1 /* 2 * Core code for QEMU e1000e emulation 3 * 4 * Software developer's manuals: 5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf 6 * 7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) 8 * Developed by Daynix Computing LTD (http://www.daynix.com) 9 * 10 * Authors: 11 * Dmitry Fleytman <dmitry@daynix.com> 12 * Leonid Bloch <leonid@daynix.com> 13 * Yan Vugenfirer <yan@daynix.com> 14 * 15 * Based on work done by: 16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 17 * Copyright (c) 2008 Qumranet 18 * Based on work done by: 19 * Copyright (c) 2007 Dan Aloni 20 * Copyright (c) 2004 Antony T Curtis 21 * 22 * This library is free software; you can redistribute it and/or 23 * modify it under the terms of the GNU Lesser General Public 24 * License as published by the Free Software Foundation; either 25 * version 2.1 of the License, or (at your option) any later version. 26 * 27 * This library is distributed in the hope that it will be useful, 28 * but WITHOUT ANY WARRANTY; without even the implied warranty of 29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 30 * Lesser General Public License for more details. 31 * 32 * You should have received a copy of the GNU Lesser General Public 33 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 34 */ 35 36 #include "qemu/osdep.h" 37 #include "qemu/log.h" 38 #include "net/net.h" 39 #include "net/tap.h" 40 #include "hw/pci/msi.h" 41 #include "hw/pci/msix.h" 42 #include "sysemu/runstate.h" 43 44 #include "net_tx_pkt.h" 45 #include "net_rx_pkt.h" 46 47 #include "e1000x_common.h" 48 #include "e1000e_core.h" 49 50 #include "trace.h" 51 52 #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per 53 second according to spec 10.2.4.2 */ 54 #define E1000E_MAX_TX_FRAGS (64) 55 56 static inline void 57 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val); 58 59 static inline void 60 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp) 61 { 62 if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) { 63 trace_e1000e_wrn_no_ts_support(); 64 } 65 } 66 67 static inline void 68 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length) 69 { 70 if (cmd_and_length & E1000_TXD_CMD_SNAP) { 71 trace_e1000e_wrn_no_snap_support(); 72 } 73 } 74 75 static inline void 76 e1000e_raise_legacy_irq(E1000ECore *core) 77 { 78 trace_e1000e_irq_legacy_notify(true); 79 e1000x_inc_reg_if_not_full(core->mac, IAC); 80 pci_set_irq(core->owner, 1); 81 } 82 83 static inline void 84 e1000e_lower_legacy_irq(E1000ECore *core) 85 { 86 trace_e1000e_irq_legacy_notify(false); 87 pci_set_irq(core->owner, 0); 88 } 89 90 static inline void 91 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer) 92 { 93 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] * 94 timer->delay_resolution_ns; 95 96 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns); 97 98 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns); 99 100 timer->running = true; 101 } 102 103 static void 104 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer) 105 { 106 if (timer->running) { 107 e1000e_intrmgr_rearm_timer(timer); 108 } 109 } 110 111 static void 112 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer) 113 { 114 if (timer->running) { 115 timer_del(timer->timer); 116 } 117 } 118 119 static inline void 120 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer) 121 { 122 if (timer->running) { 123 timer_del(timer->timer); 124 timer->running = false; 125 } 126 } 127 128 static inline void 129 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core) 130 { 131 trace_e1000e_irq_fire_delayed_interrupts(); 132 e1000e_set_interrupt_cause(core, 0); 133 } 134 135 static void 136 e1000e_intrmgr_on_timer(void *opaque) 137 { 138 E1000IntrDelayTimer *timer = opaque; 139 140 trace_e1000e_irq_throttling_timer(timer->delay_reg << 2); 141 142 timer->running = false; 143 e1000e_intrmgr_fire_delayed_interrupts(timer->core); 144 } 145 146 static void 147 e1000e_intrmgr_on_throttling_timer(void *opaque) 148 { 149 E1000IntrDelayTimer *timer = opaque; 150 151 assert(!msix_enabled(timer->core->owner)); 152 153 timer->running = false; 154 155 if (!timer->core->itr_intr_pending) { 156 trace_e1000e_irq_throttling_no_pending_interrupts(); 157 return; 158 } 159 160 if (msi_enabled(timer->core->owner)) { 