1 /* 2 * QEMU i8255x (PRO100) emulation 3 * 4 * Copyright (C) 2006-2011 Stefan Weil 5 * 6 * Portions of the code are copies from grub / etherboot eepro100.c 7 * and linux e100.c. 8 * 9 * This program is free software: you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation, either version 2 of the License, or 12 * (at your option) version 3 or any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 * 22 * Tested features (i82559): 23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok 24 * Linux networking (i386) ok 25 * 26 * Untested: 27 * Windows networking 28 * 29 * References: 30 * 31 * Intel 8255x 10/100 Mbps Ethernet Controller Family 32 * Open Source Software Developer Manual 33 * 34 * TODO: 35 * * PHY emulation should be separated from nic emulation. 36 * Most nic emulations could share the same phy code. 37 * * i82550 is untested. It is programmed like the i82559. 38 * * i82562 is untested. It is programmed like the i82559. 39 * * Power management (i82558 and later) is not implemented. 40 * * Wake-on-LAN is not implemented. 41 */ 42 43 #include <stddef.h> /* offsetof */ 44 #include "hw/hw.h" 45 #include "hw/pci/pci.h" 46 #include "net/net.h" 47 #include "hw/nvram/eeprom93xx.h" 48 #include "sysemu/sysemu.h" 49 #include "sysemu/dma.h" 50 #include "qemu/bitops.h" 51 52 /* QEMU sends frames smaller than 60 bytes to ethernet nics. 53 * Such frames are rejected by real nics and their emulations. 54 * To avoid this behaviour, other nic emulations pad received 55 * frames. The following definition enables this padding for 56 * eepro100, too. We keep the define around in case it might 57 * become useful the future if the core networking is ever 58 * changed to pad short packets itself. */ 59 #define CONFIG_PAD_RECEIVED_FRAMES 60 61 #define KiB 1024 62 63 /* Debug EEPRO100 card. */ 64 #if 0 65 # define DEBUG_EEPRO100 66 #endif 67 68 #ifdef DEBUG_EEPRO100 69 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__) 70 #else 71 #define logout(fmt, ...) ((void)0) 72 #endif 73 74 /* Set flags to 0 to disable debug output. */ 75 #define INT 1 /* interrupt related actions */ 76 #define MDI 1 /* mdi related actions */ 77 #define OTHER 1 78 #define RXTX 1 79 #define EEPROM 1 /* eeprom related actions */ 80 81 #define TRACE(flag, command) ((flag) ? (command) : (void)0) 82 83 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n") 84 85 #define MAX_ETH_FRAME_SIZE 1514 86 87 /* This driver supports several different devices which are declared here. */ 88 #define i82550 0x82550 89 #define i82551 0x82551 90 #define i82557A 0x82557a 91 #define i82557B 0x82557b 92 #define i82557C 0x82557c 93 #define i82558A 0x82558a 94 #define i82558B 0x82558b 95 #define i82559A 0x82559a 96 #define i82559B 0x82559b 97 #define i82559C 0x82559c 98 #define i82559ER 0x82559e 99 #define i82562 0x82562 100 #define i82801 0x82801 101 102 /* Use 64 word EEPROM. TODO: could be a runtime option. */ 103 #define EEPROM_SIZE 64 104 105 #define PCI_MEM_SIZE (4 * KiB) 106 #define PCI_IO_SIZE 64 107 #define PCI_FLASH_SIZE (128 * KiB) 108 109 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m) 110 111 /* The SCB accepts the following controls for the Tx and Rx units: */ 112 #define CU_NOP 0x0000 /* No operation. */ 113 #define CU_START 0x0010 /* CU start. */ 114 #define CU_RESUME 0x0020 /* CU resume. */ 115 #define CU_STATSADDR 0x0040 /* Load dump counters address. */ 116 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */ 117 #define CU_CMD_BASE 0x0060 /* Load CU base address. */ 118 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */ 119 #define CU_SRESUME 0x00a0 /* CU static resume. */ 120 121 #define RU_NOP 0x0000 122 #define RX_START 0x0001 123 #define RX_RESUME 0x0002 124 #define RU_ABORT 0x0004 125 #define RX_ADDR_LOAD 0x0006 126 #define RX_RESUMENR 0x0007 127 #define INT_MASK 0x0100 128 #define DRVR_INT 0x0200 /* Driver generated interrupt. */ 129 130 typedef struct { 131 const char *name; 132 const char *desc; 133 uint16_t device_id; 134 uint8_t revision; 135 uint16_t subsystem_vendor_id; 136 uint16_t subsystem_id; 137 138 uint32_t device; 139 uint8_t stats_size; 140 bool has_extended_tcb_support; 141 bool power_management; 142 } E100PCIDeviceInfo; 143 144 /* Offsets to the various registers. 145 All accesses need not be longword aligned. */ 146 typedef enum { 147 SCBStatus = 0, /* Status Word. */ 148 SCBAck = 1, 149 SCBCmd = 2, /* Rx/Command Unit command and status. */ 150 SCBIntmask = 3, 151 SCBPointer = 4, /* General purpose pointer. */ 152 SCBPort = 8, /* Misc. commands and operands. */ 153 SCBflash = 12, /* Flash memory control. */ 154 SCBeeprom = 14, /* EEPROM control. */ 155 SCBCtrlMDI = 16, /* MDI interface control. */ 156 SCBEarlyRx = 20, /* Early receive byte count. */ 157 SCBFlow = 24, /* Flow Control. */ 158 SCBpmdr = 27, /* Power Management Driver. */ 159 SCBgctrl = 28, /* General Control. */ 160 SCBgstat = 29, /* General Status. */ 161 } E100RegisterOffset; 162 163 /* A speedo3 transmit buffer descriptor with two buffers... */ 164 typedef struct { 165 uint16_t status; 166 uint16_t command; 167 uint32_t link; /* void * */ 168 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */ 169 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */ 170 uint8_t tx_threshold; /* transmit threshold */ 171 uint8_t tbd_count; /* TBD number */ 172 #if 0 173 /* This constitutes two "TBD" entries: hdr and data */ 174 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */ 175 int32_t tx_buf_size0; /* Length of Tx hdr. */ 176 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */ 177 int32_t tx_buf_size1; /* Length of Tx data. */ 178 #endif 179 } eepro100_tx_t; 180 181 /* Receive frame descriptor. */ 182 typedef struct { 183 int16_t status; 184 uint16_t command; 185 uint32_t link; /* struct RxFD * */ 186 uint32_t rx_buf_addr; /* void * */ 187 uint16_t count; 188 uint16_t size; 189 /* Ethernet frame data follows. */ 190 } eepro100_rx_t; 191 192 typedef enum { 193 COMMAND_EL = BIT(15), 194 COMMAND_S = BIT(14), 195 COMMAND_I = BIT(13), 196 COMMAND_NC = BIT(4), 197 COMMAND_SF = BIT(3), 198 COMMAND_CMD = BITS(2, 0), 199 } scb_command_bit; 200 201 typedef enum { 202 STATUS_C = BIT(15), 203 STATUS_OK = BIT(13), 204 } scb_status_bit; 205 206 typedef struct { 207 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions, 208 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 209 tx_multiple_collisions, tx_total_collisions; 210 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors, 211 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 212 rx_short_frame_errors; 213 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 214 uint16_t xmt_tco_frames, rcv_tco_frames; 215 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */ 216 uint32_t reserved[4]; 217 } eepro100_stats_t; 218 219 typedef enum { 220 cu_idle = 0, 221 cu_suspended = 1, 222 cu_active = 2, 223 cu_lpq_active = 2, 224 cu_hqp_active = 3 225 } cu_state_t; 226 227 typedef enum { 228 ru_idle = 0, 229 ru_suspended = 1, 230 ru_no_resources = 2, 231 ru_ready = 4 232 } ru_state_t; 233 234 typedef struct { 235 PCIDevice dev; 236 /* Hash register (multicast mask array, multiple individual addresses). */ 237 uint8_t mult[8]; 238 MemoryRegion mmio_bar; 239 MemoryRegion io_bar; 240 MemoryRegion flash_bar; 241 NICState *nic; 242 NICConf conf; 243 uint8_t scb_stat; /* SCB stat/ack byte */ 244 uint8_t int_stat; /* PCI interrupt status */ 245 /* region must not be saved by nic_save. */ 246 uint16_t mdimem[32]; 247 eeprom_t *eeprom; 248 uint32_t device; /* device variant */ 249 /* (cu_base + cu_offset) address the next command block in the command block list. */ 250 uint32_t cu_base; /* CU base address */ 251 uint32_t cu_offset; /* CU address offset */ 252 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */ 253 uint32_t ru_base; /* RU base address */ 254 uint32_t ru_offset; /* RU address offset */ 255 uint32_t statsaddr; /* pointer to eepro100_stats_t */ 256 257 /* Temporary status information (no need to save these values), 258 * used while processing CU commands. */ 259 eepro100_tx_t tx; /* transmit buffer descriptor */ 260 uint32_t cb_address; /* = cu_base + cu_offset */ 261 262 /* Statistical counters. Also used for wake-up packet (i82559). */ 263 eepro100_stats_t statistics; 264 265 /* Data in mem is always in the byte order of the controller (le). 