1 /*
2 * QEMU i8255x (PRO100) emulation
3 *
4 * Copyright (C) 2006-2011 Stefan Weil
5 *
6 * Portions of the code are copies from grub / etherboot eepro100.c
7 * and linux e100.c.
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) version 3 or any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 *
22 * Tested features (i82559):
23 * PXE boot (i386 guest, i386 / mips / mipsel / ppc host) ok
24 * Linux networking (i386) ok
25 *
26 * Untested:
27 * Windows networking
28 *
29 * References:
30 *
31 * Intel 8255x 10/100 Mbps Ethernet Controller Family
32 * Open Source Software Developer Manual
33 *
34 * TODO:
35 * * PHY emulation should be separated from nic emulation.
36 * Most nic emulations could share the same phy code.
37 * * i82550 is untested. It is programmed like the i82559.
38 * * i82562 is untested. It is programmed like the i82559.
39 * * Power management (i82558 and later) is not implemented.
40 * * Wake-on-LAN is not implemented.
41 */
42
43 #include "qemu/osdep.h"
44 #include "qemu/units.h"
45 #include "hw/pci/pci_device.h"
46 #include "hw/qdev-properties.h"
47 #include "migration/vmstate.h"
48 #include "net/net.h"
49 #include "net/eth.h"
50 #include "hw/nvram/eeprom93xx.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/dma.h"
53 #include "sysemu/reset.h"
54 #include "qemu/bitops.h"
55 #include "qemu/module.h"
56 #include "qapi/error.h"
57
58 /* QEMU sends frames smaller than 60 bytes to ethernet nics.
59 * Such frames are rejected by real nics and their emulations.
60 * To avoid this behaviour, other nic emulations pad received
61 * frames. The following definition enables this padding for
62 * eepro100, too. We keep the define around in case it might
63 * become useful the future if the core networking is ever
64 * changed to pad short packets itself. */
65 #define CONFIG_PAD_RECEIVED_FRAMES
66
67 /* Debug EEPRO100 card. */
68 #if 0
69 # define DEBUG_EEPRO100
70 #endif
71
72 #ifdef DEBUG_EEPRO100
73 #define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
74 #else
75 #define logout(fmt, ...) ((void)0)
76 #endif
77
78 /* Set flags to 0 to disable debug output. */
79 #define INT 1 /* interrupt related actions */
80 #define MDI 1 /* mdi related actions */
81 #define OTHER 1
82 #define RXTX 1
83 #define EEPROM 1 /* eeprom related actions */
84
85 #define TRACE(flag, command) ((flag) ? (command) : (void)0)
86
87 #define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
88
89 #define MAX_ETH_FRAME_SIZE 1514
90
91 /* This driver supports several different devices which are declared here. */
92 #define i82550 0x82550
93 #define i82551 0x82551
94 #define i82557A 0x82557a
95 #define i82557B 0x82557b
96 #define i82557C 0x82557c
97 #define i82558A 0x82558a
98 #define i82558B 0x82558b
99 #define i82559A 0x82559a
100 #define i82559B 0x82559b
101 #define i82559C 0x82559c
102 #define i82559ER 0x82559e
103 #define i82562 0x82562
104 #define i82801 0x82801
105
106 /* Use 64 word EEPROM. TODO: could be a runtime option. */
107 #define EEPROM_SIZE 64
108
109 #define PCI_MEM_SIZE (4 * KiB)
110 #define PCI_IO_SIZE 64
111 #define PCI_FLASH_SIZE (128 * KiB)
112
113 #define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
114
115 /* The SCB accepts the following controls for the Tx and Rx units: */
116 #define CU_NOP 0x0000 /* No operation. */
117 #define CU_START 0x0010 /* CU start. */
118 #define CU_RESUME 0x0020 /* CU resume. */
119 #define CU_STATSADDR 0x0040 /* Load dump counters address. */
120 #define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
121 #define CU_CMD_BASE 0x0060 /* Load CU base address. */
122 #define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
123 #define CU_SRESUME 0x00a0 /* CU static resume. */
124
125 #define RU_NOP 0x0000
126 #define RX_START 0x0001
127 #define RX_RESUME 0x0002
128 #define RU_ABORT 0x0004
129 #define RX_ADDR_LOAD 0x0006
130 #define RX_RESUMENR 0x0007
131 #define INT_MASK 0x0100
132 #define DRVR_INT 0x0200 /* Driver generated interrupt. */
133
134 typedef struct {
135 const char *name;
136 const char *desc;
137 uint16_t device_id;
138 uint8_t revision;
139 uint16_t subsystem_vendor_id;
140 uint16_t subsystem_id;
141
142 uint32_t device;
143 uint8_t stats_size;
144 bool has_extended_tcb_support;
145 bool power_management;
146 } E100PCIDeviceInfo;
147
148 /* Offsets to the various registers.
149 All accesses need not be longword aligned. */
150 typedef enum {
151 SCBStatus = 0, /* Status Word. */
152 SCBAck = 1,
153 SCBCmd = 2, /* Rx/Command Unit command and status. */
154 SCBIntmask = 3,
155 SCBPointer = 4, /* General purpose pointer. */
156 SCBPort = 8, /* Misc. commands and operands. */
157 SCBflash = 12, /* Flash memory control. */
158 SCBeeprom = 14, /* EEPROM control. */
159 SCBCtrlMDI = 16, /* MDI interface control. */
160 SCBEarlyRx = 20, /* Early receive byte count. */
161 SCBFlow = 24, /* Flow Control. */
162 SCBpmdr = 27, /* Power Management Driver. */
163 SCBgctrl = 28, /* General Control. */
164 SCBgstat = 29, /* General Status. */
165 } E100RegisterOffset;
166
167 /* A speedo3 transmit buffer descriptor with two buffers... */
168 typedef struct {
169 uint16_t status;
170 uint16_t command;
171 uint32_t link; /* void * */
172 uint32_t tbd_array_addr; /* transmit buffer descriptor array address. */
173 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
174 uint8_t tx_threshold; /* transmit threshold */
175 uint8_t tbd_count; /* TBD number */
176 #if 0
177 /* This constitutes two "TBD" entries: hdr and data */
178 uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
179 int32_t tx_buf_size0; /* Length of Tx hdr. */
180 uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
181 int32_t tx_buf_size1; /* Length of Tx data. */
182 #endif
183 } eepro100_tx_t;
184
185 /* Receive frame descriptor. */
186 typedef struct {
187 int16_t status;
188 uint16_t command;
189 uint32_t link; /* struct RxFD * */
190 uint32_t rx_buf_addr; /* void * */
191 uint16_t count;
192 uint16_t size;
193 /* Ethernet frame data follows. */
194 } eepro100_rx_t;
195
196 typedef enum {
197 COMMAND_EL = BIT(15),
198 COMMAND_S = BIT(14),
199 COMMAND_I = BIT(13),
200 COMMAND_NC = BIT(4),
201 COMMAND_SF = BIT(3),
202 COMMAND_CMD = BITS(2, 0),
203 } scb_command_bit;
204
205 typedef enum {
206 STATUS_C = BIT(15),
207 STATUS_OK = BIT(13),
208 } scb_status_bit;
209
210 typedef struct {
211 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
212 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
213 tx_multiple_collisions, tx_total_collisions;
214 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
215 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
216 rx_short_frame_errors;
217 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
218 uint16_t xmt_tco_frames, rcv_tco_frames;
219 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
220 uint32_t reserved[4];
221 } eepro100_stats_t;
222
223 typedef enum {
224 cu_idle = 0,
225 cu_suspended = 1,
226 cu_active = 2,
227 cu_lpq_active = 2,
228 cu_hqp_active = 3
229 } cu_state_t;
230
231 typedef enum {
232 ru_idle = 0,
233 ru_suspended = 1,
234 ru_no_resources = 2,
235 ru_ready = 4
236 } ru_state_t;
237
238 typedef struct {
239 PCIDevice dev;
240 /* Hash register (multicast mask array, multiple individual addresses). */
241 uint8_t mult[8];
242 MemoryRegion mmio_bar;
243 MemoryRegion io_bar;
244 MemoryRegion flash_bar;
245 NICState *nic;
246 NICConf conf;
247 uint8_t scb_stat; /* SCB stat/ack byte */
248 uint8_t int_stat; /* PCI interrupt status */
249 /* region must not be saved by nic_save. */
250 uint16_t mdimem[32];
251 eeprom_t *eeprom;
252 uint32_t device; /* device variant */
253 /* (cu_base + cu_offset) address the next command block in the command block list. */
254 uint32_t cu_base; /* CU base address */
255 uint32_t cu_offset; /* CU address offset */
256 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
257 uint32_t ru_base; /* RU base address */
258 uint32_t ru_offset; /* RU address offset */
259 uint32_t statsaddr; /* pointer to eepro100_stats_t */
260
261 /* Temporary status information (no need to save these values),
262 * used while processing CU commands. */
263 eepro100_tx_t tx; /* transmit buffer descriptor */
264 uint32_t cb_address; /* = cu_base + cu_offset */
265
266 /* Statistical counters. Also used for wake-up packet (i82559). */
267 eepro100_stats_t statistics;
268
269 /* Data in mem is always in the byte order of the controller (le).
