1 /* 2 * QEMU i8255x (PRO100) emulation 3 * 4 * Copyright (C) 2006-2011 Stefan Weil 5 * 6 * Portions of the code are copies from grub / etherboot eepro100.c 7 * and linux e100.c. 8 * 9 * This program is free software: you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation, either version 2 of the License, or 12 * (at your option) version 3 or any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 * 22 * Tested features (i82559): 23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok 24 * Linux networking (i386) ok 25 * 26 * Untested: 27 * Windows networking 28 * 29 * References: 30 * 31 * Intel 8255x 10/100 Mbps Ethernet Controller Family 32 * Open Source Software Developer Manual 33 * 34 * TODO: 35 * * PHY emulation should be separated from nic emulation. 36 * Most nic emulations could share the same phy code. 37 * * i82550 is untested. It is programmed like the i82559. 38 * * i82562 is untested. It is programmed like the i82559. 39 * * Power management (i82558 and later) is not implemented. 40 * * Wake-on-LAN is not implemented. 41 */ 42 43 #include "qemu/osdep.h" 44 #include "qemu/units.h" 45 #include "hw/pci/pci.h" 46 #include "hw/qdev-properties.h" 47 #include "migration/vmstate.h" 48 #include "net/net.h" 49 #include "net/eth.h" 50 #include "hw/nvram/eeprom93xx.h" 51 #include "sysemu/sysemu.h" 52 #include "sysemu/dma.h" 53 #include "sysemu/reset.h" 54 #include "qemu/bitops.h" 55 #include "qemu/module.h" 56 #include "qapi/error.h" 57 58 /* QEMU sends frames smaller than 60 bytes to ethernet nics. 59 * Such frames are rejected by real nics and their emulations. 60 * To avoid this behaviour, other nic emulations pad received 61 * frames. The following definition enables this padding for 62 * eepro100, too. We keep the define around in case it might 63 * become useful the future if the core networking is ever 64 * changed to pad short packets itself. */ 65 #define CONFIG_PAD_RECEIVED_FRAMES 66 67 /* Debug EEPRO100 card. */ 68 #if 0 69 # define DEBUG_EEPRO100 70 #endif 71 72 #ifdef DEBUG_EEPRO100 73 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__) 74 #else 75 #define logout(fmt, ...) ((void)0) 76 #endif 77 78 /* Set flags to 0 to disable debug output. */ 79 #define INT 1 /* interrupt related actions */ 80 #define MDI 1 /* mdi related actions */ 81 #define OTHER 1 82 #define RXTX 1 83 #define EEPROM 1 /* eeprom related actions */ 84 85 #define TRACE(flag, command) ((flag) ? (command) : (void)0) 86 87 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n") 88 89 #define MAX_ETH_FRAME_SIZE 1514 90 91 /* This driver supports several different devices which are declared here. */ 92 #define i82550 0x82550 93 #define i82551 0x82551 94 #define i82557A 0x82557a 95 #define i82557B 0x82557b 96 #define i82557C 0x82557c 97 #define i82558A 0x82558a 98 #define i82558B 0x82558b 99 #define i82559A 0x82559a 100 #define i82559B 0x82559b 101 #define i82559C 0x82559c 102 #define i82559ER 0x82559e 103 #define i82562 0x82562 104 #define i82801 0x82801 105 106 /* Use 64 word EEPROM. TODO: could be a runtime option. */ 107 #define EEPROM_SIZE 64 108 109 #define PCI_MEM_SIZE (4 * KiB) 110 #define PCI_IO_SIZE 64 111 #define PCI_FLASH_SIZE (128 * KiB) 112 113 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m) 114 115 /* The SCB accepts the following controls for the Tx and Rx units: */ 116 #define CU_NOP 0x0000 /* No operation. */ 117 #define CU_START 0x0010 /* CU start. */ 118 #define CU_RESUME 0x0020 /* CU resume. */ 119 #define CU_STATSADDR 0x0040 /* Load dump counters address. */ 120 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */ 121 #define CU_CMD_BASE 0x0060 /* Load CU base address. */ 122 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */ 123 #define CU_SRESUME 0x00a0 /* CU static resume. */ 124 125 #define RU_NOP 0x0000 126 #define RX_START 0x0001 127 #define RX_RESUME 0x0002 128 #define RU_ABORT 0x0004 129 #define RX_ADDR_LOAD 0x0006 130 #define RX_RESUMENR 0x0007 131 #define INT_MASK 0x0100 132 #define DRVR_INT 0x0200 /* Driver generated interrupt. */ 133 134 typedef struct { 135 const char *name; 136 const char *desc; 137 uint16_t device_id; 138 uint8_t revision; 139 uint16_t subsystem_vendor_id; 140 uint16_t subsystem_id; 141 142 uint32_t device; 143 uint8_t stats_size; 144 bool has_extended_tcb_support; 145 bool power_management; 146 } E100PCIDeviceInfo; 147 148 /* Offsets to the various registers. 149 All accesses need not be longword aligned. */ 150 typedef enum { 151 SCBStatus = 0, /* Status Word. */ 152 SCBAck = 1, 153 SCBCmd = 2, /* Rx/Command Unit command and status. */ 154 SCBIntmask = 3, 155 SCBPointer = 4, /* General purpose pointer. */ 156 SCBPort = 8, /* Misc. commands and operands. */ 157 SCBflash = 12, /* Flash memory control. */ 158 SCBeeprom = 14, /* EEPROM control. */ 159 SCBCtrlMDI = 16, /* MDI interface control. */ 160 SCBEarlyRx = 20, /* Early receive byte count. */ 161 SCBFlow = 24, /* Flow Control. */ 162 SCBpmdr = 27, /* Power Management Driver. */ 163 SCBgctrl = 28, /* General Control. */ 164 SCBgstat = 29, /* General Status. */ 165 } E100RegisterOffset; 166 167 /* A speedo3 transmit buffer descriptor with two buffers... */ 168 typedef struct { 169 uint16_t status; 170 uint16_t command; 171 uint32_t link; /* void * */ 172 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */ 173 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */ 174 uint8_t tx_threshold; /* transmit threshold */ 175 uint8_t tbd_count; /* TBD number */ 176 #if 0 177 /* This constitutes two "TBD" entries: hdr and data */ 178 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */ 179 int32_t tx_buf_size0; /* Length of Tx hdr. */ 180 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */ 181 int32_t tx_buf_size1; /* Length of Tx data. */ 182 #endif 183 } eepro100_tx_t; 184 185 /* Receive frame descriptor. */ 186 typedef struct { 187 int16_t status; 188 uint16_t command; 189 uint32_t link; /* struct RxFD * */ 190 uint32_t rx_buf_addr; /* void * */ 191 uint16_t count; 192 uint16_t size; 193 /* Ethernet frame data follows. */ 194 } eepro100_rx_t; 195 196 typedef enum { 197 COMMAND_EL = BIT(15), 198 COMMAND_S = BIT(14), 199 COMMAND_I = BIT(13), 200 COMMAND_NC = BIT(4), 201 COMMAND_SF = BIT(3), 202 COMMAND_CMD = BITS(2, 0), 203 } scb_command_bit; 204 205 typedef enum { 206 STATUS_C = BIT(15), 207 STATUS_OK = BIT(13), 208 } scb_status_bit; 209 210 typedef struct { 211 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions, 212 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 213 tx_multiple_collisions, tx_total_collisions; 214 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors, 215 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 216 rx_short_frame_errors; 217 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 218 uint16_t xmt_tco_frames, rcv_tco_frames; 219 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */ 220 uint32_t reserved[4]; 221 } eepro100_stats_t; 222 223 typedef enum { 224 cu_idle = 0, 225 cu_suspended = 1, 226 cu_active = 2, 227 cu_lpq_active = 2, 228 cu_hqp_active = 3 229 } cu_state_t; 230 231 typedef enum { 232 ru_idle = 0, 233 ru_suspended = 1, 234 ru_no_resources = 2, 235 ru_ready = 4 236 } ru_state_t; 237 238 typedef struct { 239 PCIDevice dev; 240 /* Hash register (multicast mask array, multiple individual addresses). */ 241 uint8_t mult[8]; 242 MemoryRegion mmio_bar; 243 MemoryRegion io_bar; 244 MemoryRegion flash_bar; 245 NICState *nic; 246 NICConf conf; 247 uint8_t scb_stat; /* SCB stat/ack byte */ 248 uint8_t int_stat; /* PCI interrupt status */ 249 /* region must not be saved by nic_save. */ 250 uint16_t mdimem[32]; 251 eeprom_t *eeprom; 252 uint32_t device; /* device variant */ 253 /* (cu_base + cu_offset) address the next command block in the command block list. */ 254 uint32_t cu_base; /* CU base address */ 255 uint32_t cu_offset; /* CU address offset */ 256 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */ 257 uint32_t ru_base; /* RU base address */ 258 uint32_t ru_offset; /* RU address offset */ 259 uint32_t statsaddr; /* pointer to eepro100_stats_t */ 260 261 /* Temporary status information (no need to save these values), 262 * used while processing CU commands. */ 263 eepro100_tx_t tx; /* transmit buffer descriptor */ 264 uint32_t cb_address; /* = cu_base + cu_offset */ 265 266 /* Statistical counters. Also used for wake-up packet (i82559). */ 267 eepro100_stats_t statistics; 268 269 /* Data in mem is always in the byte order of the controller (le). 