1 /* 2 * QEMU i8255x (PRO100) emulation 3 * 4 * Copyright (C) 2006-2011 Stefan Weil 5 * 6 * Portions of the code are copies from grub / etherboot eepro100.c 7 * and linux e100.c. 8 * 9 * This program is free software: you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation, either version 2 of the License, or 12 * (at your option) version 3 or any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program. If not, see <http://www.gnu.org/licenses/>. 21 * 22 * Tested features (i82559): 23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok 24 * Linux networking (i386) ok 25 * 26 * Untested: 27 * Windows networking 28 * 29 * References: 30 * 31 * Intel 8255x 10/100 Mbps Ethernet Controller Family 32 * Open Source Software Developer Manual 33 * 34 * TODO: 35 * * PHY emulation should be separated from nic emulation. 36 * Most nic emulations could share the same phy code. 37 * * i82550 is untested. It is programmed like the i82559. 38 * * i82562 is untested. It is programmed like the i82559. 39 * * Power management (i82558 and later) is not implemented. 40 * * Wake-on-LAN is not implemented. 41 */ 42 43 #include "qemu/osdep.h" 44 #include "hw/hw.h" 45 #include "hw/pci/pci.h" 46 #include "net/net.h" 47 #include "net/eth.h" 48 #include "hw/nvram/eeprom93xx.h" 49 #include "sysemu/sysemu.h" 50 #include "sysemu/dma.h" 51 #include "qemu/bitops.h" 52 #include "qapi/error.h" 53 54 /* QEMU sends frames smaller than 60 bytes to ethernet nics. 55 * Such frames are rejected by real nics and their emulations. 56 * To avoid this behaviour, other nic emulations pad received 57 * frames. The following definition enables this padding for 58 * eepro100, too. We keep the define around in case it might 59 * become useful the future if the core networking is ever 60 * changed to pad short packets itself. */ 61 #define CONFIG_PAD_RECEIVED_FRAMES 62 63 #define KiB 1024 64 65 /* Debug EEPRO100 card. */ 66 #if 0 67 # define DEBUG_EEPRO100 68 #endif 69 70 #ifdef DEBUG_EEPRO100 71 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__) 72 #else 73 #define logout(fmt, ...) ((void)0) 74 #endif 75 76 /* Set flags to 0 to disable debug output. */ 77 #define INT 1 /* interrupt related actions */ 78 #define MDI 1 /* mdi related actions */ 79 #define OTHER 1 80 #define RXTX 1 81 #define EEPROM 1 /* eeprom related actions */ 82 83 #define TRACE(flag, command) ((flag) ? (command) : (void)0) 84 85 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n") 86 87 #define MAX_ETH_FRAME_SIZE 1514 88 89 /* This driver supports several different devices which are declared here. */ 90 #define i82550 0x82550 91 #define i82551 0x82551 92 #define i82557A 0x82557a 93 #define i82557B 0x82557b 94 #define i82557C 0x82557c 95 #define i82558A 0x82558a 96 #define i82558B 0x82558b 97 #define i82559A 0x82559a 98 #define i82559B 0x82559b 99 #define i82559C 0x82559c 100 #define i82559ER 0x82559e 101 #define i82562 0x82562 102 #define i82801 0x82801 103 104 /* Use 64 word EEPROM. TODO: could be a runtime option. */ 105 #define EEPROM_SIZE 64 106 107 #define PCI_MEM_SIZE (4 * KiB) 108 #define PCI_IO_SIZE 64 109 #define PCI_FLASH_SIZE (128 * KiB) 110 111 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m) 112 113 /* The SCB accepts the following controls for the Tx and Rx units: */ 114 #define CU_NOP 0x0000 /* No operation. */ 115 #define CU_START 0x0010 /* CU start. */ 116 #define CU_RESUME 0x0020 /* CU resume. */ 117 #define CU_STATSADDR 0x0040 /* Load dump counters address. */ 118 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */ 119 #define CU_CMD_BASE 0x0060 /* Load CU base address. */ 120 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */ 121 #define CU_SRESUME 0x00a0 /* CU static resume. */ 122 123 #define RU_NOP 0x0000 124 #define RX_START 0x0001 125 #define RX_RESUME 0x0002 126 #define RU_ABORT 0x0004 127 #define RX_ADDR_LOAD 0x0006 128 #define RX_RESUMENR 0x0007 129 #define INT_MASK 0x0100 130 #define DRVR_INT 0x0200 /* Driver generated interrupt. */ 131 132 typedef struct { 133 const char *name; 134 const char *desc; 135 uint16_t device_id; 136 uint8_t revision; 137 uint16_t subsystem_vendor_id; 138 uint16_t subsystem_id; 139 140 uint32_t device; 141 uint8_t stats_size; 142 bool has_extended_tcb_support; 143 bool power_management; 144 } E100PCIDeviceInfo; 145 146 /* Offsets to the various registers. 147 All accesses need not be longword aligned. */ 148 typedef enum { 149 SCBStatus = 0, /* Status Word. */ 150 SCBAck = 1, 151 SCBCmd = 2, /* Rx/Command Unit command and status. */ 152 SCBIntmask = 3, 153 SCBPointer = 4, /* General purpose pointer. */ 154 SCBPort = 8, /* Misc. commands and operands. */ 155 SCBflash = 12, /* Flash memory control. */ 156 SCBeeprom = 14, /* EEPROM control. */ 157 SCBCtrlMDI = 16, /* MDI interface control. */ 158 SCBEarlyRx = 20, /* Early receive byte count. */ 159 SCBFlow = 24, /* Flow Control. */ 160 SCBpmdr = 27, /* Power Management Driver. */ 161 SCBgctrl = 28, /* General Control. */ 162 SCBgstat = 29, /* General Status. */ 163 } E100RegisterOffset; 164 165 /* A speedo3 transmit buffer descriptor with two buffers... */ 166 typedef struct { 167 uint16_t status; 168 uint16_t command; 169 uint32_t link; /* void * */ 170 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */ 171 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */ 172 uint8_t tx_threshold; /* transmit threshold */ 173 uint8_t tbd_count; /* TBD number */ 174 #if 0 175 /* This constitutes two "TBD" entries: hdr and data */ 176 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */ 177 int32_t tx_buf_size0; /* Length of Tx hdr. */ 178 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */ 179 int32_t tx_buf_size1; /* Length of Tx data. */ 180 #endif 181 } eepro100_tx_t; 182 183 /* Receive frame descriptor. */ 184 typedef struct { 185 int16_t status; 186 uint16_t command; 187 uint32_t link; /* struct RxFD * */ 188 uint32_t rx_buf_addr; /* void * */ 189 uint16_t count; 190 uint16_t size; 191 /* Ethernet frame data follows. */ 192 } eepro100_rx_t; 193 194 typedef enum { 195 COMMAND_EL = BIT(15), 196 COMMAND_S = BIT(14), 197 COMMAND_I = BIT(13), 198 COMMAND_NC = BIT(4), 199 COMMAND_SF = BIT(3), 200 COMMAND_CMD = BITS(2, 0), 201 } scb_command_bit; 202 203 typedef enum { 204 STATUS_C = BIT(15), 205 STATUS_OK = BIT(13), 206 } scb_status_bit; 207 208 typedef struct { 209 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions, 210 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 211 tx_multiple_collisions, tx_total_collisions; 212 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors, 213 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 214 rx_short_frame_errors; 215 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 216 uint16_t xmt_tco_frames, rcv_tco_frames; 217 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */ 218 uint32_t reserved[4]; 219 } eepro100_stats_t; 220 221 typedef enum { 222 cu_idle = 0, 223 cu_suspended = 1, 224 cu_active = 2, 225 cu_lpq_active = 2, 226 cu_hqp_active = 3 227 } cu_state_t; 228 229 typedef enum { 230 ru_idle = 0, 231 ru_suspended = 1, 232 ru_no_resources = 2, 233 ru_ready = 4 234 } ru_state_t; 235 236 typedef struct { 237 PCIDevice dev; 238 /* Hash register (multicast mask array, multiple individual addresses). */ 239 uint8_t mult[8]; 240 MemoryRegion mmio_bar; 241 MemoryRegion io_bar; 242 MemoryRegion flash_bar; 243 NICState *nic; 244 NICConf conf; 245 uint8_t scb_stat; /* SCB stat/ack byte */ 246 uint8_t int_stat; /* PCI interrupt status */ 247 /* region must not be saved by nic_save. */ 248 uint16_t mdimem[32]; 249 eeprom_t *eeprom; 250 uint32_t device; /* device variant */ 251 /* (cu_base + cu_offset) address the next command block in the command block list. */ 252 uint32_t cu_base; /* CU base address */ 253 uint32_t cu_offset; /* CU address offset */ 254 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */ 255 uint32_t ru_base; /* RU base address */ 256 uint32_t ru_offset; /* RU address offset */ 257 uint32_t statsaddr; /* pointer to eepro100_stats_t */ 258 259 /* Temporary status information (no need to save these values), 260 * used while processing CU commands. */ 261 eepro100_tx_t tx; /* transmit buffer descriptor */ 262 uint32_t cb_address; /* = cu_base + cu_offset */ 263 264 /* Statistical counters. Also used for wake-up packet (i82559). */ 265 eepro100_stats_t statistics; 266 267 /* Data in mem is always in the byte order of the controller (le). 