s); 1440 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1441 break; 1442 case SCBflash: 1443 val = eepro100_read_eeprom(s); 1444 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1445 break; 1446 case SCBCtrlMDI: 1447 val = eepro100_read_mdi(s); 1448 break; 1449 default: 1450 logout("addr=%s val=0x%08x\n", regname(addr), val); 1451 missing("unknown longword read"); 1452 } 1453 return val; 1454 } 1455 1456 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val) 1457 { 1458 /* SCBStatus is readonly. */ 1459 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1460 s->mem[addr] = val; 1461 } 1462 1463 switch (addr) { 1464 case SCBStatus: 1465 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1466 break; 1467 case SCBAck: 1468 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1469 eepro100_acknowledge(s); 1470 break; 1471 case SCBCmd: 1472 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1473 eepro100_write_command(s, val); 1474 break; 1475 case SCBIntmask: 1476 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1477 if (val & BIT(1)) { 1478 eepro100_swi_interrupt(s); 1479 } 1480 eepro100_interrupt(s, 0); 1481 break; 1482 case SCBPointer: 1483 case SCBPointer + 1: 1484 case SCBPointer + 2: 1485 case SCBPointer + 3: 1486 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1487 break; 1488 case SCBPort: 1489 case SCBPort + 1: 1490 case SCBPort + 2: 1491 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1492 break; 1493 case SCBPort + 3: 1494 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1495 eepro100_write_port(s); 1496 break; 1497 case SCBFlow: /* does not exist on 82557 */ 1498 case SCBFlow + 1: 1499 case SCBFlow + 2: 1500 case SCBpmdr: /* does not exist on 82557 */ 1501 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1502 break; 1503 case SCBeeprom: 1504 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1505 eepro100_write_eeprom(s->eeprom, val); 1506 break; 1507 case SCBCtrlMDI: 1508 case SCBCtrlMDI + 1: 1509 case SCBCtrlMDI + 2: 1510 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1511 break; 1512 case SCBCtrlMDI + 3: 1513 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1514 eepro100_write_mdi(s); 1515 break; 1516 default: 1517 logout("addr=%s val=0x%02x\n", regname(addr), val); 1518 missing("unknown byte write"); 1519 } 1520 } 1521 1522 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val) 1523 { 1524 /* SCBStatus is readonly. */ 1525 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1526 e100_write_reg2(s, addr, val); 1527 } 1528 1529 switch (addr) { 1530 case SCBStatus: 1531 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1532 s->mem[SCBAck] = (val >> 8); 1533 eepro100_acknowledge(s); 1534 break; 1535 case SCBCmd: 1536 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1537 eepro100_write_command(s, val); 1538 eepro100_write1(s, SCBIntmask, val >> 8); 1539 break; 1540 case SCBPointer: 1541 case SCBPointer + 2: 1542 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1543 break; 1544 case SCBPort: 1545 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1546 break; 1547 case SCBPort + 2: 1548 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1549 eepro100_write_port(s); 1550 break; 1551 case SCBeeprom: 1552 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1553 eepro100_write_eeprom(s->eeprom, val); 1554 break; 1555 case SCBCtrlMDI: 1556 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1557 break; 1558 case SCBCtrlMDI + 2: 1559 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1560 eepro100_write_mdi(s); 1561 break; 1562 default: 1563 logout("addr=%s val=0x%04x\n", regname(addr), val); 1564 missing("unknown word write"); 1565 } 1566 } 1567 1568 