270 * It must be dword aligned to allow direct access to 32 bit values. */
271 uint8_t mem[PCI_MEM_SIZE] __attribute__((aligned(8)));
272
273 /* Configuration bytes. */
274 uint8_t configuration[22];
275
276 /* vmstate for each particular nic */
277 VMStateDescription *vmstate;
278
279 /* Quasi static device properties (no need to save them). */
280 uint16_t stats_size;
281 bool has_extended_tcb_support;
282 } EEPRO100State;
283
284 /* Word indices in EEPROM. */
285 typedef enum {
286 EEPROM_CNFG_MDIX = 0x03,
287 EEPROM_ID = 0x05,
288 EEPROM_PHY_ID = 0x06,
289 EEPROM_VENDOR_ID = 0x0c,
290 EEPROM_CONFIG_ASF = 0x0d,
291 EEPROM_DEVICE_ID = 0x23,
292 EEPROM_SMBUS_ADDR = 0x90,
293 } EEPROMOffset;
294
295 /* Bit values for EEPROM ID word. */
296 typedef enum {
297 EEPROM_ID_MDM = BIT(0), /* Modem */
298 EEPROM_ID_STB = BIT(1), /* Standby Enable */
299 EEPROM_ID_WMR = BIT(2), /* ??? */
300 EEPROM_ID_WOL = BIT(5), /* Wake on LAN */
301 EEPROM_ID_DPD = BIT(6), /* Deep Power Down */
302 EEPROM_ID_ALT = BIT(7), /* */
303 /* BITS(10, 8) device revision */
304 EEPROM_ID_BD = BIT(11), /* boot disable */
305 EEPROM_ID_ID = BIT(13), /* id bit */
306 /* BITS(15, 14) signature */
307 EEPROM_ID_VALID = BIT(14), /* signature for valid eeprom */
308 } eeprom_id_bit;
309
310 /* Default values for MDI (PHY) registers */
311 static const uint16_t eepro100_mdi_default[] = {
312 /* MDI Registers 0 - 6, 7 */
313 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
314 /* MDI Registers 8 - 15 */
315 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
316 /* MDI Registers 16 - 31 */
317 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
318 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
319 };
320
321 /* Readonly mask for MDI (PHY) registers */
322 static const uint16_t eepro100_mdi_mask[] = {
323 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
324 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
325 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
326 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
327 };
328
329 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s);
330
331 /* Read a 16 bit control/status (CSR) register. */
e100_read_reg2(EEPRO100State * s,E100RegisterOffset addr)332 static uint16_t e100_read_reg2(EEPRO100State *s, E100RegisterOffset addr)
333 {
334 assert(!((uintptr_t)&s->mem[addr] & 1));
335 return lduw_le_p(&s->mem[addr]);
336 }
337
338 /* Read a 32 bit control/status (CSR) register. */
e100_read_reg4(EEPRO100State * s,E100RegisterOffset addr)339 static uint32_t e100_read_reg4(EEPRO100State *s, E100RegisterOffset addr)
340 {
341 assert(!((uintptr_t)&s->mem[addr] & 3));
342 return ldl_le_p(&s->mem[addr]);
343 }
344
345 /* Write a 16 bit control/status (CSR) register. */
e100_write_reg2(EEPRO100State * s,E100RegisterOffset addr,uint16_t val)346 static void e100_write_reg2(EEPRO100State *s, E100RegisterOffset addr,
347 uint16_t val)
348 {
349 assert(!((uintptr_t)&s->mem[addr] & 1));
350 stw_le_p(&s->mem[addr], val);
351 }
352
353 /* Read a 32 bit control/status (CSR) register. */
e100_write_reg4(EEPRO100State * s,E100RegisterOffset addr,uint32_t val)354 static void e100_write_reg4(EEPRO100State *s, E100RegisterOffset addr,
355 uint32_t val)
356 {
357 assert(!((uintptr_t)&s->mem[addr] & 3));
358 stl_le_p(&s->mem[addr], val);
359 }
360
361 #if defined(DEBUG_EEPRO100)
nic_dump(const uint8_t * buf,unsigned size)362 static const char *nic_dump(const uint8_t * buf, unsigned size)
363 {
364 static char dump[3 * 16 + 1];
365 char *p = &dump[0];
366 if (size > 16) {
367 size = 16;
368 }
369 while (size-- > 0) {
370 p += sprintf(p, " %02x", *buf++);
371 }
372 return dump;
373 }
374 #endif /* DEBUG_EEPRO100 */
375
376 enum scb_stat_ack {
377 stat_ack_not_ours = 0x00,
378 stat_ack_sw_gen = 0x04,
379 stat_ack_rnr = 0x10,
380 stat_ack_cu_idle = 0x20,
381 stat_ack_frame_rx = 0x40,
382 stat_ack_cu_cmd_done = 0x80,
383 stat_ack_not_present = 0xFF,
384 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
385 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
386 };
387
disable_interrupt(EEPRO100State * s)388 static void disable_interrupt(EEPRO100State * s)
389 {
390 if (s->int_stat) {
391 TRACE(INT, logout("interrupt disabled\n"));
392 pci_irq_deassert(&s->dev);
393 s->int_stat = 0;
394 }
395 }
396
enable_interrupt(EEPRO100State * s)397 static void enable_interrupt(EEPRO100State * s)
398 {
399 if (!s->int_stat) {
400 TRACE(INT, logout("interrupt enabled\n"));
401 pci_irq_assert(&s->dev);
402 s->int_stat = 1;
403 }
404 }
405
eepro100_acknowledge(EEPRO100State * s)406 static void eepro100_acknowledge(EEPRO100State * s)
407 {
408 s->scb_stat &= ~s->mem[SCBAck];
409 s->mem[SCBAck] = s->scb_stat;
410 if (s->scb_stat == 0) {
411 disable_interrupt(s);
412 }
413 }
414
eepro100_interrupt(EEPRO100State * s,uint8_t status)415 static void eepro100_interrupt(EEPRO100State * s, uint8_t status)
416 {
417 uint8_t mask = ~s->mem[SCBIntmask];
418 s->mem[SCBAck] |= status;
419 status = s->scb_stat = s->mem[SCBAck];
420 status &= (mask | 0x0f);
421 #if 0
422 status &= (~s->mem[SCBIntmask] | 0x0xf);
423 #endif
424 if (status && (mask & 0x01)) {
425 /* SCB mask and SCB Bit M do not disable interrupt. */
426 enable_interrupt(s);
427 } else if (s->int_stat) {
428 disable_interrupt(s);
429 }
430 }
431
eepro100_cx_interrupt(EEPRO100State * s)432 static void eepro100_cx_interrupt(EEPRO100State * s)
433 {
434 /* CU completed action command. */
435 /* Transmit not ok (82557 only, not in emulation). */
436 eepro100_interrupt(s, 0x80);
437 }
438
eepro100_cna_interrupt(EEPRO100State * s)439 static void eepro100_cna_interrupt(EEPRO100State * s)
440 {
441 /* CU left the active state. */
442 eepro100_interrupt(s, 0x20);
443 }
444
eepro100_fr_interrupt(EEPRO100State * s)445 static void eepro100_fr_interrupt(EEPRO100State * s)
446 {
447 /* RU received a complete frame. */
448 eepro100_interrupt(s, 0x40);
449 }
450
eepro100_rnr_interrupt(EEPRO100State * s)451 static void eepro100_rnr_interrupt(EEPRO100State * s)
452 {
453 /* RU is not ready. */
454 eepro100_interrupt(s, 0x10);
455 }
456
eepro100_mdi_interrupt(EEPRO100State * s)457 static void eepro100_mdi_interrupt(EEPRO100State * s)
458 {
459 /* MDI completed read or write cycle. */
460 eepro100_interrupt(s, 0x08);
461 }
462
eepro100_swi_interrupt(EEPRO100State * s)463 static void eepro100_swi_interrupt(EEPRO100State * s)
464 {
465 /* Software has requested an interrupt. */
466 eepro100_interrupt(s, 0x04);
467 }
468
469 #if 0
470 static void eepro100_fcp_interrupt(EEPRO100State * s)
471 {
472 /* Flow control pause interrupt (82558 and later). */
473 eepro100_interrupt(s, 0x01);
474 }
475 #endif
476
e100_pci_reset(EEPRO100State * s,Error ** errp)477 static void e100_pci_reset(EEPRO100State *s, Error **errp)
478 {
479 E100PCIDeviceInfo *info = eepro100_get_class(s);
480 uint32_t device = s->device;
481 uint8_t *pci_conf = s->dev.config;
482
483 TRACE(OTHER, logout("%p\n", s));
484
485 /* PCI Status */
486 pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
487 PCI_STATUS_FAST_BACK);
488 /* PCI Latency Timer */
489 pci_set_byte(pci_conf + PCI_LATENCY_TIMER, 0x20); /* latency timer = 32 clocks */
490 /* Capability Pointer is set by PCI framework. */
491 /* Interrupt Line */
492 /* Interrupt Pin */
493 pci_set_byte(pci_conf + PCI_INTERRUPT_PIN, 1); /* interrupt pin A */
494 /* Minimum Grant */
495 pci_set_byte(pci_conf + PCI_MIN_GNT, 0x08);
496 /* Maximum Latency */
497 pci_set_byte(pci_conf + PCI_MAX_LAT, 0x18);
498
499 s->stats_size = info->stats_size;
500 s->has_extended_tcb_support = info->has_extended_tcb_support;
501
502 switch (device) {
503 case i82550:
504 case i82551:
505 case i82557A:
506 case i82557B:
507 case i82557C:
508 case i82558A:
509 case i82558B:
510 case i82559A:
511 case i82559B:
512 case i82559ER:
513 case i82562:
514 case i82801:
515 case i82559C:
516 break;
517 default:
518 logout("Device %X is undefined!\n", device);
519 }
520
521 /* Standard TxCB. */
522 s->configuration[6] |= BIT(4);
523
524 /* Standard statistical counters. */
525 s->configuration[6] |= BIT(5);
526
527 if (s->stats_size == 80) {
528 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
529 if (s->configuration[6] & BIT(2)) {
530 /* TCO statistical counters. */
531 assert(s->configuration[6] & BIT(5));
532 } else {
533 if (s->configuration[6] & BIT(5)) {
534 /* No extended statistical counters, i82557 compatible. */
535 s->stats_size = 64;
536 } else {
537 /* i82558 compatible. */
538 s->stats_size = 76;
539 }
540 }
541 } else {
542 if (s->configuration[6] & BIT(5)) {
543 /* No extended statistical counters. */
544 s->stats_size = 64;
545 }
546 }
547 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
548
549 if (info->power_management) {
550 /* Power Management Capabilities */
551 int cfg_offset = 0xdc;
552 int r = pci_add_capability(&s->dev, PCI_CAP_ID_PM,
553 cfg_offset, PCI_PM_SIZEOF,
554 errp);
555 if (r < 0) {
556 return;
557 }
558
559 pci_set_word(pci_conf + cfg_offset + PCI_PM_PMC, 0x7e21);
560 #if 0 /* TODO: replace dummy code for power management emulation. */
561 /* TODO: Power Management Control / Status. */
562 pci_set_word(pci_conf + cfg_offset + PCI_PM_CTRL, 0x0000);
563 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
564 pci_set_byte(pci_conf + cfg_offset + PCI_PM_PPB_EXTENSIONS, 0x0000);