268 * It must be dword aligned to allow direct access to 32 bit values. */ 269 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8))); 270 271 /* Configuration bytes. */ 272 uint8_t configuration[22]; 273 274 /* vmstate for each particular nic */ 275 VMStateDescription *vmstate; 276 277 /* Quasi static device properties (no need to save them). */ 278 uint16_t stats_size; 279 bool has_extended_tcb_support; 280 } EEPRO100State; 281 282 /* Word indices in EEPROM. */ 283 typedef enum { 284 EEPROM_CNFG_MDIX = 0x03, 285 EEPROM_ID = 0x05, 286 EEPROM_PHY_ID = 0x06, 287 EEPROM_VENDOR_ID = 0x0c, 288 EEPROM_CONFIG_ASF = 0x0d, 289 EEPROM_DEVICE_ID = 0x23, 290 EEPROM_SMBUS_ADDR = 0x90, 291 } EEPROMOffset; 292 293 /* Bit values for EEPROM ID word. */ 294 typedef enum { 295 EEPROM_ID_MDM = BIT(0), /* Modem */ 296 EEPROM_ID_STB = BIT(1), /* Standby Enable */ 297 EEPROM_ID_WMR = BIT(2), /* ??? */ 298 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */ 299 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */ 300 EEPROM_ID_ALT = BIT(7), /* */ 301 /* BITS(10, 8) device revision */ 302 EEPROM_ID_BD = BIT(11), /* boot disable */ 303 EEPROM_ID_ID = BIT(13), /* id bit */ 304 /* BITS(15, 14) signature */ 305 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */ 306 } eeprom_id_bit; 307 308 /* Default values for MDI (PHY) registers */ 309 static const uint16_t eepro100_mdi_default[] = { 310 /* MDI Registers 0 - 6, 7 */ 311 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000, 312 /* MDI Registers 8 - 15 */ 313 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 314 /* MDI Registers 16 - 31 */ 315 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 316 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 317 }; 318 319 /* Readonly mask for MDI (PHY) registers */ 320 static const uint16_t eepro100_mdi_mask[] = { 321 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000, 322 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 323 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 324 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 325 }; 326 327 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s); 328 329 /* Read a 16 bit control/status (CSR) register. */ 330 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr) 331 { 332 assert(!((uintptr_t)&s->mem[addr] & 1)); 333 return lduw_le_p(&s->mem[addr]); 334 } 335 336 /* Read a 32 bit control/status (CSR) register. */ 337 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr) 338 { 339 assert(!((uintptr_t)&s->mem[addr] & 3)); 340 return ldl_le_p(&s->mem[addr]); 341 } 342 343 /* Write a 16 bit control/status (CSR) register. */ 344 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr, 345 uint16_t val) 346 { 347 assert(!((uintptr_t)&s->mem[addr] & 1)); 348 stw_le_p(&s->mem[addr], val); 349 } 350 351 /* Read a 32 bit control/status (CSR) register. */ 352 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr, 353 uint32_t val) 354 { 355 assert(!((uintptr_t)&s->mem[addr] & 3)); 356 stl_le_p(&s->mem[addr], val); 357 } 358 359 #if defined(DEBUG_EEPRO100) 360 static const char *nic_dump(const uint8_t * buf, unsigned size) 361 { 362 static char dump[3 * 16 + 1]; 363 char *p = &dump[0]; 364 if (size > 16) { 365 size = 16; 366 } 367 while (size-- > 0) { 368 p += sprintf(p, " %02x", *buf++); 369 } 370 return dump; 371 } 372 #endif /* DEBUG_EEPRO100 */ 373 374 enum scb_stat_ack { 375 stat_ack_not_ours = 0x00, 376 stat_ack_sw_gen = 0x04, 377 stat_ack_rnr = 0x10, 378 stat_ack_cu_idle = 0x20, 379 stat_ack_frame_rx = 0x40, 380 stat_ack_cu_cmd_done = 0x80, 381 stat_ack_not_present = 0xFF, 382 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 383 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 384 }; 385 386 static void disable_interrupt(EEPRO100State * s) 387 { 388 if (s->int_stat) { 389 TRACE(INT, logout("interrupt disabled\n")); 390 pci_irq_deassert(&s->dev); 391 s->int_stat = 0; 392 } 393 } 394 395 static void enable_interrupt(EEPRO100State * s) 396 { 397 if (!s->int_stat) { 398 TRACE(INT, logout("interrupt enabled\n")); 399 pci_irq_assert(&s->dev); 400 s->int_stat = 1; 401 } 402 } 403 404 static void eepro100_acknowledge(EEPRO100State * s) 405 { 406 s->scb_stat &= ~s->mem[SCBAck]; 407 s->mem[SCBAck] = s->scb_stat; 408 if (s->scb_stat == 0) { 409 disable_interrupt(s); 410 } 411 } 412 413 static void eepro100_interrupt(EEPRO100State * s, uint8_t status) 414 { 415 uint8_t mask = ~s->mem[SCBIntmask]; 416 s->mem[SCBAck] |= status; 417 status = s->scb_stat = s->mem[SCBAck]; 418 status &= (mask | 0x0f); 419 #if 0 420 status &= (~s->mem[SCBIntmask] | 0x0xf); 421 #endif 422 if (status && (mask & 0x01)) { 423 /* SCB mask and SCB Bit M do not disable interrupt. */ 424 enable_interrupt(s); 425 } else if (s->int_stat) { 426 disable_interrupt(s); 427 } 428 } 429 430 static void eepro100_cx_interrupt(EEPRO100State * s) 431 { 432 /* CU completed action command. */ 433 /* Transmit not ok (82557 only, not in emulation). */ 434 eepro100_interrupt(s, 0x80); 435 } 436 437 static void eepro100_cna_interrupt(EEPRO100State * s) 438 { 439 /* CU left the active state. */ 440 eepro100_interrupt(s, 0x20); 441 } 442 443 static void eepro100_fr_interrupt(EEPRO100State * s) 444 { 445 /* RU received a complete frame. */ 446 eepro100_interrupt(s, 0x40); 447 } 448 449 static void eepro100_rnr_interrupt(EEPRO100State * s) 450 { 451 /* RU is not ready. */ 452 eepro100_interrupt(s, 0x10); 453 } 454 455 static void eepro100_mdi_interrupt(EEPRO100State * s) 456 { 457 /* MDI completed read or write cycle. */ 458 eepro100_interrupt(s, 0x08); 459 } 460 461 static void eepro100_swi_interrupt(EEPRO100State * s) 462 { 463 /* Software has requested an interrupt. */ 464 eepro100_interrupt(s, 0x04); 465 } 466 467 #if 0 468 static void eepro100_fcp_interrupt(EEPRO100State * s) 469 { 470 /* Flow control pause interrupt (82558 and later). */ 471 eepro100_interrupt(s, 0x01); 472 } 473 #endif 474 475 static void e100_pci_reset(EEPRO100State *s, Error **errp) 476 { 477 E100PCIDeviceInfo *info = eepro100_get_class(s); 478 uint32_t device = s->device; 479 uint8_t *pci_conf = s->dev.config; 480 481 TRACE(OTHER, logout("%p\n", s)); 482 483 /* PCI Status */ 484 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM | 485 PCI_STATUS_FAST_BACK); 486 /* PCI Latency Timer */ 487 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */ 488 /* Capability Pointer is set by PCI framework. */ 489 /* Interrupt Line */ 490 /* Interrupt Pin */ 491 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */ 492 /* Minimum Grant */ 493 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08); 494 /* Maximum Latency */ 495 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18); 496 497 s->stats_size = info->stats_size; 498 s->has_extended_tcb_support = info->has_extended_tcb_support; 499 500 switch (device) { 501 case i82550: 502 case i82551: 503 case i82557A: 504 case i82557B: 505 case i82557C: 506 case i82558A: 507 case i82558B: 508 case i82559A: 509 case i82559B: 510 case i82559ER: 511 case i82562: 512 case i82801: 513 case i82559C: 514 break; 515 default: 516 logout("Device %X is undefined!\n", device); 517 } 518 519 /* Standard TxCB. */ 520 s->configuration[6] |= BIT(4); 521 522 /* Standard statistical counters. */ 523 s->configuration[6] |= BIT(5); 524 525 if (s->stats_size == 80) { 526 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */ 527 if (s->configuration[6] & BIT(2)) { 528 /* TCO statistical counters. */ 529 assert(s->configuration[6] & BIT(5)); 530 } else { 531 if (s->configuration[6] & BIT(5)) { 532 /* No extended statistical counters, i82557 compatible. */ 533 s->stats_size = 64; 534 } else { 535 /* i82558 compatible. */ 536 s->stats_size = 76; 537 } 538 } 539 } else { 540 if (s->configuration[6] & BIT(5)) { 541 /* No extended statistical counters. */ 542 s->stats_size = 64; 543 } 544 } 545 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics)); 546 547 if (info->power_management) { 548 /* Power Management Capabilities */ 549 int cfg_offset = 0xdc; 550 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM, 551 cfg_offset, PCI_PM_SIZEOF, 552 errp); 553 if (r < 0) { 554 return; 555 } 556 557 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21); 558 #if 0 /* TODO: replace dummy code for power management emulation. */ 559 /* TODO: Power Management Control / Status. */ 560 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000); 561 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */ 562 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000); 563 #endif 564 } 565 566 #if EEPROM_SIZE > 0 567 if (device == i82557C || device == i82558B || device == i82559C) { 568 /* 569 TODO: get vendor id from EEPROM for i82557C or later. 