161 trace_e1000e_irq_msi_notify_postponed(); 162 e1000e_set_interrupt_cause(timer->core, 0); 163 } else { 164 trace_e1000e_irq_legacy_notify_postponed(); 165 e1000e_set_interrupt_cause(timer->core, 0); 166 } 167 } 168 169 static void 170 e1000e_intrmgr_on_msix_throttling_timer(void *opaque) 171 { 172 E1000IntrDelayTimer *timer = opaque; 173 int idx = timer - &timer->core->eitr[0]; 174 175 assert(msix_enabled(timer->core->owner)); 176 177 timer->running = false; 178 179 if (!timer->core->eitr_intr_pending[idx]) { 180 trace_e1000e_irq_throttling_no_pending_vec(idx); 181 return; 182 } 183 184 trace_e1000e_irq_msix_notify_postponed_vec(idx); 185 msix_notify(timer->core->owner, idx); 186 } 187 188 static void 189 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create) 190 { 191 int i; 192 193 core->radv.delay_reg = RADV; 194 core->rdtr.delay_reg = RDTR; 195 core->raid.delay_reg = RAID; 196 core->tadv.delay_reg = TADV; 197 core->tidv.delay_reg = TIDV; 198 199 core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 200 core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 201 core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 202 core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 203 core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 204 205 core->radv.core = core; 206 core->rdtr.core = core; 207 core->raid.core = core; 208 core->tadv.core = core; 209 core->tidv.core = core; 210 211 core->itr.core = core; 212 core->itr.delay_reg = ITR; 213 core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; 214 215 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 216 core->eitr[i].core = core; 217 core->eitr[i].delay_reg = EITR + i; 218 core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; 219 } 220 221 if (!create) { 222 return; 223 } 224 225 core->radv.timer = 226 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv); 227 core->rdtr.timer = 228 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr); 229 core->raid.timer = 230 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid); 231 232 core->tadv.timer = 233 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv); 234 core->tidv.timer = 235 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv); 236 237 core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 238 e1000e_intrmgr_on_throttling_timer, 239 &core->itr); 240 241 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 242 core->eitr[i].timer = 243 timer_new_ns(QEMU_CLOCK_VIRTUAL, 244 e1000e_intrmgr_on_msix_throttling_timer, 245 &core->eitr[i]); 246 } 247 } 248 249 static inline void 250 e1000e_intrmgr_stop_delay_timers(E1000ECore *core) 251 { 252 e1000e_intrmgr_stop_timer(&core->radv); 253 e1000e_intrmgr_stop_timer(&core->rdtr); 254 e1000e_intrmgr_stop_timer(&core->raid); 255 e1000e_intrmgr_stop_timer(&core->tidv); 256 e1000e_intrmgr_stop_timer(&core->tadv); 257 } 258 259 static bool 260 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes) 261 { 262 uint32_t delayable_causes; 263 uint32_t rdtr = core->mac[RDTR]; 264 uint32_t radv = core->mac[RADV]; 265 uint32_t raid = core->mac[RAID]; 266 267 if (msix_enabled(core->owner)) { 268 return false; 269 } 270 271 delayable_causes = E1000_ICR_RXQ0 | 272 E1000_ICR_RXQ1 | 273 E1000_ICR_RXT0; 274 275 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) { 276 delayable_causes |= E1000_ICR_ACK; 277 } 278 279 /* Clean up all causes that may be delayed */ 280 core->delayed_causes |= *causes & delayable_causes; 281 *causes &= ~delayable_causes; 282 283 /* Check if delayed RX interrupts disabled by client 284 or if there are causes that cannot be delayed */ 285 if ((rdtr == 0) || (*causes != 0)) { 286 return false; 287 } 288 289 /* Check if delayed RX ACK interrupts disabled by client 290 and there is an ACK packet received */ 291 if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) { 292 return false; 293 } 294 295 /* All causes delayed */ 296 e1000e_intrmgr_rearm_timer(&core->rdtr); 297 298 if (!core->radv.running && (radv != 0)) { 299 e1000e_intrmgr_rearm_timer(&core->radv); 300 } 301 302 if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) { 303 e1000e_intrmgr_rearm_timer(&core->raid); 304 } 305 306 return true; 307 } 308 309 static bool 310 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes) 