266 * It must be dword aligned to allow direct access to 32 bit values. */ 267 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8))); 268 269 /* Configuration bytes. */ 270 uint8_t configuration[22]; 271 272 /* vmstate for each particular nic */ 273 VMStateDescription *vmstate; 274 275 /* Quasi static device properties (no need to save them). */ 276 uint16_t stats_size; 277 bool has_extended_tcb_support; 278 } EEPRO100State; 279 280 /* Word indices in EEPROM. */ 281 typedef enum { 282 EEPROM_CNFG_MDIX = 0x03, 283 EEPROM_ID = 0x05, 284 EEPROM_PHY_ID = 0x06, 285 EEPROM_VENDOR_ID = 0x0c, 286 EEPROM_CONFIG_ASF = 0x0d, 287 EEPROM_DEVICE_ID = 0x23, 288 EEPROM_SMBUS_ADDR = 0x90, 289 } EEPROMOffset; 290 291 /* Bit values for EEPROM ID word. */ 292 typedef enum { 293 EEPROM_ID_MDM = BIT(0), /* Modem */ 294 EEPROM_ID_STB = BIT(1), /* Standby Enable */ 295 EEPROM_ID_WMR = BIT(2), /* ??? */ 296 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */ 297 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */ 298 EEPROM_ID_ALT = BIT(7), /* */ 299 /* BITS(10, 8) device revision */ 300 EEPROM_ID_BD = BIT(11), /* boot disable */ 301 EEPROM_ID_ID = BIT(13), /* id bit */ 302 /* BITS(15, 14) signature */ 303 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */ 304 } eeprom_id_bit; 305 306 /* Default values for MDI (PHY) registers */ 307 static const uint16_t eepro100_mdi_default[] = { 308 /* MDI Registers 0 - 6, 7 */ 309 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000, 310 /* MDI Registers 8 - 15 */ 311 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 312 /* MDI Registers 16 - 31 */ 313 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 314 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 315 }; 316 317 /* Readonly mask for MDI (PHY) registers */ 318 static const uint16_t eepro100_mdi_mask[] = { 319 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000, 320 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 321 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 322 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 323 }; 324 325 #define POLYNOMIAL 0x04c11db6 326 327 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s); 328 329 /* From FreeBSD (locally modified). */ 330 static unsigned e100_compute_mcast_idx(const uint8_t *ep) 331 { 332 uint32_t crc; 333 int carry, i, j; 334 uint8_t b; 335 336 crc = 0xffffffff; 337 for (i = 0; i < 6; i++) { 338 b = *ep++; 339 for (j = 0; j < 8; j++) { 340 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01); 341 crc <<= 1; 342 b >>= 1; 343 if (carry) { 344 crc = ((crc ^ POLYNOMIAL) | carry); 345 } 346 } 347 } 348 return (crc & BITS(7, 2)) >> 2; 349 } 350 351 /* Read a 16 bit control/status (CSR) register. */ 352 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr) 353 { 354 assert(!((uintptr_t)&s->mem[addr] & 1)); 355 return le16_to_cpup((uint16_t *)&s->mem[addr]); 356 } 357 358 /* Read a 32 bit control/status (CSR) register. */ 359 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr) 360 { 361 assert(!((uintptr_t)&s->mem[addr] & 3)); 362 return le32_to_cpup((uint32_t *)&s->mem[addr]); 363 } 364 365 /* Write a 16 bit control/status (CSR) register. */ 366 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr, 367 uint16_t val) 368 { 369 assert(!((uintptr_t)&s->mem[addr] & 1)); 370 cpu_to_le16w((uint16_t *)&s->mem[addr], val); 371 } 372 373 /* Read a 32 bit control/status (CSR) register. */ 374 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr, 375 uint32_t val) 376 { 377 assert(!((uintptr_t)&s->mem[addr] & 3)); 378 cpu_to_le32w((uint32_t *)&s->mem[addr], val); 379 } 380 381 #if defined(DEBUG_EEPRO100) 382 static const char *nic_dump(const uint8_t * buf, unsigned size) 383 { 384 static char dump[3 * 16 + 1]; 385 char *p = &dump[0]; 386 if (size > 16) { 387 size = 16; 388 } 389 while (size-- > 0) { 390 p += sprintf(p, " %02x", *buf++); 391 } 392 return dump; 393 } 394 #endif /* DEBUG_EEPRO100 */ 395 396 enum scb_stat_ack { 397 stat_ack_not_ours = 0x00, 398 stat_ack_sw_gen = 0x04, 399 stat_ack_rnr = 0x10, 400 stat_ack_cu_idle = 0x20, 401 stat_ack_frame_rx = 0x40, 402 stat_ack_cu_cmd_done = 0x80, 403 stat_ack_not_present = 0xFF, 404 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 405 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 406 }; 407 408 static void disable_interrupt(EEPRO100State * s) 409 { 410 if (s->int_stat) { 411 TRACE(INT, logout("interrupt disabled\n")); 412 pci_irq_deassert(&s->dev); 413 s->int_stat = 0; 414 } 415 } 416 417 static void enable_interrupt(EEPRO100State * s) 418 { 419 if (!s->int_stat) { 420 TRACE(INT, logout("interrupt enabled\n")); 421 pci_irq_assert(&s->dev); 422 s->int_stat = 1; 423 } 424 } 425 426 static void eepro100_acknowledge(EEPRO100State * s) 427 { 428 s->scb_stat &= ~s->mem[SCBAck]; 429 s->mem[SCBAck] = s->scb_stat; 430 if (s->scb_stat == 0) { 431 disable_interrupt(s); 432 } 433 } 434 435 static void eepro100_interrupt(EEPRO100State * s, uint8_t status) 436 { 437 uint8_t mask = ~s->mem[SCBIntmask]; 438 s->mem[SCBAck] |= status; 439 status = s->scb_stat = s->mem[SCBAck]; 440 status &= (mask | 0x0f); 441 #if 0 442 status &= (~s->mem[SCBIntmask] | 0x0xf); 443 #endif 444 if (status && (mask & 0x01)) { 445 /* SCB mask and SCB Bit M do not disable interrupt. */ 446 enable_interrupt(s); 447 } else if (s->int_stat) { 448 disable_interrupt(s); 449 } 450 } 451 452 static void eepro100_cx_interrupt(EEPRO100State * s) 453 { 454 /* CU completed action command. */ 455 /* Transmit not ok (82557 only, not in emulation). */ 456 eepro100_interrupt(s, 0x80); 457 } 458 459 static void eepro100_cna_interrupt(EEPRO100State * s) 460 { 461 /* CU left the active state. */ 462 eepro100_interrupt(s, 0x20); 463 } 464 465 static void eepro100_fr_interrupt(EEPRO100State * s) 466 { 467 /* RU received a complete frame. */ 468 eepro100_interrupt(s, 0x40); 469 } 470 471 static void eepro100_rnr_interrupt(EEPRO100State * s) 472 { 473 /* RU is not ready. */ 474 eepro100_interrupt(s, 0x10); 475 } 476 477 static void eepro100_mdi_interrupt(EEPRO100State * s) 478 { 479 /* MDI completed read or write cycle. */ 480 eepro100_interrupt(s, 0x08); 481 } 482 483 static void eepro100_swi_interrupt(EEPRO100State * s) 484 { 485 /* Software has requested an interrupt. */ 486 eepro100_interrupt(s, 0x04); 487 } 488 489 #if 0 490 static void eepro100_fcp_interrupt(EEPRO100State * s) 491 { 492 /* Flow control pause interrupt (82558 and later). */ 493 eepro100_interrupt(s, 0x01); 494 } 495 #endif 496 497 static void e100_pci_reset(EEPRO100State * s) 498 { 499 E100PCIDeviceInfo *info = eepro100_get_class(s); 500 uint32_t device = s->device; 501 uint8_t *pci_conf = s->dev.config; 502 503 TRACE(OTHER, logout("%p\n", s)); 504 505 /* PCI Status */ 506 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM | 507 PCI_STATUS_FAST_BACK); 508 /* PCI Latency Timer */ 509 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */ 510 /* Capability Pointer is set by PCI framework. */ 511 /* Interrupt Line */ 512 /* Interrupt Pin */ 513 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */ 514 /* Minimum Grant */ 515 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08); 516 /* Maximum Latency */ 517 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18); 518 519 s->stats_size = info->stats_size; 520 s->has_extended_tcb_support = info->has_extended_tcb_support; 521 522 switch (device) { 523 case i82550: 524 case i82551: 525 case i82557A: 526 case i82557B: 527 case i82557C: 528 case i82558A: 529 case i82558B: 530 case i82559A: 531 case i82559B: 532 case i82559ER: 533 case i82562: 534 case i82801: 535 case i82559C: 536 break; 537 default: 538 logout("Device %X is undefined!