570 TODO: get device id from EEPROM for i82557C or later. 571 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559. 572 TODO: header type is determined by EEPROM for i82559. 573 TODO: get subsystem id from EEPROM for i82557C or later. 574 TODO: get subsystem vendor id from EEPROM for i82557C or later. 575 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later. 576 TODO: capability pointer depends on EEPROM for i82558. 577 */ 578 logout("Get device id and revision from EEPROM!!!\n"); 579 } 580 #endif /* EEPROM_SIZE > 0 */ 581 } 582 583 static void nic_selective_reset(EEPRO100State * s) 584 { 585 size_t i; 586 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom); 587 #if 0 588 eeprom93xx_reset(s->eeprom); 589 #endif 590 memcpy(eeprom_contents, s->conf.macaddr.a, 6); 591 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID; 592 if (s->device == i82557B || s->device == i82557C) 593 eeprom_contents[5] = 0x0100; 594 eeprom_contents[EEPROM_PHY_ID] = 1; 595 uint16_t sum = 0; 596 for (i = 0; i < EEPROM_SIZE - 1; i++) { 597 sum += eeprom_contents[i]; 598 } 599 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum; 600 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1])); 601 602 memset(s->mem, 0, sizeof(s->mem)); 603 e100_write_reg4(s, SCBCtrlMDI, BIT(21)); 604 605 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default)); 606 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem)); 607 } 608 609 static void nic_reset(void *opaque) 610 { 611 EEPRO100State *s = opaque; 612 TRACE(OTHER, logout("%p\n", s)); 613 /* TODO: Clearing of hash register for selective reset, too? */ 614 memset(&s->mult[0], 0, sizeof(s->mult)); 615 nic_selective_reset(s); 616 } 617 618 #if defined(DEBUG_EEPRO100) 619 static const char * const e100_reg[PCI_IO_SIZE / 4] = { 620 "Command/Status", 621 "General Pointer", 622 "Port", 623 "EEPROM/Flash Control", 624 "MDI Control", 625 "Receive DMA Byte Count", 626 "Flow Control", 627 "General Status/Control" 628 }; 629 630 static char *regname(uint32_t addr) 631 { 632 static char buf[32]; 633 if (addr < PCI_IO_SIZE) { 634 const char *r = e100_reg[addr / 4]; 635 if (r != 0) { 636 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4); 637 } else { 638 snprintf(buf, sizeof(buf), "0x%02x", addr); 639 } 640 } else { 641 snprintf(buf, sizeof(buf), "??? 0x%08x", addr); 642 } 643 return buf; 644 } 645 #endif /* DEBUG_EEPRO100 */ 646 647 /***************************************************************************** 648 * 649 * Command emulation. 650 * 651 ****************************************************************************/ 652 653 #if 0 654 static uint16_t eepro100_read_command(EEPRO100State * s) 655 { 656 uint16_t val = 0xffff; 657 TRACE(OTHER, logout("val=0x%04x\n", val)); 658 return val; 659 } 660 #endif 661 662 /* Commands that can be put in a command list entry. */ 663 enum commands { 664 CmdNOp = 0, 665 CmdIASetup = 1, 666 CmdConfigure = 2, 667 CmdMulticastList = 3, 668 CmdTx = 4, 669 CmdTDR = 5, /* load microcode */ 670 CmdDump = 6, 671 CmdDiagnose = 7, 672 673 /* And some extra flags: */ 674 CmdSuspend = 0x4000, /* Suspend after completion. */ 675 CmdIntr = 0x2000, /* Interrupt after completion. */ 676 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */ 677 }; 678 679 static cu_state_t get_cu_state(EEPRO100State * s) 680 { 681 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6); 682 } 683 684 static void set_cu_state(EEPRO100State * s, cu_state_t state) 685 { 686 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6); 687 } 688 689 static ru_state_t get_ru_state(EEPRO100State * s) 690 { 691 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2); 692 } 693 694 static void set_ru_state(EEPRO100State * s, ru_state_t state) 695 { 696 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2); 697 } 698 699 static void dump_statistics(EEPRO100State * s) 700 { 701 /* Dump statistical data. Most data is never changed by the emulation 702 * and always 0, so we first just copy the whole block and then those 703 * values which really matter. 704 * Number of data should check configuration!!! 705 */ 706 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size); 707 stl_le_pci_dma(&s->dev, s->statsaddr + 0, 708 s->statistics.tx_good_frames); 709 stl_le_pci_dma(&s->dev, s->statsaddr + 36, 710 s->statistics.rx_good_frames); 711 stl_le_pci_dma(&s->dev, s->statsaddr + 48, 712 s->statistics.rx_resource_errors); 713 stl_le_pci_dma(&s->dev, s->statsaddr + 60, 714 s->statistics.rx_short_frame_errors); 715 #if 0 716 stw_le_pci_dma(&s->dev, s->statsaddr + 76, s->statistics.xmt_tco_frames); 717 stw_le_pci_dma(&s->dev, s->statsaddr + 78, s->statistics.rcv_tco_frames); 718 missing("CU dump statistical counters"); 719 #endif 720 } 721 722 static void read_cb(EEPRO100State *s) 723 { 724 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx)); 725 s->tx.status = le16_to_cpu(s->tx.status); 726 s->tx.command = le16_to_cpu(s->tx.command); 727 s->tx.link = le32_to_cpu(s->tx.link); 728 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr); 729 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes); 730 } 731 732 static void tx_command(EEPRO100State *s) 733 { 734 uint32_t tbd_array = s->tx.tbd_array_addr; 735 uint16_t tcb_bytes = s->tx.tcb_bytes & 0x3fff; 736 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */ 737 uint8_t buf[2600]; 738 uint16_t size = 0; 739 uint32_t tbd_address = s->cb_address + 0x10; 740 TRACE(RXTX, logout 741 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n", 742 tbd_array, tcb_bytes, s->tx.tbd_count)); 743 744 if (tcb_bytes > 2600) { 745 logout("TCB byte count too large, using 2600\n"); 746 tcb_bytes = 2600; 747 } 748 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) { 749 logout 750 ("illegal values of TBD array address and TCB byte count!\n"); 751 } 752 assert(tcb_bytes <= sizeof(buf)); 753 while (size < tcb_bytes) { 754 TRACE(RXTX, logout 755 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n", 756 tbd_address, tcb_bytes)); 757 pci_dma_read(&s->dev, tbd_address, &buf[size], tcb_bytes); 758 size += tcb_bytes; 759 } 760 if (tbd_array == 0xffffffff) { 761 /* Simplified mode. Was already handled by code above. */ 762 } else { 763 /* Flexible mode. */ 764 uint8_t tbd_count = 0; 765 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) { 766 /* Extended Flexible TCB. */ 767 for (; tbd_count < 2; tbd_count++) { 768 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, 769 tbd_address); 770 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, 771 tbd_address + 4); 772 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, 773 tbd_address + 6); 774 tbd_address += 8; 775 TRACE(RXTX, logout 776 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n", 777 tx_buffer_address, tx_buffer_size)); 778 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 779 pci_dma_read(&s->dev, tx_buffer_address, 780 &buf[size], tx_buffer_size); 781 size += tx_buffer_size; 782 if (tx_buffer_el & 1) { 783 break; 784 } 785 } 786 } 787 tbd_address = tbd_array; 788 for (; tbd_count < s->tx.tbd_count; tbd_count++) { 789 uint32_t tx_buffer_address = ldl_le_pci_dma(&s->dev, tbd_address); 790 uint16_t tx_buffer_size = lduw_le_pci_dma(&s->dev, tbd_address + 4); 791 uint16_t tx_buffer_el = lduw_le_pci_dma(&s->dev, tbd_address + 6); 792 tbd_address += 8; 793 TRACE(RXTX, logout 794 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n", 795 tx_buffer_address, tx_buffer_size)); 796 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); 797 pci_dma_read(&s->dev, tx_buffer_address, 798 &buf[size], tx_buffer_size); 799 size += tx_buffer_size; 800 if (tx_buffer_el & 1) { 801 break; 802 } 803 } 804 } 805 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size))); 806 qemu_send_packet(qemu_get_queue(s->nic), buf, size); 807 s->statistics.tx_good_frames++; 808 /* Transmit with bad status would raise an CX/TNO interrupt. 