311 { 312 static const uint32_t delayable_causes = E1000_ICR_TXQ0 | 313 E1000_ICR_TXQ1 | 314 E1000_ICR_TXQE | 315 E1000_ICR_TXDW; 316 317 if (msix_enabled(core->owner)) { 318 return false; 319 } 320 321 /* Clean up all causes that may be delayed */ 322 core->delayed_causes |= *causes & delayable_causes; 323 *causes &= ~delayable_causes; 324 325 /* If there are causes that cannot be delayed */ 326 if (*causes != 0) { 327 return false; 328 } 329 330 /* All causes delayed */ 331 e1000e_intrmgr_rearm_timer(&core->tidv); 332 333 if (!core->tadv.running && (core->mac[TADV] != 0)) { 334 e1000e_intrmgr_rearm_timer(&core->tadv); 335 } 336 337 return true; 338 } 339 340 static uint32_t 341 e1000e_intmgr_collect_delayed_causes(E1000ECore *core) 342 { 343 uint32_t res; 344 345 if (msix_enabled(core->owner)) { 346 assert(core->delayed_causes == 0); 347 return 0; 348 } 349 350 res = core->delayed_causes; 351 core->delayed_causes = 0; 352 353 e1000e_intrmgr_stop_delay_timers(core); 354 355 return res; 356 } 357 358 static void 359 e1000e_intrmgr_fire_all_timers(E1000ECore *core) 360 { 361 int i; 362 uint32_t val = e1000e_intmgr_collect_delayed_causes(core); 363 364 trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]); 365 core->mac[ICR] |= val; 366 367 if (core->itr.running) { 368 timer_del(core->itr.timer); 369 e1000e_intrmgr_on_throttling_timer(&core->itr); 370 } 371 372 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 373 if (core->eitr[i].running) { 374 timer_del(core->eitr[i].timer); 375 e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]); 376 } 377 } 378 } 379 380 static void 381 e1000e_intrmgr_resume(E1000ECore *core) 382 { 383 int i; 384 385 e1000e_intmgr_timer_resume(&core->radv); 386 e1000e_intmgr_timer_resume(&core->rdtr); 387 e1000e_intmgr_timer_resume(&core->raid); 388 e1000e_intmgr_timer_resume(&core->tidv); 389 e1000e_intmgr_timer_resume(&core->tadv); 390 391 e1000e_intmgr_timer_resume(&core->itr); 392 393 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 394 e1000e_intmgr_timer_resume(&core->eitr[i]); 395 } 396 } 397 398 static void 399 e1000e_intrmgr_pause(E1000ECore *core) 400 { 401 int i; 402 403 e1000e_intmgr_timer_pause(&core->radv); 404 e1000e_intmgr_timer_pause(&core->rdtr); 405 e1000e_intmgr_timer_pause(&core->raid); 406 e1000e_intmgr_timer_pause(&core->tidv); 407 e1000e_intmgr_timer_pause(&core->tadv); 408 409 e1000e_intmgr_timer_pause(&core->itr); 410 411 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 412 e1000e_intmgr_timer_pause(&core->eitr[i]); 413 } 414 } 415 416 static void 417 e1000e_intrmgr_reset(E1000ECore *core) 418 { 419 int i; 420 421 core->delayed_causes = 0; 422 423 e1000e_intrmgr_stop_delay_timers(core); 424 425 e1000e_intrmgr_stop_timer(&core->itr); 426 427 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 428 e1000e_intrmgr_stop_timer(&core->eitr[i]); 429 } 430 } 431 432 static void 433 e1000e_intrmgr_pci_unint(E1000ECore *core) 434 { 435 int i; 436 437 timer_free(core->radv.timer); 438 timer_free(core->rdtr.timer); 439 timer_free(core->raid.timer); 440 441 timer_free(core->tadv.timer); 442 timer_free(core->tidv.timer); 443 444 timer_free(core->itr.timer); 445 446 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 447 timer_free(core->eitr[i].timer); 448 } 449 } 450 451 static void 452 e1000e_intrmgr_pci_realize(E1000ECore *core) 453 { 454 e1000e_intrmgr_initialize_all_timers(core, true); 455 } 456 457 static inline bool 458 e1000e_rx_csum_enabled(E1000ECore *core) 459 { 460 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true; 461 } 462 463 static inline bool 464 e1000e_rx_use_legacy_descriptor(E1000ECore *core) 465 { 466 return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true; 467 } 468 469 static inline bool 470 e1000e_rx_use_ps_descriptor(E1000ECore *core) 471 { 472 return !e1000e_rx_use_legacy_descriptor(core) && 473 (core->mac[RCTL] & E1000_RCTL_DTYP_PS); 474 } 475 476 static inline bool 477 e1000e_rss_enabled(E1000ECore *core) 478 { 479 return E1000_MRQC_ENABLED(core->mac[MRQC]) && 480 !e1000e_rx_csum_enabled(core) && 481 !e1000e_rx_use_legacy_descriptor(core); 482 } 483 484 typedef struct E1000E_RSSInfo_st { 485 bool enabled; 486 uint32_t hash; 487 uint32_t queue; 488 uint32_t