\n", device); 539 } 540 541 /* Standard TxCB. */ 542 s->configuration[6] |= BIT(4); 543 544 /* Standard statistical counters. */ 545 s->configuration[6] |= BIT(5); 546 547 if (s->stats_size == 80) { 548 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */ 549 if (s->configuration[6] & BIT(2)) { 550 /* TCO statistical counters. */ 551 assert(s->configuration[6] & BIT(5)); 552 } else { 553 if (s->configuration[6] & BIT(5)) { 554 /* No extended statistical counters, i82557 compatible. */ 555 s->stats_size = 64; 556 } else { 557 /* i82558 compatible. */ 558 s->stats_size = 76; 559 } 560 } 561 } else { 562 if (s->configuration[6] & BIT(5)) { 563 /* No extended statistical counters. */ 564 s->stats_size = 64; 565 } 566 } 567 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics)); 568 569 if (info->power_management) { 570 /* Power Management Capabilities */ 571 int cfg_offset = 0xdc; 572 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM, 573 cfg_offset, PCI_PM_SIZEOF); 574 assert(r >= 0); 575 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21); 576 #if 0 /* TODO: replace dummy code for power management emulation. */ 577 /* TODO: Power Management Control / Status. */ 578 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000); 579 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */ 580 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000); 581 #endif 582 } 583 584 #if EEPROM_SIZE > 0 585 if (device == i82557C || device == i82558B || device == i82559C) { 586 /* 587 TODO: get vendor id from EEPROM for i82557C or later. 588 TODO: get device id from EEPROM for i82557C or later. 589 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559. 590 TODO: header type is determined by EEPROM for i82559. 591 TODO: get subsystem id from EEPROM for i82557C or later. 592 TODO: get subsystem vendor id from EEPROM for i82557C or later. 593 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later. 594 TODO: capability pointer depends on EEPROM for i82558. 595 */ 596 logout("Get device id and revision from EEPROM!!!\n"); 597 } 598 #endif /* EEPROM_SIZE > 0 */ 599 } 600 601 static void nic_selective_reset(EEPRO100State * s) 602 { 603 size_t i; 604 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom); 605 #if 0 606 eeprom93xx_reset(s->eeprom); 607 #endif 608 memcpy(eeprom_contents, s->conf.macaddr.a, 6); 609 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID; 610 if (s->device == i82557B || s->device == i82557C) 611 eeprom_contents[5] = 0x0100; 612 eeprom_contents[EEPROM_PHY_ID] = 1; 613 uint16_t sum = 0; 614 for (i = 0; i < EEPROM_SIZE - 1; i++) { 615 sum += eeprom_contents[i]; 616 } 617 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum; 618 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1])); 619 620 memset(s->mem, 0, sizeof(s->mem)); 621 e100_write_reg4(s, SCBCtrlMDI, BIT(21)); 622 623 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default)); 624 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem)); 625 } 626 627 static void nic_reset(void *opaque) 628 { 629 EEPRO100State *s = opaque; 630 TRACE(OTHER, logout("%p\n", s)); 631 /* TODO: Clearing of hash register for selective reset, too? */ 632 memset(&s->mult[0], 0, sizeof(s->mult)); 633 nic_selective_reset(s); 634 } 635 636 #if defined(DEBUG_EEPRO100) 637 static const char * const e100_reg[PCI_IO_SIZE / 4] = { 638 "Command/Status", 639 "General Pointer", 640 "Port", 641 "EEPROM/Flash Control", 642 "MDI Control", 643 "Receive DMA Byte Count", 644 "Flow Control", 645 "General Status/Control" 646 }; 647 648 static char *regname(uint32_t addr) 649 { 650 static char buf[32]; 651 if (addr < PCI_IO_SIZE) { 652 const char *r = e100_reg[addr / 4]; 653 if (r != 0) { 654 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4); 655 } else { 656 snprintf(buf, sizeof(buf), "0x%02x", addr); 657 } 658 } else { 659 snprintf(buf, sizeof(buf), "??? 0x%08x", addr); 660 } 661 return buf; 662 } 663 #endif /* DEBUG_EEPRO100 */ 664 665 /***************************************************************************** 666 * 667 * Command emulation. 668 * 669 ****************************************************************************/ 670 671 #if 0 672 static uint16_t eepro100_read_command(EEPRO100State * s) 673 { 674 uint16_t val = 0xffff; 675 TRACE(OTHER, logout("val=0x%04x\n", val)); 676 return val; 677 } 678 #endif 679 680 /* Commands that can be put in a command list entry. */ 681 enum commands { 682 CmdNOp = 0, 683 CmdIASetup = 1, 684 CmdConfigure = 2, 685 CmdMulticastList = 3, 686 CmdTx = 4, 687 CmdTDR = 5, /* load microcode */ 688 CmdDump = 6, 689 CmdDiagnose = 7, 690 691 /* And some extra flags: */ 692 CmdSuspend = 0x4000, /* Suspend after completion. */ 693 CmdIntr = 0x2000, /* Interrupt after completion. */ 694 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */ 695 }; 696 697 static cu_state_t get_cu_state(EEPRO100State * s) 698 { 699 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6); 700 } 701 702 static void set_cu_state(EEPRO100State * s, cu_state_t state) 703 { 704 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6); 705 } 706 707 static ru_state_t get_ru_state(EEPRO100State * s) 708 { 709 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2); 710 } 711 712 static void set_ru_state(EEPRO100State * s, ru_state_t state) 713 { 714 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2); 715 } 716 717 static void dump_statistics(EEPRO100State * s) 718 { 719 /* Dump statistical data. Most data is never changed by the emulation 720 * and always 0, so we first just copy the whole block and then those 721 * values which really matter. 722 * Number of data should check configuration!!! 723 */ 724 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size); 725 stl_le_pci_dma(&s->dev, s->statsaddr + 0, 726 s->statistics.tx_good_frames); 727 stl_le_pci_dma(&s->dev, s->statsaddr + 36, 728 s->statistics.rx_good_frames); 729 stl_le_pci_dma(&s->dev, s->statsaddr + 48, 730 s->statistics.rx_resource_errors); 731 stl_le_pci_dma(&s->dev, s->statsaddr + 60, 732 s->statistics.rx_short_frame_errors); 733 #if 0 734 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames); 735 stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames); 736 missing("CU dump statistical counters"); 737 #endif 738 } 739 740 static void read_cb(EEPRO100State *s) 741 { 742 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx)); 743 s->tx.status = le16_to_cpu(s->tx.status); 744 s->tx.command = le16_to_cpu(s->tx.command); 745 s->tx.link = le32_to_cpu(s->tx.link); 746 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr); 747 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes); 748 } 749 750 static void tx_command(EEPRO100State *s) 751 { 752 uint32_t tbd_array = le32_to_cpu(s->tx.tbd_array_addr); 753 uint16_t tcb_bytes = (le16_to_cpu(s->tx.tcb_bytes) & 0x3fff); 754 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */ 755 uint8_t buf[2600]; 756 uint16_t size = 0; 757 uint32_t tbd_address = s->cb_address + 0x10; 758 TRACE(RXTX, logout 759 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n", 760 tbd_array, tcb_bytes, s->tx.tbd_count)); 761 762 if (tcb_bytes > 2600) { 763 logout("TCB byte count too large, using 2600\n"); 764 tcb_bytes = 2600; 765 } 766 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) { 767 logout 768 ("illegal values of TBD array address and TCB byte count!\n"); 769 } 770 assert(tcb_bytes <= sizeof(buf)); 771 while (size < tcb_bytes) { 772 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address); 773 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4); 774 #if 0 775 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6); 776 #endif 777 tbd_address += 8; 778 TRACE(RXTX, logout 779 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n", 780 tx_buffer_address, tx_buffer_size)); 781 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 782 pci_dma_read(&s->dev, tx_buffer_address, &buf[size], tx_buffer_size); 783 size += tx_buffer_size; 784 } 785 if (tbd_array == 0xffffffff) { 786 /* Simplified mode. Was already handled by code above. */ 787 } else { 788 /* Flexible mode. */ 789 uint8_t tbd_count = 0; 790 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) { 791 /* Extended Flexible TCB. */ 792 for (; tbd_count < 2; tbd_count++) { 793 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, 794 tbd_address); 795 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, 796 tbd_address + 4); 797 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, 798 tbd_address + 6); 799 tbd_address += 8; 800 TRACE(RXTX, logout 801 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n", 802 tx_buffer_address, tx_buffer_size)); 803 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 804 pci_dma_read(&s->dev, tx_buffer_address, 805 &buf[size], tx_buffer_size); 806 size += tx_buffer_size; 807 if (tx_buffer_el & 1) { 808 break; 809 } 810 } 811 } 812 tbd_address = tbd_array; 813 for (; tbd_count < s->tx.tbd_count; tbd_count++) { 814 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address); 815 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4); 816 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6); 817 tbd_address += 8; 818 TRACE(RXTX, logout 819 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n", 820 tx_buffer_address, tx_buffer_size)); 821 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 822 pci_dma_read(&s->dev, tx_buffer_address, 823 &buf[size], tx_buffer_size); 824 size += tx_buffer_size; 825 if (tx_buffer_el & 1) { 826 break; 827 } 828 } 829 } 830 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size))); 831 qemu_send_packet(qemu_get_queue(s->nic), buf, size); 832 s->statistics.tx_good_frames++; 833 /* Transmit with bad status would raise an CX/TNO interrupt. 