565 #endif
566 }
567
568 #if EEPROM_SIZE > 0
569 if (device == i82557C || device == i82558B || device == i82559C) {
570 /*
571 TODO: get vendor id from EEPROM for i82557C or later.
572 TODO: get device id from EEPROM for i82557C or later.
573 TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
574 TODO: header type is determined by EEPROM for i82559.
575 TODO: get subsystem id from EEPROM for i82557C or later.
576 TODO: get subsystem vendor id from EEPROM for i82557C or later.
577 TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
578 TODO: capability pointer depends on EEPROM for i82558.
579 */
580 logout("Get device id and revision from EEPROM!!!\n");
581 }
582 #endif /* EEPROM_SIZE > 0 */
583 }
584
nic_selective_reset(EEPRO100State * s)585 static void nic_selective_reset(EEPRO100State * s)
586 {
587 size_t i;
588 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
589 #if 0
590 eeprom93xx_reset(s->eeprom);
591 #endif
592 memcpy(eeprom_contents, s->conf.macaddr.a, 6);
593 eeprom_contents[EEPROM_ID] = EEPROM_ID_VALID;
594 if (s->device == i82557B || s->device == i82557C)
595 eeprom_contents[5] = 0x0100;
596 eeprom_contents[EEPROM_PHY_ID] = 1;
597 uint16_t sum = 0;
598 for (i = 0; i < EEPROM_SIZE - 1; i++) {
599 sum += eeprom_contents[i];
600 }
601 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
602 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
603
604 memset(s->mem, 0, sizeof(s->mem));
605 e100_write_reg4(s, SCBCtrlMDI, BIT(21));
606
607 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
608 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
609 }
610
nic_reset(void * opaque)611 static void nic_reset(void *opaque)
612 {
613 EEPRO100State *s = opaque;
614 TRACE(OTHER, logout("%p\n", s));
615 /* TODO: Clearing of hash register for selective reset, too? */
616 memset(&s->mult[0], 0, sizeof(s->mult));
617 nic_selective_reset(s);
618 }
619
620 #if defined(DEBUG_EEPRO100)
621 static const char * const e100_reg[PCI_IO_SIZE / 4] = {
622 "Command/Status",
623 "General Pointer",
624 "Port",
625 "EEPROM/Flash Control",
626 "MDI Control",
627 "Receive DMA Byte Count",
628 "Flow Control",
629 "General Status/Control"
630 };
631
regname(uint32_t addr)632 static char *regname(uint32_t addr)
633 {
634 static char buf[32];
635 if (addr < PCI_IO_SIZE) {
636 const char *r = e100_reg[addr / 4];
637 if (r != 0) {
638 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
639 } else {
640 snprintf(buf, sizeof(buf), "0x%02x", addr);
641 }
642 } else {
643 snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
644 }
645 return buf;
646 }
647 #endif /* DEBUG_EEPRO100 */
648
649 /*****************************************************************************
650 *
651 * Command emulation.
652 *
653 ****************************************************************************/
654
655 #if 0
656 static uint16_t eepro100_read_command(EEPRO100State * s)
657 {
658 uint16_t val = 0xffff;
659 TRACE(OTHER, logout("val=0x%04x\n", val));
660 return val;
661 }
662 #endif
663
664 /* Commands that can be put in a command list entry. */
665 enum commands {
666 CmdNOp = 0,
667 CmdIASetup = 1,
668 CmdConfigure = 2,
669 CmdMulticastList = 3,
670 CmdTx = 4,
671 CmdTDR = 5, /* load microcode */
672 CmdDump = 6,
673 CmdDiagnose = 7,
674
675 /* And some extra flags: */
676 CmdSuspend = 0x4000, /* Suspend after completion. */
677 CmdIntr = 0x2000, /* Interrupt after completion. */
678 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
679 };
680
get_cu_state(EEPRO100State * s)681 static cu_state_t get_cu_state(EEPRO100State * s)
682 {
683 return ((s->mem[SCBStatus] & BITS(7, 6)) >> 6);
684 }
685
set_cu_state(EEPRO100State * s,cu_state_t state)686 static void set_cu_state(EEPRO100State * s, cu_state_t state)
687 {
688 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(7, 6)) + (state << 6);
689 }
690
get_ru_state(EEPRO100State * s)691 static ru_state_t get_ru_state(EEPRO100State * s)
692 {
693 return ((s->mem[SCBStatus] & BITS(5, 2)) >> 2);
694 }
695
set_ru_state(EEPRO100State * s,ru_state_t state)696 static void set_ru_state(EEPRO100State * s, ru_state_t state)
697 {
698 s->mem[SCBStatus] = (s->mem[SCBStatus] & ~BITS(5, 2)) + (state << 2);
699 }
700
dump_statistics(EEPRO100State * s)701 static void dump_statistics(EEPRO100State * s)
702 {
703 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
704
705 /* Dump statistical data. Most data is never changed by the emulation
706 * and always 0, so we first just copy the whole block and then those
707 * values which really matter.
708 * Number of data should check configuration!!!
709 */
710 pci_dma_write(&s->dev, s->statsaddr, &s->statistics, s->stats_size);
711 stl_le_pci_dma(&s->dev, s->statsaddr + 0,
712 s->statistics.tx_good_frames, attrs);
713 stl_le_pci_dma(&s->dev, s->statsaddr + 36,
714 s->statistics.rx_good_frames, attrs);
715 stl_le_pci_dma(&s->dev, s->statsaddr + 48,
716 s->statistics.rx_resource_errors, attrs);
717 stl_le_pci_dma(&s->dev, s->statsaddr + 60,
718 s->statistics.rx_short_frame_errors, attrs);
719 #if 0
720 stw_le_pci_dma(&s->dev, s->statsaddr + 76,
721 s->statistics.xmt_tco_frames, attrs);
722 stw_le_pci_dma(&s->dev, s->statsaddr + 78,
723 s->statistics.rcv_tco_frames, attrs);
724 missing("CU dump statistical counters");
725 #endif
726 }
727
read_cb(EEPRO100State * s)728 static void read_cb(EEPRO100State *s)
729 {
730 pci_dma_read(&s->dev, s->cb_address, &s->tx, sizeof(s->tx));
731 s->tx.status = le16_to_cpu(s->tx.status);
732 s->tx.command = le16_to_cpu(s->tx.command);
733 s->tx.link = le32_to_cpu(s->tx.link);
734 s->tx.tbd_array_addr = le32_to_cpu(s->tx.tbd_array_addr);
735 s->tx.tcb_bytes = le16_to_cpu(s->tx.tcb_bytes);
736 }
737
tx_command(EEPRO100State * s)738 static void tx_command(EEPRO100State *s)
739 {
740 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
741 uint32_t tbd_array = s->tx.tbd_array_addr;
742 uint16_t tcb_bytes = s->tx.tcb_bytes & 0x3fff;
743 /* Sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes. */
744 uint8_t buf[2600];
745 uint16_t size = 0;
746 uint32_t tbd_address = s->cb_address + 0x10;
747 TRACE(RXTX, logout
748 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
749 tbd_array, tcb_bytes, s->tx.tbd_count));
750
751 if (tcb_bytes > 2600) {
752 logout("TCB byte count too large, using 2600\n");
753 tcb_bytes = 2600;
754 }
755 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
756 logout
757 ("illegal values of TBD array address and TCB byte count!\n");
758 }
759 assert(tcb_bytes <= sizeof(buf));
760 while (size < tcb_bytes) {
761 TRACE(RXTX, logout
762 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
763 tbd_address, tcb_bytes));
764 pci_dma_read(&s->dev, tbd_address, &buf[size], tcb_bytes);
765 size += tcb_bytes;
766 }
767 if (tbd_array == 0xffffffff) {
768 /* Simplified mode. Was already handled by code above. */
769 } else {
770 /* Flexible mode. */
771 uint8_t tbd_count = 0;
772 uint32_t tx_buffer_address;
773 uint16_t tx_buffer_size;
774 uint16_t tx_buffer_el;
775
776 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
777 /* Extended Flexible TCB. */
778 for (; tbd_count < 2; tbd_count++) {
779 ldl_le_pci_dma(&s->dev, tbd_address, &tx_buffer_address, attrs);
780 lduw_le_pci_dma(&s->dev, tbd_address + 4, &tx_buffer_size, attrs);
781 lduw_le_pci_dma(&s->dev, tbd_address + 6, &tx_buffer_el, attrs);
782 tbd_address += 8;
783 TRACE(RXTX, logout
784 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
785 tx_buffer_address, tx_buffer_size));
786 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
787 pci_dma_read(&s->dev, tx_buffer_address,
788 &buf[size], tx_buffer_size);
789 size += tx_buffer_size;
790 if (tx_buffer_el & 1) {
791 break;
792 }
793 }
794 }
795 tbd_address = tbd_array;
796 for (; tbd_count < s->tx.tbd_count; tbd_count++) {
797 ldl_le_pci_dma(&s->dev, tbd_address, &tx_buffer_address, attrs);
798 lduw_le_pci_dma(&s->dev, tbd_address + 4, &tx_buffer_size, attrs);
799 lduw_le_pci_dma(&s->dev, tbd_address + 6, &tx_buffer_el, attrs);
800 tbd_address += 8;
801 TRACE(RXTX, logout
802 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
803 tx_buffer_address, tx_buffer_size));
804 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
805 pci_dma_read(&s->dev, tx_buffer_address,
806 &buf[size], tx_buffer_size);
807 size += tx_buffer_size;
808 if (tx_buffer_el & 1) {
809 break;
810 }
811 }
812 }
813 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
814 qemu_send_packet(qemu_get_queue(s->nic), buf, size);
815 s->statistics.tx_good_frames++;
816 /* Transmit with bad status would raise an CX/TNO interrupt.