270 * It must be dword aligned to allow direct access to 32 bit values. */ 271 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8))); 272 273 /* Configuration bytes. */ 274 uint8_t configuration[22]; 275 276 /* vmstate for each particular nic */ 277 VMStateDescription *vmstate; 278 279 /* Quasi static device properties (no need to save them). */ 280 uint16_t stats_size; 281 bool has_extended_tcb_support; 282 } EEPRO100State; 283 284 /* Word indices in EEPROM. */ 285 typedef enum { 286 EEPROM_CNFG_MDIX = 0x03, 287 EEPROM_ID = 0x05, 288 EEPROM_PHY_ID = 0x06, 289 EEPROM_VENDOR_ID = 0x0c, 290 EEPROM_CONFIG_ASF = 0x0d, 291 EEPROM_DEVICE_ID = 0x23, 292 EEPROM_SMBUS_ADDR = 0x90, 293 } EEPROMOffset; 294 295 /* Bit values for EEPROM ID word. */ 296 typedef enum { 297 EEPROM_ID_MDM = BIT(0), /* Modem */ 298 EEPROM_ID_STB = BIT(1), /* Standby Enable */ 299 EEPROM_ID_WMR = BIT(2), /* ??? */ 300 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */ 301 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */ 302 EEPROM_ID_ALT = BIT(7), /* */ 303 /* BITS(10, 8) device revision */ 304 EEPROM_ID_BD = BIT(11), /* boot disable */ 305 EEPROM_ID_ID = BIT(13), /* id bit */ 306 /* BITS(15, 14) signature */ 307 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */ 308 } eeprom_id_bit; 309 310 /* Default values for MDI (PHY) registers */ 311 static const uint16_t eepro100_mdi_default[] = { 312 /* MDI Registers 0 - 6, 7 */ 313 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000, 314 /* MDI Registers 8 - 15 */ 315 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 316 /* MDI Registers 16 - 31 */ 317 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 318 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 319 }; 320 321 /* Readonly mask for MDI (PHY) registers */ 322 static const uint16_t eepro100_mdi_mask[] = { 323 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000, 324 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 325 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 326 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 327 }; 328 329 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s); 330 331 /* Read a 16 bit control/status (CSR) register. */ 332 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr) 333 { 334 assert(!((uintptr_t)&s->mem[addr] & 1)); 335 return lduw_le_p(&s->mem[addr]); 336 } 337 338 /* Read a 32 bit control/status (CSR) register. */ 339 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr) 340 { 341 assert(!((uintptr_t)&s->mem[addr] & 3)); 342 return ldl_le_p(&s->mem[addr]); 343 } 344 345 /* Write a 16 bit control/status (CSR) register. */ 346 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr, 347 uint16_t val) 348 { 349 assert(!((uintptr_t)&s->mem[addr] & 1)); 350 stw_le_p(&s->mem[addr], val); 351 } 352 353 /* Read a 32 bit control/status (CSR) register. */ 354 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr, 355 uint32_t val) 356 { 357 assert(!((uintptr_t)&s->mem[addr] & 3)); 358 stl_le_p(&s->mem[addr], val); 359 } 360 361 #if defined(DEBUG_EEPRO100) 362 static const char *nic_dump(const uint8_t * buf, unsigned size) 363 { 364 static char dump[3 * 16 + 1]; 365 char *p = &dump[0]; 366 if (size > 16) { 367 size = 16; 368 } 369 while (size-- > 0) { 370 p += sprintf(p, " %02x", *buf++); 371 } 372 return dump; 373 } 374 #endif /* DEBUG_EEPRO100 */ 375 376 enum scb_stat_ack { 377 stat_ack_not_ours = 0x00, 378 stat_ack_sw_gen = 0x04, 379 stat_ack_rnr = 0x10, 380 stat_ack_cu_idle = 0x20, 381 stat_ack_frame_rx = 0x40, 382 stat_ack_cu_cmd_done = 0x80, 383 stat_ack_not_present = 0xFF, 384 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 385 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 386 }; 387 388 static void disable_interrupt(EEPRO100State * s) 389 { 390 if (s->int_stat) { 391 TRACE(INT, logout("interrupt disabled\n")); 392 pci_irq_deassert(&s->dev); 393 s->int_stat = 0; 394 } 395 } 396 397 static void enable_interrupt(EEPRO100State * s) 398 { 399 if (!s->int_stat) { 400 TRACE(INT, logout("interrupt enabled\n")); 401 pci_irq_assert(&s->dev); 402 s->int_stat = 1; 403 } 404 } 405 406 static void eepro100_acknowledge(EEPRO100State * s) 407 { 408 s->scb_stat &= ~s->mem[SCBAck]; 409 s->mem[SCBAck] = s->scb_stat; 410 if (s->scb_stat == 0) { 411 disable_interrupt(s); 412 } 413 } 414 415 static void eepro100_interrupt(EEPRO100State * s, uint8_t status) 416 { 417 uint8_t mask = ~s->mem[SCBIntmask]; 418 s->mem[SCBAck] |= status; 419 status = s->scb_stat = s->mem[SCBAck]; 420 status &= (mask | 0x0f); 421 #if 0 422 status &= (~s->mem[SCBIntmask] | 0x0xf); 423 #endif 424 if (status && (mask & 0x01)) { 425 /* SCB mask and SCB Bit M do not disable interrupt. */ 426 enable_interrupt(s); 427 } else if (s->int_stat) { 428 disable_interrupt(s); 429 } 430 } 431 432 static void eepro100_cx_interrupt(EEPRO100State * s) 433 { 434 /* CU completed action command. */ 435 /* Transmit not ok (82557 only, not in emulation). */ 436 eepro100_interrupt(s, 0x80); 437 } 438 439 static void eepro100_cna_interrupt(EEPRO100State * s) 440 { 441 /* CU left the active state. */ 442 eepro100_interrupt(s, 0x20); 443 } 444 445 static void eepro100_fr_interrupt(EEPRO100State * s) 446 { 447 /* RU received a complete frame. */ 448 eepro100_interrupt(s, 0x40); 449 } 450 451 static void eepro100_rnr_interrupt(EEPRO100State * s) 452 { 453 /* RU is not ready. */ 454 eepro100_interrupt(s, 0x10); 455 } 456 457 static void eepro100_mdi_interrupt(EEPRO100State * s) 458 { 459 /* MDI completed read or write cycle. */ 460 eepro100_interrupt(s, 0x08); 461 } 462 463 static void eepro100_swi_interrupt(EEPRO100State * s) 464 { 465 /* Software has requested an interrupt. */ 466 eepro100_interrupt(s, 0x04); 467 } 468 469 #if 0 470 static void eepro100_fcp_interrupt(EEPRO100State * s) 471 { 472 /* Flow control pause interrupt (82558 and later). */ 473 eepro100_interrupt(s, 0x01); 474 } 475 #endif 476 477 static void e100_pci_reset(EEPRO100State *s, Error **errp) 478 { 479 E100PCIDeviceInfo *info = eepro100_get_class(s); 480 uint32_t device = s->device; 481 uint8_t *pci_conf = s->dev.config; 482 483 TRACE(OTHER, logout("%p\n", s)); 484 485 /* PCI Status */ 486 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM | 487 PCI_STATUS_FAST_BACK); 488 /* PCI Latency Timer */ 489 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */ 490 /* Capability Pointer is set by PCI framework. */ 491 /* Interrupt Line */ 492 /* Interrupt Pin */ 493 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */ 494 /* Minimum Grant */ 495 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08); 496 /* Maximum Latency */ 497 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18); 498 499 s->stats_size = info->stats_size; 500 s->has_extended_tcb_support = info->has_extended_tcb_support; 501 502 switch (device) { 503 case i82550: 504 case i82551: 505 case i82557A: 506 case i82557B: 507 case i82557C: 508 case i82558A: 509 case i82558B: 510 case i82559A: 511 case i82559B: 512 case i82559ER: 513 case i82562: 514 case i82801: 515 case i82559C: 516 break; 517 default: 518 logout("Device %X is undefined!\n", device); 519 } 520 521 /* Standard TxCB. */ 522 s->configuration[6] |= BIT(4); 523 524 /* Standard statistical counters. */ 525 s->configuration[6] |= BIT(5); 526 527 if (s->stats_size == 80) { 528 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */ 529 if (s->configuration[6] & BIT(2)) { 530 /* TCO statistical counters. */ 531 assert(s->configuration[6] & BIT(5)); 532 } else { 533 if (s->configuration[6] & BIT(5)) { 534 /* No extended statistical counters, i82557 compatible. */ 535 s->stats_size = 64; 536 } else { 537 /* i82558 compatible. */ 538 s->stats_size = 76; 539 } 540 } 541 } else { 542 if (s->configuration[6] & BIT(5)) { 543 /* No extended statistical counters. */ 544 s->stats_size = 64; 545 } 546 } 547 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics)); 548 549 if (info->power_management) { 550 /* Power Management Capabilities */ 551 int cfg_offset = 0xdc; 552 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM, 553 cfg_offset, PCI_PM_SIZEOF, 554 errp); 555 if (r < 0) { 556 return; 557 } 558 559 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21); 560 #if 0 /* TODO: replace dummy code for power management emulation. */ 561 /* TODO: Power Management Control / Status. */ 562 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000); 563 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */ 564 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000); 565 #endif 566 } 567 568 #if EEPROM_SIZE > 0 569 if (device == i82557C || device == i82558B || device == i82559C) { 570 /* 571 TODO: get vendor id from EEPROM for i82557C or later. 