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val) 1569 { 1570 if (addr <= sizeof(s->mem) - sizeof(val)) { 1571 e100_write_reg4(s, addr, val); 1572 } 1573 1574 switch (addr) { 1575 case SCBPointer: 1576 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1577 break; 1578 case SCBPort: 1579 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1580 eepro100_write_port(s); 1581 break; 1582 case SCBflash: 1583 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1584 val = val >> 16; 1585 eepro100_write_eeprom(s->eeprom, val); 1586 break; 1587 case SCBCtrlMDI: 1588 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1589 eepro100_write_mdi(s); 1590 break; 1591 default: 1592 logout("addr=%s val=0x%08x\n", regname(addr), val); 1593 missing("unknown longword write"); 1594 } 1595 } 1596 1597 static uint64_t eepro100_read(void *opaque, hwaddr addr, 1598 unsigned size) 1599 { 1600 EEPRO100State *s = opaque; 1601 1602 switch (size) { 1603 case 1: return eepro100_read1(s, addr); 1604 case 2: return eepro100_read2(s, addr); 1605 case 4: return eepro100_read4(s, addr); 1606 default: abort(); 1607 } 1608 } 1609 1610 static void eepro100_write(void *opaque, hwaddr addr, 1611 uint64_t data, unsigned size) 1612 { 1613 EEPRO100State *s = opaque; 1614 1615 switch (size) { 1616 case 1: 1617 eepro100_write1(s, addr, data); 1618 break; 1619 case 2: 1620 eepro100_write2(s, addr, data); 1621 break; 1622 case 4: 1623 eepro100_write4(s, addr, data); 1624 break; 1625 default: 1626 abort(); 1627 } 1628 } 1629 1630 static const MemoryRegionOps eepro100_ops = { 1631 .read = eepro100_read, 1632 .write = eepro100_write, 1633 .endianness = DEVICE_LITTLE_ENDIAN, 1634 }; 1635 1636 static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size) 1637 { 1638 /* TODO: 1639 * - Magic packets should set bit 30 in power management driver register. 1640 * - Interesting packets should set bit 29 in power management driver register. 1641 */ 1642 EEPRO100State *s = qemu_get_nic_opaque(nc); 1643 uint16_t rfd_status = 0xa000; 1644 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1645 uint8_t min_buf[60]; 1646 #endif 1647 static const uint8_t broadcast_macaddr[6] = 1648 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1649 1650 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1651 /* Pad to minimum Ethernet frame length */ 1652 if (size < sizeof(min_buf)) { 1653 memcpy(min_buf, buf, size); 1654 memset(&min_buf[size], 0, sizeof(min_buf) - size); 1655 buf = min_buf; 1656 size = sizeof(min_buf); 1657 } 1658 #endif 1659 1660 if (s->configuration[8] & 0x80) { 1661 /* CSMA is disabled. */ 1662 logout("%p received while CSMA is disabled\n", s); 1663 return -1; 1664 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1665 } else if (size < 64 && (s->configuration[7] & BIT(0))) { 1666 /* Short frame and configuration byte 7/0 (discard short receive) set: 1667 * Short frame is discarded */ 1668 logout("%p received short frame (%zu byte)\n", s, size); 1669 s->statistics.rx_short_frame_errors++; 1670 return -1; 1671 #endif 1672 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) { 1673 /* Long frame and configuration byte 18/3 (long receive ok) not set: 1674 * Long frames are discarded. */ 1675 logout("%p received long frame (%zu byte), ignored\n", s, size); 1676 return -1; 1677 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */ 1678 /* Frame matches individual address. */ 1679 /* TODO: check configuration byte 15/4 (ignore U/L). */ 1680 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size)); 1681 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) { 1682 /* Broadcast frame. */ 1683 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size)); 1684 rfd_status |= 0x0002; 1685 } else