817 * (82557 only). Emulation never has bad status. */
818 #if 0
819 eepro100_cx_interrupt(s);
820 #endif
821 }
822
set_multicast_list(EEPRO100State * s)823 static void set_multicast_list(EEPRO100State *s)
824 {
825 uint16_t multicast_count = s->tx.tbd_array_addr & BITS(13, 0);
826 uint16_t i;
827 memset(&s->mult[0], 0, sizeof(s->mult));
828 TRACE(OTHER, logout("multicast list, multicast count = %u\n", multicast_count));
829 for (i = 0; i < multicast_count; i += 6) {
830 uint8_t multicast_addr[6];
831 pci_dma_read(&s->dev, s->cb_address + 10 + i, multicast_addr, 6);
832 TRACE(OTHER, logout("multicast entry %s\n", nic_dump(multicast_addr, 6)));
833 unsigned mcast_idx = (net_crc32(multicast_addr, ETH_ALEN) &
834 BITS(7, 2)) >> 2;
835 assert(mcast_idx < 64);
836 s->mult[mcast_idx >> 3] |= (1 << (mcast_idx & 7));
837 }
838 }
839
action_command(EEPRO100State * s)840 static void action_command(EEPRO100State *s)
841 {
842 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
843 /* The loop below won't stop if it gets special handcrafted data.
844 Therefore we limit the number of iterations. */
845 unsigned max_loop_count = 16;
846
847 for (;;) {
848 bool bit_el;
849 bool bit_s;
850 bool bit_i;
851 bool bit_nc;
852 uint16_t ok_status = STATUS_OK;
853 s->cb_address = s->cu_base + s->cu_offset;
854 read_cb(s);
855 bit_el = ((s->tx.command & COMMAND_EL) != 0);
856 bit_s = ((s->tx.command & COMMAND_S) != 0);
857 bit_i = ((s->tx.command & COMMAND_I) != 0);
858 bit_nc = ((s->tx.command & COMMAND_NC) != 0);
859 #if 0
860 bool bit_sf = ((s->tx.command & COMMAND_SF) != 0);
861 #endif
862
863 if (max_loop_count-- == 0) {
864 /* Prevent an endless loop. */
865 logout("loop in %s:%u\n", __FILE__, __LINE__);
866 break;
867 }
868
869 s->cu_offset = s->tx.link;
870 TRACE(OTHER,
871 logout("val=(cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
872 s->tx.status, s->tx.command, s->tx.link));
873 switch (s->tx.command & COMMAND_CMD) {
874 case CmdNOp:
875 /* Do nothing. */
876 break;
877 case CmdIASetup:
878 pci_dma_read(&s->dev, s->cb_address + 8, &s->conf.macaddr.a[0], 6);
879 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6)));
880 break;
881 case CmdConfigure:
882 pci_dma_read(&s->dev, s->cb_address + 8,
883 &s->configuration[0], sizeof(s->configuration));
884 TRACE(OTHER, logout("configuration: %s\n",
885 nic_dump(&s->configuration[0], 16)));
886 TRACE(OTHER, logout("configuration: %s\n",
887 nic_dump(&s->configuration[16],
888 ARRAY_SIZE(s->configuration) - 16)));
889 if (s->configuration[20] & BIT(6)) {
890 TRACE(OTHER, logout("Multiple IA bit\n"));
891 }
892 break;
893 case CmdMulticastList:
894 set_multicast_list(s);
895 break;
896 case CmdTx:
897 if (bit_nc) {
898 missing("CmdTx: NC = 0");
899 ok_status = 0;
900 break;
901 }
902 tx_command(s);
903 break;
904 case CmdTDR:
905 TRACE(OTHER, logout("load microcode\n"));
906 /* Starting with offset 8, the command contains
907 * 64 dwords microcode which we just ignore here. */
908 break;
909 case CmdDiagnose:
910 TRACE(OTHER, logout("diagnose\n"));
911 /* Make sure error flag is not set. */
912 s->tx.status = 0;
913 break;
914 default:
915 missing("undefined command");
916 ok_status = 0;
917 break;
918 }
919 /* Write new status. */
920 stw_le_pci_dma(&s->dev, s->cb_address,
921 s->tx.status | ok_status | STATUS_C, attrs);
922 if (bit_i) {
923 /* CU completed action. */
924 eepro100_cx_interrupt(s);
925 }
926 if (bit_el) {
927 /* CU becomes idle. Terminate command loop. */
928 set_cu_state(s, cu_idle);
929 eepro100_cna_interrupt(s);
930 break;
931 } else if (bit_s) {
932 /* CU becomes suspended. Terminate command loop. */
933 set_cu_state(s, cu_suspended);
934 eepro100_cna_interrupt(s);
935 break;
936 } else {
937 /* More entries in list. */
938 TRACE(OTHER, logout("CU list with at least one more entry\n"));
939 }
940 }
941 TRACE(OTHER, logout("CU list empty\n"));
942 /* List is empty. Now CU is idle or suspended. */
943 }
944
eepro100_cu_command(EEPRO100State * s,uint8_t val)945 static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
946 {
947 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
948 cu_state_t cu_state;
949 switch (val) {
950 case CU_NOP:
951 /* No operation. */
952 break;
953 case CU_START:
954 cu_state = get_cu_state(s);
955 if (cu_state != cu_idle && cu_state != cu_suspended) {
956 /* Intel documentation says that CU must be idle or suspended
957 * for the CU start command. */
958 logout("unexpected CU state is %u\n", cu_state);
959 }
960 set_cu_state(s, cu_active);
961 s->cu_offset = e100_read_reg4(s, SCBPointer);
962 action_command(s);
963 break;
964 case CU_RESUME:
965 if (get_cu_state(s) != cu_suspended) {
966 logout("bad CU resume from CU state %u\n", get_cu_state(s));
967 /* Workaround for bad Linux eepro100 driver which resumes
968 * from idle state. */
969 #if 0
970 missing("cu resume");
971 #endif
972 set_cu_state(s, cu_suspended);
973 }
974 if (get_cu_state(s) == cu_suspended) {
975 TRACE(OTHER, logout("CU resuming\n"));
976 set_cu_state(s, cu_active);
977 action_command(s);
978 }
979 break;
980 case CU_STATSADDR:
981 /* Load dump counters address. */
982 s->statsaddr = e100_read_reg4(s, SCBPointer);
983 TRACE(OTHER, logout("val=0x%02x (dump counters address)\n", val));
984 if (s->statsaddr & 3) {
985 /* Memory must be Dword aligned. */
986 logout("unaligned dump counters address\n");
987 /* Handling of misaligned addresses is undefined.