572 TODO: get device id from EEPROM for i82557C or later. 573 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559. 574 TODO: header type is determined by EEPROM for i82559. 575 TODO: get subsystem id from EEPROM for i82557C or later. 576 TODO: get subsystem vendor id from EEPROM for i82557C or later. 577 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later. 578 TODO: capability pointer depends on EEPROM for i82558. 579 */ 580 logout("Get device id and revision from EEPROM!!!\n"); 581 } 582 #endif /* EEPROM_SIZE > 0 */ 583 } 584 585 static void nic_selective_reset(EEPRO100State * s) 586 { 587 size_t i; 588 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom); 589 #if 0 590 eeprom93xx_reset(s->eeprom); 591 #endif 592 memcpy(eeprom_contents, s->conf.macaddr.a, 6); 593 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID; 594 if (s->device == i82557B || s->device == i82557C) 595 eeprom_contents[5] = 0x0100; 596 eeprom_contents[EEPROM_PHY_ID] = 1; 597 uint16_t sum = 0; 598 for (i = 0; i < EEPROM_SIZE - 1; i++) { 599 sum += eeprom_contents[i]; 600 } 601 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum; 602 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1])); 603 604 memset(s->mem, 0, sizeof(s->mem)); 605 e100_write_reg4(s, SCBCtrlMDI, BIT(21)); 606 607 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default)); 608 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem)); 609 } 610 611 static void nic_reset(void *opaque) 612 { 613 EEPRO100State *s = opaque; 614 TRACE(OTHER, logout("%p\n", s)); 615 /* TODO: Clearing of hash register for selective reset, too? */ 616 memset(&s->mult[0], 0, sizeof(s->mult)); 617 nic_selective_reset(s); 618 } 619 620 #if defined(DEBUG_EEPRO100) 621 static const char * const e100_reg[PCI_IO_SIZE / 4] = { 622 "Command/Status", 623 "General Pointer", 624 "Port", 625 "EEPROM/Flash Control", 626 "MDI Control", 627 "Receive DMA Byte Count", 628 "Flow Control", 629 "General Status/Control" 630 }; 631 632 static char *regname(uint32_t addr) 633 { 634 static char buf[32]; 635 if (addr < PCI_IO_SIZE) { 636 const char *r = e100_reg[addr / 4]; 637 if (r != 0) { 638 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4); 639 } else { 640 snprintf(buf, sizeof(buf), "0x%02x", addr); 641 } 642 } else { 643 snprintf(buf, sizeof(buf), "??? 0x%08x", addr); 644 } 645 return buf; 646 } 647 #endif /* DEBUG_EEPRO100 */ 648 649 /***************************************************************************** 650 * 651 * Command emulation. 652 * 653 ****************************************************************************/ 654 655 #if 0 656 static uint16_t eepro100_read_command(EEPRO100State * s) 657 { 658 uint16_t val = 0xffff; 659 TRACE(OTHER, logout("val=0x%04x\n", val)); 660 return val; 661 } 662 #endif 663 664 /* Commands that can be put in a command list entry. */ 665 enum commands { 666 CmdNOp = 0, 667 CmdIASetup = 1, 668 CmdConfigure = 2, 669 CmdMulticastList = 3, 670 CmdTx = 4, 671 CmdTDR = 5, /* load microcode */ 672 CmdDump = 6, 673 CmdDiagnose = 7, 674 675 /* And some extra flags: */ 676 CmdSuspend = 0x4000, /* Suspend after completion. */ 677 CmdIntr = 0x2000, /* Interrupt after completion. */ 678 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */ 679 }; 680 681 static cu_state_t get_cu_state(EEPRO100State * s) 682 { 683 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6); 684 } 685 686 static void set_cu_state(EEPRO100State * s, cu_state_t state) 687 { 688 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6); 689 } 690 691 static ru_state_t get_ru_state(EEPRO100State * s) 692 { 693 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2); 694 } 695 696 static void set_ru_state(EEPRO100State * s, ru_state_t state) 697 { 698 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2); 699 } 700 701 static void dump_statistics(EEPRO100State * s) 702 { 703 /* Dump statistical data. Most data is never changed by the emulation 704 * and always 0, so we first just copy the whole block and then those 705 * values which really matter. 706 * Number of data should check configuration!!! 707 */ 708 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size); 709 stl_le_pci_dma(&s->dev, s->statsaddr + 0, 710 s->statistics.tx_good_frames); 711 stl_le_pci_dma(&s->dev, s->statsaddr + 36, 712 s->statistics.rx_good_frames); 713 stl_le_pci_dma(&s->dev, s->statsaddr + 48, 714 s->statistics.rx_resource_errors); 715 stl_le_pci_dma(&s->dev, s->statsaddr + 60, 716 s->statistics.rx_short_frame_errors); 717 #if 0 718 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames); 719 stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames); 720 missing("CU dump statistical counters"); 721 #endif 722 } 723 724 static void read_cb(EEPRO100State *s) 725 { 726 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx)); 727 s->tx.status = le16_to_cpu(s->tx.status); 728 s->tx.command = le16_to_cpu(s->tx.command); 729 s->tx.link = le32_to_cpu(s->tx.link); 730 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr); 731 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes); 732 } 733 734 static void tx_command(EEPRO100State *s) 735 { 736 uint32_t tbd_array = s->tx.tbd_array_addr; 737 uint16_t tcb_bytes = s->tx.tcb_bytes & 0x3fff; 738 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */ 739 uint8_t buf[2600]; 740 uint16_t size = 0; 741 uint32_t tbd_address = s->cb_address + 0x10; 742 TRACE(RXTX, logout 743 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n", 744 tbd_array, tcb_bytes, s->tx.tbd_count)); 745 746 if (tcb_bytes > 2600) { 747 logout("TCB byte count too large, using 2600\n"); 748 tcb_bytes = 2600; 749 } 750 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) { 751 logout 752 ("illegal values of TBD array address and TCB byte count!\n"); 753 } 754 assert(tcb_bytes <= sizeof(buf)); 755 while (size < tcb_bytes) { 756 TRACE(RXTX, logout 757 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n", 758 tbd_address, tcb_bytes)); 759 pci_dma_read(&s->dev, tbd_address, &buf[size], tcb_bytes); 760 size += tcb_bytes; 761 } 762 if (tbd_array == 0xffffffff) { 763 /* Simplified mode. Was already handled by code above. */ 764 } else { 765 /* Flexible mode. */ 766 uint8_t tbd_count = 0; 767 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) { 768 /* Extended Flexible TCB. */ 769 for (; tbd_count < 2; tbd_count++) { 770 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, 771 tbd_address); 772 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, 773 tbd_address + 4); 774 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, 775 tbd_address + 6); 776 tbd_address += 8; 777 TRACE(RXTX, logout 778 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n", 779 tx_buffer_address, tx_buffer_size)); 780 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 781 pci_dma_read(&s->dev, tx_buffer_address, 782 &buf[size], tx_buffer_size); 783 size += tx_buffer_size; 784 if (tx_buffer_el & 1) { 785 break; 786 } 787 } 788 } 789 tbd_address = tbd_array; 790 for (; tbd_count < s->tx.tbd_count; tbd_count++) { 791 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address); 792 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4); 793 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6); 794 tbd_address += 8; 795 TRACE(RXTX, logout 796 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n", 797 tx_buffer_address, tx_buffer_size)); 798 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 799 pci_dma_read(&s->dev, tx_buffer_address, 800 &buf[size], tx_buffer_size); 801 size += tx_buffer_size; 802 if (tx_buffer_el & 1) { 803 break; 804 } 805 } 806 } 807 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size))); 808 qemu_send_packet(qemu_get_queue(s->nic), buf, size); 809 s->statistics.tx_good_frames++; 810 /* Transmit with bad status would raise an CX/TNO interrupt. 