if (buf[0] & 0x01) { 1686 /* Multicast frame. */ 1687 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size))); 1688 if (s->configuration[21] & BIT(3)) { 1689 /* Multicast all bit is set, receive all multicast frames. */ 1690 } else { 1691 unsigned mcast_idx = e100_compute_mcast_idx(buf); 1692 assert(mcast_idx < 64); 1693 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1694 /* Multicast frame is allowed in hash table. */ 1695 } else if (s->configuration[15] & BIT(0)) { 1696 /* Promiscuous: receive all. */ 1697 rfd_status |= 0x0004; 1698 } else { 1699 TRACE(RXTX, logout("%p multicast ignored\n", s)); 1700 return -1; 1701 } 1702 } 1703 /* TODO: Next not for promiscuous mode? */ 1704 rfd_status |= 0x0002; 1705 } else if (s->configuration[15] & BIT(0)) { 1706 /* Promiscuous: receive all. */ 1707 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size)); 1708 rfd_status |= 0x0004; 1709 } else if (s->configuration[20] & BIT(6)) { 1710 /* Multiple IA bit set. */ 1711 unsigned mcast_idx = compute_mcast_idx(buf); 1712 assert(mcast_idx < 64); 1713 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1714 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s)); 1715 } else { 1716 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s)); 1717 return -1; 1718 } 1719 } else { 1720 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size, 1721 nic_dump(buf, size))); 1722 return size; 1723 } 1724 1725 if (get_ru_state(s) != ru_ready) { 1726 /* No resources available. */ 1727 logout("no resources, state=%u\n", get_ru_state(s)); 1728 /* TODO: RNR interrupt only at first failed frame? */ 1729 eepro100_rnr_interrupt(s); 1730 s->statistics.rx_resource_errors++; 1731 #if 0 1732 assert(!"no resources"); 1733 #endif 1734 return -1; 1735 } 1736 /* !!! */ 1737 eepro100_rx_t rx; 1738 pci_dma_read(&s->dev, s->ru_base + s->ru_offset, 1739 &rx, sizeof(eepro100_rx_t)); 1740 uint16_t rfd_command = le16_to_cpu(rx.command); 1741 uint16_t rfd_size = le16_to_cpu(rx.size); 1742 1743 if (size > rfd_size) { 1744 logout("Receive buffer (%" PRId16 " bytes) too small for data " 1745 "(%zu bytes); data truncated\n", rfd_size, size); 1746 size = rfd_size; 1747 } 1748 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1749 if (size < 64) { 1750 rfd_status |= 0x0080; 1751 } 1752 #endif 1753 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", 1754 rfd_command, rx.link, rx.rx_buf_addr, rfd_size)); 1755 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1756 offsetof(eepro100_rx_t, status), rfd_status); 1757 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1758 offsetof(eepro100_rx_t, count), size); 1759 /* Early receive interrupt not supported. */ 1760 #if 0 1761 eepro100_er_interrupt(s); 1762 #endif 1763 /* Receive CRC Transfer not supported. */ 1764 if (s->configuration[18] & BIT(2)) { 1765 missing("Receive CRC Transfer"); 1766 return -1; 1767 } 1768 /* TODO: check stripping enable bit. */ 1769 #if 0 1770 assert(!(s->configuration[17] & BIT(0))); 1771 #endif 1772 pci_dma_write(&s->dev, s->ru_base + s->ru_offset + 1773 sizeof(eepro100_rx_t), buf, size); 1774 s->statistics.rx_good_frames++; 1775 eepro100_fr_interrupt(s); 1776 s->ru_offset = le32_to_cpu(rx.link); 1777 if (rfd_command & COMMAND_EL) { 1778 /* EL bit is set, so this was the last frame. */ 1779 logout("receive: Running out of frames\n"); 1780 set_ru_state(s, ru_no_resources); 1781 eepro100_rnr_interrupt(s); 1782 } 1783 if (rfd_command & COMMAND_S) { 1784 /* S bit is set. */ 1785 set_ru_state(s, ru_suspended); 1786 } 1787 return size; 1788 } 1789 1790 static const VMStateDescription vmstate_eepro100 = { 1791 .version_id = 3, 1792 .minimum_version_id = 2, 1793 .fields = (VMStateField[]) { 1794 