988 * Here we align the address by ignoring the lower bits. */
989 /* TODO: Test unaligned dump counter address on real hardware. */
990 s->statsaddr &= ~3;
991 }
992 break;
993 case CU_SHOWSTATS:
994 /* Dump statistical counters. */
995 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
996 dump_statistics(s);
997 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa005, attrs);
998 break;
999 case CU_CMD_BASE:
1000 /* Load CU base. */
1001 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
1002 s->cu_base = e100_read_reg4(s, SCBPointer);
1003 break;
1004 case CU_DUMPSTATS:
1005 /* Dump and reset statistical counters. */
1006 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
1007 dump_statistics(s);
1008 stl_le_pci_dma(&s->dev, s->statsaddr + s->stats_size, 0xa007, attrs);
1009 memset(&s->statistics, 0, sizeof(s->statistics));
1010 break;
1011 case CU_SRESUME:
1012 /* CU static resume. */
1013 missing("CU static resume");
1014 break;
1015 default:
1016 missing("Undefined CU command");
1017 }
1018 }
1019
eepro100_ru_command(EEPRO100State * s,uint8_t val)1020 static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
1021 {
1022 switch (val) {
1023 case RU_NOP:
1024 /* No operation. */
1025 break;
1026 case RX_START:
1027 /* RU start. */
1028 if (get_ru_state(s) != ru_idle) {
1029 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
1030 #if 0
1031 assert(!"wrong RU state");
1032 #endif
1033 }
1034 set_ru_state(s, ru_ready);
1035 s->ru_offset = e100_read_reg4(s, SCBPointer);
1036 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1037 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
1038 break;
1039 case RX_RESUME:
1040 /* Restart RU. */
1041 if (get_ru_state(s) != ru_suspended) {
1042 logout("RU state is %u, should be %u\n", get_ru_state(s),
1043 ru_suspended);
1044 #if 0
1045 assert(!"wrong RU state");
1046 #endif
1047 }
1048 set_ru_state(s, ru_ready);
1049 break;
1050 case RU_ABORT:
1051 /* RU abort. */
1052 if (get_ru_state(s) == ru_ready) {
1053 eepro100_rnr_interrupt(s);
1054 }
1055 set_ru_state(s, ru_idle);
1056 break;
1057 case RX_ADDR_LOAD:
1058 /* Load RU base. */
1059 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
1060 s->ru_base = e100_read_reg4(s, SCBPointer);
1061 break;
1062 default:
1063 logout("val=0x%02x (undefined RU command)\n", val);
1064 missing("Undefined SU command");
1065 }
1066 }
1067
eepro100_write_command(EEPRO100State * s,uint8_t val)1068 static void eepro100_write_command(EEPRO100State * s, uint8_t val)
1069 {
1070 eepro100_ru_command(s, val & 0x0f);
1071 eepro100_cu_command(s, val & 0xf0);
1072 if ((val) == 0) {
1073 TRACE(OTHER, logout("val=0x%02x\n", val));
1074 }
1075 /* Clear command byte after command was accepted. */
1076 s->mem[SCBCmd] = 0;
1077 }
1078
1079 /*****************************************************************************
1080 *
1081 * EEPROM emulation.
1082 *
1083 ****************************************************************************/
1084
1085 #define EEPROM_CS 0x02
1086 #define EEPROM_SK 0x01
1087 #define EEPROM_DI 0x04
1088 #define EEPROM_DO 0x08
1089
eepro100_read_eeprom(EEPRO100State * s)1090 static uint16_t eepro100_read_eeprom(EEPRO100State * s)
1091 {
1092 uint16_t val = e100_read_reg2(s, SCBeeprom);
1093 if (eeprom93xx_read(s->eeprom)) {
1094 val |= EEPROM_DO;
1095 } else {
1096 val &= ~EEPROM_DO;
1097 }
1098 TRACE(EEPROM, logout("val=0x%04x\n", val));
1099 return val;
1100 }
1101
eepro100_write_eeprom(eeprom_t * eeprom,uint8_t val)1102 static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
1103 {
1104 TRACE(EEPROM, logout("val=0x%02x\n", val));
1105
1106 /* mask unwritable bits */
1107 #if 0
1108 val = SET_MASKED(val, 0x31, eeprom->value);
1109 #endif
1110
1111 int eecs = ((val & EEPROM_CS) != 0);
1112 int eesk = ((val & EEPROM_SK) != 0);
1113 int eedi = ((val & EEPROM_DI) != 0);
1114 eeprom93xx_write(eeprom, eecs, eesk, eedi);
1115 }
1116
1117 /*****************************************************************************
1118 *
1119 * MDI emulation.
1120 *
1121 ****************************************************************************/
1122
1123 #if defined(DEBUG_EEPRO100)
1124 static const char * const mdi_op_name[] = {
1125 "opcode 0",
1126 "write",
1127 "read",
1128 "opcode 3"
1129 };
1130
1131 static const char * const mdi_reg_name[] = {
1132 "Control",
1133 "Status",
1134 "PHY Identification (Word 1)",
1135 "PHY Identification (Word 2)",
1136 "Auto-Negotiation Advertisement",
1137 "Auto-Negotiation Link Partner Ability",
1138 "Auto-Negotiation Expansion"
1139 };
1140
reg2name(uint8_t reg)1141 static const char *reg2name(uint8_t reg)
1142 {
1143 static char buffer[10];
1144 const char *p = buffer;
1145 if (reg < ARRAY_SIZE(mdi_reg_name)) {
1146 p = mdi_reg_name[reg];
1147 } else {
1148 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
1149 }
1150 return p;
1151 }
1152 #endif /* DEBUG_EEPRO100 */
1153
eepro100_read_mdi(EEPRO100State * s)1154 static uint32_t eepro100_read_mdi(EEPRO100State * s)
1155 {
1156 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1157
1158 #ifdef DEBUG_EEPRO100
1159 uint8_t raiseint = (val & BIT(29)) >> 29;
1160 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1161 uint8_t phy = (val & BITS(25, 21)) >> 21;
1162 uint8_t reg = (val & BITS(20, 16)) >> 16;
1163 uint16_t data = (val & BITS(15, 0));
1164 #endif
1165 /* Emulation takes no time to finish MDI transaction. */
1166 val |= BIT(28);
1167 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1168 val, raiseint, mdi_op_name[opcode], phy,
1169 reg2name(reg), data));
1170 return val;
1171 }
1172
eepro100_write_mdi(EEPRO100State * s)1173 static void eepro100_write_mdi(EEPRO100State *s)
1174 {
1175 uint32_t val = e100_read_reg4(s, SCBCtrlMDI);
1176 uint8_t raiseint = (val & BIT(29)) >> 29;
1177 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1178 uint8_t phy = (val & BITS(25, 21)) >> 21;
1179 uint8_t reg = (val & BITS(20, 16)) >> 16;
1180 uint16_t data = (val & BITS(15, 0));
1181 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1182 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
1183 if (phy != 1) {
1184 /* Unsupported PHY address. */
1185 #if 0
1186 logout("phy must be 1 but is %u\n", phy);
1187 #endif
1188 data = 0;
1189 } else if (opcode != 1 && opcode != 2) {
1190 /* Unsupported opcode. */
1191 logout("opcode must be 1 or 2 but is %u\n", opcode);
1192 data = 0;
1193 } else if (reg > 6) {
1194 /* Unsupported register. */
1195 logout("register must be 0...6 but is %u\n", reg);
1196 data = 0;
1197 } else {
1198 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1199 val, raiseint, mdi_op_name[opcode], phy,
1200 reg2name(reg), data));
1201 if (opcode == 1) {
1202 /* MDI write */
1203 switch (reg) {
1204 case 0: /* Control Register */
1205 if (data & 0x8000) {
1206 /* Reset status and control registers to default. */
1207 s->mdimem[0] = eepro100_mdi_default[0];
1208 s->mdimem[1] = eepro100_mdi_default[1];
1209 data = s->mdimem[reg];
1210 } else {
1211 /* Restart Auto Configuration = Normal Operation */
1212 data &= ~0x0200;
1213 }
1214 break;
1215 case 1: /* Status Register */
1216 missing("not writable");
1217 break;
1218 case 2: /* PHY Identification Register (Word 1) */
1219 case 3: /* PHY Identification Register (Word 2) */
1220 missing("not implemented");
1221 break;
1222 case 4: /* Auto-Negotiation Advertisement Register */
1223 case 5: /* Auto-Negotiation Link Partner Ability Register */
1224 break;
1225 case 6: /* Auto-Negotiation Expansion Register */
1226 default:
1227 missing("not implemented");
1228 }
1229 s->mdimem[reg] &= eepro100_mdi_mask[reg];
1230 s->mdimem[reg] |= data & ~eepro100_mdi_mask[reg];
1231 } else if (opcode == 2) {
1232 /* MDI read */
1233 switch (reg) {
1234 case 0: /* Control Register */
1235 if (data & 0x8000) {
1236 /* Reset status and control registers to default. */
1237 s->mdimem[0] = eepro100_mdi_default[0];
1238 s->mdimem[1] = eepro100_mdi_default[1];
1239 }
1240 break;
1241 case 1: /* Status Register */
1242 s->mdimem[reg] |= 0x0020;
1243 break;
1244 case 2: /* PHY Identification Register (Word 1) */
1245 case 3: /* PHY Identification Register (Word 2) */
1246 case 4: /* Auto-Negotiation Advertisement Register */
1247 break;
1248 case 5: /* Auto-Negotiation Link Partner Ability Register */
1249 s->mdimem[reg] = 0x41fe;
1250 break;
1251 case 6: /* Auto-Negotiation Expansion Register */
1252 s->mdimem[reg] = 0x0001;
1253 break;
1254 }
1255 data = s->mdimem[reg];
1256 }
1257 /* Emulation takes no time to finish MDI transaction.
1258 * Set MDI bit in SCB status register. */
1259 s->mem[SCBAck] |= 0x08;
1260 val |= BIT(28);
1261 if (raiseint) {
1262 eepro100_mdi_interrupt(s);
1263 }
1264 }
1265 val = (val & 0xffff0000) + data;
1266 e100_write_reg4(s, SCBCtrlMDI, val);
1267 }
1268
1269 /*****************************************************************************
1270 *
1271 * Port emulation.