811 * (82557 only). Emulation never has bad status. */ 812 #if 0 813 eepro100_cx_interrupt(s); 814 #endif 815 } 816 817 static void set_multicast_list(EEPRO100State *s) 818 { 819 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0); 820 uint16_t i; 821 memset(&s->mult[0], 0, sizeof(s->mult)); 822 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count)); 823 for (i = 0; i < multicast_count; i += 6) { 824 uint8_t multicast_addr[6]; 825 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6); 826 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6))); 827 unsigned mcast_idx = (net_crc32(multicast_addr, ETH_ALEN) & 828 BITS(7, 2)) >> 2; 829 assert(mcast_idx < 64); 830 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7)); 831 } 832 } 833 834 static void action_command(EEPRO100State *s) 835 { 836 /* The loop below won't stop if it gets special handcrafted data. 837 Therefore we limit the number of iterations. */ 838 unsigned max_loop_count = 16; 839 840 for (;;) { 841 bool bit_el; 842 bool bit_s; 843 bool bit_i; 844 bool bit_nc; 845 uint16_t ok_status = STATUS_OK; 846 s->cb_address = s->cu_base + s->cu_offset; 847 read_cb(s); 848 bit_el = ((s->tx.command & COMMAND_EL) != 0); 849 bit_s = ((s->tx.command & COMMAND_S) != 0); 850 bit_i = ((s->tx.command & COMMAND_I) != 0); 851 bit_nc = ((s->tx.command & COMMAND_NC) != 0); 852 #if 0 853 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0); 854 #endif 855 856 if (max_loop_count-- == 0) { 857 /* Prevent an endless loop. */ 858 logout("loop in %s:%u\n", __FILE__, __LINE__); 859 break; 860 } 861 862 s->cu_offset = s->tx.link; 863 TRACE(OTHER, 864 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n", 865 s->tx.status, s->tx.command, s->tx.link)); 866 switch (s->tx.command & COMMAND_CMD) { 867 case CmdNOp: 868 /* Do nothing. */ 869 break; 870 case CmdIASetup: 871 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6); 872 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6))); 873 break; 874 case CmdConfigure: 875 pci_dma_read(&s->dev, s->cb_address + 8, 876 &s->configuration[0], sizeof(s->configuration)); 877 TRACE(OTHER, logout("configuration: %s\n", 878 nic_dump(&s->configuration[0], 16))); 879 TRACE(OTHER, logout("configuration: %s\n", 880 nic_dump(&s->configuration[16], 881 ARRAY_SIZE(s->configuration) - 16))); 882 if (s->configuration[20] & BIT(6)) { 883 TRACE(OTHER, logout("Multiple IA bit\n")); 884 } 885 break; 886 case CmdMulticastList: 887 set_multicast_list(s); 888 break; 889 case CmdTx: 890 if (bit_nc) { 891 missing("CmdTx: NC = 0"); 892 ok_status = 0; 893 break; 894 } 895 tx_command(s); 896 break; 897 case CmdTDR: 898 TRACE(OTHER, logout("load microcode\n")); 899 /* Starting with offset 8, the command contains 900 * 64 dwords microcode which we just ignore here. */ 901 break; 902 case CmdDiagnose: 903 TRACE(OTHER, logout("diagnose\n")); 904 /* Make sure error flag is not set. */ 905 s->tx.status = 0; 906 break; 907 default: 908 missing("undefined command"); 909 ok_status = 0; 910 break; 911 } 912 /* Write new status. */ 913 stw_le_pci_dma(&s->dev, s->cb_address, 914 s->tx.status | ok_status | STATUS_C); 915 if (bit_i) { 916 /* CU completed action. */ 917 eepro100_cx_interrupt(s); 918 } 919 if (bit_el) { 920 /* CU becomes idle. Terminate command loop. */ 921 set_cu_state(s, cu_idle); 922 eepro100_cna_interrupt(s); 923 break; 924 } else if (bit_s) { 925 /* CU becomes suspended. Terminate command loop. */ 926 set_cu_state(s, cu_suspended); 927 eepro100_cna_interrupt(s); 928 break; 929 } else { 930 /* More entries in list. */ 931 TRACE(OTHER, logout("CU list with at least one more entry\n")); 932 } 933 } 934 TRACE(OTHER, logout("CU list empty\n")); 935 /* List is empty. Now CU is idle or suspended. */ 936 } 937 938 static void eepro100_cu_command(EEPRO100State * s, uint8_t val) 939 { 940 cu_state_t cu_state; 941 switch (val) { 942 case CU_NOP: 943 /* No operation. */ 944 break; 945 case CU_START: 946 cu_state = get_cu_state(s); 947 if (cu_state != cu_idle && cu_state != cu_suspended) { 948 /* Intel documentation says that CU must be idle or suspended 949 * for the CU start command. */ 950 logout("unexpected CU state is %u\n", cu_state); 951 } 952 set_cu_state(s, cu_active); 953 s->cu_offset = e100_read_reg4(s, SCBPointer); 954 action_command(s); 955 break; 956 case CU_RESUME: 957 if (get_cu_state(s) != cu_suspended) { 958 logout("bad CU resume from CU state %u\n", get_cu_state(s)); 959 /* Workaround for bad Linux eepro100 driver which resumes 960 * from idle state. */ 961 #if 0 962 missing("cu resume"); 963 #endif 964 set_cu_state(s, cu_suspended); 965 } 966 if (get_cu_state(s) == cu_suspended) { 967 TRACE(OTHER, logout("CU resuming\n")); 968 set_cu_state(s, cu_active); 969 action_command(s); 970 } 971 break; 972 case CU_STATSADDR: 973 /* Load dump counters address. */ 974 s->statsaddr = e100_read_reg4(s, SCBPointer); 975 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val)); 976 if (s->statsaddr & 3) { 977 /* Memory must be Dword aligned. */ 978 logout("unaligned dump counters address\n"); 979 /* Handling of misaligned addresses is undefined. 980 * Here we align the address by ignoring the lower bits. */ 981 /* TODO: Test unaligned dump counter address on real hardware. */ 982 s->statsaddr &= ~3; 983 } 984 break; 985 case CU_SHOWSTATS: 986 /* Dump statistical counters. */ 987 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val)); 988 dump_statistics(s); 989 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005); 990 break; 991 case CU_CMD_BASE: 992 /* Load CU base. */ 993 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val)); 994 s->cu_base = e100_read_reg4(s, SCBPointer); 995 break; 996 case CU_DUMPSTATS: 997 /* Dump and reset statistical counters. */ 998 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val)); 999 dump_statistics(s); 1000 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007); 1001 memset(&s->statistics, 0, sizeof(s->statistics)); 1002 break; 1003 case CU_SRESUME: 1004 /* CU static resume. */ 1005 missing("CU static resume"); 1006 break; 1007 default: 1008 missing("Undefined CU command"); 1009 } 1010 } 1011 1012 static void eepro100_ru_command(EEPRO100State * s, uint8_t val) 1013 { 1014 switch (val) { 1015 case RU_NOP: 1016 /* No operation. */ 1017 break; 1018 case RX_START: 1019 /* RU start. */ 1020 if (get_ru_state(s) != ru_idle) { 1021 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle); 1022 #if 0 1023 assert(!"wrong RU state"); 1024 #endif 1025 } 1026 set_ru_state(s, ru_ready); 1027 s->ru_offset = e100_read_reg4(s, SCBPointer); 1028 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1029 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val)); 1030 break; 1031 case RX_RESUME: 1032 /* Restart RU. */ 1033 if (get_ru_state(s) != ru_suspended) { 1034 logout("RU state is %u, should be %u\n", get_ru_state(s), 1035 ru_suspended); 1036 #if 0 1037 assert(!"wrong RU state"); 1038 #endif 1039 } 1040 set_ru_state(s, ru_ready); 1041 break; 1042 case RU_ABORT: 1043 /* RU abort. */ 1044 if (get_ru_state(s) == ru_ready) { 1045 eepro100_rnr_interrupt(s); 1046 } 1047 set_ru_state(s, ru_idle); 1048 break; 1049 case RX_ADDR_LOAD: 1050 /* Load RU base. */ 1051 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val)); 1052 s->ru_base = e100_read_reg4(s, SCBPointer); 1053 break; 1054 default: 1055 logout("val=0x%02x (undefined RU command)\n", val); 1056 missing("Undefined SU command"); 1057 } 1058 } 1059 1060 static void eepro100_write_command(EEPRO100State * s, uint8_t val) 1061 { 1062 eepro100_ru_command(s, val & 0x0f); 1063 eepro100_cu_command(s, val & 0xf0); 1064 if ((val) == 0) { 1065 TRACE(OTHER, logout("val=0x%02x\n", val)); 1066 } 1067 /* Clear command byte after command was accepted. */ 1068 s->mem[SCBCmd] = 0; 1069 } 1070 1071 /***************************************************************************** 1072 * 1073 * EEPROM emulation. 