VMSTATE_PCI_DEVICE(dev, EEPRO100State), 1795 VMSTATE_UNUSED(32), 1796 VMSTATE_BUFFER(mult, EEPRO100State), 1797 VMSTATE_BUFFER(mem, EEPRO100State), 1798 /* Save all members of struct between scb_stat and mem. */ 1799 VMSTATE_UINT8(scb_stat, EEPRO100State), 1800 VMSTATE_UINT8(int_stat, EEPRO100State), 1801 VMSTATE_UNUSED(3*4), 1802 VMSTATE_MACADDR(conf.macaddr, EEPRO100State), 1803 VMSTATE_UNUSED(19*4), 1804 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32), 1805 /* The eeprom should be saved and restored by its own routines. */ 1806 VMSTATE_UINT32(device, EEPRO100State), 1807 /* TODO check device. */ 1808 VMSTATE_UINT32(cu_base, EEPRO100State), 1809 VMSTATE_UINT32(cu_offset, EEPRO100State), 1810 VMSTATE_UINT32(ru_base, EEPRO100State), 1811 VMSTATE_UINT32(ru_offset, EEPRO100State), 1812 VMSTATE_UINT32(statsaddr, EEPRO100State), 1813 /* Save eepro100_stats_t statistics. */ 1814 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State), 1815 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State), 1816 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State), 1817 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State), 1818 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State), 1819 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State), 1820 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State), 1821 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State), 1822 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State), 1823 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State), 1824 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State), 1825 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State), 1826 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State), 1827 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State), 1828 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State), 1829 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State), 1830 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State), 1831 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State), 1832 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State), 1833 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State), 1834 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State), 1835 /* Configuration bytes. */ 1836 VMSTATE_BUFFER(configuration, EEPRO100State), 1837 VMSTATE_END_OF_LIST() 1838 } 1839 }; 1840 1841 static void pci_nic_uninit(PCIDevice *pci_dev) 1842 { 1843 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1844 1845 vmstate_unregister(&pci_dev->qdev, s->vmstate, s); 1846 eeprom93xx_free(&pci_dev->qdev, s->eeprom); 1847 qemu_del_nic(s->nic); 1848 } 1849 1850 static NetClientInfo net_eepro100_info = { 1851 .type = NET_CLIENT_OPTIONS_KIND_NIC, 1852 .size = sizeof(NICState), 1853 .receive = nic_receive, 1854 }; 1855 1856 static void e100_nic_realize(PCIDevice *pci_dev, Error **errp) 1857 { 1858 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1859 E100PCIDeviceInfo *info = eepro100_get_class(s); 1860 1861 TRACE(OTHER, logout("\n")); 1862 1863 s->device = info->device; 1864 1865 e100_pci_reset(s); 1866 1867 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM, 1868 * i82559 and later support 64 or 256 word EEPROM. */ 1869 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE); 1870 1871 /* Handler for memory-mapped I/O */ 1872 memory_region_init_io(&s->mmio_bar, OBJECT(s), &eepro100_ops, s, 1873 "eepro100-mmio", PCI_MEM_SIZE); 1874 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar); 1875 memory_region_init_io(&s->io_bar, OBJECT(s), &eepro100_ops, s, 1876 "eepro100-io", PCI_IO_SIZE); 1877 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar); 1878 /* FIXME: flash aliases