1272 *
1273 ****************************************************************************/
1274
1275 #define PORT_SOFTWARE_RESET 0
1276 #define PORT_SELFTEST 1
1277 #define PORT_SELECTIVE_RESET 2
1278 #define PORT_DUMP 3
1279 #define PORT_SELECTION_MASK 3
1280
1281 typedef struct {
1282 uint32_t st_sign; /* Self Test Signature */
1283 uint32_t st_result; /* Self Test Results */
1284 } eepro100_selftest_t;
1285
eepro100_read_port(EEPRO100State * s)1286 static uint32_t eepro100_read_port(EEPRO100State * s)
1287 {
1288 return 0;
1289 }
1290
eepro100_write_port(EEPRO100State * s)1291 static void eepro100_write_port(EEPRO100State *s)
1292 {
1293 uint32_t val = e100_read_reg4(s, SCBPort);
1294 uint32_t address = (val & ~PORT_SELECTION_MASK);
1295 uint8_t selection = (val & PORT_SELECTION_MASK);
1296 switch (selection) {
1297 case PORT_SOFTWARE_RESET:
1298 nic_reset(s);
1299 break;
1300 case PORT_SELFTEST:
1301 TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1302 eepro100_selftest_t data;
1303 pci_dma_read(&s->dev, address, (uint8_t *) &data, sizeof(data));
1304 data.st_sign = 0xffffffff;
1305 data.st_result = 0;
1306 pci_dma_write(&s->dev, address, (uint8_t *) &data, sizeof(data));
1307 break;
1308 case PORT_SELECTIVE_RESET:
1309 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1310 nic_selective_reset(s);
1311 break;
1312 default:
1313 logout("val=0x%08x\n", val);
1314 missing("unknown port selection");
1315 }
1316 }
1317
1318 /*****************************************************************************
1319 *
1320 * General hardware emulation.
1321 *
1322 ****************************************************************************/
1323
eepro100_read1(EEPRO100State * s,uint32_t addr)1324 static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1325 {
1326 uint8_t val = 0;
1327 if (addr <= sizeof(s->mem) - sizeof(val)) {
1328 val = s->mem[addr];
1329 }
1330
1331 switch (addr) {
1332 case SCBStatus:
1333 case SCBAck:
1334 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1335 break;
1336 case SCBCmd:
1337 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1338 #if 0
1339 val = eepro100_read_command(s);
1340 #endif
1341 break;
1342 case SCBIntmask:
1343 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1344 break;
1345 case SCBPort + 3:
1346 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1347 break;
1348 case SCBeeprom:
1349 val = eepro100_read_eeprom(s);
1350 break;
1351 case SCBCtrlMDI:
1352 case SCBCtrlMDI + 1:
1353 case SCBCtrlMDI + 2:
1354 case SCBCtrlMDI + 3:
1355 val = (uint8_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1356 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1357 break;
1358 case SCBpmdr: /* Power Management Driver Register */
1359 val = 0;
1360 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1361 break;
1362 case SCBgctrl: /* General Control Register */
1363 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1364 break;
1365 case SCBgstat: /* General Status Register */
1366 /* 100 Mbps full duplex, valid link */
1367 val = 0x07;
1368 TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1369 break;
1370 default:
1371 logout("addr=%s val=0x%02x\n", regname(addr), val);
1372 missing("unknown byte read");
1373 }
1374 return val;
1375 }
1376
eepro100_read2(EEPRO100State * s,uint32_t addr)1377 static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1378 {
1379 uint16_t val = 0;
1380 if (addr <= sizeof(s->mem) - sizeof(val)) {
1381 val = e100_read_reg2(s, addr);
1382 }
1383
1384 switch (addr) {
1385 case SCBStatus:
1386 case SCBCmd:
1387 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1388 break;
1389 case SCBeeprom:
1390 val = eepro100_read_eeprom(s);
1391 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1392 break;
1393 case SCBCtrlMDI:
1394 case SCBCtrlMDI + 2:
1395 val = (uint16_t)(eepro100_read_mdi(s) >> (8 * (addr & 3)));
1396 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1397 break;
1398 default:
1399 logout("addr=%s val=0x%04x\n", regname(addr), val);
1400 missing("unknown word read");
1401 }
1402 return val;
1403 }
1404
eepro100_read4(EEPRO100State * s,uint32_t addr)1405 static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1406 {
1407 uint32_t val = 0;
1408 if (addr <= sizeof(s->mem) - sizeof(val)) {
1409 val = e100_read_reg4(s, addr);
1410 }
1411
1412 switch (addr) {
1413 case SCBStatus:
1414 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1415 break;
1416 case SCBPointer:
1417 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1418 break;
1419 case SCBPort:
1420 val = eepro100_read_port(s);
1421 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1422 break;
1423 case SCBflash:
1424 val = eepro100_read_eeprom(s);
1425 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1426 break;
1427 case SCBCtrlMDI:
1428 val = eepro100_read_mdi(s);
1429 break;
1430 default:
1431 logout("addr=%s val=0x%08x\n", regname(addr), val);
1432 missing("unknown longword read");
1433 }
1434 return val;
1435 }
1436
eepro100_write1(EEPRO100State * s,uint32_t addr,uint8_t val)1437 static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1438 {
1439 /* SCBStatus is readonly. */
1440 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1441 s->mem[addr] = val;
1442 }
1443
1444 switch (addr) {
1445 case SCBStatus:
1446 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1447 break;
1448 case SCBAck:
1449 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1450 eepro100_acknowledge(s);
1451 break;
1452 case SCBCmd:
1453 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1454 eepro100_write_command(s, val);
1455 break;
1456 case SCBIntmask:
1457 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1458 if (val & BIT(1)) {
1459 eepro100_swi_interrupt(s);
1460 }
1461 eepro100_interrupt(s, 0);
1462 break;
1463 case SCBPointer:
1464 case SCBPointer + 1:
1465 case SCBPointer + 2:
1466 case SCBPointer + 3:
1467 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1468 break;
1469 case SCBPort:
1470 case SCBPort + 1:
1471 case SCBPort + 2:
1472 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1473 break;
1474 case SCBPort + 3:
1475 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1476 eepro100_write_port(s);
1477 break;
1478 case SCBFlow: /* does not exist on 82557 */
1479 case SCBFlow + 1:
1480 case SCBFlow + 2:
1481 case SCBpmdr: /* does not exist on 82557 */
1482 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1483 break;
1484 case SCBeeprom:
1485 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1486 eepro100_write_eeprom(s->eeprom, val);
1487 break;
1488 case SCBCtrlMDI:
1489 case SCBCtrlMDI + 1:
1490 case SCBCtrlMDI + 2:
1491 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1492 break;
1493 case SCBCtrlMDI + 3:
1494 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1495 eepro100_write_mdi(s);
1496 break;
1497 default:
1498 logout("addr=%s val=0x%02x\n", regname(addr), val);
1499 missing("unknown byte write");
1500 }
1501 }
1502
eepro100_write2(EEPRO100State * s,uint32_t addr,uint16_t val)1503 static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1504 {
1505 /* SCBStatus is readonly. */
1506 if (addr > SCBStatus && addr <= sizeof(s->mem) - sizeof(val)) {
1507 e100_write_reg2(s, addr, val);
1508 }
1509
1510 switch (addr) {
1511 case SCBStatus:
1512 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1513 s->mem[SCBAck] = (val >> 8);
1514 eepro100_acknowledge(s);
1515 break;
1516 case SCBCmd:
1517 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1518 eepro100_write_command(s, val);
1519 eepro100_write1(s, SCBIntmask, val >> 8);
1520 break;
1521 case SCBPointer:
1522 case SCBPointer + 2:
1523 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1524 break;
1525 case SCBPort:
1526 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1527 break;
1528 case SCBPort + 2:
1529 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1530 eepro100_write_port(s);
1531 break;
1532 case SCBeeprom:
1533 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1534 eepro100_write_eeprom(s->eeprom, val);
1535 break;
1536 case SCBCtrlMDI:
1537 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1538 break;
1539 case SCBCtrlMDI + 2:
1540 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1541 eepro100_write_mdi(s);
1542 break;
1543 default:
1544 logout("addr=%s val=0x%04x\n", regname(addr), val);
1545 missing("unknown word write");
1546 }
1547 }
1548
eepro100_write4(EEPRO100State * s,uint32_t addr,uint32_t val)1549 static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1550 {
1551 if (addr <= sizeof(s->mem) - sizeof(val)) {
1552 e100_write_reg4(s, addr, val);
1553 }
1554
1555 switch (addr) {
1556 case SCBPointer:
1557 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1558 break;
1559 case SCBPort:
1560 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1561 eepro100_write_port(s);
1562 break;
1563 case SCBflash:
1564 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1565 val = val >> 16;
1566 eepro100_write_eeprom(s->eeprom, val);
1567 break;
1568 case SCBCtrlMDI:
1569 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1570 eepro100_write_mdi(s);
1571 break;
1572 default:
1573 logout("addr=%s val=0x%08x\n", regname(addr), val);
1574 missing("unknown longword write");
1575 }
1576 }
1577
eepro100_read(void * opaque,hwaddr addr,unsigned size)1578 static uint64_t eepro100_read(void *opaque, hwaddr addr,
1579 unsigned size)
1580 {
1581 EEPRO100State *s = opaque;
1582
1583 switch (size) {
1584 case 1: return eepro100_read1(s, addr);
1585 case 2: return eepro100_read2(s, addr);
1586 case 4: return eepro100_read4(s, addr);
1587 default: abort();
1588 }
1589 }
1590
eepro100_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)1591 static void eepro100_write(void *opaque, hwaddr addr,
1592 uint64_t data, unsigned size)
1593 {
1594 EEPRO100State *s = opaque;
1595
1596 switch (size) {
1597 case 1:
1598 eepro100_write1(s, addr, data);
1599 break;
1600 case 2:
1601 eepro100_write2(s, addr, data);
1602 break;
1603 case 4:
1604 eepro100_write4(s, addr, data);
1605 break;
1606 default:
1607 abort();
1608 }
1609 }
1610
1611 static const MemoryRegionOps eepro100_ops = {
1612 .read = eepro100_read,
1613 .write = eepro100_write,
1614 .endianness = DEVICE_LITTLE_ENDIAN,
1615 };
1616
nic_receive(NetClientState * nc,const uint8_t * buf,size_t size)1617 static ssize_t nic_receive(NetClientState *nc, const uint8_t * buf, size_t size)
1618 {
1619 /* TODO:
1620 * - Magic packets should set bit 30 in power management driver register.