1074 * 1075 ****************************************************************************/ 1076 1077 #define EEPROM_CS 0x02 1078 #define EEPROM_SK 0x01 1079 #define EEPROM_DI 0x04 1080 #define EEPROM_DO 0x08 1081 1082 static uint16_t eepro100_read_eeprom(EEPRO100State * s) 1083 { 1084 uint16_t val = e100_read_reg2(s, SCBeeprom); 1085 if (eeprom93xx_read(s->eeprom)) { 1086 val |= EEPROM_DO; 1087 } else { 1088 val &= ~EEPROM_DO; 1089 } 1090 TRACE(EEPROM, logout("val=0x%04x\n", val)); 1091 return val; 1092 } 1093 1094 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val) 1095 { 1096 TRACE(EEPROM, logout("val=0x%02x\n", val)); 1097 1098 /* mask unwritable bits */ 1099 #if 0 1100 val = SET_MASKED(val, 0x31, eeprom->value); 1101 #endif 1102 1103 int eecs = ((val & EEPROM_CS) != 0); 1104 int eesk = ((val & EEPROM_SK) != 0); 1105 int eedi = ((val & EEPROM_DI) != 0); 1106 eeprom93xx_write(eeprom, eecs, eesk, eedi); 1107 } 1108 1109 /***************************************************************************** 1110 * 1111 * MDI emulation. 1112 * 1113 ****************************************************************************/ 1114 1115 #if defined(DEBUG_EEPRO100) 1116 static const char * const mdi_op_name[] = { 1117 "opcode 0", 1118 "write", 1119 "read", 1120 "opcode 3" 1121 }; 1122 1123 static const char * const mdi_reg_name[] = { 1124 "Control", 1125 "Status", 1126 "PHY Identification (Word 1)", 1127 "PHY Identification (Word 2)", 1128 "Auto-Negotiation Advertisement", 1129 "Auto-Negotiation Link Partner Ability", 1130 "Auto-Negotiation Expansion" 1131 }; 1132 1133 static const char *reg2name(uint8_t reg) 1134 { 1135 static char buffer[10]; 1136 const char *p = buffer; 1137 if (reg < ARRAY_SIZE(mdi_reg_name)) { 1138 p = mdi_reg_name[reg]; 1139 } else { 1140 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg); 1141 } 1142 return p; 1143 } 1144 #endif /* DEBUG_EEPRO100 */ 1145 1146 static uint32_t eepro100_read_mdi(EEPRO100State * s) 1147 { 1148 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1149 1150 #ifdef DEBUG_EEPRO100 1151 uint8_t raiseint = (val & BIT(29)) >> 29; 1152 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1153 uint8_t phy = (val & BITS(25, 21)) >> 21; 1154 uint8_t reg = (val & BITS(20, 16)) >> 16; 1155 uint16_t data = (val & BITS(15, 0)); 1156 #endif 1157 /* Emulation takes no time to finish MDI transaction. */ 1158 val |= BIT(28); 1159 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1160 val, raiseint, mdi_op_name[opcode], phy, 1161 reg2name(reg), data)); 1162 return val; 1163 } 1164 1165 static void eepro100_write_mdi(EEPRO100State *s) 1166 { 1167 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1168 uint8_t raiseint = (val & BIT(29)) >> 29; 1169 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1170 uint8_t phy = (val & BITS(25, 21)) >> 21; 1171 uint8_t reg = (val & BITS(20, 16)) >> 16; 1172 uint16_t data = (val & BITS(15, 0)); 1173 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1174 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data)); 1175 if (phy != 1) { 1176 /* Unsupported PHY address. */ 1177 #if 0 1178 logout("phy must be 1 but is %u\n", phy); 1179 #endif 1180 data = 0; 1181 } else if (opcode != 1 && opcode != 2) { 1182 /* Unsupported opcode. */ 1183 logout("opcode must be 1 or 2 but is %u\n", opcode); 1184 data = 0; 1185 } else if (reg > 6) { 1186 /* Unsupported register. */ 1187 logout("register must be 0...6 but is %u\n", reg); 1188 data = 0; 1189 } else { 1190 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1191 val, raiseint, mdi_op_name[opcode], phy, 1192 reg2name(reg), data)); 1193 if (opcode == 1) { 1194 /* MDI write */ 1195 switch (reg) { 1196 case 0: /* Control Register */ 1197 if (data & 0x8000) { 1198 /* Reset status and control registers to default. */ 1199 s->mdimem[0] = eepro100_mdi_default[0]; 1200 s->mdimem[1] = eepro100_mdi_default[1]; 1201 data = s->mdimem[reg]; 1202 } else { 1203 /* Restart Auto Configuration = Normal Operation */ 1204 data &= ~0x0200; 1205 } 1206 break; 1207 case 1: /* Status Register */ 1208 missing("not writable"); 1209 break; 1210 case 2: /* PHY Identification Register (Word 1) */ 1211 case 3: /* PHY Identification Register (Word 2) */ 1212 missing("not implemented"); 1213 break; 1214 case 4: /* Auto-Negotiation Advertisement Register */ 1215 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1216 break; 1217 case 6: /* Auto-Negotiation Expansion Register */ 1218 default: 1219 missing("not implemented"); 1220 } 1221 s->mdimem[reg] &= eepro100_mdi_mask[reg]; 1222 s->mdimem[reg] |= data & ~eepro100_mdi_mask[reg]; 1223 } else if (opcode == 2) { 1224 /* MDI read */ 1225 switch (reg) { 1226 case 0: /* Control Register */ 1227 if (data & 0x8000) { 1228 /* Reset status and control registers to default. */ 1229 s->mdimem[0] = eepro100_mdi_default[0]; 1230 s->mdimem[1] = eepro100_mdi_default[1]; 1231 } 1232 break; 1233 case 1: /* Status Register */ 1234 s->mdimem[reg] |= 0x0020; 1235 break; 1236 case 2: /* PHY Identification Register (Word 1) */ 1237 case 3: /* PHY Identification Register (Word 2) */ 1238 case 4: /* Auto-Negotiation Advertisement Register */ 1239 break; 1240 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1241 s->mdimem[reg] = 0x41fe; 1242 break; 1243 case 6: /* Auto-Negotiation Expansion Register */ 1244 s->mdimem[reg] = 0x0001; 1245 break; 1246 } 1247 data = s->mdimem[reg]; 1248 } 1249 /* Emulation takes no time to finish MDI transaction. 1250 * Set MDI bit in SCB status register. */ 1251 s->mem[SCBAck] |= 0x08; 1252 val |= BIT(28); 1253 if (raiseint) { 1254 eepro100_mdi_interrupt(s); 1255 } 1256 } 1257 val = (val & 0xffff0000) + data; 1258 e100_write_reg4(s, SCBCtrlMDI, val); 1259 } 1260 1261 /***************************************************************************** 1262 * 1263 * Port emulation. 1264 * 1265 ****************************************************************************/ 1266 1267 #define PORT_SOFTWARE_RESET 0 1268 #define PORT_SELFTEST 1 1269 #define PORT_SELECTIVE_RESET 2 1270 #define PORT_DUMP 3 1271 #define PORT_SELECTION_MASK 3 1272 1273 typedef struct { 1274 uint32_t st_sign; /* Self Test Signature */ 1275 uint32_t st_result; /* Self Test Results */ 1276 } eepro100_selftest_t; 1277 1278 static uint32_t eepro100_read_port(EEPRO100State * s) 1279 { 1280 return 0; 1281 } 1282 1283 static void eepro100_write_port(EEPRO100State *s) 1284 { 1285 uint32_t val = e100_read_reg4(s, SCBPort); 1286 uint32_t address = (val & ~PORT_SELECTION_MASK); 1287 uint8_t selection = (val & PORT_SELECTION_MASK); 1288 switch (selection) { 1289 case PORT_SOFTWARE_RESET: 1290 nic_reset(s); 1291 break; 1292 case PORT_SELFTEST: 1293 TRACE(OTHER, logout("selftest address=0x%08x\n", address)); 1294 eepro100_selftest_t data; 1295 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1296 data.st_sign = 0xffffffff; 1297 data.st_result = 0; 1298 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1299 break; 1300 case PORT_SELECTIVE_RESET: 1301 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address)); 1302 nic_selective_reset(s); 1303 break; 1304 default: 1305 logout("val=0x%08x\n", val); 1306 missing("unknown port selection"); 1307 } 1308 } 1309 1310 /***************************************************************************** 1311 * 1312 * General hardware emulation. 