809 * (82557 only). Emulation never has bad status. */ 810 #if 0 811 eepro100_cx_interrupt(s); 812 #endif 813 } 814 815 static void set_multicast_list(EEPRO100State *s) 816 { 817 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0); 818 uint16_t i; 819 memset(&s->mult[0], 0, sizeof(s->mult)); 820 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count)); 821 for (i = 0; i < multicast_count; i += 6) { 822 uint8_t multicast_addr[6]; 823 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6); 824 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6))); 825 unsigned mcast_idx = (net_crc32(multicast_addr, ETH_ALEN) & 826 BITS(7, 2)) >> 2; 827 assert(mcast_idx < 64); 828 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7)); 829 } 830 } 831 832 static void action_command(EEPRO100State *s) 833 { 834 /* The loop below won't stop if it gets special handcrafted data. 835 Therefore we limit the number of iterations. */ 836 unsigned max_loop_count = 16; 837 838 for (;;) { 839 bool bit_el; 840 bool bit_s; 841 bool bit_i; 842 bool bit_nc; 843 uint16_t ok_status = STATUS_OK; 844 s->cb_address = s->cu_base + s->cu_offset; 845 read_cb(s); 846 bit_el = ((s->tx.command & COMMAND_EL) != 0); 847 bit_s = ((s->tx.command & COMMAND_S) != 0); 848 bit_i = ((s->tx.command & COMMAND_I) != 0); 849 bit_nc = ((s->tx.command & COMMAND_NC) != 0); 850 #if 0 851 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0); 852 #endif 853 854 if (max_loop_count-- == 0) { 855 /* Prevent an endless loop. */ 856 logout("loop in %s:%u\n", __FILE__, __LINE__); 857 break; 858 } 859 860 s->cu_offset = s->tx.link; 861 TRACE(OTHER, 862 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n", 863 s->tx.status, s->tx.command, s->tx.link)); 864 switch (s->tx.command & COMMAND_CMD) { 865 case CmdNOp: 866 /* Do nothing. */ 867 break; 868 case CmdIASetup: 869 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6); 870 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6))); 871 break; 872 case CmdConfigure: 873 pci_dma_read(&s->dev, s->cb_address + 8, 874 &s->configuration[0], sizeof(s->configuration)); 875 TRACE(OTHER, logout("configuration: %s\n", 876 nic_dump(&s->configuration[0], 16))); 877 TRACE(OTHER, logout("configuration: %s\n", 878 nic_dump(&s->configuration[16], 879 ARRAY_SIZE(s->configuration) - 16))); 880 if (s->configuration[20] & BIT(6)) { 881 TRACE(OTHER, logout("Multiple IA bit\n")); 882 } 883 break; 884 case CmdMulticastList: 885 set_multicast_list(s); 886 break; 887 case CmdTx: 888 if (bit_nc) { 889 missing("CmdTx: NC = 0"); 890 ok_status = 0; 891 break; 892 } 893 tx_command(s); 894 break; 895 case CmdTDR: 896 TRACE(OTHER, logout("load microcode\n")); 897 /* Starting with offset 8, the command contains 898 * 64 dwords microcode which we just ignore here. */ 899 break; 900 case CmdDiagnose: 901 TRACE(OTHER, logout("diagnose\n")); 902 /* Make sure error flag is not set. */ 903 s->tx.status = 0; 904 break; 905 default: 906 missing("undefined command"); 907 ok_status = 0; 908 break; 909 } 910 /* Write new status. */ 911 stw_le_pci_dma(&s->dev, s->cb_address, 912 s->tx.status | ok_status | STATUS_C); 913 if (bit_i) { 914 /* CU completed action. */ 915 eepro100_cx_interrupt(s); 916 } 917 if (bit_el) { 918 /* CU becomes idle. Terminate command loop. */ 919 set_cu_state(s, cu_idle); 920 eepro100_cna_interrupt(s); 921 break; 922 } else if (bit_s) { 923 /* CU becomes suspended. Terminate command loop. */ 924 set_cu_state(s, cu_suspended); 925 eepro100_cna_interrupt(s); 926 break; 927 } else { 928 /* More entries in list. */ 929 TRACE(OTHER, logout("CU list with at least one more entry\n")); 930 } 931 } 932 TRACE(OTHER, logout("CU list empty\n")); 933 /* List is empty. Now CU is idle or suspended. */ 934 } 935 936 static void eepro100_cu_command(EEPRO100State * s, uint8_t val) 937 { 938 cu_state_t cu_state; 939 switch (val) { 940 case CU_NOP: 941 /* No operation. */ 942 break; 943 case CU_START: 944 cu_state = get_cu_state(s); 945 if (cu_state != cu_idle && cu_state != cu_suspended) { 946 /* Intel documentation says that CU must be idle or suspended 947 * for the CU start command. */ 948 logout("unexpected CU state is %u\n", cu_state); 949 } 950 set_cu_state(s, cu_active); 951 s->cu_offset = e100_read_reg4(s, SCBPointer); 952 action_command(s); 953 break; 954 case CU_RESUME: 955 if (get_cu_state(s) != cu_suspended) { 956 logout("bad CU resume from CU state %u\n", get_cu_state(s)); 957 /* Workaround for bad Linux eepro100 driver which resumes 958 * from idle state. */ 959 #if 0 960 missing("cu resume"); 961 #endif 962 set_cu_state(s, cu_suspended); 963 } 964 if (get_cu_state(s) == cu_suspended) { 965 TRACE(OTHER, logout("CU resuming\n")); 966 set_cu_state(s, cu_active); 967 action_command(s); 968 } 969 break; 970 case CU_STATSADDR: 971 /* Load dump counters address. */ 972 s->statsaddr = e100_read_reg4(s, SCBPointer); 973 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val)); 974 if (s->statsaddr & 3) { 975 /* Memory must be Dword aligned. */ 976 logout("unaligned dump counters address\n"); 977 /* Handling of misaligned addresses is undefined. 978 * Here we align the address by ignoring the lower bits. */ 979 /* TODO: Test unaligned dump counter address on real hardware. */ 980 s->statsaddr &= ~3; 981 } 982 break; 983 case CU_SHOWSTATS: 984 /* Dump statistical counters. */ 985 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val)); 986 dump_statistics(s); 987 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005); 988 break; 989 case CU_CMD_BASE: 990 /* Load CU base. */ 991 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val)); 992 s->cu_base = e100_read_reg4(s, SCBPointer); 993 break; 994 case CU_DUMPSTATS: 995 /* Dump and reset statistical counters. */ 996 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val)); 997 dump_statistics(s); 998 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007); 999 memset(&s->statistics, 0, sizeof(s->statistics)); 1000 break; 1001 case CU_SRESUME: 1002 /* CU static resume. */ 1003 missing("CU static resume"); 1004 break; 1005 default: 1006 missing("Undefined CU command"); 1007 } 1008 } 1009 1010 static void eepro100_ru_command(EEPRO100State * s, uint8_t val) 1011 { 1012 switch (val) { 1013 case RU_NOP: 1014 /* No operation. */ 1015 break; 1016 case RX_START: 1017 /* RU start. */ 1018 if (get_ru_state(s) != ru_idle) { 1019 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle); 1020 #if 0 1021 assert(!"wrong RU state"); 1022 #endif 1023 } 1024 set_ru_state(s, ru_ready); 1025 s->ru_offset = e100_read_reg4(s, SCBPointer); 1026 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1027 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val)); 1028 break; 1029 case RX_RESUME: 1030 /* Restart RU. */ 1031 if (get_ru_state(s) != ru_suspended) { 1032 logout("RU state is %u, should be %u\n", get_ru_state(s), 1033 ru_suspended); 1034 #if 0 1035 assert(!"wrong RU state"); 1036 #endif 1037 } 1038 set_ru_state(s, ru_ready); 1039 break; 1040 case RU_ABORT: 1041 /* RU abort. */ 1042 if (get_ru_state(s) == ru_ready) { 1043 eepro100_rnr_interrupt(s); 1044 } 1045 set_ru_state(s, ru_idle); 1046 break; 1047 case RX_ADDR_LOAD: 1048 /* Load RU base. */ 1049 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val)); 1050 s->ru_base = e100_read_reg4(s, SCBPointer); 1051 break; 1052 default: 1053 logout("val=0x%02x (undefined RU command)\n", val); 1054 missing("Undefined SU command"); 1055 } 1056 } 1057 1058 static void eepro100_write_command(EEPRO100State * s, uint8_t val) 1059 { 1060 eepro100_ru_command(s, val & 0x0f); 1061 eepro100_cu_command(s, val & 0xf0); 1062 if ((val) == 0) { 1063 TRACE(OTHER, logout("val=0x%02x\n", val)); 1064 } 1065 /* Clear command byte after command was accepted. */ 1066 s->mem[SCBCmd] = 0; 1067 } 1068 1069 /***************************************************************************** 1070 * 1071 * EEPROM emulation. 