xref: /openbmc/qemu/hw/net/e1000x_common.c (revision 8e6c718a)
1 /*
2 * QEMU e1000(e) emulation - shared code
3 *
4 * Copyright (c) 2008 Qumranet
5 *
6 * Based on work done by:
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2007 Dan Aloni
9 * Copyright (c) 2004 Antony T Curtis
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/net/mii.h"
28 #include "hw/pci/pci_device.h"
29 #include "net/eth.h"
30 #include "net/net.h"
31 
32 #include "e1000_common.h"
33 #include "e1000x_common.h"
34 
35 #include "trace.h"
36 
37 bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
38 {
39     bool link_up = mac[STATUS] & E1000_STATUS_LU;
40     bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
41     bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
42 
43     if (!link_up || !rx_enabled || !pci_master) {
44         trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
45         return false;
46     }
47 
48     return true;
49 }
50 
51 bool e1000x_is_vlan_packet(const void *buf, uint16_t vet)
52 {
53     uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto);
54     bool res = (eth_proto == vet);
55 
56     trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
57 
58     return res;
59 }
60 
61 bool e1000x_rx_group_filter(uint32_t *mac, const uint8_t *buf)
62 {
63     static const int mta_shift[] = { 4, 3, 2, 0 };
64     uint32_t f, ra[2], *rp, rctl = mac[RCTL];
65 
66     for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
67         if (!(rp[1] & E1000_RAH_AV)) {
68             continue;
69         }
70         ra[0] = cpu_to_le32(rp[0]);
71         ra[1] = cpu_to_le32(rp[1]);
72         if (!memcmp(buf, (uint8_t *)ra, ETH_ALEN)) {
73             trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
74                                             MAC_ARG(buf));
75             return true;
76         }
77     }
78     trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(buf));
79 
80     f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
81     f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
82     if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
83         return true;
84     }
85 
86     trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(buf),
87                                          (rctl >> E1000_RCTL_MO_SHIFT) & 3,
88                                          f >> 5,
89                                          mac[MTA + (f >> 5)]);
90 
91     return false;
92 }
93 
94 bool e1000x_hw_rx_enabled(uint32_t *mac)
95 {
96     if (!(mac[STATUS] & E1000_STATUS_LU)) {
97         trace_e1000x_rx_link_down(mac[STATUS]);
98         return false;
99     }
100 
101     if (!(mac[RCTL] & E1000_RCTL_EN)) {
102         trace_e1000x_rx_disabled(mac[RCTL]);
103         return false;
104     }
105 
106     return true;
107 }
108 
109 bool e1000x_is_oversized(uint32_t *mac, size_t size)
110 {
111     /* this is the size past which hardware will
112        drop packets when setting LPE=0 */
113     static const int maximum_ethernet_vlan_size = 1522;
114     /* this is the size past which hardware will
115        drop packets when setting LPE=1 */
116     static const int maximum_ethernet_lpe_size = 16 * KiB;
117 
118     if ((size > maximum_ethernet_lpe_size ||
119         (size > maximum_ethernet_vlan_size
120             && !(mac[RCTL] & E1000_RCTL_LPE)))
121         && !(mac[RCTL] & E1000_RCTL_SBP)) {
122         e1000x_inc_reg_if_not_full(mac, ROC);
123         trace_e1000x_rx_oversized(size);
124         return true;
125     }
126 
127     return false;
128 }
129 
130 void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
131 {
132     e1000x_update_regs_on_link_down(mac, phy);
133     trace_e1000x_link_negotiation_start();
134     timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
135 }
136 
137 void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
138                            uint8_t *mac_addr)
139 {
140     int i;
141 
142     mac_regs[RA] = 0;
143     mac_regs[RA + 1] = E1000_RAH_AV;
144     for (i = 0; i < 4; i++) {
145         mac_regs[RA] |= mac_addr[i] << (8 * i);
146         mac_regs[RA + 1] |=
147             (i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
148     }
149 
150     qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
151     trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
152 }
153 
154 void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
155 {
156     e1000x_update_regs_on_link_up(mac, phy);
157     phy[MII_ANLPAR] |= MII_ANLPAR_ACK;
158     phy[MII_BMSR] |= MII_BMSR_AN_COMP;
159     trace_e1000x_link_negotiation_done();
160 }
161 
162 void
163 e1000x_core_prepare_eeprom(uint16_t       *eeprom,
164                            const uint16_t *templ,
165                            uint32_t        templ_size,
166                            uint16_t        dev_id,
167                            const uint8_t  *macaddr)
168 {
169     uint16_t checksum = 0;
170     int i;
171 