to mmio?! */ 1879 memory_region_init_io(&s->flash_bar, OBJECT(s), &eepro100_ops, s, 1880 "eepro100-flash", PCI_FLASH_SIZE); 1881 pci_register_bar(&s->dev, 2, 0, &s->flash_bar); 1882 1883 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1884 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)); 1885 1886 nic_reset(s); 1887 1888 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf, 1889 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s); 1890 1891 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 1892 TRACE(OTHER, logout("%s\n", qemu_get_queue(s->nic)->info_str)); 1893 1894 qemu_register_reset(nic_reset, s); 1895 1896 s->vmstate = g_malloc(sizeof(vmstate_eepro100)); 1897 memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100)); 1898 s->vmstate->name = qemu_get_queue(s->nic)->model; 1899 vmstate_register(&pci_dev->qdev, -1, s->vmstate, s); 1900 } 1901 1902 static void eepro100_instance_init(Object *obj) 1903 { 1904 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, PCI_DEVICE(obj)); 1905 device_add_bootindex_property(obj, &s->conf.bootindex, 1906 "bootindex", "/ethernet-phy@0", 1907 DEVICE(s), NULL); 1908 } 1909 1910 static E100PCIDeviceInfo e100_devices[] = { 1911 { 1912 .name = "i82550", 1913 .desc = "Intel i82550 Ethernet", 1914 .device = i82550, 1915 /* TODO: check device id. */ 1916 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1917 /* Revision ID: 0x0c, 0x0d, 0x0e. */ 1918 .revision = 0x0e, 1919 /* TODO: check size of statistical counters. */ 1920 .stats_size = 80, 1921 /* TODO: check extended tcb support. */ 1922 .has_extended_tcb_support = true, 1923 .power_management = true, 1924 },{ 1925 .name = "i82551", 1926 .desc = "Intel i82551 Ethernet", 1927 .device = i82551, 1928 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1929 /* Revision ID: 0x0f, 0x10. */ 1930 .revision = 0x0f, 1931 /* TODO: check size of statistical counters. */ 1932 .stats_size = 80, 1933 .has_extended_tcb_support = true, 1934 .power_management = true, 1935 },{ 1936 .name = "i82557a", 1937 .desc = "Intel i82557A Ethernet", 1938 .device = i82557A, 1939 .device_id = PCI_DEVICE_ID_INTEL_82557, 1940 .revision = 0x01, 1941 .power_management = false, 1942 },{ 1943 .name = "i82557b", 1944 .desc = "Intel i82557B Ethernet", 1945 .device = i82557B, 1946 .device_id = PCI_DEVICE_ID_INTEL_82557, 1947 .revision = 0x02, 1948 .power_management = false, 1949 },{ 1950 .name = "i82557c", 1951 .desc = "Intel i82557C Ethernet", 1952 .device = i82557C, 1953 .device_id = PCI_DEVICE_ID_INTEL_82557, 1954 .revision = 0x03, 1955 .power_management = false, 1956 },{ 1957 .name = "i82558a", 1958 .desc = "Intel i82558A Ethernet", 1959 .device = i82558A, 1960 .device_id = PCI_DEVICE_ID_INTEL_82557, 1961 .revision = 0x04, 1962 .stats_size = 76, 1963 .has_extended_tcb_support = true, 1964 .power_management = true, 1965 },{ 1966 .name = "i82558b", 1967 .desc = "Intel i82558B Ethernet", 1968 .device = i82558B, 1969 .device_id = PCI_DEVICE_ID_INTEL_82557, 1970 .revision = 0x05, 1971 .stats_size = 76, 1972 .has_extended_tcb_support = true, 1973 .power_management = true, 1974 },{ 1975 .name = "i82559a", 1976 .desc = "Intel i82559A Ethernet", 1977 .device = i82559A, 1978 .device_id = PCI_DEVICE_ID_INTEL_82557, 1979 .revision = 0x06, 1980 .stats_size = 80, 1981 .has_extended_tcb_support = true, 1982 .power_management = true, 1983 },{ 1984 .name = "i82559b", 1985 .desc = "Intel i82559B Ethernet", 1986 .device = i82559B, 1987 .device_id = PCI_DEVICE_ID_INTEL_82557, 1988 .revision = 0x07, 1989 .stats_size = 80, 1990 .has_extended_tcb_support = true, 1991 .power_management = true, 1992 },{ 1993 .name = "i82559c", 1994 .desc = "Intel i82559C Ethernet", 1995 .device = i82559C, 