1072 * 1073 ****************************************************************************/ 1074 1075 #define EEPROM_CS 0x02 1076 #define EEPROM_SK 0x01 1077 #define EEPROM_DI 0x04 1078 #define EEPROM_DO 0x08 1079 1080 static uint16_t eepro100_read_eeprom(EEPRO100State * s) 1081 { 1082 uint16_t val = e100_read_reg2(s, SCBeeprom); 1083 if (eeprom93xx_read(s->eeprom)) { 1084 val |= EEPROM_DO; 1085 } else { 1086 val &= ~EEPROM_DO; 1087 } 1088 TRACE(EEPROM, logout("val=0x%04x\n", val)); 1089 return val; 1090 } 1091 1092 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val) 1093 { 1094 TRACE(EEPROM, logout("val=0x%02x\n", val)); 1095 1096 /* mask unwritable bits */ 1097 #if 0 1098 val = SET_MASKED(val, 0x31, eeprom->value); 1099 #endif 1100 1101 int eecs = ((val & EEPROM_CS) != 0); 1102 int eesk = ((val & EEPROM_SK) != 0); 1103 int eedi = ((val & EEPROM_DI) != 0); 1104 eeprom93xx_write(eeprom, eecs, eesk, eedi); 1105 } 1106 1107 /***************************************************************************** 1108 * 1109 * MDI emulation. 1110 * 1111 ****************************************************************************/ 1112 1113 #if defined(DEBUG_EEPRO100) 1114 static const char * const mdi_op_name[] = { 1115 "opcode 0", 1116 "write", 1117 "read", 1118 "opcode 3" 1119 }; 1120 1121 static const char * const mdi_reg_name[] = { 1122 "Control", 1123 "Status", 1124 "PHY Identification (Word 1)", 1125 "PHY Identification (Word 2)", 1126 "Auto-Negotiation Advertisement", 1127 "Auto-Negotiation Link Partner Ability", 1128 "Auto-Negotiation Expansion" 1129 }; 1130 1131 static const char *reg2name(uint8_t reg) 1132 { 1133 static char buffer[10]; 1134 const char *p = buffer; 1135 if (reg < ARRAY_SIZE(mdi_reg_name)) { 1136 p = mdi_reg_name[reg]; 1137 } else { 1138 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg); 1139 } 1140 return p; 1141 } 1142 #endif /* DEBUG_EEPRO100 */ 1143 1144 static uint32_t eepro100_read_mdi(EEPRO100State * s) 1145 { 1146 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1147 1148 #ifdef DEBUG_EEPRO100 1149 uint8_t raiseint = (val & BIT(29)) >> 29; 1150 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1151 uint8_t phy = (val & BITS(25, 21)) >> 21; 1152 uint8_t reg = (val & BITS(20, 16)) >> 16; 1153 uint16_t data = (val & BITS(15, 0)); 1154 #endif 1155 /* Emulation takes no time to finish MDI transaction. */ 1156 val |= BIT(28); 1157 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1158 val, raiseint, mdi_op_name[opcode], phy, 1159 reg2name(reg), data)); 1160 return val; 1161 } 1162 1163 static void eepro100_write_mdi(EEPRO100State *s) 1164 { 1165 uint32_t val = e100_read_reg4(s, SCBCtrlMDI); 1166 uint8_t raiseint = (val & BIT(29)) >> 29; 1167 uint8_t opcode = (val & BITS(27, 26)) >> 26; 1168 uint8_t phy = (val & BITS(25, 21)) >> 21; 1169 uint8_t reg = (val & BITS(20, 16)) >> 16; 1170 uint16_t data = (val & BITS(15, 0)); 1171 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1172 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data)); 1173 if (phy != 1) { 1174 /* Unsupported PHY address. */ 1175 #if 0 1176 logout("phy must be 1 but is %u\n", phy); 1177 #endif 1178 data = 0; 1179 } else if (opcode != 1 && opcode != 2) { 1180 /* Unsupported opcode. */ 1181 logout("opcode must be 1 or 2 but is %u\n", opcode); 1182 data = 0; 1183 } else if (reg > 6) { 1184 /* Unsupported register. */ 1185 logout("register must be 0...6 but is %u\n", reg); 1186 data = 0; 1187 } else { 1188 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n", 1189 val, raiseint, mdi_op_name[opcode], phy, 1190 reg2name(reg), data)); 1191 if (opcode == 1) { 1192 /* MDI write */ 1193 switch (reg) { 1194 case 0: /* Control Register */ 1195 if (data & 0x8000) { 1196 /* Reset status and control registers to default. */ 1197 s->mdimem[0] = eepro100_mdi_default[0]; 1198 s->mdimem[1] = eepro100_mdi_default[1]; 1199 data = s->mdimem[reg]; 1200 } else { 1201 /* Restart Auto Configuration = Normal Operation */ 1202 data &= ~0x0200; 1203 } 1204 break; 1205 case 1: /* Status Register */ 1206 missing("not writable"); 1207 break; 1208 case 2: /* PHY Identification Register (Word 1) */ 1209 case 3: /* PHY Identification Register (Word 2) */ 1210 missing("not implemented"); 1211 break; 1212 case 4: /* Auto-Negotiation Advertisement Register */ 1213 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1214 break; 1215 case 6: /* Auto-Negotiation Expansion Register */ 1216 default: 1217 missing("not implemented"); 1218 } 1219 s->mdimem[reg] &= eepro100_mdi_mask[reg]; 1220 s->mdimem[reg] |= data & ~eepro100_mdi_mask[reg]; 1221 } else if (opcode == 2) { 1222 /* MDI read */ 1223 switch (reg) { 1224 case 0: /* Control Register */ 1225 if (data & 0x8000) { 1226 /* Reset status and control registers to default. */ 1227 s->mdimem[0] = eepro100_mdi_default[0]; 1228 s->mdimem[1] = eepro100_mdi_default[1]; 1229 } 1230 break; 1231 case 1: /* Status Register */ 1232 s->mdimem[reg] |= 0x0020; 1233 break; 1234 case 2: /* PHY Identification Register (Word 1) */ 1235 case 3: /* PHY Identification Register (Word 2) */ 1236 case 4: /* Auto-Negotiation Advertisement Register */ 1237 break; 1238 case 5: /* Auto-Negotiation Link Partner Ability Register */ 1239 s->mdimem[reg] = 0x41fe; 1240 break; 1241 case 6: /* Auto-Negotiation Expansion Register */ 1242 s->mdimem[reg] = 0x0001; 1243 break; 1244 } 1245 data = s->mdimem[reg]; 1246 } 1247 /* Emulation takes no time to finish MDI transaction. 1248 * Set MDI bit in SCB status register. */ 1249 s->mem[SCBAck] |= 0x08; 1250 val |= BIT(28); 1251 if (raiseint) { 1252 eepro100_mdi_interrupt(s); 1253 } 1254 } 1255 val = (val & 0xffff0000) + data; 1256 e100_write_reg4(s, SCBCtrlMDI, val); 1257 } 1258 1259 /***************************************************************************** 1260 * 1261 * Port emulation. 1262 * 1263 ****************************************************************************/ 1264 1265 #define PORT_SOFTWARE_RESET 0 1266 #define PORT_SELFTEST 1 1267 #define PORT_SELECTIVE_RESET 2 1268 #define PORT_DUMP 3 1269 #define PORT_SELECTION_MASK 3 1270 1271 typedef struct { 1272 uint32_t st_sign; /* Self Test Signature */ 1273 uint32_t st_result; /* Self Test Results */ 1274 } eepro100_selftest_t; 1275 1276 static uint32_t eepro100_read_port(EEPRO100State * s) 1277 { 1278 return 0; 1279 } 1280 1281 static void eepro100_write_port(EEPRO100State *s) 1282 { 1283 uint32_t val = e100_read_reg4(s, SCBPort); 1284 uint32_t address = (val & ~PORT_SELECTION_MASK); 1285 uint8_t selection = (val & PORT_SELECTION_MASK); 1286 switch (selection) { 1287 case PORT_SOFTWARE_RESET: 1288 nic_reset(s); 1289 break; 1290 case PORT_SELFTEST: 1291 TRACE(OTHER, logout("selftest address=0x%08x\n", address)); 1292 eepro100_selftest_t data; 1293 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1294 data.st_sign = 0xffffffff; 1295 data.st_result = 0; 1296 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data)); 1297 break; 1298 case PORT_SELECTIVE_RESET: 1299 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address)); 1300 nic_selective_reset(s); 1301 break; 1302 default: 1303 logout("val=0x%08x\n", val); 1304 missing("unknown port selection"); 1305 } 1306 } 1307 1308 /***************************************************************************** 1309 * 1310 * General hardware emulation. 