172     memmove(eeprom, templ, templ_size);
173 
174     for (i = 0; i < 3; i++) {
175         eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
176     }
177 
178     eeprom[11] = eeprom[13] = dev_id;
179 
180     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
181         checksum += eeprom[i];
182     }
183 
184     checksum = (uint16_t) EEPROM_SUM - checksum;
185 
186     eeprom[EEPROM_CHECKSUM_REG] = checksum;
187 }
188 
189 uint32_t
190 e1000x_rxbufsize(uint32_t rctl)
191 {
192     rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
193         E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
194         E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
195     switch (rctl) {
196     case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
197         return 16384;
198     case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
199         return 8192;
200     case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
201         return 4096;
202     case E1000_RCTL_SZ_1024:
203         return 1024;
204     case E1000_RCTL_SZ_512:
205         return 512;
206     case E1000_RCTL_SZ_256:
207         return 256;
208     }
209     return 2048;
210 }
211 
212 void
213 e1000x_update_rx_total_stats(uint32_t *mac,
214                              eth_pkt_types_e pkt_type,
215                              size_t pkt_size,
216                              size_t pkt_fcs_size)
217 {
218     static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
219                                     PRC1023, PRC1522 };
220 
221     e1000x_increase_size_stats(mac, PRCregs, pkt_fcs_size);
222     e1000x_inc_reg_if_not_full(mac, TPR);
223     e1000x_inc_reg_if_not_full(mac, GPRC);
224     /* TOR - Total Octets Received:
225     * This register includes bytes received in a packet from the <Destination
226     * Address> field through the <CRC> field, inclusively.
227     * Always include FCS length (4) in size.
228     */
229     e1000x_grow_8reg_if_not_full(mac, TORL, pkt_size + 4);
230     e1000x_grow_8reg_if_not_full(mac, GORCL, pkt_size + 4);
231 
232     switch (pkt_type) {
233     case ETH_PKT_BCAST:
234         e1000x_inc_reg_if_not_full(mac, BPRC);
235         break;
236 
237     case ETH_PKT_MCAST:
238         e1000x_inc_reg_if_not_full(mac, MPRC);
239         break;
240 
241     default:
242         break;
243     }
244 }
245 
246 void
247 e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
248 {
249     if (size > 1023) {
250         e1000x_inc_reg_if_not_full(mac, size_regs[5]);
251     } else if (size > 511) {
252         e1000x_inc_reg_if_not_full(mac, size_regs[4]);
253     } else if (size > 255) {
254         e1000x_inc_reg_if_not_full(mac, size_regs[3]);
255     } else if (size > 127) {
256         e1000x_inc_reg_if_not_full(mac, size_regs[2]);
257     } else if (size > 64) {
258         e1000x_inc_reg_if_not_full(mac, size_regs[1]);
259     } else if (size == 64) {
260         e1000x_inc_reg_if_not_full(mac, size_regs[0]);
261     }
262 }
263 
264 void
265 e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
266                          e1000x_txd_props *props)
267 {
268     uint32_t op = le32_to_cpu(d->cmd_and_length);
269 
270     props->ipcss = d->lower_setup.ip_fields.ipcss;
271     props->ipcso = d->lower_setup.ip_fields.ipcso;
272     props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
273     props->tucss = d->upper_setup.tcp_fields.tucss;
274     props->tucso = d->upper_setup.tcp_fields.tucso;
275     props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
276     props->paylen = op & 0xfffff;
277     props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
278     props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
279     props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
280     props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
281     props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
282 }
283 
284 void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi)
285 {
286     int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
287     uint32_t timinca = mac[TIMINCA];
288     uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK;
289     uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
290     int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16);
291 
292     mac[lo] = timestamp & 0xffffffff;
293     mac[hi] = timestamp >> 32;
294 }
295 
296 void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val)
297 {
298     int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
299     uint32_t old_val = mac[TIMINCA];
300     uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK;
301     uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
302     uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK;
303     uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
304 
305     mac[TIMINCA] = val;
306     *timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16;
307 }
308