834 * (82557 only). Emulation never has bad status. */ 835 #if 0 836 eepro100_cx_interrupt(s); 837 #endif 838 } 839 840 static void set_multicast_list(EEPRO100State *s) 841 { 842 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0); 843 uint16_t i; 844 memset(&s->mult[0], 0, sizeof(s->mult)); 845 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count)); 846 for (i = 0; i < multicast_count; i += 6) { 847 uint8_t multicast_addr[6]; 848 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6); 849 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6))); 850 unsigned mcast_idx = e100_compute_mcast_idx(multicast_addr); 851 assert(mcast_idx < 64); 852 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7)); 853 } 854 } 855 856 static void action_command(EEPRO100State *s) 857 { 858 for (;;) { 859 bool bit_el; 860 bool bit_s; 861 bool bit_i; 862 bool bit_nc; 863 uint16_t ok_status = STATUS_OK; 864 s->cb_address = s->cu_base + s->cu_offset; 865 read_cb(s); 866 bit_el = ((s->tx.command & COMMAND_EL) != 0); 867 bit_s = ((s->tx.command & COMMAND_S) != 0); 868 bit_i = ((s->tx.command & COMMAND_I) != 0); 869 bit_nc = ((s->tx.command & COMMAND_NC) != 0); 870 #if 0 871 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0); 872 #endif 873 s->cu_offset = s->tx.link; 874 TRACE(OTHER, 875 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n", 876 s->tx.status, s->tx.command, s->tx.link)); 877 switch (s->tx.command & COMMAND_CMD) { 878 case CmdNOp: 879 /* Do nothing. */ 880 break; 881 case CmdIASetup: 882 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6); 883 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6))); 884 break; 885 case CmdConfigure: 886 pci_dma_read(&s->dev, s->cb_address + 8, 887 &s->configuration[0], sizeof(s->configuration)); 888 TRACE(OTHER, logout("configuration: %s\n", 889 nic_dump(&s->configuration[0], 16))); 890 TRACE(OTHER, logout("configuration: %s\n", 891 nic_dump(&s->configuration[16], 892 ARRAY_SIZE(s->configuration) - 16))); 893 if (s->configuration[20] & BIT(6)) { 894 TRACE(OTHER, logout("Multiple IA bit\n")); 895 } 896 break; 897 case CmdMulticastList: 898 set_multicast_list(s); 899 break; 900 case CmdTx: 901 if (bit_nc) { 902 missing("CmdTx: NC = 0"); 903 ok_status = 0; 904 break; 905 } 906 tx_command(s); 907 break; 908 case CmdTDR: 909 TRACE(OTHER, logout("load microcode\n")); 910 /* Starting with offset 8, the command contains 911 * 64 dwords microcode which we just ignore here. */ 912 break; 913 case CmdDiagnose: 914 TRACE(OTHER, logout("diagnose\n")); 915 /* Make sure error flag is not set. */ 916 s->tx.status = 0; 917 break; 918 default: 919 missing("undefined command"); 920 ok_status = 0; 921 break; 922 } 923 /* Write new status. */ 924 stw_le_pci_dma(&s->dev, s->cb_address, 925 s->tx.status | ok_status | STATUS_C); 926 if (bit_i) { 927 /* CU completed action. */ 928 eepro100_cx_interrupt(s); 929 } 930 if (bit_el) { 931 /* CU becomes idle. Terminate command loop. */ 932 set_cu_state(s, cu_idle); 933 eepro100_cna_interrupt(s); 934 break; 935 } else if (bit_s) { 936 /* CU becomes suspended. Terminate command loop. */ 937 set_cu_state(s, cu_suspended); 938 eepro100_cna_interrupt(s); 939 break; 940 } else { 941 /* More entries in list. */ 942 TRACE(OTHER, logout("CU list with at least one more entry\n")); 943 } 944 } 945 TRACE(OTHER, logout("CU list empty\n")); 946 /* List is empty. Now CU is idle or suspended. */ 947 } 948 949 static void eepro100_cu_command(EEPRO100State * s, uint8_t val) 950 { 951 cu_state_t cu_state; 952 switch (val) { 953 case CU_NOP: 954 /* No operation. */ 955 break; 956 case CU_START: 957 cu_state = get_cu_state(s); 958 if (cu_state != cu_idle && cu_state != cu_suspended) { 959 /* Intel documentation says that CU must be idle or suspended 960 * for the CU start command. */ 961 logout("unexpected CU state is %u\n", cu_state); 962 } 963 set_cu_state(s, cu_active); 964 s->cu_offset = e100_read_reg4(s, SCBPointer); 965 action_command(s); 966 break; 967 case CU_RESUME: 968 if (get_cu_state(s) != cu_suspended) { 969 logout("bad CU resume from CU state %u\n", get_cu_state(s)); 970 /* Workaround for bad Linux eepro100 driver which resumes 971 * from idle state. */ 972 #if 0 973 missing("cu resume"); 974 #endif 975 set_cu_state(s, cu_suspended); 976 } 977 if (get_cu_state(s) == cu_suspended) { 978 TRACE(OTHER, logout("CU resuming\n")); 979 set_cu_state(s, cu_active); 980 action_command(s); 981 } 982 break; 983 case CU_STATSADDR: 984 /* Load dump counters address. */ 985 s->statsaddr = e100_read_reg4(s, SCBPointer); 986 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val)); 987 if (s->statsaddr & 3) { 988 /* Memory must be Dword aligned. */ 989 logout("unaligned dump counters address\n"); 990 /* Handling of misaligned addresses is undefined. 991 * Here we align the address by ignoring the lower bits. */ 992 /* TODO: Test unaligned dump counter address on real hardware. */ 993 s->statsaddr &= ~3; 994 } 995 break; 996 case CU_SHOWSTATS: 997 /* Dump statistical counters. */ 998 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val)); 999 dump_statistics(s); 1000 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005); 1001 break; 1002 case CU_CMD_BASE: 1003 /* Load CU base. */ 1004 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val)); 1005 s->cu_base = e100_read_reg4(s, SCBPointer); 1006 break; 1007 case CU_DUMPSTATS: 1008 /* Dump and reset statistical counters. */ 1009 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val)); 1010 dump_statistics(s); 1011 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007); 1012 memset(&s->statistics, 0, sizeof(s->statistics)); 1013 break; 1014 case CU_SRESUME: 1015 /* CU static resume. */ 1016 missing("CU static resume"); 1017 break; 1018 default: 1019 missing("Undefined CU command"); 1020 } 1021 } 1022 1023 static void eepro100_ru_command(EEPRO100State * s, uint8_t val) 1024 { 1025 switch (val) { 1026 case RU_NOP: 1027 /* No operation. */ 1028 break; 1029 case RX_START: 1030 /* RU start. */ 1031 if (get_ru_state(s) != ru_idle) { 1032 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle); 1033 #if 0 1034 assert(!"wrong RU state"); 1035 #endif 1036 } 1037 set_ru_state(s, ru_ready); 1038 s->ru_offset = e100_read_reg4(s, SCBPointer); 1039 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1040 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val)); 1041 break; 1042 case RX_RESUME: 1043 /* Restart RU. */ 1044 if (get_ru_state(s) != ru_suspended) { 1045 logout("RU state is %u, should be %u\n", get_ru_state(s), 1046 ru_suspended); 1047 #if 0 1048 assert(!"wrong RU state"); 1049 #endif 1050 } 1051 set_ru_state(s, ru_ready); 1052 break; 1053 case RU_ABORT: 1054 /* RU abort. */ 1055 if (get_ru_state(s) == ru_ready) { 1056 eepro100_rnr_interrupt(s); 1057 } 1058 set_ru_state(s, ru_idle); 1059 break; 1060 case RX_ADDR_LOAD: 1061 /* Load RU base. */ 1062 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val)); 1063 s->ru_base = e100_read_reg4(s, SCBPointer); 1064 break; 1065 default: 1066 logout("val=0x%02x (undefined RU command)\n", val); 1067 missing("Undefined SU command"); 1068 } 1069 } 1070 1071 static void eepro100_write_command(EEPRO100State * s, uint8_t val) 1072 { 1073 eepro100_ru_command(s, val & 0x0f); 1074 eepro100_cu_command(s, val & 0xf0); 1075 if ((val) == 0) { 1076 TRACE(OTHER, logout("val=0x%02x\n", val)); 1077 } 1078 /* Clear command byte after command was accepted. */ 1079 s->mem[SCBCmd] = 0; 1080 } 1081 1082 /***************************************************************************** 1083 * 1084 * EEPROM emulation. 