type; 489 } E1000E_RSSInfo; 490 491 static uint32_t 492 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt) 493 { 494 bool isip4, isip6, isudp, istcp; 495 496 assert(e1000e_rss_enabled(core)); 497 498 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); 499 500 if (isip4) { 501 bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment; 502 503 trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC], 504 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]), 505 E1000_MRQC_EN_IPV4(core->mac[MRQC])); 506 507 if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) { 508 return E1000_MRQ_RSS_TYPE_IPV4TCP; 509 } 510 511 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) { 512 return E1000_MRQ_RSS_TYPE_IPV4; 513 } 514 } else if (isip6) { 515 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt); 516 517 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS; 518 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS; 519 520 /* 521 * Following two traces must not be combined because resulting 522 * event will have 11 arguments totally and some trace backends 523 * (at least "ust") have limitation of maximum 10 arguments per 524 * event. Events with more arguments fail to compile for 525 * backends like these. 526 */ 527 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]); 528 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp, 529 ip6info->has_ext_hdrs, 530 ip6info->rss_ex_dst_valid, 531 ip6info->rss_ex_src_valid, 532 core->mac[MRQC], 533 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]), 534 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]), 535 E1000_MRQC_EN_IPV6(core->mac[MRQC])); 536 537 if ((!ex_dis || !ip6info->has_ext_hdrs) && 538 (!new_ex_dis || !(ip6info->rss_ex_dst_valid || 539 ip6info->rss_ex_src_valid))) { 540 541 if (istcp && !ip6info->fragment && 542 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) { 543 return E1000_MRQ_RSS_TYPE_IPV6TCP; 544 } 545 546 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) { 547 return E1000_MRQ_RSS_TYPE_IPV6EX; 548 } 549 550 } 551 552 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) { 553 return E1000_MRQ_RSS_TYPE_IPV6; 554 } 555 556 } 557 558 return E1000_MRQ_RSS_TYPE_NONE; 559 } 560 561 static uint32_t 562 e1000e_rss_calc_hash(E1000ECore *core, 563 struct NetRxPkt *pkt, 564 E1000E_RSSInfo *info) 565 { 566 NetRxPktRssType type; 567 568 assert(e1000e_rss_enabled(core)); 569 570 switch (info->type) { 571 case E1000_MRQ_RSS_TYPE_IPV4: 572 type = NetPktRssIpV4; 573 break; 574 case E1000_MRQ_RSS_TYPE_IPV4TCP: 575 type = NetPktRssIpV4Tcp; 576 break; 577 case E1000_MRQ_RSS_TYPE_IPV6TCP: 578 type = NetPktRssIpV6TcpEx; 579 break; 580 case E1000_MRQ_RSS_TYPE_IPV6: 581 type = NetPktRssIpV6; 582 break; 583 case E1000_MRQ_RSS_TYPE_IPV6EX: 584 type = NetPktRssIpV6Ex; 585 break; 586 default: 587 assert(false); 588 return 0; 589 } 590 591 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]); 592 } 593 594 static void 595 e1000e_rss_parse_packet(E1000ECore *core, 596 struct NetRxPkt *pkt, 597 E1000E_RSSInfo *info) 598 { 599 trace_e1000e_rx_rss_started(); 600 601 if (!e1000e_rss_enabled(core)) { 602 info->enabled = false; 603 info->hash = 0; 604 info->queue = 0; 605 info->type = 0; 606 trace_e1000e_rx_rss_disabled(); 607 return; 608 } 609 610 info->enabled = true; 611 612 info->type = e1000e_rss_get_hash_type(core, pkt); 613 614 trace_e1000e_rx_rss_type(info->type); 615 616 if (info->type == E1000_MRQ_RSS_TYPE_NONE) { 617 info->hash = 0; 618 info->queue = 0; 619 return; 620 } 621 622 info->hash = e1000e_rss_calc_hash(core, pkt, info); 623 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash); 624 } 625 626 static void 627 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx) 628 { 629 if (tx->props.tse && tx->cptse) { 630 net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss); 631 net_tx_pkt_update_ip_checksums(tx->tx_pkt); 632 e1000x_inc_reg_if_not_full(core->mac, TSCTC); 633 return; 634 } 635 636 if (tx->sum_needed & E1000_TXD_POPTS_TXSM) { 637 net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0); 638 } 639 640 if (tx->sum_needed & E1000_TXD_POPTS_IXSM) { 641 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); 642 } 643 } 644 645 static bool 646 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index) 