1311 * 1312 ****************************************************************************/ 1313 1314 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr) 1315 { 1316 uint8_t val = 0; 1317 if (addr <= sizeof(s->mem) - sizeof(val)) { 1318 val = s->mem[addr]; 1319 } 1320 1321 switch (addr) { 1322 case SCBStatus: 1323 case SCBAck: 1324 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1325 break; 1326 case SCBCmd: 1327 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1328 #if 0 1329 val = eepro100_read_command(s); 1330 #endif 1331 break; 1332 case SCBIntmask: 1333 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1334 break; 1335 case SCBPort + 3: 1336 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1337 break; 1338 case SCBeeprom: 1339 val = eepro100_read_eeprom(s); 1340 break; 1341 case SCBCtrlMDI: 1342 case SCBCtrlMDI + 1: 1343 case SCBCtrlMDI + 2: 1344 case SCBCtrlMDI + 3: 1345 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1346 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1347 break; 1348 case SCBpmdr: /* Power Management Driver Register */ 1349 val = 0; 1350 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1351 break; 1352 case SCBgctrl: /* General Control Register */ 1353 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1354 break; 1355 case SCBgstat: /* General Status Register */ 1356 /* 100 Mbps full duplex, valid link */ 1357 val = 0x07; 1358 TRACE(OTHER, logout("addr=General Status val=%02x\n", val)); 1359 break; 1360 default: 1361 logout("addr=%s val=0x%02x\n", regname(addr), val); 1362 missing("unknown byte read"); 1363 } 1364 return val; 1365 } 1366 1367 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr) 1368 { 1369 uint16_t val = 0; 1370 if (addr <= sizeof(s->mem) - sizeof(val)) { 1371 val = e100_read_reg2(s, addr); 1372 } 1373 1374 switch (addr) { 1375 case SCBStatus: 1376 case SCBCmd: 1377 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1378 break; 1379 case SCBeeprom: 1380 val = eepro100_read_eeprom(s); 1381 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1382 break; 1383 case SCBCtrlMDI: 1384 case SCBCtrlMDI + 2: 1385 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3))); 1386 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1387 break; 1388 default: 1389 logout("addr=%s val=0x%04x\n", regname(addr), val); 1390 missing("unknown word read"); 1391 } 1392 return val; 1393 } 1394 1395 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr) 1396 { 1397 uint32_t val = 0; 1398 if (addr <= sizeof(s->mem) - sizeof(val)) { 1399 val = e100_read_reg4(s, addr); 1400 } 1401 1402 switch (addr) { 1403 case SCBStatus: 1404 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1405 break; 1406 case SCBPointer: 1407 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1408 break; 1409 case SCBPort: 1410 val = eepro100_read_port(s); 1411 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1412 break; 1413 case SCBflash: 1414 val = eepro100_read_eeprom(s); 1415 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1416 break; 1417 case SCBCtrlMDI: 1418 val = eepro100_read_mdi(s); 1419 break; 1420 default: 1421 logout("addr=%s val=0x%08x\n", regname(addr), val); 1422 missing("unknown longword read"); 1423 } 1424 return val; 1425 } 1426 1427 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val) 1428 { 1429 /* SCBStatus is readonly. */ 1430 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1431 s->mem[addr] = val; 1432 } 1433 1434 switch (addr) { 1435 case SCBStatus: 1436 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1437 break; 1438 case SCBAck: 1439 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1440 eepro100_acknowledge(s); 1441 break; 1442 case SCBCmd: 1443 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1444 eepro100_write_command(s, val); 1445 break; 1446 case SCBIntmask: 1447 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1448 if (val & BIT(1)) { 1449 eepro100_swi_interrupt(s); 1450 } 1451 eepro100_interrupt(s, 0); 1452 break; 1453 case SCBPointer: 1454 case SCBPointer + 1: 1455 case SCBPointer + 2: 1456 case SCBPointer + 3: 1457 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1458 break; 1459 case SCBPort: 1460 case SCBPort + 1: 1461 case SCBPort + 2: 1462 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1463 break; 1464 case SCBPort + 3: 1465 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1466 eepro100_write_port(s); 1467 break; 1468 case SCBFlow: /* does not exist on 82557 */ 1469 case SCBFlow + 1: 1470 case SCBFlow + 2: 1471 case SCBpmdr: /* does not exist on 82557 */ 1472 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1473 break; 1474 case SCBeeprom: 1475 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1476 eepro100_write_eeprom(s->eeprom, val); 1477 break; 1478 case SCBCtrlMDI: 1479 case SCBCtrlMDI + 1: 1480 case SCBCtrlMDI + 2: 1481 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1482 break; 1483 case SCBCtrlMDI + 3: 1484 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val)); 1485 eepro100_write_mdi(s); 1486 break; 1487 default: 1488 logout("addr=%s val=0x%02x\n", regname(addr), val); 1489 missing("unknown byte write"); 1490 } 1491 } 1492 1493 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val) 1494 { 1495 /* SCBStatus is readonly. */ 1496 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) { 1497 e100_write_reg2(s, addr, val); 1498 } 1499 1500 switch (addr) { 1501 case SCBStatus: 1502 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1503 s->mem[SCBAck] = (val >> 8); 1504 eepro100_acknowledge(s); 1505 break; 1506 case SCBCmd: 1507 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1508 eepro100_write_command(s, val); 1509 eepro100_write1(s, SCBIntmask, val >> 8); 1510 break; 1511 case SCBPointer: 1512 case SCBPointer + 2: 1513 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1514 break; 1515 case SCBPort: 1516 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1517 break; 1518 case SCBPort + 2: 1519 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1520 eepro100_write_port(s); 1521 break; 1522 case SCBeeprom: 1523 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1524 eepro100_write_eeprom(s->eeprom, val); 1525 break; 1526 case SCBCtrlMDI: 1527 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1528 break; 1529 case SCBCtrlMDI + 2: 1530 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); 1531 eepro100_write_mdi(s); 1532 break; 1533 default: 1534 logout("addr=%s val=0x%04x\n", regname(addr), val); 1535 missing("unknown word write"); 1536 } 1537 } 1538 1539 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val) 1540 { 1541 if (addr <= sizeof(s->mem) - sizeof(val)) { 1542 e100_write_reg4(s, addr, val); 1543 } 1544 1545 switch (addr) { 1546 case SCBPointer: 1547 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1548 break; 1549 case SCBPort: 1550 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1551 eepro100_write_port(s); 1552 break; 1553 case SCBflash: 1554 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1555 val = val >> 16; 1556 eepro100_write_eeprom(s->eeprom, val); 1557 break; 1558 case SCBCtrlMDI: 1559 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val)); 1560 eepro100_write_mdi(s); 1561 break; 1562 default: 1563 logout("addr=%s val=0x%08x\n", regname(addr), val); 1564 missing("unknown longword write"); 1565 } 1566 } 1567 1568 static uint64_t eepro100_read(void *opaque, hwaddr addr, 1569 unsigned size) 1570 { 1571 EEPRO100State *s = opaque; 1572 1573 switch (size) { 1574 case 1: return eepro100_read1(s, addr); 1575 case 2: return eepro100_read2(s, addr); 1576 case 4: return eepro100_read4(s, addr); 1577 default: abort(); 1578 } 1579 } 1580 1581 static void eepro100_write(void *opaque, hwaddr addr, 1582 uint64_t data, unsigned size) 1583 { 1584 EEPRO100State *s = opaque; 1585 1586 switch (size) { 1587 case 1: 1588 eepro100_write1(s, addr, data); 1589 break; 1590 case 2: 1591 eepro100_write2(s, addr, data); 1592 break; 1593 case 4: 1594 eepro100_write4(s, addr, data); 1595 break; 1596 default: 1597 abort(); 1598 } 1599 } 1600 1601 static const MemoryRegionOps eepro100_ops = { 1602 .read = eepro100_read, 1603 .write = eepro100_write, 1604 .endianness = DEVICE_LITTLE_ENDIAN, 1605 }; 1606 1607 static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size) 1608 { 1609 /* TODO: 1610 * - Magic packets should set bit 30 in power management driver register. 1611 * - Interesting packets should set bit 29 in power management driver register. 