1085 * 1086 ****************************************************************************/ 1087 1088 #define EEPROM_CS 0x02 1089 #define EEPROM_SK 0x01 1090 #define EEPROM_DI 0x04 1091 #define EEPROM_DO 0x08 1092 1093 static uint16_t eepro100_read_eeprom(EEPRO100State * s) 1094 { 1095 uint16_t val = e100_read_reg2(s, SCBeeprom); 1096 if (eeprom93xx_read(s->eeprom)) { 1097 val |= EEPROM_DO; 1098 } else { 1099 val &= ~EEPROM_DO; 1100 } 1101 TRACE(EEPROM, logout("val=0x%04x\n", val)); 1102 return val; 1103 } 1104 1105 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val) 1106 { 1107 TRACE(EEPROM, logout("val=0x%02x\n", val)); 1108 1109 /* mask unwritable bits */ 1110 #if 0 1111 val = SET_MASKED(val, 0x31, eeprom->value); 1112 #endif 1113 1114 int eecs = ((val & EEPROM_CS) != 0); 1115 int eesk = ((val & EEPROM_SK) != 0); 1116 int eedi = ((val & EEPROM_DI) != 0); 1117 eeprom93xx_write(eeprom, eecs, eesk, eedi); 1118 } 1119 1120 /***************************************************************************** 1121 * 1122 * MDI emulation. 1123 * 1124 ****************************************************************************/ 1125 1126 #if defined(DEBUG_EEPRO100) 1127 static const char * const mdi_op_name[] = { 1128 "opcode 0", 1129 "write", 1130 "read", 1131 "opcode 3" 1132 }; 1133 1134 static const char * const mdi_reg_name[] = { 1135 "Control", 1136 "Status", 1137 "PHY Identification (Word 1)", 1138 "PHY Identification (Word 2)", 1139 "Auto-Negotiation Advertisement", 1140 "Auto-Negotiation Link Partner Ability", 1141 "Auto-Negotiation Expansion" 1142 }; 1143 1144 static const char *reg2name(uint8_t reg) 1145 { 1146 static char buffer[10]; 1147 const char *p = buffer; 1148 if (reg < ARRAY_SIZE(mdi_reg_name)) { 1149 p = mdi_reg_name[reg]; 1150 } else { 1151 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg); 1152 } 1153 return p; 1154 } 1155 #endif /* DEBUG_EEPRO100 */ 1156 1157 static uint32_t eepro100_read_mdi(EEPRO100State * s) 1158 { 1159 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1160 1161 #ifdef DEBUG_EEPRO100 1162 uint8_t raiseint = (val & BIT(29)) >> 29; 1163 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1164 uint8_t phy = (val & BITS(25, 21)) >> 21; 1165 uint8_t reg = (val & BITS(20, 16)) >> 16; 1166 uint16_t data = (val & BITS(15, 0)); 1167 #endif 1168 /* Emulation takes no time to finish MDI transaction. */ 1169 val |= BIT(28); 1170 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1171 val, raiseint, mdi_op_name[opcode], phy, 1172 reg2name(reg), data)); 1173 return val; 1174 } 1175 1176 static void eepro100_write_mdi(EEPRO100State *s) 1177 { 1178 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1179 uint8_t raiseint = (val & BIT(29)) >> 29; 1180 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1181 uint8_t phy = (val & BITS(25, 21)) >> 21; 1182 uint8_t reg = (val & BITS(20, 16)) >> 16; 1183 uint16_t data = (val & BITS(15, 0)); 1184 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1185 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data)); 1186 if (phy != 1) { 1187 /* Unsupported PHY address. */ 1188 #if 0 1189 logout("phy must be 1 but is %u\n", phy); 1190 #endif 1191 data = 0; 1192 } else if (opcode != 1 && opcode != 2) { 1193 /* Unsupported opcode. */ 1194 logout("opcode must be 1 or 2 but is %u\n", opcode); 1195 data = 0; 1196 } else if (reg > 6) { 1197 /* Unsupported register. */ 1198 logout("register must be 0...6 but is %u\n", reg); 1199 data = 0; 1200 } else { 1201 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1202 val, raiseint, mdi_op_name[opcode], phy, 1203 reg2name(reg), data)); 1204 if (opcode == 1) { 1205 /* MDI write */ 1206 switch (reg) { 1207 case 0: /* Control Register */ 1208 if (data & 0x8000) { 1209 /* Reset status and control registers to default. */ 1210 s->mdimem[0] = eepro100_mdi_default[0]; 1211 s->mdimem[1] = eepro100_mdi_default[1]; 1212 data = s->mdimem[reg]; 1213 } else { 1214 /* Restart Auto Configuration = Normal Operation */ 1215 data &= ~0x0200; 1216 } 1217 break; 1218 case 1: /* Status Register */ 1219 missing("not writable"); 1220 break; 1221 case 2: /* PHY Identification Register (Word 1) */ 1222 case 3: /* PHY Identification Register (Word 2) */ 1223 missing("not implemented"); 1224 break; 1225 case 4: /* Auto-Negotiation Advertisement Register */ 1226 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1227 break; 1228 case 6: /* Auto-Negotiation Expansion Register */ 1229 default: 1230 missing("not implemented"); 1231 } 1232 s->mdimem[reg] &= eepro100_mdi_mask[reg]; 1233 s->mdimem[reg] |= data & ~eepro100_mdi_mask[reg]; 1234 } else if (opcode == 2) { 1235 /* MDI read */ 1236 switch (reg) { 1237 case 0: /* Control Register */ 1238 if (data & 0x8000) { 1239 /* Reset status and control registers to default. */ 1240 s->mdimem[0] = eepro100_mdi_default[0]; 1241 s->mdimem[1] = eepro100_mdi_default[1]; 1242 } 1243 break; 1244 case 1: /* Status Register */ 1245 s->mdimem[reg] |= 0x0020; 1246 break; 1247 case 2: /* PHY Identification Register (Word 1) */ 1248 case 3: /* PHY Identification Register (Word 2) */ 1249 case 4: /* Auto-Negotiation Advertisement Register */ 1250 break; 1251 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1252 s->mdimem[reg] = 0x41fe; 1253 break; 1254 case 6: /* Auto-Negotiation Expansion Register */ 1255 s->mdimem[reg] = 0x0001; 1256 break; 1257 } 1258 data = s->mdimem[reg]; 1259 } 1260 /* Emulation takes no time to finish MDI transaction. 1261 * Set MDI bit in SCB status register. */ 1262 s->mem[SCBAck] |= 0x08; 1263 val |= BIT(28); 1264 if (raiseint) { 1265 eepro100_mdi_interrupt(s); 1266 } 1267 } 1268 val = (val & 0xffff0000) + data; 1269 e100_write_reg4(s, SCBCtrlMDI, val); 1270 } 1271 1272 /***************************************************************************** 1273 * 1274 * Port emulation. 1275 * 1276 ****************************************************************************/ 1277 1278 #define PORT_SOFTWARE_RESET 0 1279 #define PORT_SELFTEST 1 1280 #define PORT_SELECTIVE_RESET 2 1281 #define PORT_DUMP 3 1282 #define PORT_SELECTION_MASK 3 1283 1284 typedef struct { 1285 uint32_t st_sign; /* Self Test Signature */ 1286 uint32_t st_result; /* Self Test Results */ 1287 } eepro100_selftest_t; 1288 1289 static uint32_t eepro100_read_port(EEPRO100State * s) 1290 { 1291 return 0; 1292 } 1293 1294 static void eepro100_write_port(EEPRO100State *s) 1295 { 1296 uint32_t val = e100_read_reg4(s, SCBPort); 1297 uint32_t address = (val & ~PORT_SELECTION_MASK); 1298 uint8_t selection = (val & PORT_SELECTION_MASK); 1299 switch (selection) { 1300 case PORT_SOFTWARE_RESET: 1301 nic_reset(s); 1302 break; 1303 case PORT_SELFTEST: 1304 TRACE(OTHER, logout("selftest address=0x%08x\n", address)); 1305 eepro100_selftest_t data; 1306 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1307 data.st_sign = 0xffffffff; 1308 data.st_result = 0; 1309 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1310 break; 1311 case PORT_SELECTIVE_RESET: 1312 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address)); 1313 nic_selective_reset(s); 1314 break; 1315 default: 1316 logout("val=0x%08x\n", val); 1317 missing("unknown port selection"); 1318 } 1319 } 1320 1321 /***************************************************************************** 1322 * 1323 * General hardware emulation. 