647 { 648 int target_queue = MIN(core->max_queue_num, queue_index); 649 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue); 650 651 e1000e_setup_tx_offloads(core, tx); 652 653 net_tx_pkt_dump(tx->tx_pkt); 654 655 if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) || 656 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) { 657 return net_tx_pkt_send_loopback(tx->tx_pkt, queue); 658 } else { 659 return net_tx_pkt_send(tx->tx_pkt, queue); 660 } 661 } 662 663 static void 664 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt) 665 { 666 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 667 PTC1023, PTC1522 }; 668 669 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt); 670 671 e1000x_increase_size_stats(core->mac, PTCregs, tot_len); 672 e1000x_inc_reg_if_not_full(core->mac, TPT); 673 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len); 674 675 switch (net_tx_pkt_get_packet_type(tx_pkt)) { 676 case ETH_PKT_BCAST: 677 e1000x_inc_reg_if_not_full(core->mac, BPTC); 678 break; 679 case ETH_PKT_MCAST: 680 e1000x_inc_reg_if_not_full(core->mac, MPTC); 681 break; 682 case ETH_PKT_UCAST: 683 break; 684 default: 685 g_assert_not_reached(); 686 } 687 688 core->mac[GPTC] = core->mac[TPT]; 689 core->mac[GOTCL] = core->mac[TOTL]; 690 core->mac[GOTCH] = core->mac[TOTH]; 691 } 692 693 static void 694 e1000e_process_tx_desc(E1000ECore *core, 695 struct e1000e_tx *tx, 696 struct e1000_tx_desc *dp, 697 int queue_index) 698 { 699 uint32_t txd_lower = le32_to_cpu(dp->lower.data); 700 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); 701 unsigned int split_size = txd_lower & 0xffff; 702 uint64_t addr; 703 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; 704 bool eop = txd_lower & E1000_TXD_CMD_EOP; 705 706 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ 707 e1000x_read_tx_ctx_descr(xp, &tx->props); 708 e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length)); 709 return; 710 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { 711 /* data descriptor */ 712 tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8; 713 tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; 714 e1000e_process_ts_option(core, dp); 715 } else { 716 /* legacy descriptor */ 717 e1000e_process_ts_option(core, dp); 718 tx->cptse = 0; 719 } 720 721 addr = le64_to_cpu(dp->buffer_addr); 722 723 if (!tx->skip_cp) { 724 if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) { 725 tx->skip_cp = true; 726 } 727 } 728 729 if (eop) { 730 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) { 731 if (e1000x_vlan_enabled(core->mac) && 732 e1000x_is_vlan_txd(txd_lower)) { 733 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, 734 le16_to_cpu(dp->upper.fields.special), core->vet); 735 } 736 if (e1000e_tx_pkt_send(core, tx, queue_index)) { 737 e1000e_on_tx_done_update_stats(core, tx->tx_pkt); 738 } 739 } 740 741 tx->skip_cp = false; 742 net_tx_pkt_reset(tx->tx_pkt); 743 744 tx->sum_needed = 0; 745 tx->cptse = 0; 746 } 747 } 748 749 static inline uint32_t 750 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx) 751 { 752 if (!msix_enabled(core->owner)) { 753 return E1000_ICR_TXDW; 754 } 755 756 return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1; 757 } 758 759 static inline uint32_t 760 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx, 761 bool min_threshold_hit) 762 { 763 if (!msix_enabled(core->owner)) { 764 return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0); 765 } 766 767 return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1; 768 } 769 770 static uint32_t 771 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base, 772 struct e1000_tx_desc *dp, bool *ide, int queue_idx) 773 { 774 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); 775 776 if (!(txd_lower & E1000_TXD_CMD_RS) && 777 !