1612 */ 1613 EEPRO100State *s = qemu_get_nic_opaque(nc); 1614 uint16_t rfd_status = 0xa000; 1615 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1616 uint8_t min_buf[60]; 1617 #endif 1618 static const uint8_t broadcast_macaddr[6] = 1619 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1620 1621 #if defined(CONFIG_PAD_RECEIVED_FRAMES) 1622 /* Pad to minimum Ethernet frame length */ 1623 if (size < sizeof(min_buf)) { 1624 memcpy(min_buf, buf, size); 1625 memset(&min_buf[size], 0, sizeof(min_buf) - size); 1626 buf = min_buf; 1627 size = sizeof(min_buf); 1628 } 1629 #endif 1630 1631 if (s->configuration[8] & 0x80) { 1632 /* CSMA is disabled. */ 1633 logout("%p received while CSMA is disabled\n", s); 1634 return -1; 1635 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1636 } else if (size < 64 && (s->configuration[7] & BIT(0))) { 1637 /* Short frame and configuration byte 7/0 (discard short receive) set: 1638 * Short frame is discarded */ 1639 logout("%p received short frame (%zu byte)\n", s, size); 1640 s->statistics.rx_short_frame_errors++; 1641 return -1; 1642 #endif 1643 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) { 1644 /* Long frame and configuration byte 18/3 (long receive ok) not set: 1645 * Long frames are discarded. */ 1646 logout("%p received long frame (%zu byte), ignored\n", s, size); 1647 return -1; 1648 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */ 1649 /* Frame matches individual address. */ 1650 /* TODO: check configuration byte 15/4 (ignore U/L). */ 1651 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size)); 1652 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) { 1653 /* Broadcast frame. */ 1654 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size)); 1655 rfd_status |= 0x0002; 1656 } else if (buf[0] & 0x01) { 1657 /* Multicast frame. */ 1658 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size))); 1659 if (s->configuration[21] & BIT(3)) { 1660 /* Multicast all bit is set, receive all multicast frames. */ 1661 } else { 1662 unsigned mcast_idx = (net_crc32(buf, ETH_ALEN) & BITS(7, 2)) >> 2; 1663 assert(mcast_idx < 64); 1664 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1665 /* Multicast frame is allowed in hash table. */ 1666 } else if (s->configuration[15] & BIT(0)) { 1667 /* Promiscuous: receive all. */ 1668 rfd_status |= 0x0004; 1669 } else { 1670 TRACE(RXTX, logout("%p multicast ignored\n", s)); 1671 return -1; 1672 } 1673 } 1674 /* TODO: Next not for promiscuous mode? */ 1675 rfd_status |= 0x0002; 1676 } else if (s->configuration[15] & BIT(0)) { 1677 /* Promiscuous: receive all. */ 1678 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size)); 1679 rfd_status |= 0x0004; 1680 } else if (s->configuration[20] & BIT(6)) { 1681 /* Multiple IA bit set. */ 1682 unsigned mcast_idx = net_crc32(buf, ETH_ALEN) >> 26; 1683 assert(mcast_idx < 64); 1684 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) { 1685 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s)); 1686 } else { 1687 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s)); 1688 return -1; 1689 } 1690 } else { 1691 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size, 1692 nic_dump(buf, size))); 1693 return size; 1694 } 1695 1696 if (get_ru_state(s) != ru_ready) { 1697 /* No resources available. */ 1698 logout("no resources, state=%u\n", get_ru_state(s)); 1699 /* TODO: RNR interrupt only at first failed frame? */ 1700 eepro100_rnr_interrupt(s); 1701 s->statistics.rx_resource_errors++; 1702 #if 0 1703 assert(!"no resources"); 1704 #endif 1705 return -1; 1706 } 1707 /* !!! */ 1708 eepro100_rx_t rx; 1709 pci_dma_read(&s->dev, s->ru_base + s->ru_offset, 1710 &rx, sizeof(eepro100_rx_t)); 1711 uint16_t rfd_command = le16_to_cpu(rx.command); 1712 uint16_t rfd_size = le16_to_cpu(rx.size); 1713 1714 if (size > rfd_size) { 1715 logout("Receive buffer (%" PRId16 " bytes) too small for data " 1716 "(%zu bytes); data truncated\n", rfd_size, size); 1717 size = rfd_size; 1718 } 1719 #if !defined(CONFIG_PAD_RECEIVED_FRAMES) 1720 if (size < 64) { 1721 rfd_status |= 0x0080; 1722 } 1723 #endif 1724 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", 1725 rfd_command, rx.link, rx.rx_buf_addr, rfd_size)); 1726 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1727 offsetof(eepro100_rx_t, status), rfd_status); 1728 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset + 1729 offsetof(eepro100_rx_t, count), size); 1730 /* Early receive interrupt not supported. */ 1731 #if 0 1732 eepro100_er_interrupt(s); 1733 #endif 1734 /* Receive CRC Transfer not supported. */ 1735 if (s->configuration[18] & BIT(2)) { 1736 missing("Receive CRC Transfer"); 1737 return -1; 1738 } 1739 /* TODO: check stripping enable bit. */ 1740 #if 0 1741 assert(!(s->configuration[17] & BIT(0))); 1742 #endif 1743 pci_dma_write(&s->dev, s->ru_base + s->ru_offset + 1744 sizeof(eepro100_rx_t), buf, size); 1745 s->statistics.rx_good_frames++; 1746 eepro100_fr_interrupt(s); 1747 s->ru_offset = le32_to_cpu(rx.link); 1748 if (rfd_command & COMMAND_EL) { 1749 /* EL bit is set, so this was the last frame. */ 1750 logout("receive: Running out of frames\n"); 1751 set_ru_state(s, ru_no_resources); 1752 eepro100_rnr_interrupt(s); 1753 } 1754 if (rfd_command & COMMAND_S) { 1755 /* S bit is set. */ 1756 set_ru_state(s, ru_suspended); 1757 } 1758 return size; 1759 } 1760 1761 static const VMStateDescription vmstate_eepro100 = { 1762 .version_id = 3, 1763 .minimum_version_id = 2, 1764 .fields = (VMStateField[]) { 1765 VMSTATE_PCI_DEVICE(dev, EEPRO100State), 1766 VMSTATE_UNUSED(32), 1767 VMSTATE_BUFFER(mult, EEPRO100State), 1768 VMSTATE_BUFFER(mem, EEPRO100State), 1769 /* Save all members of struct between scb_stat and mem. */ 1770 VMSTATE_UINT8(scb_stat, EEPRO100State), 1771 VMSTATE_UINT8(int_stat, EEPRO100State), 1772 VMSTATE_UNUSED(3*4), 1773 VMSTATE_MACADDR(conf.macaddr, EEPRO100State), 1774 VMSTATE_UNUSED(19*4), 1775 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32), 1776 /* The eeprom should be saved and restored by its own routines. */ 1777 VMSTATE_UINT32(device, EEPRO100State), 1778 /* TODO check device. */ 1779 VMSTATE_UINT32(cu_base, EEPRO100State), 1780 VMSTATE_UINT32(cu_offset, EEPRO100State), 1781 VMSTATE_UINT32(ru_base, EEPRO100State), 1782 VMSTATE_UINT32(ru_offset, EEPRO100State), 1783 VMSTATE_UINT32(statsaddr, EEPRO100State), 1784 /* Save eepro100_stats_t statistics. */ 1785 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State), 1786 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State), 1787 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State), 1788 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State), 1789 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State), 1790 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State), 1791 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State), 1792 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State), 1793 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State), 1794 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State), 1795 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State), 1796 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State), 1797 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State), 1798 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State), 1799 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State), 1800 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State), 1801 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State), 1802 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State), 1803 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State), 1804 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State), 1805 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State), 1806 /* Configuration bytes. */ 1807 VMSTATE_BUFFER(configuration, EEPRO100State), 1808 VMSTATE_END_OF_LIST() 1809 } 1810 }; 1811 1812 static void pci_nic_uninit(PCIDevice *pci_dev) 1813 { 1814 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1815 1816 vmstate_unregister(&pci_dev->qdev, s->vmstate, s); 1817 g_free(s->vmstate); 1818 eeprom93xx_free(&pci_dev->qdev, s->eeprom); 1819 qemu_del_nic(s->nic); 1820 } 1821 1822 static NetClientInfo net_eepro100_info = { 1823 .type = NET_CLIENT_DRIVER_NIC, 1824 .size = sizeof(NICState), 1825 .receive = nic_receive, 1826 }; 1827 1828 static void e100_nic_realize(PCIDevice *pci_dev, Error **errp) 1829 { 1830 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev); 1831 E100PCIDeviceInfo *info = eepro100_get_class(s); 1832 Error *local_err = NULL; 1833 1834 TRACE(OTHER, logout("\n")); 1835 1836 s->device = info->device; 1837 