1324 * 1325 ****************************************************************************/ 1326 1327 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr) 1328 { 1329 uint8_t val = 0; 1330 if (addr <= sizeof(s->mem) - sizeof(val)) { 1331 val = s->mem[addr]; 1332 } 1333 1334 switch (addr) { 1335 case SCBStatus: 1336 case SCBAck: 1337 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1338 break; 1339 case SCBCmd: 1340 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1341 #if 0 1342 val = eepro100_read_command(s); 1343 #endif 1344 break; 1345 case SCBIntmask: 1346 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1347 break; 1348 case SCBPort + 3: 1349 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1350 break; 1351 case SCBeeprom: 1352 val = eepro100_read_eeprom(s); 1353 break; 1354 case SCBCtrlMDI: 1355 case SCBCtrlMDI + 1: 1356 case SCBCtrlMDI + 2: 1357 case SCBCtrlMDI + 3: 1358 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1359 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1360 break; 1361 case SCBpmdr: /* Power Management Driver Register */ 1362 val = 0; 1363 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1364 break; 1365 case SCBgctrl: /* General Control Register */ 1366 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1367 break; 1368 case SCBgstat: /* General Status Register */ 1369 /* 100 Mbps full duplex, valid link */ 1370 val = 0x07; 1371 TRACE(OTHER, logout("addr=General Status val=%02x\n", val)); 1372 break; 1373 default: 1374 logout("addr=%s val=0x%02x\n", regname(addr), val); 1375 missing("unknown byte read"); 1376 } 1377 return val; 1378 } 1379 1380 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr) 1381 { 1382 uint16_t val = 0; 1383 if (addr <= sizeof(s->mem) - sizeof(val)) { 1384 val = e100_read_reg2(s, addr); 1385 } 1386 1387 switch (addr) { 1388 case SCBStatus: 1389 case SCBCmd: 1390 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1391 break; 1392 case SCBeeprom: 1393 val = eepro100_read_eeprom(s); 1394 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1395 break; 1396 case SCBCtrlMDI: 1397 case SCBCtrlMDI + 2: 1398 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1399 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1400 break; 1401 default: 1402 logout("addr=%s val=0x%04x\n", regname(addr), val); 1403 missing("unknown word read"); 1404 } 1405 return val; 1406 } 1407 1408 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr) 1409 { 1410 uint32_t val = 0; 1411 if (addr <= sizeof(s->mem) - sizeof(val)) { 1412 val = e100_read_reg4(s, addr); 1413 } 1414 1415 switch (addr) { 1416 case SCBStatus: 1417 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1418 break; 1419 case SCBPointer: 1420 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1421 break; 1422 case SCBPort: 1423 val = eepro100_read_port(s); 1424 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1425 break; 1426 case SCBflash: 1427 val = eepro100_read_eeprom(s); 1428 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1429 break; 1430 case SCBCtrlMDI: 1431 val = eepro100_read_mdi(s); 1432 break; 1433 default: 1434 logout("addr=%s val=0x%08x\n", regname(addr), val); 1435 missing("unknown longword read"); 1436 } 1437 return val; 1438 } 1439 1440 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val) 1441 { 1442 /* SCBStatus is readonly. */ 1443 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1444 s->mem[addr] = val; 1445 } 1446 1447 switch (addr) { 1448 case SCBStatus: 1449 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1450 break; 1451 case SCBAck: 1452 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1453 eepro100_acknowledge(s); 1454 break; 1455 case SCBCmd: 1456 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1457 eepro100_write_command(s, val); 1458 break; 1459 case SCBIntmask: 1460 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1461 if (val & BIT(1)) { 1462 eepro100_swi_interrupt(s); 1463 } 1464 eepro100_interrupt(s, 0); 1465 break; 1466 case SCBPointer: 1467 case SCBPointer + 1: 1468 case SCBPointer + 2: 1469 case SCBPointer + 3: 1470 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1471 break; 1472 case SCBPort: 1473 case SCBPort + 1: 1474 case SCBPort + 2: 1475 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1476 break; 1477 case SCBPort + 3: 1478 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1479 eepro100_write_port(s); 1480 break; 1481 case SCBFlow: /* does not exist on 82557 */ 1482 case SCBFlow + 1: 1483 case SCBFlow + 2: 1484 case SCBpmdr: /* does not exist on 82557 */ 1485 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1486 break; 1487 case SCBeeprom: 1488 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1489 eepro100_write_eeprom(s->eeprom, val); 1490 break; 1491 case SCBCtrlMDI: 1492 case SCBCtrlMDI + 1: 1493 case SCBCtrlMDI + 2: 1494 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1495 break; 1496 case SCBCtrlMDI + 3: 1497 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1498 eepro100_write_mdi(s); 1499 break; 1500 default: 1501 logout("addr=%s val=0x%02x\n", regname(addr), val); 1502 missing("unknown byte write"); 1503 } 1504 } 1505 1506 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val) 1507 { 1508 /* SCBStatus is readonly. */ 1509 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1510 e100_write_reg2(s, addr, val); 1511 } 1512 1513 switch (addr) { 1514 case SCBStatus: 1515 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1516 s->mem[SCBAck] = (val >> 8); 1517 eepro100_acknowledge(s); 1518 break; 1519 case SCBCmd: 1520 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1521 eepro100_write_command(s, val); 1522 eepro100_write1(s, SCBIntmask, val >> 8); 1523 break; 1524 case SCBPointer: 1525 case SCBPointer + 2: 1526 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1527 break; 1528 case SCBPort: 1529 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1530 break; 1531 case SCBPort + 2: 1532 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1533 eepro100_write_port(s); 1534 break; 1535 case SCBeeprom: 1536 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1537 eepro100_write_eeprom(s->eeprom, val); 1538 break; 1539 case SCBCtrlMDI: 1540 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1541 break; 1542 case SCBCtrlMDI + 2: 1543 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1544 eepro100_write_mdi(s); 1545 break; 1546 default: 1547 logout("addr=%s val=0x%04x\n", regname(addr), val); 1548 missing("unknown word write"); 1549 } 1550 } 1551 1552 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val) 1553 { 1554 if (addr <= sizeof(s->mem) - sizeof(val)) { 1555 e100_write_reg4(s, addr, val); 1556 } 1557 1558 switch (addr) { 1559 case SCBPointer: 1560 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1561 break; 1562 case SCBPort: 1563 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1564 eepro100_write_port(s); 1565 break; 1566 case SCBflash: 1567 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1568 val = val >> 16; 1569 eepro100_write_eeprom(s->eeprom, val); 1570 break; 1571 case SCBCtrlMDI: 1572 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1573 eepro100_write_mdi(s); 1574 break; 1575 default: 1576 logout("addr=%s val=0x%08x\n", regname(addr), val); 1577 missing("unknown longword write"); 1578 } 1579 } 1580 1581 static uint64_t eepro100_read(void *opaque, hwaddr addr, 1582 unsigned size) 1583 { 1584 EEPRO100State *s = opaque; 1585 1586 switch (size) { 1587 case 1: return eepro100_read1(s, addr); 1588 case 2: return eepro100_read2(s, addr); 1589 case 4: return eepro100_read4(s, addr); 1590 default: abort(); 1591 } 1592 } 1593 1594 static void eepro100_write(void *opaque, hwaddr addr, 1595 uint64_t data, unsigned size) 1596 { 1597 EEPRO100State *s = opaque; 1598 1599 switch (size) { 1600 case 1: 1601 eepro100_write1(s, addr, data); 1602 break; 1603 case 2: 1604 eepro100_write2(s, addr, data); 1605 break; 1606 case 4: 1607 eepro100_write4(s, addr, data); 1608 break; 1609 default: 1610 abort(); 1611 } 1612 } 1613 1614 static const MemoryRegionOps eepro100_ops = { 1615 .read = eepro100_read, 1616 .write = eepro100_write, 1617 .endianness = DEVICE_LITTLE_ENDIAN, 1618 }; 1619 1620 static int nic_can_receive(NetClientState *nc) 1621 { 1622 EEPRO100State *s = qemu_get_nic_opaque(nc); 1623 TRACE(RXTX, logout("%p\n", s)); 1624 return get_ru_state(s) == ru_ready; 1625 #if 0 1626 return !eepro100_buffer_full(s); 1627 #endif 1628 } 1629 1630 static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size) 1631 { 1632 /* TODO: 1633 * - Magic packets should set bit 30 in power management driver register. 1634 * - Interesting packets should set bit 29 in power management driver register. 