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) { 778 return 0; 779 } 780 781 *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false; 782 783 txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD; 784 785 dp->upper.data = cpu_to_le32(txd_upper); 786 pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp), 787 &dp->upper, sizeof(dp->upper)); 788 return e1000e_tx_wb_interrupt_cause(core, queue_idx); 789 } 790 791 typedef struct E1000E_RingInfo_st { 792 int dbah; 793 int dbal; 794 int dlen; 795 int dh; 796 int dt; 797 int idx; 798 } E1000E_RingInfo; 799 800 static inline bool 801 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r) 802 { 803 return core->mac[r->dh] == core->mac[r->dt] || 804 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN; 805 } 806 807 static inline uint64_t 808 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r) 809 { 810 uint64_t bah = core->mac[r->dbah]; 811 uint64_t bal = core->mac[r->dbal]; 812 813 return (bah << 32) + bal; 814 } 815 816 static inline uint64_t 817 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r) 818 { 819 return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh]; 820 } 821 822 static inline void 823 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count) 824 { 825 core->mac[r->dh] += count; 826 827 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) { 828 core->mac[r->dh] = 0; 829 } 830 } 831 832 static inline uint32_t 833 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r) 834 { 835 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen], 836 core->mac[r->dh], core->mac[r->dt]); 837 838 if (core->mac[r->dh] <= core->mac[r->dt]) { 839 return core->mac[r->dt] - core->mac[r->dh]; 840 } 841 842 if (core->mac[r->dh] > core->mac[r->dt]) { 843 return core->mac[r->dlen] / E1000_RING_DESC_LEN + 844 core->mac[r->dt] - core->mac[r->dh]; 845 } 846 847 g_assert_not_reached(); 848 return 0; 849 } 850 851 static inline bool 852 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r) 853 { 854 return core->mac[r->dlen] > 0; 855 } 856 857 static inline uint32_t 858 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r) 859 { 860 return core->mac[r->dlen]; 861 } 862 863 typedef struct E1000E_TxRing_st { 864 const E1000E_RingInfo *i; 865 struct e1000e_tx *tx; 866 } E1000E_TxRing; 867 868 static inline int 869 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx) 870 { 871 return (reg_idx - base_reg_idx) / (0x100 >> 2); 872 } 873 874 static inline void 875 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx) 876 { 877 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = { 878 { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 }, 879 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 } 880 }; 881 882 assert(idx < ARRAY_SIZE(i)); 883 884 txr->i = &i[idx]; 885 txr->tx = &core->tx[idx]; 886 } 887 888 typedef struct E1000E_RxRing_st { 889 const E1000E_RingInfo *i; 890 } E1000E_RxRing; 891 892 static inline void 893 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx) 894 { 895 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = { 896 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 }, 897 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 } 898 }; 899 900 assert(idx < ARRAY_SIZE(i)); 901 902 rxr->i = &i[idx]; 903 } 904 905 static void 906 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr) 907 { 908 dma_addr_t base; 909 struct e1000_tx_desc desc; 910 bool ide = false; 911 const E1000E_RingInfo *txi = txr->i; 912 uint32_t cause = E1000_ICS_TXQE; 913 914 if (!(core->mac[TCTL] & E1000_TCTL_EN)) { 915 trace_e1000e_tx_disabled(); 916 return; 917 } 918 919 while (!e1000e_ring_empty(core, txi)) { 920 base = e1000e_ring_head_descr(core, txi); 921 922 pci_dma_read(core->owner, base, &desc, sizeof(desc)); 923 924 trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr, 925 desc.lower.data, desc.upper.data); 926 927 e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx); 928 cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx); 929 930 e1000e_ring_advance(core, txi, 1); 931 } 932 933 if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) { 934 e1000e_set_interrupt_cause(core, cause); 935 } 936 } 937 938 static bool 939 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r, 940 size_t total_size) 941 { 942 uint32_t bufs = e1000e_ring_free_descr_num(core, r); 943 944 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, 945 core->rx_desc_buf_size); 946 947 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) * 948 core->rx_desc_buf_size; 949 } 950 951 void 952 e1000e_start_recv(E1000ECore *core) 953 { 954 int i; 955 956 trace_e1000e_rx_start_recv(); 957 958 for (i = 0; i <= core->max_queue_num; i++) { 959 