1838 e100_pci_reset(s, &local_err); 1839 if (local_err) { 1840 error_propagate(errp, local_err); 1841 return; 1842 } 1843 1844 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM, 1845 * i82559 and later support 64 or 256 word EEPROM. */ 1846 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE); 1847 1848 /* Handler for memory-mapped I/O */ 1849 memory_region_init_io(&s->mmio_bar, OBJECT(s), &eepro100_ops, s, 1850 "eepro100-mmio", PCI_MEM_SIZE); 1851 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar); 1852 memory_region_init_io(&s->io_bar, OBJECT(s), &eepro100_ops, s, 1853 "eepro100-io", PCI_IO_SIZE); 1854 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar); 1855 /* FIXME: flash aliases to mmio?! */ 1856 memory_region_init_io(&s->flash_bar, OBJECT(s), &eepro100_ops, s, 1857 "eepro100-flash", PCI_FLASH_SIZE); 1858 pci_register_bar(&s->dev, 2, 0, &s->flash_bar); 1859 1860 qemu_macaddr_default_if_unset(&s->conf.macaddr); 1861 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)); 1862 1863 nic_reset(s); 1864 1865 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf, 1866 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s); 1867 1868 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 1869 TRACE(OTHER, logout("%s\n", qemu_get_queue(s->nic)->info_str)); 1870 1871 qemu_register_reset(nic_reset, s); 1872 1873 s->vmstate = g_memdup(&vmstate_eepro100, sizeof(vmstate_eepro100)); 1874 s->vmstate->name = qemu_get_queue(s->nic)->model; 1875 vmstate_register(&pci_dev->qdev, -1, s->vmstate, s); 1876 } 1877 1878 static void eepro100_instance_init(Object *obj) 1879 { 1880 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, PCI_DEVICE(obj)); 1881 device_add_bootindex_property(obj, &s->conf.bootindex, 1882 "bootindex", "/ethernet-phy@0", 1883 DEVICE(s), NULL); 1884 } 1885 1886 static E100PCIDeviceInfo e100_devices[] = { 1887 { 1888 .name = "i82550", 1889 .desc = "Intel i82550 Ethernet", 1890 .device = i82550, 1891 /* TODO: check device id. */ 1892 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1893 /* Revision ID: 0x0c, 0x0d, 0x0e. */ 1894 .revision = 0x0e, 1895 /* TODO: check size of statistical counters. */ 1896 .stats_size = 80, 1897 /* TODO: check extended tcb support. */ 1898 .has_extended_tcb_support = true, 1899 .power_management = true, 1900 },{ 1901 .name = "i82551", 1902 .desc = "Intel i82551 Ethernet", 1903 .device = i82551, 1904 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1905 /* Revision ID: 0x0f, 0x10. */ 1906 .revision = 0x0f, 1907 /* TODO: check size of statistical counters. */ 1908 .stats_size = 80, 1909 .has_extended_tcb_support = true, 1910 .power_management = true, 1911 },{ 1912 .name = "i82557a", 1913 .desc = "Intel i82557A Ethernet", 1914 .device = i82557A, 1915 .device_id = PCI_DEVICE_ID_INTEL_82557, 1916 .revision = 0x01, 1917 .power_management = false, 1918 },{ 1919 .name = "i82557b", 1920 .desc = "Intel i82557B Ethernet", 1921 .device = i82557B, 1922 .device_id = PCI_DEVICE_ID_INTEL_82557, 1923 .revision = 0x02, 1924 .power_management = false, 1925 },{ 1926 .name = "i82557c", 1927 .desc = "Intel i82557C Ethernet", 1928 .device = i82557C, 1929 .device_id = PCI_DEVICE_ID_INTEL_82557, 1930 .revision = 0x03, 1931 .power_management = false, 1932 },{ 1933 .name = "i82558a", 1934 .desc = "Intel i82558A Ethernet", 1935 .device = i82558A, 1936 .device_id = PCI_DEVICE_ID_INTEL_82557, 1937 .revision = 0x04, 1938 .stats_size = 76, 1939 .has_extended_tcb_support = true, 1940 .power_management = true, 1941 },{ 1942 .name = "i82558b", 1943 .desc = "Intel i82558B Ethernet", 1944 .device = i82558B, 1945 .device_id = PCI_DEVICE_ID_INTEL_82557, 1946 .revision = 0x05, 1947 .stats_size = 76, 1948 .has_extended_tcb_support = true, 1949 .power_management = true, 1950 },{ 1951 .name = "i82559a", 1952 .desc = "Intel i82559A Ethernet", 1953 .device = i82559A, 1954 .device_id = PCI_DEVICE_ID_INTEL_82557, 1955 .revision = 0x06, 1956 .stats_size = 80, 1957 .has_extended_tcb_support = true, 1958 .power_management = true, 1959 },{ 1960 .name = "i82559b", 1961 .desc = "Intel i82559B Ethernet", 1962 .device = i82559B, 1963 .device_id = PCI_DEVICE_ID_INTEL_82557, 1964 .revision = 0x07, 1965 .stats_size = 80, 1966 .has_extended_tcb_support = true, 1967 .power_management = true, 1968 },{ 1969 .name = "i82559c", 1970 .desc = "Intel i82559C Ethernet", 1971 .device = i82559C, 1972 .device_id = PCI_DEVICE_ID_INTEL_82557, 1973 #if 0 1974 .revision = 0x08, 1975 #endif 1976 /* TODO: Windows wants revision id 0x0c. */ 1977 .revision = 0x0c, 1978 #if EEPROM_SIZE > 0 1979 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL, 1980 .subsystem_id = 0x0040, 1981 #endif 1982 .stats_size = 80, 1983 .has_extended_tcb_support = true, 1984 .power_management = true, 1985 },{ 1986 .name = "i82559er", 1987 .desc = "Intel i82559ER Ethernet", 1988 .device = i82559ER, 1989 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 1990 .revision = 0x09, 1991 .stats_size = 80, 1992 .has_extended_tcb_support = true, 1993 .power_management = true, 1994 },{ 1995 .name = "i82562", 1996 .desc = "Intel i82562 Ethernet", 1997 .device = i82562, 1998 /* TODO: check device id. */ 1999 .device_id = PCI_DEVICE_ID_INTEL_82551IT, 2000 /* TODO: wrong revision id. */ 2001 .revision = 0x0e, 2002 .stats_size = 80, 2003 .has_extended_tcb_support = true, 2004 .power_management = true, 2005 },{ 2006 /* Toshiba Tecra 8200. */ 2007 .name = "i82801", 2008 .desc = "Intel i82801 Ethernet", 2009 .device = i82801, 2010 .device_id = 0x2449, 2011 .revision = 0x03, 2012 .stats_size = 80, 2013 .has_extended_tcb_support = true, 2014 .power_management = true, 2015 } 2016 }; 2017 2018 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename) 2019 { 2020 E100PCIDeviceInfo *info = NULL; 2021 int i; 2022 2023 /* This is admittedly awkward but also temporary. QOM allows for 2024 * parameterized typing and for subclassing both of which would suitable 2025 * handle what's going on here. But class_data is already being used as 2026 * a stop-gap hack to allow incremental qdev conversion so we cannot use it 2027 * right now. Once we merge the final QOM series, we can come back here and 2028 * do this in a much more elegant fashion. 2029 */ 2030 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2031 if (strcmp(e100_devices[i].name, typename) == 0) { 2032 info = &e100_devices[i]; 2033 break; 2034 } 2035 } 2036 assert(info != NULL); 2037 2038 return info; 2039 } 2040 2041 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s) 2042 { 2043 return eepro100_get_class_by_name(object_get_typename(OBJECT(s))); 2044 } 2045 2046 static Property e100_properties[] = { 2047 DEFINE_NIC_PROPERTIES(EEPRO100State, conf), 2048 DEFINE_PROP_END_OF_LIST(), 2049 }; 2050 2051 static void eepro100_class_init(ObjectClass *klass, void *data) 2052 { 2053 DeviceClass *dc = DEVICE_CLASS(klass); 2054 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 2055 E100PCIDeviceInfo *info; 2056 2057 info = eepro100_get_class_by_name(object_class_get_name(klass)); 2058 2059 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 2060 dc->props = e100_properties; 2061 dc->desc = info->desc; 2062 k->vendor_id = PCI_VENDOR_ID_INTEL; 2063 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 2064 k->romfile = "pxe-eepro100.rom"; 2065 k->realize = e100_nic_realize; 2066 k->exit = pci_nic_uninit; 2067 k->device_id = info->device_id; 2068 k->revision = info->revision; 2069 k->subsystem_vendor_id = info->subsystem_vendor_id; 2070 k->subsystem_id = info->subsystem_id; 2071 } 2072 2073 static void eepro100_register_types(void) 2074 { 2075 size_t i; 2076 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) { 2077 TypeInfo type_info = {}; 2078 E100PCIDeviceInfo *info = &e100_devices[i]; 2079 2080 type_info.name = info->name; 2081 type_info.parent = TYPE_PCI_DEVICE; 2082 type_info.class_init = eepro100_class_init; 2083 type_info.instance_size = sizeof(EEPRO100State); 2084 type_info.instance_init = eepro100_instance_init; 2085 type_info.interfaces = (InterfaceInfo[]) { 2086 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 2087 { }, 2088 }; 2089 2090 type_register(&type_info); 2091 } 2092 } 2093 2094 type_init(eepro100_register_types) 2095