1621 * - Interesting packets should set bit 29 in power management driver register.
1622 */
1623 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1624 EEPRO100State *s = qemu_get_nic_opaque(nc);
1625 uint16_t rfd_status = 0xa000;
1626 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1627 uint8_t min_buf[60];
1628 #endif
1629 static const uint8_t broadcast_macaddr[6] =
1630 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1631
1632 #if defined(CONFIG_PAD_RECEIVED_FRAMES)
1633 /* Pad to minimum Ethernet frame length */
1634 if (size < sizeof(min_buf)) {
1635 memcpy(min_buf, buf, size);
1636 memset(&min_buf[size], 0, sizeof(min_buf) - size);
1637 buf = min_buf;
1638 size = sizeof(min_buf);
1639 }
1640 #endif
1641
1642 if (s->configuration[8] & 0x80) {
1643 /* CSMA is disabled. */
1644 logout("%p received while CSMA is disabled\n", s);
1645 return -1;
1646 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1647 } else if (size < 64 && (s->configuration[7] & BIT(0))) {
1648 /* Short frame and configuration byte 7/0 (discard short receive) set:
1649 * Short frame is discarded */
1650 logout("%p received short frame (%zu byte)\n", s, size);
1651 s->statistics.rx_short_frame_errors++;
1652 return -1;
1653 #endif
1654 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & BIT(3))) {
1655 /* Long frame and configuration byte 18/3 (long receive ok) not set:
1656 * Long frames are discarded. */
1657 logout("%p received long frame (%zu byte), ignored\n", s, size);
1658 return -1;
1659 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { /* !!! */
1660 /* Frame matches individual address. */
1661 /* TODO: check configuration byte 15/4 (ignore U/L). */
1662 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1663 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1664 /* Broadcast frame. */
1665 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1666 rfd_status |= 0x0002;
1667 } else if (buf[0] & 0x01) {
1668 /* Multicast frame. */
1669 TRACE(RXTX, logout("%p received multicast, len=%zu,%s\n", s, size, nic_dump(buf, size)));
1670 if (s->configuration[21] & BIT(3)) {
1671 /* Multicast all bit is set, receive all multicast frames. */
1672 } else {
1673 unsigned mcast_idx = (net_crc32(buf, ETH_ALEN) & BITS(7, 2)) >> 2;
1674 assert(mcast_idx < 64);
1675 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1676 /* Multicast frame is allowed in hash table. */
1677 } else if (s->configuration[15] & BIT(0)) {
1678 /* Promiscuous: receive all. */
1679 rfd_status |= 0x0004;
1680 } else {
1681 TRACE(RXTX, logout("%p multicast ignored\n", s));
1682 return -1;
1683 }
1684 }
1685 /* TODO: Next not for promiscuous mode? */
1686 rfd_status |= 0x0002;
1687 } else if (s->configuration[15] & BIT(0)) {
1688 /* Promiscuous: receive all. */
1689 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1690 rfd_status |= 0x0004;
1691 } else if (s->configuration[20] & BIT(6)) {
1692 /* Multiple IA bit set. */
1693 unsigned mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
1694 assert(mcast_idx < 64);
1695 if (s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))) {
1696 TRACE(RXTX, logout("%p accepted, multiple IA bit set\n", s));
1697 } else {
1698 TRACE(RXTX, logout("%p frame ignored, multiple IA bit set\n", s));
1699 return -1;
1700 }
1701 } else {
1702 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1703 nic_dump(buf, size)));
1704 return size;
1705 }
1706
1707 if (get_ru_state(s) != ru_ready) {
1708 /* No resources available. */
1709 logout("no resources, state=%u\n", get_ru_state(s));
1710 /* TODO: RNR interrupt only at first failed frame? */
1711 eepro100_rnr_interrupt(s);
1712 s->statistics.rx_resource_errors++;
1713 #if 0
1714 assert(!"no resources");
1715 #endif
1716 return -1;
1717 }
1718 /* !!! */
1719 eepro100_rx_t rx;
1720 pci_dma_read(&s->dev, s->ru_base + s->ru_offset,
1721 &rx, sizeof(eepro100_rx_t));
1722 uint16_t rfd_command = le16_to_cpu(rx.command);
1723 uint16_t rfd_size = le16_to_cpu(rx.size);
1724
1725 if (size > rfd_size) {
1726 logout("Receive buffer (%" PRId16 " bytes) too small for data "
1727 "(%zu bytes); data truncated\n", rfd_size, size);
1728 size = rfd_size;
1729 }
1730 #if !defined(CONFIG_PAD_RECEIVED_FRAMES)
1731 if (size < 64) {
1732 rfd_status |= 0x0080;
1733 }
1734 #endif
1735 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1736 rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1737 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1738 offsetof(eepro100_rx_t, status), rfd_status, attrs);
1739 stw_le_pci_dma(&s->dev, s->ru_base + s->ru_offset +
1740 offsetof(eepro100_rx_t, count), size, attrs);
1741 /* Early receive interrupt not supported. */
1742 #if 0
1743 eepro100_er_interrupt(s);
1744 #endif
1745 /* Receive CRC Transfer not supported. */
1746 if (s->configuration[18] & BIT(2)) {
1747 missing("Receive CRC Transfer");
1748 return -1;
1749 }
1750 /* TODO: check stripping enable bit. */
1751 #if 0
1752 assert(!(s->configuration[17] & BIT(0)));
1753 #endif
1754 pci_dma_write(&s->dev, s->ru_base + s->ru_offset +
1755 sizeof(eepro100_rx_t), buf, size);
1756 s->statistics.rx_good_frames++;
1757 eepro100_fr_interrupt(s);
1758 s->ru_offset = le32_to_cpu(rx.link);
1759 if (rfd_command & COMMAND_EL) {
1760 /* EL bit is set, so this was the last frame. */
1761 logout("receive: Running out of frames\n");
1762 set_ru_state(s, ru_no_resources);
1763 eepro100_rnr_interrupt(s);
1764 }
1765 if (rfd_command & COMMAND_S) {
1766 /* S bit is set. */
1767 set_ru_state(s, ru_suspended);
1768 }
1769 return size;
1770 }
1771
1772 static const VMStateDescription vmstate_eepro100 = {
1773 .version_id = 3,
1774 .minimum_version_id = 2,
1775 .fields = (const VMStateField[]) {
1776 VMSTATE_PCI_DEVICE(dev, EEPRO100State),
1777 VMSTATE_UNUSED(32),
1778 VMSTATE_BUFFER(mult, EEPRO100State),
1779 VMSTATE_BUFFER(mem, EEPRO100State),
1780 /* Save all members of struct between scb_stat and mem. */
1781 VMSTATE_UINT8(scb_stat, EEPRO100State),
1782 VMSTATE_UINT8(int_stat, EEPRO100State),
1783 VMSTATE_UNUSED(3*4),
1784 VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
1785 VMSTATE_UNUSED(19*4),
1786 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
1787 /* The eeprom should be saved and restored by its own routines. */
1788 VMSTATE_UINT32(device, EEPRO100State),
1789 /* TODO check device. */
1790 VMSTATE_UINT32(cu_base, EEPRO100State),
1791 VMSTATE_UINT32(cu_offset, EEPRO100State),
1792 VMSTATE_UINT32(ru_base, EEPRO100State),
1793 VMSTATE_UINT32(ru_offset, EEPRO100State),
1794 VMSTATE_UINT32(statsaddr, EEPRO100State),
1795 /* Save eepro100_stats_t statistics. */
1796 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
1797 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
1798 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
1799 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
1800 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
1801 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
1802 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
1803 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
1804 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
1805 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
1806 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
1807 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
1808 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
1809 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
1810 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
1811 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
1812 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
1813 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
1814 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
1815 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
1816 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
1817 /* Configuration bytes. */
1818 VMSTATE_BUFFER(configuration, EEPRO100State),
1819 VMSTATE_END_OF_LIST()
1820 }
1821 };
1822
pci_nic_uninit(PCIDevice * pci_dev)1823 static void pci_nic_uninit(PCIDevice *pci_dev)
1824 {
1825 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1826
1827 vmstate_unregister(VMSTATE_IF(&pci_dev->qdev), s->vmstate, s);
1828 g_free(s->vmstate);
1829 eeprom93xx_free(&pci_dev->qdev, s->eeprom);
1830 qemu_del_nic(s->nic);
1831 }
1832
1833 static NetClientInfo net_eepro100_info = {
1834 .type = NET_CLIENT_DRIVER_NIC,
1835 .size = sizeof(NICState),
1836 .receive = nic_receive,
1837 };
1838
e100_nic_realize(PCIDevice * pci_dev,Error ** errp)1839 static void e100_nic_realize(PCIDevice *pci_dev, Error **errp)
1840 {
1841 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1842 E100PCIDeviceInfo *info = eepro100_get_class(s);