1313 * 1314 ****************************************************************************/ 1315 1316 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr) 1317 { 1318 uint8_t val = 0; 1319 if (addr <= sizeof(s->mem) - sizeof(val)) { 1320 val = s->mem[addr]; 1321 } 1322 1323 switch (addr) { 1324 case SCBStatus: 1325 case SCBAck: 1326 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1327 break; 1328 case SCBCmd: 1329 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1330 #if 0 1331 val = eepro100_read_command(s); 1332 #endif 1333 break; 1334 case SCBIntmask: 1335 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1336 break; 1337 case SCBPort + 3: 1338 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1339 break; 1340 case SCBeeprom: 1341 val = eepro100_read_eeprom(s); 1342 break; 1343 case SCBCtrlMDI: 1344 case SCBCtrlMDI + 1: 1345 case SCBCtrlMDI + 2: 1346 case SCBCtrlMDI + 3: 1347 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1348 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1349 break; 1350 case SCBpmdr: /* Power Management Driver Register */ 1351 val = 0; 1352 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1353 break; 1354 case SCBgctrl: /* General Control Register */ 1355 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1356 break; 1357 case SCBgstat: /* General Status Register */ 1358 /* 100 Mbps full duplex, valid link */ 1359 val = 0x07; 1360 TRACE(OTHER, logout("addr=General Status val=%02x\n", val)); 1361 break; 1362 default: 1363 logout("addr=%s val=0x%02x\n", regname(addr), val); 1364 missing("unknown byte read"); 1365 } 1366 return val; 1367 } 1368 1369 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr) 1370 { 1371 uint16_t val = 0; 1372 if (addr <= sizeof(s->mem) - sizeof(val)) { 1373 val = e100_read_reg2(s, addr); 1374 } 1375 1376 switch (addr) { 1377 case SCBStatus: 1378 case SCBCmd: 1379 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1380 break; 1381 case SCBeeprom: 1382 val = eepro100_read_eeprom(s); 1383 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1384 break; 1385 case SCBCtrlMDI: 1386 case SCBCtrlMDI + 2: 1387 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1388 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1389 break; 1390 default: 1391 logout("addr=%s val=0x%04x\n", regname(addr), val); 1392 missing("unknown word read"); 1393 } 1394 return val; 1395 } 1396 1397 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr) 1398 { 1399 uint32_t val = 0; 1400 if (addr <= sizeof(s->mem) - sizeof(val)) { 1401 val = e100_read_reg4(s, addr); 1402 } 1403 1404 switch (addr) { 1405 case SCBStatus: 1406 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1407 break; 1408 case SCBPointer: 1409 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1410 break; 1411 case SCBPort: 1412 val = eepro100_read_port(s); 1413 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1414 break; 1415 case SCBflash: 1416 val = eepro100_read_eeprom(s); 1417 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1418 break; 1419 case SCBCtrlMDI: 1420 val = eepro100_read_mdi(s); 1421 break; 1422 default: 1423 logout("addr=%s val=0x%08x\n", regname(addr), val); 1424 missing("unknown longword read"); 1425 } 1426 return val; 1427 } 1428 1429 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val) 1430 { 1431 /* SCBStatus is readonly. */ 1432 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1433 s->mem[addr] = val; 1434 } 1435 1436 switch (addr) { 1437 case SCBStatus: 1438 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1439 break; 1440 case SCBAck: 1441 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1442 eepro100_acknowledge(s); 1443 break; 1444 case SCBCmd: 1445 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1446 eepro100_write_command(s, val); 1447 break; 1448 case SCBIntmask: 1449 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1450 if (val & BIT(1)) { 1451 eepro100_swi_interrupt(s); 1452 } 1453 eepro100_interrupt(s, 0); 1454 break; 1455 case SCBPointer: 1456 case SCBPointer + 1: 1457 case SCBPointer + 2: 1458 case SCBPointer + 3: 1459 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1460 break; 1461 case SCBPort: 1462 case SCBPort + 1: 1463 case SCBPort + 2: 1464 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1465 break; 1466 case SCBPort + 3: 1467 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1468 eepro100_write_port(s); 1469 break; 1470 case SCBFlow: /* does not exist on 82557 */ 1471 case SCBFlow + 1: 1472 case SCBFlow + 2: 1473 case SCBpmdr: /* does not exist on 82557 */ 1474 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1475 break; 1476 case SCBeeprom: 1477 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1478 eepro100_write_eeprom(s->eeprom, val); 1479 break; 1480 case SCBCtrlMDI: 1481 case SCBCtrlMDI + 1: 1482 case SCBCtrlMDI + 2: 1483 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1484 break; 1485 case SCBCtrlMDI + 3: 1486 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1487 eepro100_write_mdi(s); 1488 break; 1489 default: 1490 logout("addr=%s val=0x%02x\n", regname(addr), val); 1491 missing("unknown byte write"); 1492 } 1493 } 1494 1495 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val) 1496 { 1497 /* SCBStatus is readonly. */ 1498 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1499 e100_write_reg2(s, addr, val); 1500 } 1501 1502 switch (addr) { 1503 case SCBStatus: 1504 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1505 s->mem[SCBAck] = (val >> 8); 1506 eepro100_acknowledge(s); 1507 break; 1508 case SCBCmd: 1509 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1510 eepro100_write_command(s, val); 1511 eepro100_write1(s, SCBIntmask, val >> 8); 1512 break; 1513 case SCBPointer: 1514 case SCBPointer + 2: 1515 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1516 break; 1517 case SCBPort: 1518 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1519 break; 1520 case SCBPort + 2: 1521 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1522 eepro100_write_port(s); 1523 break; 1524 case SCBeeprom: 1525 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1526 eepro100_write_eeprom(s->eeprom, val); 1527 break; 1528 case SCBCtrlMDI: 1529 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1530 break; 1531 case SCBCtrlMDI + 2: 1532 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1533 eepro100_write_mdi(s); 1534 break; 1535 default: 1536 logout("addr=%s val=0x%04x\n", regname(addr), val); 1537 missing("unknown word write"); 1538 } 1539 } 1540 1541 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val) 1542 { 1543 if (addr <= sizeof(s->mem) - sizeof(val)) { 1544 e100_write_reg4(s, addr, val); 1545 } 1546 1547 switch (addr) { 1548 case SCBPointer: 1549 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1550 break; 1551 case SCBPort: 1552 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1553 eepro100_write_port(s); 1554 break; 1555 case SCBflash: 1556 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1557 val = val >> 16; 1558 eepro100_write_eeprom(s->eeprom, val); 1559 break; 1560 case SCBCtrlMDI: 1561 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1562 eepro100_write_mdi(s); 1563 break; 1564 default: 1565 logout("addr=%s val=0x%08x\n", regname(addr), val); 1566 missing("unknown longword write"); 1567 } 1568 } 1569 1570 static uint64_t eepro100_read(void *opaque, hwaddr addr, 1571 unsigned size) 1572 { 1573 EEPRO100State *s = opaque; 1574 1575 switch (size) { 1576 case 1: return eepro100_read1(s, addr); 1577 case 2: return eepro100_read2(s, addr); 1578 case 4: return eepro100_read4(s, addr); 1579 default: abort(); 1580 } 1581 } 1582 1583 static void eepro100_write(void *opaque, hwaddr addr, 1584 uint64_t data, unsigned size) 1585 { 1586 EEPRO100State *s = opaque; 1587 1588 switch (size) { 1589 case 1: 1590 eepro100_write1(s, addr, data); 1591 break; 1592 case 2: 1593 eepro100_write2(s, addr, data); 1594 break; 1595 case 4: 1596 eepro100_write4(s, addr, data); 1597 break; 1598 default: 1599 abort(); 1600 } 1601 } 1602 1603 static const MemoryRegionOps eepro100_ops = { 1604 .read = eepro100_read, 1605 .write = eepro100_write, 1606 .endianness = DEVICE_LITTLE_ENDIAN, 1607 }; 1608 1609 static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size) 1610 { 1611 /* TODO: 1612 * - Magic packets should set bit 30 in power management driver register. 1613 * - Interesting packets should set bit 29 in power management driver register. 