1635 */ 1636 EEPRO100State *s = qemu_get_nic_opaque(nc); 1637 uint16_t rfd_status = 0xa000; 1638 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1639 uint8_t min_buf[60]; 1640 #endif 1641 static const uint8_t broadcast_macaddr[6] = 1642 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1643 1644 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1645 /* Pad to minimum Ethernet frame length */ 1646 if (size < sizeof(min_buf)) { 1647 memcpy(min_buf, buf, size); 1648 memset(&min_buf[size], 0, sizeof(min_buf) - size); 1649 buf = min_buf; 1650 size = sizeof(min_buf); 1651 } 1652 #endif 1653 1654 if (s->configuration[8] & 0x80) { 1655 /* CSMA is disabled. */ 1656 logout("%p received while CSMA is disabled\n", s); 1657 return -1; 1658 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1659 } else if (size < 64 && (s->configuration[7] & BIT(0))) { 1660 /* Short frame and configuration byte 7/0 (discard short receive) set: 1661 * Short frame is discarded */ 1662 logout("%p received short frame (%zu byte)\n", s, size); 1663 s->statistics.rx_short_frame_errors++; 1664 return -1; 1665 #endif 1666 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) { 1667 /* Long frame and configuration byte 18/3 (long receive ok) not set: 1668 * Long frames are discarded. */ 1669 logout("%p received long frame (%zu byte), ignored\n", s, size); 1670 return -1; 1671 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */ 1672 /* Frame matches individual address. */ 1673 /* TODO: check configuration byte 15/4 (ignore U/L). */ 1674 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size)); 1675 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) { 1676 /* Broadcast frame. */ 1677 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size)); 1678 rfd_status |= 0x0002; 1679 } else if (buf[0] & 0x01) { 1680 /* Multicast frame. */ 1681 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size))); 1682 if (s->configuration[21] & BIT(3)) { 1683 /* Multicast all bit is set, receive all multicast frames. */ 1684 } else { 1685 unsigned mcast_idx = e100_compute_mcast_idx(buf); 1686 assert(mcast_idx < 64); 1687 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1688 /* Multicast frame is allowed in hash table. */ 1689 } else if (s->configuration[15] & BIT(0)) { 1690 /* Promiscuous: receive all. */ 1691 rfd_status |= 0x0004; 1692 } else { 1693 TRACE(RXTX, logout("%p multicast ignored\n", s)); 1694 return -1; 1695 } 1696 } 1697 /* TODO: Next not for promiscuous mode? */ 1698 rfd_status |= 0x0002; 1699 } else if (s->configuration[15] & BIT(0)) { 1700 /* Promiscuous: receive all. */ 1701 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size)); 1702 rfd_status |= 0x0004; 1703 } else if (s->configuration[20] & BIT(6)) { 1704 /* Multiple IA bit set. */ 1705 unsigned mcast_idx = compute_mcast_idx(buf); 1706 assert(mcast_idx < 64); 1707 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1708 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s)); 1709 } else { 1710 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s)); 1711 return -1; 1712 } 1713 } else { 1714 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size, 1715 nic_dump(buf, size))); 1716 return size; 1717 } 1718 1719 if (get_ru_state(s) != ru_ready) { 1720 /* No resources available. */ 1721 logout("no resources, state=%u\n", get_ru_state(s)); 1722 /* TODO: RNR interrupt only at first failed frame? */ 1723 eepro100_rnr_interrupt(s); 1724 s->statistics.rx_resource_errors++; 1725 #if 0 1726 assert(!"no resources"); 1727 #endif 1728 return -1; 1729 } 1730 /* !!! */ 1731 eepro100_rx_t rx; 1732 pci_dma_read(&s->dev, s->ru_base + s->ru_offset, 1733 &rx, sizeof(eepro100_rx_t)); 1734 uint16_t rfd_command = le16_to_cpu(rx.command); 1735 uint16_t rfd_size = le16_to_cpu(rx.size); 1736 1737 if (size > rfd_size) { 1738 logout("Receive buffer (%" PRId16 " bytes) too small for data " 1739 "(%zu bytes); data truncated\n", rfd_size, size); 1740 size = rfd_size; 1741 } 1742 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1743 if (size < 64) { 1744 rfd_status |= 0x0080; 1745 } 1746 #endif 1747 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", 1748 rfd_command, rx.link, rx.rx_buf_addr, rfd_size)); 1749 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1750 offsetof(eepro100_rx_t, status), rfd_status); 1751 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1752 offsetof(eepro100_rx_t, count), size); 1753 /* Early receive interrupt not supported. */ 1754 #if 0 1755 eepro100_er_interrupt(s); 1756 #endif 1757 /* Receive CRC Transfer not supported. */ 1758 if (s->configuration[18] & BIT(2)) { 1759 missing("Receive CRC Transfer"); 1760 return -1; 1761 } 1762 /* TODO: check stripping enable bit. */ 1763 #if 0 1764 assert(!(s->configuration[17] & BIT(0))); 1765 #endif 1766 pci_dma_write(&s->dev, s->ru_base + s->ru_offset + 1767 sizeof(eepro100_rx_t), buf, size); 1768 s->statistics.rx_good_frames++; 1769 eepro100_fr_interrupt(s); 1770 s->ru_offset = le32_to_cpu(rx.link); 1771 if (rfd_command & COMMAND_EL) { 1772 /* EL bit is set, so this was the last frame. */ 1773 logout("receive: Running out of frames\n"); 1774 set_ru_state(s, ru_no_resources); 1775 eepro100_rnr_interrupt(s); 1776 } 1777 if (rfd_command & COMMAND_S) { 1778 /* S bit is set. */ 1779 set_ru_state(s, ru_suspended); 1780 } 1781 return size; 1782 } 1783 1784 static const VMStateDescription vmstate_eepro100 = { 1785 .version_id = 3, 1786 .minimum_version_id = 2, 1787 .fields = (VMStateField[]) { 1788 VMSTATE_PCI_DEVICE(dev, EEPRO100State), 1789 VMSTATE_UNUSED(32), 1790 VMSTATE_BUFFER(mult, EEPRO100State), 1791 VMSTATE_BUFFER(mem, EEPRO100State), 1792 /* Save all members of struct between scb_stat and mem. */ 1793 VMSTATE_UINT8(scb_stat, EEPRO100State), 1794 VMSTATE_UINT8(int_stat, EEPRO100State), 1795 VMSTATE_UNUSED(3*4), 1796 VMSTATE_MACADDR(conf.macaddr, EEPRO100State), 1797 VMSTATE_UNUSED(19*4), 1798 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32), 1799 /* The eeprom should be saved and restored by its own routines. */ 1800 VMSTATE_UINT32(device, EEPRO100State), 1801 /* TODO check device. */ 1802 VMSTATE_UINT32(cu_base, EEPRO100State), 1803 VMSTATE_UINT32(cu_offset, EEPRO100State), 1804 VMSTATE_UINT32(ru_base, EEPRO100State), 1805 VMSTATE_UINT32(ru_offset, EEPRO100State), 1806 VMSTATE_UINT32(statsaddr, EEPRO100State), 1807 /* Save eepro100_stats_t statistics. */ 1808 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State), 1809 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State), 1810 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State), 1811 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State), 1812 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State), 1813 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State), 1814 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State), 1815 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State), 1816 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State), 1817 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State), 1818 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State), 1819 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State), 1820 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State), 1821 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State), 1822 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State), 1823 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State), 1824 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State), 1825 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State), 1826 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State), 1827 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State), 1828 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State), 1829 /* Configuration bytes. */ 1830 VMSTATE_BUFFER(configuration, EEPRO100State), 1831 VMSTATE_END_OF_LIST() 1832 } 1833 }; 1834 1835 static void nic_cleanup(NetClientState *nc) 1836 { 1837 EEPRO100State *s = qemu_get_nic_opaque(nc); 1838 1839 s->nic = NULL; 1840 } 1841 1842 static void pci_nic_uninit(PCIDevice *pci_dev) 1843 { 1844 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1845 1846 memory_region_destroy(&s->mmio_bar); 1847 memory_region_destroy(&s->io_bar); 1848 memory_region_destroy(&s->flash_bar); 1849 vmstate_unregister(&pci_dev->qdev, s->vmstate, s); 1850 eeprom93xx_free(&pci_dev->qdev, s->eeprom); 1851 qemu_del_nic(s->nic); 1852 } 1853 1854 static NetClientInfo