xref: /openbmc/qemu/hw/net/e1000x_common.c (revision 4a09d0bb)
1 /*
2 * QEMU e1000(e) emulation - shared code
3 *
4 * Copyright (c) 2008 Qumranet
5 *
6 * Based on work done by:
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2007 Dan Aloni
9 * Copyright (c) 2004 Antony T Curtis
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/pci/pci.h"
28 #include "net/net.h"
29 
30 #include "e1000x_common.h"
31 
32 #include "trace.h"
33 
34 bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
35 {
36     bool link_up = mac[STATUS] & E1000_STATUS_LU;
37     bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
38     bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
39 
40     if (!link_up || !rx_enabled || !pci_master) {
41         trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
42         return false;
43     }
44 
45     return true;
46 }
47 
48 bool e1000x_is_vlan_packet(const uint8_t *buf, uint16_t vet)
49 {
50     uint16_t eth_proto = lduw_be_p(buf + 12);
51     bool res = (eth_proto == vet);
52 
53     trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
54 
55     return res;
56 }
57 
58 bool e1000x_rx_group_filter(uint32_t *mac, const uint8_t *buf)
59 {
60     static const int mta_shift[] = { 4, 3, 2, 0 };
61     uint32_t f, ra[2], *rp, rctl = mac[RCTL];
62 
63     for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
64         if (!(rp[1] & E1000_RAH_AV)) {
65             continue;
66         }
67         ra[0] = cpu_to_le32(rp[0]);
68         ra[1] = cpu_to_le32(rp[1]);
69         if (!memcmp(buf, (uint8_t *)ra, 6)) {
70             trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
71                                             MAC_ARG(buf));
72             return true;
73         }
74     }
75     trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(buf));
76 
77     f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
78     f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
79     if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
80         e1000x_inc_reg_if_not_full(mac, MPRC);
81         return true;
82     }
83 
84     trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(buf),
85                                          (rctl >> E1000_RCTL_MO_SHIFT) & 3,
86                                          f >> 5,
87                                          mac[MTA + (f >> 5)]);
88 
89     return false;
90 }
91 
92 bool e1000x_hw_rx_enabled(uint32_t *mac)
93 {
94     if (!(mac[STATUS] & E1000_STATUS_LU)) {
95         trace_e1000x_rx_link_down(mac[STATUS]);
96         return false;
97     }
98 
99     if (!(mac[RCTL] & E1000_RCTL_EN)) {
100         trace_e1000x_rx_disabled(mac[RCTL]);
101         return false;
102     }
103 
104     return true;
105 }
106 
107 bool e1000x_is_oversized(uint32_t *mac, size_t size)
108 {
109     /* this is the size past which hardware will
110        drop packets when setting LPE=0 */
111     static const int maximum_ethernet_vlan_size = 1522;
112     /* this is the size past which hardware will
113        drop packets when setting LPE=1 */
114     static const int maximum_ethernet_lpe_size = 16384;
115 
116     if ((size > maximum_ethernet_lpe_size ||
117         (size > maximum_ethernet_vlan_size
118             && !(mac[RCTL] & E1000_RCTL_LPE)))
119         && !(mac[RCTL] & E1000_RCTL_SBP)) {
120         e1000x_inc_reg_if_not_full(mac, ROC);
121         trace_e1000x_rx_oversized(size);
122         return true;
123     }
124 
125     return false;
126 }
127 
128 void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
129 {
130     e1000x_update_regs_on_link_down(mac, phy);
131     trace_e1000x_link_negotiation_start();
132     timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
133 }
134 
135 void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
136                            uint8_t *mac_addr)
137 {
138     int i;
139 
140     mac_regs[RA] = 0;
141     mac_regs[RA + 1] = E1000_RAH_AV;
142     for (i = 0; i < 4; i++) {
143         mac_regs[RA] |= mac_addr[i] << (8 * i);
144         mac_regs[RA + 1] |=
145             (i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
146     }
147 
148     qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
149     trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
150 }
151 
152 void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
153 {
154     e1000x_update_regs_on_link_up(mac, phy);
155     phy[PHY_LP_ABILITY] |= MII_LPAR_LPACK;
156     phy[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
157     trace_e1000x_link_negotiation_done();
158 }
159 
160 void
161 e1000x_core_prepare_eeprom(uint16_t       *eeprom,
162                            const uint16_t *templ,
163                            uint32_t        templ_size,
164                            uint16_t        dev_id,
165                            const uint8_t  *macaddr)
166 {
167     uint16_t checksum = 0;
168     int i;
169 
170     memmove(eeprom, templ, templ_size);
171 
172     for (i = 0; i < 3; i++) {
173         eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
174     }
175 
176     eeprom[11] = eeprom[13] = dev_id;
177 
178     for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
179         checksum += eeprom[i];
180     }
181 
182     checksum = (uint16_t) EEPROM_SUM - checksum;
183 
184     eeprom[EEPROM_CHECKSUM_REG] = checksum;
185 }
186 
187 uint32_t
188 e1000x_rxbufsize(uint32_t rctl)
189 {
190     rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
191         E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
192         E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
193     switch (rctl) {
194     case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
195         return 16384;
196     case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
197         return 8192;
198     case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
199         return 4096;
200     case E1000_RCTL_SZ_1024:
201         return 1024;
202     case E1000_RCTL_SZ_512:
203         return 512;
204     case E1000_RCTL_SZ_256:
205         return 256;
206     }
207     return 2048;
208 }
209 
210 void
211 e1000x_update_rx_total_stats(uint32_t *mac,
212                              size_t data_size,
213                              size_t data_fcs_size)
214 {
215     static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
216                                     PRC1023, PRC1522 };
217 
218     e1000x_increase_size_stats(mac, PRCregs, data_fcs_size);
219     e1000x_inc_reg_if_not_full(mac, TPR);
220     mac[GPRC] = mac[TPR];
221     /* TOR - Total Octets Received:
222     * This register includes bytes received in a packet from the <Destination
223     * Address> field through the <CRC> field, inclusively.
224     * Always include FCS length (4) in size.
225     */
226     e1000x_grow_8reg_if_not_full(mac, TORL, data_size + 4);
227     mac[GORCL] = mac[TORL];
228     mac[GORCH] = mac[TORH];
229 }
230 
231 void
232 e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
233 {
234     if (size > 1023) {
235         e1000x_inc_reg_if_not_full(mac, size_regs[5]);
236     } else if (size > 511) {
237         e1000x_inc_reg_if_not_full(mac, size_regs[4]);
238     } else if (size > 255) {
239         e1000x_inc_reg_if_not_full(mac, size_regs[3]);
240     } else if (size > 127) {
241         e1000x_inc_reg_if_not_full(mac, size_regs[2]);
242     } else if (size > 64) {
243         e1000x_inc_reg_if_not_full(mac, size_regs[1]);
244     } else if (size == 64) {
245         e1000x_inc_reg_if_not_full(mac, size_regs[0]);
246     }
247 }
248 
249 void
250 e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
251                          e1000x_txd_props *props)
252 {
253     uint32_t op = le32_to_cpu(d->cmd_and_length);
254 
255     props->ipcss = d->lower_setup.ip_fields.ipcss;
256     props->ipcso = d->lower_setup.ip_fields.ipcso;
257     props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
258     props->tucss = d->upper_setup.tcp_fields.tucss;
259     props->tucso = d->upper_setup.tcp_fields.tucso;
260     props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
261     props->paylen = op & 0xfffff;
262     props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
263     props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
264     props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
265     props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
266     props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
267 }
268