1614 */ 1615 EEPRO100State *s = qemu_get_nic_opaque(nc); 1616 uint16_t rfd_status = 0xa000; 1617 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1618 uint8_t min_buf[60]; 1619 #endif 1620 static const uint8_t broadcast_macaddr[6] = 1621 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1622 1623 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1624 /* Pad to minimum Ethernet frame length */ 1625 if (size < sizeof(min_buf)) { 1626 memcpy(min_buf, buf, size); 1627 memset(&min_buf[size], 0, sizeof(min_buf) - size); 1628 buf = min_buf; 1629 size = sizeof(min_buf); 1630 } 1631 #endif 1632 1633 if (s->configuration[8] & 0x80) { 1634 /* CSMA is disabled. */ 1635 logout("%p received while CSMA is disabled\n", s); 1636 return -1; 1637 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1638 } else if (size < 64 && (s->configuration[7] & BIT(0))) { 1639 /* Short frame and configuration byte 7/0 (discard short receive) set: 1640 * Short frame is discarded */ 1641 logout("%p received short frame (%zu byte)\n", s, size); 1642 s->statistics.rx_short_frame_errors++; 1643 return -1; 1644 #endif 1645 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) { 1646 /* Long frame and configuration byte 18/3 (long receive ok) not set: 1647 * Long frames are discarded. */ 1648 logout("%p received long frame (%zu byte), ignored\n", s, size); 1649 return -1; 1650 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */ 1651 /* Frame matches individual address. */ 1652 /* TODO: check configuration byte 15/4 (ignore U/L). */ 1653 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size)); 1654 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) { 1655 /* Broadcast frame. */ 1656 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size)); 1657 rfd_status |= 0x0002; 1658 } else if (buf[0] & 0x01) { 1659 /* Multicast frame. */ 1660 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size))); 1661 if (s->configuration[21] & BIT(3)) { 1662 /* Multicast all bit is set, receive all multicast frames. */ 1663 } else { 1664 unsigned mcast_idx = (net_crc32(buf, ETH_ALEN) & BITS(7, 2)) >> 2; 1665 assert(mcast_idx < 64); 1666 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1667 /* Multicast frame is allowed in hash table. */ 1668 } else if (s->configuration[15] & BIT(0)) { 1669 /* Promiscuous: receive all. */ 1670 rfd_status |= 0x0004; 1671 } else { 1672 TRACE(RXTX, logout("%p multicast ignored\n", s)); 1673 return -1; 1674 } 1675 } 1676 /* TODO: Next not for promiscuous mode? */ 1677 rfd_status |= 0x0002; 1678 } else if (s->configuration[15] & BIT(0)) { 1679 /* Promiscuous: receive all. */ 1680 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size)); 1681 rfd_status |= 0x0004; 1682 } else if (s->configuration[20] & BIT(6)) { 1683 /* Multiple IA bit set. */ 1684 unsigned mcast_idx = net_crc32(buf, ETH_ALEN) >> 26; 1685 assert(mcast_idx < 64); 1686 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1687 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s)); 1688 } else { 1689 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s)); 1690 return -1; 1691 } 1692 } else { 1693 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size, 1694 nic_dump(buf, size))); 1695 return size; 1696 } 1697 1698 if (get_ru_state(s) != ru_ready) { 1699 /* No resources available. */ 1700 logout("no resources, state=%u\n", get_ru_state(s)); 1701 /* TODO: RNR interrupt only at first failed frame? */ 1702 eepro100_rnr_interrupt(s); 1703 s->statistics.rx_resource_errors++; 1704 #if 0 1705 assert(!"no resources"); 1706 #endif 1707 return -1; 1708 } 1709 /* !!! */ 1710 eepro100_rx_t rx; 1711 pci_dma_read(&s->dev, s->ru_base + s->ru_offset, 1712 &rx, sizeof(eepro100_rx_t)); 1713 uint16_t rfd_command = le16_to_cpu(rx.command); 1714 uint16_t rfd_size = le16_to_cpu(rx.size); 1715 1716 if (size > rfd_size) { 1717 logout("Receive buffer (%" PRId16 " bytes) too small for data " 1718 "(%zu bytes); data truncated\n", rfd_size, size); 1719 size = rfd_size; 1720 } 1721 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1722 if (size < 64) { 1723 rfd_status |= 0x0080; 1724 } 1725 #endif 1726 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", 1727 rfd_command, rx.link, rx.rx_buf_addr, rfd_size)); 1728 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1729 offsetof(eepro100_rx_t, status), rfd_status); 1730 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1731 offsetof(eepro100_rx_t, count), size); 1732 /* Early receive interrupt not supported. */ 1733 #if 0 1734 eepro100_er_interrupt(s); 1735 #endif 1736 /* Receive CRC Transfer not supported. */ 1737 if (s->configuration[18] & BIT(2)) { 1738 missing("Receive CRC Transfer"); 1739 return -1; 1740 } 1741 /* TODO: check stripping enable bit. */ 1742 #if 0 1743 assert(!(s->configuration[17] & BIT(0))); 1744 #endif 1745 pci_dma_write(&s->dev, s->ru_base + s->ru_offset + 1746 sizeof(eepro100_rx_t), buf, size); 1747 s->statistics.rx_good_frames++; 1748 eepro100_fr_interrupt(s); 1749 s->ru_offset = le32_to_cpu(rx.link); 1750 if (rfd_command & COMMAND_EL) { 1751 /* EL bit is set, so this was the last frame. */ 1752 logout("receive: Running out of frames\n"); 1753 set_ru_state(s, ru_no_resources); 1754 eepro100_rnr_interrupt(s); 1755 } 1756 if (rfd_command & COMMAND_S) { 1757 /* S bit is set. */ 1758 set_ru_state(s, ru_suspended); 1759 } 1760 return size; 1761 } 1762 1763 static const VMStateDescription vmstate_eepro100 = { 1764 .version_id = 3, 1765 .minimum_version_id = 2, 1766 .fields = (VMStateField[]) { 1767 VMSTATE_PCI_DEVICE(dev, EEPRO100State), 1768 VMSTATE_UNUSED(32), 1769 VMSTATE_BUFFER(mult, EEPRO100State), 1770 VMSTATE_BUFFER(mem, EEPRO100State), 1771 /* Save all members of struct between scb_stat and mem. */ 1772 VMSTATE_UINT8(scb_stat, EEPRO100State), 1773 VMSTATE_UINT8(int_stat, EEPRO100State), 1774 VMSTATE_UNUSED(3*4), 1775 VMSTATE_MACADDR(conf.macaddr, EEPRO100State), 1776 VMSTATE_UNUSED(19*4), 1777 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32), 1778 /* The eeprom should be saved and restored by its own routines. */ 1779 VMSTATE_UINT32(device, EEPRO100State), 1780 /* TODO check device. */ 1781 VMSTATE_UINT32(cu_base, EEPRO100State), 1782 VMSTATE_UINT32(cu_offset, EEPRO100State), 1783 VMSTATE_UINT32(ru_base, EEPRO100State), 1784 VMSTATE_UINT32(ru_offset, EEPRO100State), 1785 VMSTATE_UINT32(statsaddr, EEPRO100State), 1786 /* Save eepro100_stats_t statistics. */ 1787 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State), 1788 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State), 1789 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State), 1790 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State), 1791 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State), 1792 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State), 1793 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State), 1794 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State), 1795 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State), 1796 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State), 1797 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State), 1798 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State), 1799 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State), 1800 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State), 1801 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State), 1802 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State), 1803 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State), 1804 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State), 1805 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State), 1806 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State), 1807 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State), 1808 /* Configuration bytes. */ 1809 VMSTATE_BUFFER(configuration, EEPRO100State), 1810 VMSTATE_END_OF_LIST() 1811 } 1812 }; 1813 1814 static void pci_nic_uninit(PCIDevice *pci_dev) 1815 { 1816 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1817 1818 vmstate_unregister(&pci_dev->qdev, s->vmstate, s); 1819 g_free(s->vmstate); 1820 eeprom93xx_free(&pci_dev->qdev, s->eeprom); 1821 qemu_del_nic(s->nic); 1822 } 1823 1824 static NetClientInfo net_eepro100_info = { 1825 .type = NET_CLIENT_DRIVER_NIC, 1826 .size = sizeof(NICState), 1827 .receive = nic_receive, 1828 }; 1829 1830 static void e100_nic_realize(PCIDevice *pci_dev, Error **errp) 1831 { 1832 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1833 E100PCIDeviceInfo *info = eepro100_get_class(s); 1834 Error *local_err = NULL; 1835 1836 TRACE(OTHER, logout("\n")); 1837 1838 s->device = info->device; 1839 1840 