net_eepro100_info = { 1855 .type = NET_CLIENT_OPTIONS_KIND_NIC, 1856 .size = sizeof(NICState), 1857 .can_receive = nic_can_receive, 1858 .receive = nic_receive, 1859 .cleanup = nic_cleanup, 1860 }; 1861 1862 static int e100_nic_init(PCIDevice *pci_dev) 1863 { 1864 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1865 E100PCIDeviceInfo *info = eepro100_get_class(s); 1866 1867 TRACE(OTHER, logout("\n")); 1868 1869 s->device = info->device; 1870 1871 e100_pci_reset(s); 1872 1873 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM, 1874 * i82559 and later support 64 or 256 word EEPROM. */ 1875 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE); 1876 1877 /* Handler for memory-mapped I/O */ 1878 memory_region_init_io(&s->mmio_bar, OBJECT(s), &eepro100_ops, s, 1879 "eepro100-mmio", PCI_MEM_SIZE); 1880 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar); 1881 memory_region_init_io(&s->io_bar, OBJECT(s), &eepro100_ops, s, 1882 "eepro100-io", PCI_IO_SIZE); 1883 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar); 1884 /* FIXME: flash aliases to mmio?! */ 1885 memory_region_init_io(&s->flash_bar, OBJECT(s), &eepro100_ops, s, 1886 "eepro100-flash", PCI_FLASH_SIZE); 1887 pci_register_bar(&s->dev, 2, 0, &s->flash_bar); 1888 1889 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1890 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)); 1891 1892 nic_reset(s); 1893 1894 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf, 1895 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s); 1896 1897 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 1898 TRACE(OTHER, logout("%s\n", qemu_get_queue(s->nic)->info_str)); 1899 1900 qemu_register_reset(nic_reset, s); 1901 1902 s->vmstate = g_malloc(sizeof(vmstate_eepro100)); 1903 memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100)); 1904 s->vmstate->name = qemu_get_queue(s->nic)->model; 1905 vmstate_register(&pci_dev->qdev, -1, s->vmstate, s); 1906 1907 add_boot_device_path(s->conf.bootindex, &pci_dev->qdev, "/ethernet-phy@0"); 1908 1909 return 0; 1910 } 1911 1912 static E100PCIDeviceInfo e100_devices[] = { 1913 { 1914 .name = "i82550", 1915 .desc = "Intel i82550 Ethernet", 1916 .device = i82550, 1917 /* TODO: check device id. */ 1918 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1919 /* Revision ID: 0x0c, 0x0d, 0x0e. */ 1920 .revision = 0x0e, 1921 /* TODO: check size of statistical counters. */ 1922 .stats_size = 80, 1923 /* TODO: check extended tcb support. */ 1924 .has_extended_tcb_support = true, 1925 .power_management = true, 1926 },{ 1927 .name = "i82551", 1928 .desc = "Intel i82551 Ethernet", 1929 .device = i82551, 1930 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1931 /* Revision ID: 0x0f, 0x10. */ 1932 .revision = 0x0f, 1933 /* TODO: check size of statistical counters. */ 1934 .stats_size = 80, 1935 .has_extended_tcb_support = true, 1936 .power_management = true, 1937 },{ 1938 .name = "i82557a", 1939 .desc = "Intel i82557A Ethernet", 1940 .device = i82557A, 1941 .device_id = PCI_DEVICE_ID_INTEL_82557, 1942 .revision = 0x01, 1943 .power_management = false, 1944 },{ 1945 .name = "i82557b", 1946 .desc = "Intel i82557B Ethernet", 1947 .device = i82557B, 1948 .device_id = PCI_DEVICE_ID_INTEL_82557, 1949 .revision = 0x02, 1950 .power_management = false, 1951 },{ 1952 .name = "i82557c", 1953 .desc = "Intel i82557C Ethernet", 1954 .device = i82557C, 1955 .device_id = PCI_DEVICE_ID_INTEL_82557, 1956 .revision = 0x03, 1957 .power_management = false, 1958 },{ 1959 .name = "i82558a", 1960 .desc = "Intel i82558A Ethernet", 1961 .device = i82558A, 1962 .device_id = PCI_DEVICE_ID_INTEL_82557, 1963 .revision = 0x04, 1964 .stats_size = 76, 1965 .has_extended_tcb_support = true, 1966 .power_management = true, 1967 },{ 1968 .name = "i82558b", 1969 .desc = "Intel i82558B Ethernet", 1970 .device = i82558B, 1971 .device_id = PCI_DEVICE_ID_INTEL_82557, 1972 .revision = 0x05, 1973 .stats_size = 76, 1974 .has_extended_tcb_support = true, 1975 .power_management = true, 1976 },{ 1977 .name = "i82559a", 1978 .desc = "Intel i82559A Ethernet", 1979 .device = i82559A, 1980 .device_id = PCI_DEVICE_ID_INTEL_82557, 1981 .revision = 0x06, 1982 .stats_size = 80, 1983 .has_extended_tcb_support = true, 1984 .power_management = true, 1985 },{ 1986 .name = "i82559b", 1987 .desc = "Intel i82559B Ethernet", 1988 .device = i82559B, 1989 .device_id = PCI_DEVICE_ID_INTEL_82557, 1990 .revision = 0x07, 1991 .stats_size = 80, 1992 .has_extended_tcb_support = true, 1993 .power_management = true, 1994 },{ 1995 .name = "i82559c", 1996 .desc = "Intel i82559C Ethernet", 1997 .device = i82559C, 1998 .device_id = PCI_DEVICE_ID_INTEL_82557, 1999 #if 0 2000 .revision = 0x08, 2001 #endif 2002 /* TODO: Windows wants revision id 0x0c. */ 2003 .revision = 0x0c, 2004 #if EEPROM_SIZE > 0 2005 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL, 2006 .subsystem_id = 0x0040, 2007 #endif 2008 .stats_size = 80, 2009 .has_extended_tcb_support = true, 2010 .power_management = true, 2011 },{ 2012 .name = "i82559er", 2013 .desc = "Intel i82559ER Ethernet", 2014 .device = i82559ER, 2015 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 2016 .revision = 0x09, 2017 .stats_size = 80, 2018 .has_extended_tcb_support = true, 2019 .power_management = true, 2020 },{ 2021 .name = "i82562", 2022 .desc = "Intel i82562 Ethernet", 2023 .device = i82562, 2024 /* TODO: check device id. */ 2025 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 2026 /* TODO: wrong revision id. */ 2027 .revision = 0x0e, 2028 .stats_size = 80, 2029 .has_extended_tcb_support = true, 2030 .power_management = true, 2031 },{ 2032 /* Toshiba Tecra 8200. */ 2033 .name = "i82801", 2034 .desc = "Intel i82801 Ethernet", 2035 .device = i82801, 2036 .device_id = 0x2449, 2037 .revision = 0x03, 2038 .stats_size = 80, 2039 .has_extended_tcb_support = true, 2040 .power_management = true, 2041 } 2042 }; 2043 2044 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename) 2045 { 2046 E100PCIDeviceInfo *info = NULL; 2047 int i; 2048 2049 /* This is admittedly awkward but also temporary. QOM allows for 2050 * parameterized typing and for subclassing both of which would suitable 2051 * handle what's going on here. But class_data is already being used as 2052 * a stop-gap hack to allow incremental qdev conversion so we cannot use it 2053 * right now. Once we merge the final QOM series, we can come back here and 2054 * do this in a much more elegant fashion. 2055 */ 2056 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2057 if (strcmp(e100_devices[i].name, typename) == 0) { 2058 info = &e100_devices[i]; 2059 break; 2060 } 2061 } 2062 assert(info != NULL); 2063 2064 return info; 2065 } 2066 2067 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s) 2068 { 2069 return eepro100_get_class_by_name(object_get_typename(OBJECT(s))); 2070 } 2071 2072 static Property e100_properties[] = { 2073 DEFINE_NIC_PROPERTIES(EEPRO100State, conf), 2074 DEFINE_PROP_END_OF_LIST(), 2075 }; 2076 2077 static void eepro100_class_init(ObjectClass *klass, void *data) 2078 { 2079 DeviceClass *dc = DEVICE_CLASS(klass); 2080 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 2081 E100PCIDeviceInfo *info; 2082 2083 info = eepro100_get_class_by_name(object_class_get_name(klass)); 2084 2085 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 2086 dc->props = e100_properties; 2087 dc->desc = info->desc; 2088 k->vendor_id = PCI_VENDOR_ID_INTEL; 2089 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 2090 k->romfile = "pxe-eepro100.rom"; 2091 k->init = e100_nic_init; 2092 k->exit = pci_nic_uninit; 2093 k->device_id = info->device_id; 2094 k->revision = info->revision; 2095 k->subsystem_vendor_id = info->subsystem_vendor_id; 2096 k->subsystem_id = info->subsystem_id; 2097 } 2098 2099 static void eepro100_register_types(void) 2100 { 2101 size_t i; 2102 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2103 TypeInfo type_info = {}; 2104 E100PCIDeviceInfo *info = &e100_devices[i]; 2105 2106 type_info.name = info->name; 2107 type_info.parent = TYPE_PCI_DEVICE; 2108 type_info.class_init = eepro100_class_init; 2109 type_info.instance_size = sizeof(EEPRO100State); 2110 2111 type_register(&type_info); 2112 } 2113 } 2114 2115 type_init(eepro100_register_types) 2116