1843 Error *local_err = NULL;
1844
1845 TRACE(OTHER, logout("\n"));
1846
1847 s->device = info->device;
1848
1849 e100_pci_reset(s, &local_err);
1850 if (local_err) {
1851 error_propagate(errp, local_err);
1852 return;
1853 }
1854
1855 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1856 * i82559 and later support 64 or 256 word EEPROM. */
1857 s->eeprom = eeprom93xx_new(&pci_dev->qdev, EEPROM_SIZE);
1858
1859 /* Handler for memory-mapped I/O */
1860 memory_region_init_io(&s->mmio_bar, OBJECT(s), &eepro100_ops, s,
1861 "eepro100-mmio", PCI_MEM_SIZE);
1862 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &s->mmio_bar);
1863 memory_region_init_io(&s->io_bar, OBJECT(s), &eepro100_ops, s,
1864 "eepro100-io", PCI_IO_SIZE);
1865 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar);
1866 /* FIXME: flash aliases to mmio?! */
1867 memory_region_init_io(&s->flash_bar, OBJECT(s), &eepro100_ops, s,
1868 "eepro100-flash", PCI_FLASH_SIZE);
1869 pci_register_bar(&s->dev, 2, 0, &s->flash_bar);
1870
1871 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1872 logout("macaddr: %s\n", nic_dump(&s->conf.macaddr.a[0], 6));
1873
1874 nic_reset(s);
1875
1876 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
1877 object_get_typename(OBJECT(pci_dev)),
1878 pci_dev->qdev.id,
1879 &pci_dev->qdev.mem_reentrancy_guard, s);
1880
1881 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1882 TRACE(OTHER, logout("%s\n", qemu_get_queue(s->nic)->info_str));
1883
1884 qemu_register_reset(nic_reset, s);
1885
1886 s->vmstate = g_memdup(&vmstate_eepro100, sizeof(vmstate_eepro100));
1887 s->vmstate->name = qemu_get_queue(s->nic)->model;
1888 vmstate_register_any(VMSTATE_IF(&pci_dev->qdev), s->vmstate, s);
1889 }
1890
eepro100_instance_init(Object * obj)1891 static void eepro100_instance_init(Object *obj)
1892 {
1893 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, PCI_DEVICE(obj));
1894 device_add_bootindex_property(obj, &s->conf.bootindex,
1895 "bootindex", "/ethernet-phy@0",
1896 DEVICE(s));
1897 }
1898
1899 static E100PCIDeviceInfo e100_devices[] = {
1900 {
1901 .name = "i82550",
1902 .desc = "Intel i82550 Ethernet",
1903 .device = i82550,
1904 /* TODO: check device id. */
1905 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1906 /* Revision ID: 0x0c, 0x0d, 0x0e. */
1907 .revision = 0x0e,
1908 /* TODO: check size of statistical counters. */
1909 .stats_size = 80,
1910 /* TODO: check extended tcb support. */
1911 .has_extended_tcb_support = true,
1912 .power_management = true,
1913 },{
1914 .name = "i82551",
1915 .desc = "Intel i82551 Ethernet",
1916 .device = i82551,
1917 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
1918 /* Revision ID: 0x0f, 0x10. */
1919 .revision = 0x0f,
1920 /* TODO: check size of statistical counters. */
1921 .stats_size = 80,
1922 .has_extended_tcb_support = true,
1923 .power_management = true,
1924 },{
1925 .name = "i82557a",
1926 .desc = "Intel i82557A Ethernet",
1927 .device = i82557A,
1928 .device_id = PCI_DEVICE_ID_INTEL_82557,
1929 .revision = 0x01,
1930 .power_management = false,
1931 },{
1932 .name = "i82557b",
1933 .desc = "Intel i82557B Ethernet",
1934 .device = i82557B,
1935 .device_id = PCI_DEVICE_ID_INTEL_82557,
1936 .revision = 0x02,
1937 .power_management = false,
1938 },{
1939 .name = "i82557c",
1940 .desc = "Intel i82557C Ethernet",
1941 .device = i82557C,
1942 .device_id = PCI_DEVICE_ID_INTEL_82557,
1943 .revision = 0x03,
1944 .power_management = false,
1945 },{
1946 .name = "i82558a",
1947 .desc = "Intel i82558A Ethernet",
1948 .device = i82558A,
1949 .device_id = PCI_DEVICE_ID_INTEL_82557,
1950 .revision = 0x04,
1951 .stats_size = 76,
1952 .has_extended_tcb_support = true,
1953 .power_management = true,
1954 },{
1955 .name = "i82558b",
1956 .desc = "Intel i82558B Ethernet",
1957 .device = i82558B,
1958 .device_id = PCI_DEVICE_ID_INTEL_82557,
1959 .revision = 0x05,
1960 .stats_size = 76,
1961 .has_extended_tcb_support = true,
1962 .power_management = true,
1963 },{
1964 .name = "i82559a",
1965 .desc = "Intel i82559A Ethernet",
1966 .device = i82559A,
1967 .device_id = PCI_DEVICE_ID_INTEL_82557,
1968 .revision = 0x06,
1969 .stats_size = 80,
1970 .has_extended_tcb_support = true,
1971 .power_management = true,
1972 },{
1973 .name = "i82559b",
1974 .desc = "Intel i82559B Ethernet",
1975 .device = i82559B,
1976 .device_id = PCI_DEVICE_ID_INTEL_82557,
1977 .revision = 0x07,
1978 .stats_size = 80,
1979 .has_extended_tcb_support = true,
1980 .power_management = true,
1981 },{
1982 .name = "i82559c",
1983 .desc = "Intel i82559C Ethernet",
1984 .device = i82559C,
1985 .device_id = PCI_DEVICE_ID_INTEL_82557,
1986 #if 0
1987 .revision = 0x08,
1988 #endif
1989 /* TODO: Windows wants revision id 0x0c. */
1990 .revision = 0x0c,
1991 #if EEPROM_SIZE > 0
1992 .subsystem_vendor_id = PCI_VENDOR_ID_INTEL,
1993 .subsystem_id = 0x0040,
1994 #endif
1995 .stats_size = 80,
1996 .has_extended_tcb_support = true,
1997 .power_management = true,
1998 },{
1999 .name = "i82559er",
2000 .desc = "Intel i82559ER Ethernet",
2001 .device = i82559ER,
2002 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
2003 .revision = 0x09,
2004 .stats_size = 80,
2005 .has_extended_tcb_support = true,
2006 .power_management = true,
2007 },{
2008 .name = "i82562",
2009 .desc = "Intel i82562 Ethernet",
2010 .device = i82562,
2011 /* TODO: check device id. */
2012 .device_id = PCI_DEVICE_ID_INTEL_82551IT,
2013 /* TODO: wrong revision id. */
2014 .revision = 0x0e,
2015 .stats_size = 80,
2016 .has_extended_tcb_support = true,
2017 .power_management = true,
2018 },{
2019 /* Toshiba Tecra 8200. */
2020 .name = "i82801",
2021 .desc = "Intel i82801 Ethernet",
2022 .device = i82801,
2023 .device_id = 0x2449,
2024 .revision = 0x03,
2025 .stats_size = 80,
2026 .has_extended_tcb_support = true,
2027 .power_management = true,
2028 }
2029 };
2030
eepro100_get_class_by_name(const char * typename)2031 static E100PCIDeviceInfo *eepro100_get_class_by_name(const char *typename)
2032 {
2033 E100PCIDeviceInfo *info = NULL;
2034 int i;
2035
2036 /* This is admittedly awkward but also temporary. QOM allows for
2037 * parameterized typing and for subclassing both of which would suitable
2038 * handle what's going on here. But class_data is already being used as
2039 * a stop-gap hack to allow incremental qdev conversion so we cannot use it
2040 * right now. Once we merge the final QOM series, we can come back here and
2041 * do this in a much more elegant fashion.
2042 */
2043 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2044 if (strcmp(e100_devices[i].name, typename) == 0) {
2045 info = &e100_devices[i];
2046 break;
2047 }
2048 }
2049 assert(info != NULL);
2050
2051 return info;
2052 }
2053
eepro100_get_class(EEPRO100State * s)2054 static E100PCIDeviceInfo *eepro100_get_class(EEPRO100State *s)
2055 {
2056 return eepro100_get_class_by_name(object_get_typename(OBJECT(s)));
2057 }
2058
2059 static Property e100_properties[] = {
2060 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2061 DEFINE_PROP_END_OF_LIST(),
2062 };
2063
eepro100_class_init(ObjectClass * klass,void * data)2064 static void eepro100_class_init(ObjectClass *klass, void *data)
2065 {
2066 DeviceClass *dc = DEVICE_CLASS(klass);
2067 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
2068 E100PCIDeviceInfo *info;
2069
2070 info = eepro100_get_class_by_name(object_class_get_name(klass));
2071
2072 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
2073 device_class_set_props(dc, e100_properties);
2074 dc->desc = info->desc;
2075 k->vendor_id = PCI_VENDOR_ID_INTEL;
2076 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
2077 k->romfile = "pxe-eepro100.rom";
2078 k->realize = e100_nic_realize;
2079 k->exit = pci_nic_uninit;
2080 k->device_id = info->device_id;
2081 k->revision = info->revision;
2082 k->subsystem_vendor_id = info->subsystem_vendor_id;
2083 k->subsystem_id = info->subsystem_id;
2084 }
2085
eepro100_register_types(void)2086 static void eepro100_register_types(void)
2087 {
2088 size_t i;
2089 for (i = 0; i < ARRAY_SIZE(e100_devices); i++) {
2090 TypeInfo type_info = {};
2091 E100PCIDeviceInfo *info = &e100_devices[i];
2092
2093 type_info.name = info->name;
2094 type_info.parent = TYPE_PCI_DEVICE;
2095 type_info.class_init = eepro100_class_init;
2096 type_info.instance_size = sizeof(EEPRO100State);
2097 type_info.instance_init = eepro100_instance_init;
2098 type_info.interfaces = (InterfaceInfo[]) {
2099 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
2100 { },
2101 };
2102
2103 type_register(&type_info);
2104 }
2105 }
2106
2107 type_init(eepro100_register_types)
2108