e100_pci_reset(s, &local_err); 1841 if (local_err) { 1842 error_propagate(errp, local_err); 1843 return; 1844 } 1845 1846 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM, 1847 * i82559 and later support 64 or 256 word EEPROM. */ 1848 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE); 1849 1850 /* Handler for memory-mapped I/O */ 1851 memory_region_init_io(&s->mmio_bar, OBJECT(s), &eepro100_ops, s, 1852 "eepro100-mmio", PCI_MEM_SIZE); 1853 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar); 1854 memory_region_init_io(&s->io_bar, OBJECT(s), &eepro100_ops, s, 1855 "eepro100-io", PCI_IO_SIZE); 1856 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar); 1857 /* FIXME: flash aliases to mmio?! */ 1858 memory_region_init_io(&s->flash_bar, OBJECT(s), &eepro100_ops, s, 1859 "eepro100-flash", PCI_FLASH_SIZE); 1860 pci_register_bar(&s->dev, 2, 0, &s->flash_bar); 1861 1862 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1863 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)); 1864 1865 nic_reset(s); 1866 1867 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf, 1868 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s); 1869 1870 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 1871 TRACE(OTHER, logout("%s\n", qemu_get_queue(s->nic)->info_str)); 1872 1873 qemu_register_reset(nic_reset, s); 1874 1875 s->vmstate = g_memdup(&vmstate_eepro100, sizeof(vmstate_eepro100)); 1876 s->vmstate->name = qemu_get_queue(s->nic)->model; 1877 vmstate_register(&pci_dev->qdev, -1, s->vmstate, s); 1878 } 1879 1880 static void eepro100_instance_init(Object *obj) 1881 { 1882 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, PCI_DEVICE(obj)); 1883 device_add_bootindex_property(obj, &s->conf.bootindex, 1884 "bootindex", "/ethernet-phy@0", 1885 DEVICE(s), NULL); 1886 } 1887 1888 static E100PCIDeviceInfo e100_devices[] = { 1889 { 1890 .name = "i82550", 1891 .desc = "Intel i82550 Ethernet", 1892 .device = i82550, 1893 /* TODO: check device id. */ 1894 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1895 /* Revision ID: 0x0c, 0x0d, 0x0e. */ 1896 .revision = 0x0e, 1897 /* TODO: check size of statistical counters. */ 1898 .stats_size = 80, 1899 /* TODO: check extended tcb support. */ 1900 .has_extended_tcb_support = true, 1901 .power_management = true, 1902 },{ 1903 .name = "i82551", 1904 .desc = "Intel i82551 Ethernet", 1905 .device = i82551, 1906 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1907 /* Revision ID: 0x0f, 0x10. */ 1908 .revision = 0x0f, 1909 /* TODO: check size of statistical counters. */ 1910 .stats_size = 80, 1911 .has_extended_tcb_support = true, 1912 .power_management = true, 1913 },{ 1914 .name = "i82557a", 1915 .desc = "Intel i82557A Ethernet", 1916 .device = i82557A, 1917 .device_id = PCI_DEVICE_ID_INTEL_82557, 1918 .revision = 0x01, 1919 .power_management = false, 1920 },{ 1921 .name = "i82557b", 1922 .desc = "Intel i82557B Ethernet", 1923 .device = i82557B, 1924 .device_id = PCI_DEVICE_ID_INTEL_82557, 1925 .revision = 0x02, 1926 .power_management = false, 1927 },{ 1928 .name = "i82557c", 1929 .desc = "Intel i82557C Ethernet", 1930 .device = i82557C, 1931 .device_id = PCI_DEVICE_ID_INTEL_82557, 1932 .revision = 0x03, 1933 .power_management = false, 1934 },{ 1935 .name = "i82558a", 1936 .desc = "Intel i82558A Ethernet", 1937 .device = i82558A, 1938 .device_id = PCI_DEVICE_ID_INTEL_82557, 1939 .revision = 0x04, 1940 .stats_size = 76, 1941 .has_extended_tcb_support = true, 1942 .power_management = true, 1943 },{ 1944 .name = "i82558b", 1945 .desc = "Intel i82558B Ethernet", 1946 .device = i82558B, 1947 .device_id = PCI_DEVICE_ID_INTEL_82557, 1948 .revision = 0x05, 1949 .stats_size = 76, 1950 .has_extended_tcb_support = true, 1951 .power_management = true, 1952 },{ 1953 .name = "i82559a", 1954 .desc = "Intel i82559A Ethernet", 1955 .device = i82559A, 1956 .device_id = PCI_DEVICE_ID_INTEL_82557, 1957 .revision = 0x06, 1958 .stats_size = 80, 1959 .has_extended_tcb_support = true, 1960 .power_management = true, 1961 },{ 1962 .name = "i82559b", 1963 .desc = "Intel i82559B Ethernet", 1964 .device = i82559B, 1965 .device_id = PCI_DEVICE_ID_INTEL_82557, 1966 .revision = 0x07, 1967 .stats_size = 80, 1968 .has_extended_tcb_support = true, 1969 .power_management = true, 1970 },{ 1971 .name = "i82559c", 1972 .desc = "Intel i82559C Ethernet", 1973 .device = i82559C, 1974 .device_id = PCI_DEVICE_ID_INTEL_82557, 1975 #if 0 1976 .revision = 0x08, 1977 #endif 1978 /* TODO: Windows wants revision id 0x0c. */ 1979 .revision = 0x0c, 1980 #if EEPROM_SIZE > 0 1981 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL, 1982 .subsystem_id = 0x0040, 1983 #endif 1984 .stats_size = 80, 1985 .has_extended_tcb_support = true, 1986 .power_management = true, 1987 },{ 1988 .name = "i82559er", 1989 .desc = "Intel i82559ER Ethernet", 1990 .device = i82559ER, 1991 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1992 .revision = 0x09, 1993 .stats_size = 80, 1994 .has_extended_tcb_support = true, 1995 .power_management = true, 1996 },{ 1997 .name = "i82562", 1998 .desc = "Intel i82562 Ethernet", 1999 .device = i82562, 2000 /* TODO: check device id. */ 2001 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 2002 /* TODO: wrong revision id. */ 2003 .revision = 0x0e, 2004 .stats_size = 80, 2005 .has_extended_tcb_support = true, 2006 .power_management = true, 2007 },{ 2008 /* Toshiba Tecra 8200. */ 2009 .name = "i82801", 2010 .desc = "Intel i82801 Ethernet", 2011 .device = i82801, 2012 .device_id = 0x2449, 2013 .revision = 0x03, 2014 .stats_size = 80, 2015 .has_extended_tcb_support = true, 2016 .power_management = true, 2017 } 2018 }; 2019 2020 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename) 2021 { 2022 E100PCIDeviceInfo *info = NULL; 2023 int i; 2024 2025 /* This is admittedly awkward but also temporary. QOM allows for 2026 * parameterized typing and for subclassing both of which would suitable 2027 * handle what's going on here. But class_data is already being used as 2028 * a stop-gap hack to allow incremental qdev conversion so we cannot use it 2029 * right now. Once we merge the final QOM series, we can come back here and 2030 * do this in a much more elegant fashion. 2031 */ 2032 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2033 if (strcmp(e100_devices[i].name, typename) == 0) { 2034 info = &e100_devices[i]; 2035 break; 2036 } 2037 } 2038 assert(info != NULL); 2039 2040 return info; 2041 } 2042 2043 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s) 2044 { 2045 return eepro100_get_class_by_name(object_get_typename(OBJECT(s))); 2046 } 2047 2048 static Property e100_properties[] = { 2049 DEFINE_NIC_PROPERTIES(EEPRO100State, conf), 2050 DEFINE_PROP_END_OF_LIST(), 2051 }; 2052 2053 static void eepro100_class_init(ObjectClass *klass, void *data) 2054 { 2055 DeviceClass *dc = DEVICE_CLASS(klass); 2056 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 2057 E100PCIDeviceInfo *info; 2058 2059 info = eepro100_get_class_by_name(object_class_get_name(klass)); 2060 2061 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 2062 dc->props = e100_properties; 2063 dc->desc = info->desc; 2064 k->vendor_id = PCI_VENDOR_ID_INTEL; 2065 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 2066 k->romfile = "pxe-eepro100.rom"; 2067 k->realize = e100_nic_realize; 2068 k->exit = pci_nic_uninit; 2069 k->device_id = info->device_id; 2070 k->revision = info->revision; 2071 k->subsystem_vendor_id = info->subsystem_vendor_id; 2072 k->subsystem_id = info->subsystem_id; 2073 } 2074 2075 static void eepro100_register_types(void) 2076 { 2077 size_t i; 2078 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2079 TypeInfo type_info = {}; 2080 E100PCIDeviceInfo *info = &e100_devices[i]; 2081 2082 type_info.name = info->name; 2083 type_info.parent = TYPE_PCI_DEVICE; 2084 type_info.class_init = eepro100_class_init; 2085 type_info.instance_size = sizeof(EEPRO100State); 2086 type_info.instance_init = eepro100_instance_init; 2087 type_info.interfaces = (InterfaceInfo[]) { 2088 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 2089 { }, 2090 }; 2091 2092 type_register(&type_info); 2093 } 2094 } 2095 2096 type_init(eepro100_register_types) 2097