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i)); 960 } 961 } 962 963 bool 964 e1000e_can_receive(E1000ECore *core) 965 { 966 int i; 967 968 if (!e1000x_rx_ready(core->owner, core->mac)) { 969 return false; 970 } 971 972 for (i = 0; i < E1000E_NUM_QUEUES; i++) { 973 E1000E_RxRing rxr; 974 975 e1000e_rx_ring_init(core, &rxr, i); 976 if (e1000e_ring_enabled(core, rxr.i) && 977 e1000e_has_rxbufs(core, rxr.i, 1)) { 978 trace_e1000e_rx_can_recv(); 979 return true; 980 } 981 } 982 983 trace_e1000e_rx_can_recv_rings_full(); 984 return false; 985 } 986 987 ssize_t 988 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size) 989 { 990 const struct iovec iov = { 991 .iov_base = (uint8_t *)buf, 992 .iov_len = size 993 }; 994 995 return e1000e_receive_iov(core, &iov, 1); 996 } 997 998 static inline bool 999 e1000e_rx_l3_cso_enabled(E1000ECore *core) 1000 { 1001 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD); 1002 } 1003 1004 static inline bool 1005 e1000e_rx_l4_cso_enabled(E1000ECore *core) 1006 { 1007 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD); 1008 } 1009 1010 static bool 1011 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size) 1012 { 1013 uint32_t rctl = core->mac[RCTL]; 1014 1015 if (e1000x_is_vlan_packet(buf, core->vet) && 1016 e1000x_vlan_rx_filter_enabled(core->mac)) { 1017 uint16_t vid = lduw_be_p(buf + 14); 1018 uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) + 1019 ((vid >> 5) & 0x7f)); 1020 if ((vfta & (1 << (vid & 0x1f))) == 0) { 1021 trace_e1000e_rx_flt_vlan_mismatch(vid); 1022 return false; 1023 } else { 1024 trace_e1000e_rx_flt_vlan_match(vid); 1025 } 1026 } 1027 1028 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { 1029 case ETH_PKT_UCAST: 1030 if (rctl & E1000_RCTL_UPE) { 1031 return true; /* promiscuous ucast */ 1032 } 1033 break; 1034 1035 case ETH_PKT_BCAST: 1036 if (rctl & E1000_RCTL_BAM) { 1037 return true; /* broadcast enabled */ 1038 } 1039 break; 1040 1041 case ETH_PKT_MCAST: 1042 if (rctl & E1000_RCTL_MPE) { 1043 return true; /* promiscuous mcast */ 1044 } 1045 break; 1046 1047 default: 1048 g_assert_not_reached(); 1049 } 1050 1051 return e1000x_rx_group_filter(core->mac, buf); 1052 } 1053 1054 static inline void 1055 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr) 1056 { 1057 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc; 1058 *buff_addr = le64_to_cpu(d->buffer_addr); 1059 } 1060 1061 static inline void 1062 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr) 1063 { 1064 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc; 1065 *buff_addr = le64_to_cpu(d->read.buffer_addr); 1066 } 1067 1068 static inline void 1069 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc, 1070 hwaddr (*buff_addr)[MAX_PS_BUFFERS]) 1071 { 1072 int i; 1073 union e1000_rx_desc_packet_split *d = 1074 (union e1000_rx_desc_packet_split *) desc; 1075 1076 for (i = 0; i < MAX_PS_BUFFERS; i++) { 1077 (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]); 1078 } 1079 1080 trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1], 1081 (*buff_addr)[2], (*buff_addr)[3]); 1082 } 1083 1084 static inline void 1085 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc, 1086 hwaddr (*buff_addr)[MAX_PS_BUFFERS]) 1087 { 1088 if (e1000e_rx_use_legacy_descriptor(core)) { 1089 e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]); 1090 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0; 1091 } else { 1092 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { 1093 e1000e_read_ps_rx_descr(core, desc, buff_addr); 1094 } else { 1095 e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]); 1096 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0; 1097 } 1098 } 1099 } 1100 1101 static void 1102 e1000e_verify_csum_in_sw(E1000ECore *core, 1103 struct NetRxPkt *pkt, 1104 uint32_t *status_flags, 1105 bool istcp, bool isudp) 1106 { 1107 bool csum_valid; 1108 uint32_t csum_error; 1109 1110 if (e1000e_rx_l3_cso_enabled(core)) { 1111 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) { 1112 trace_e1000e_rx_metadata_l3_csum_validation_failed(); 1113 } else { 1114 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE; 1115 *status_flags |= E1000_RXD_STAT_IPCS | csum_error; 1116 } 1117 } else { 1118 trace_e1000e_rx_metadata_l3_cso_disabled(); 