1996 .device_id = PCI_DEVICE_ID_INTEL_82557, 1997 #if 0 1998 .revision = 0x08, 1999 #endif 2000 /* TODO: Windows wants revision id 0x0c. */ 2001 .revision = 0x0c, 2002 #if EEPROM_SIZE > 0 2003 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL, 2004 .subsystem_id = 0x0040, 2005 #endif 2006 .stats_size = 80, 2007 .has_extended_tcb_support = true, 2008 .power_management = true, 2009 },{ 2010 .name = "i82559er", 2011 .desc = "Intel i82559ER Ethernet", 2012 .device = i82559ER, 2013 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 2014 .revision = 0x09, 2015 .stats_size = 80, 2016 .has_extended_tcb_support = true, 2017 .power_management = true, 2018 },{ 2019 .name = "i82562", 2020 .desc = "Intel i82562 Ethernet", 2021 .device = i82562, 2022 /* TODO: check device id. */ 2023 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 2024 /* TODO: wrong revision id. */ 2025 .revision = 0x0e, 2026 .stats_size = 80, 2027 .has_extended_tcb_support = true, 2028 .power_management = true, 2029 },{ 2030 /* Toshiba Tecra 8200. */ 2031 .name = "i82801", 2032 .desc = "Intel i82801 Ethernet", 2033 .device = i82801, 2034 .device_id = 0x2449, 2035 .revision = 0x03, 2036 .stats_size = 80, 2037 .has_extended_tcb_support = true, 2038 .power_management = true, 2039 } 2040 }; 2041 2042 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename) 2043 { 2044 E100PCIDeviceInfo *info = NULL; 2045 int i; 2046 2047 /* This is admittedly awkward but also temporary. QOM allows for 2048 * parameterized typing and for subclassing both of which would suitable 2049 * handle what's going on here. But class_data is already being used as 2050 * a stop-gap hack to allow incremental qdev conversion so we cannot use it 2051 * right now. Once we merge the final QOM series, we can come back here and 2052 * do this in a much more elegant fashion. 2053 */ 2054 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2055 if (strcmp(e100_devices[i].name, typename) == 0) { 2056 info = &e100_devices[i]; 2057 break; 2058 } 2059 } 2060 assert(info != NULL); 2061 2062 return info; 2063 } 2064 2065 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s) 2066 { 2067 return eepro100_get_class_by_name(object_get_typename(OBJECT(s))); 2068 } 2069 2070 static Property e100_properties[] = { 2071 DEFINE_NIC_PROPERTIES(EEPRO100State, conf), 2072 DEFINE_PROP_END_OF_LIST(), 2073 }; 2074 2075 static void eepro100_class_init(ObjectClass *klass, void *data) 2076 { 2077 DeviceClass *dc = DEVICE_CLASS(klass); 2078 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 2079 E100PCIDeviceInfo *info; 2080 2081 info = eepro100_get_class_by_name(object_class_get_name(klass)); 2082 2083 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 2084 dc->props = e100_properties; 2085 dc->desc = info->desc; 2086 k->vendor_id = PCI_VENDOR_ID_INTEL; 2087 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 2088 k->romfile = "pxe-eepro100.rom"; 2089 k->realize = e100_nic_realize; 2090 k->exit = pci_nic_uninit; 2091 k->device_id = info->device_id; 2092 k->revision = info->revision; 2093 k->subsystem_vendor_id = info->subsystem_vendor_id; 2094 k->subsystem_id = info->subsystem_id; 2095 } 2096 2097 static void eepro100_register_types(void) 2098 { 2099 size_t i; 2100 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2101 TypeInfo type_info = {}; 2102 E100PCIDeviceInfo *info = &e100_devices[i]; 2103 2104 type_info.name = info->name; 2105 type_info.parent = TYPE_PCI_DEVICE; 2106 type_info.class_init = eepro100_class_init; 2107 type_info.instance_size = sizeof(EEPRO100State); 2108 type_info.instance_init = eepro100_instance_init; 2109 2110 type_register(&type_info); 2111 } 2112 } 2113 2114 type_init(eepro100_register_types) 2115