1119 } 1120 1121 if (!e1000e_rx_l4_cso_enabled(core)) { 1122 trace_e1000e_rx_metadata_l4_cso_disabled(); 1123 return; 1124 } 1125 1126 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { 1127 trace_e1000e_rx_metadata_l4_csum_validation_failed(); 1128 return; 1129 } 1130 1131 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE; 1132 1133 if (istcp) { 1134 *status_flags |= E1000_RXD_STAT_TCPCS | 1135 csum_error; 1136 } else if (isudp) { 1137 *status_flags |= E1000_RXD_STAT_TCPCS | 1138 E1000_RXD_STAT_UDPCS | 1139 csum_error; 1140 } 1141 } 1142 1143 static inline bool 1144 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt) 1145 { 1146 if (!net_rx_pkt_is_tcp_ack(rx_pkt)) { 1147 return false; 1148 } 1149 1150 if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) { 1151 return !net_rx_pkt_has_tcp_data(rx_pkt); 1152 } 1153 1154 return true; 1155 } 1156 1157 static void 1158 e1000e_build_rx_metadata(E1000ECore *core, 1159 struct NetRxPkt *pkt, 1160 bool is_eop, 1161 const E1000E_RSSInfo *rss_info, 1162 uint32_t *rss, uint32_t *mrq, 1163 uint32_t *status_flags, 1164 uint16_t *ip_id, 1165 uint16_t *vlan_tag) 1166 { 1167 struct virtio_net_hdr *vhdr; 1168 bool isip4, isip6, istcp, isudp; 1169 uint32_t pkt_type; 1170 1171 *status_flags = E1000_RXD_STAT_DD; 1172 1173 /* No additional metadata needed for non-EOP descriptors */ 1174 if (!is_eop) { 1175 goto func_exit; 1176 } 1177 1178 *status_flags |= E1000_RXD_STAT_EOP; 1179 1180 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); 1181 trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp); 1182 1183 /* VLAN state */ 1184 if (net_rx_pkt_is_vlan_stripped(pkt)) { 1185 *status_flags |= E1000_RXD_STAT_VP; 1186 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt)); 1187 trace_e1000e_rx_metadata_vlan(*vlan_tag); 1188 } 1189 1190 /* Packet parsing results */ 1191 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) { 1192 if (rss_info->enabled) { 1193 *rss = cpu_to_le32(rss_info->hash); 1194 *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8)); 1195 trace_e1000e_rx_metadata_rss(*rss, *mrq); 1196 } 1197 } else if (isip4) { 1198 *status_flags |= E1000_RXD_STAT_IPIDV; 1199 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt)); 1200 trace_e1000e_rx_metadata_ip_id(*ip_id); 1201 } 1202 1203 if (istcp && e1000e_is_tcp_ack(core, pkt)) { 1204 *status_flags |= E1000_RXD_STAT_ACK; 1205 trace_e1000e_rx_metadata_ack(); 1206 } 1207 1208 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) { 1209 trace_e1000e_rx_metadata_ipv6_filtering_disabled(); 1210 pkt_type = E1000_RXD_PKT_MAC; 1211 } else if (istcp || isudp) { 1212 pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP; 1213 } else if (isip4 || isip6) { 1214 pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6; 1215 } else { 1216 pkt_type = E1000_RXD_PKT_MAC; 1217 } 1218 1219 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type); 1220 trace_e1000e_rx_metadata_pkt_type(pkt_type); 1221 1222 /* RX CSO information */ 1223 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) { 1224 trace_e1000e_rx_metadata_ipv6_sum_disabled(); 1225 goto func_exit; 1226 } 1227 1228 if (!net_rx_pkt_has_virt_hdr(pkt)) { 1229 trace_e1000e_rx_metadata_no_virthdr(); 1230 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp); 1231 goto func_exit; 1232 } 1233 1234 vhdr = net_rx_pkt_get_vhdr(pkt); 1235 1236 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) && 1237 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) { 1238 trace_e1000e_rx_metadata_virthdr_no_csum_info(); 1239 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp); 1240 goto func_exit; 1241 } 1242 1243 if (e1000e_rx_l3_cso_enabled(core)) { 1244 *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0; 1245 } else { 1246 trace_e1000e_rx_metadata_l3_cso_disabled(); 1247 } 1248 1249 if (e1000e_rx_l4_cso_enabled(core)) { 1250 if (istcp) { 1251 *status_flags |= E1000_RXD_STAT_TCPCS; 1252 } else if (isudp) { 1253 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS; 1254 } 1255 } else { 1256 trace_e1000e_rx_metadata_l4_cso_disabled(); 1257 } 1258 1259 trace_e1000e_rx_metadata_status_flags(*status_flags); 1260 1261 func_exit: 1262 *status_flags = cpu_to_le32(*status_flags); 1263 } 1264 1265 static inline void 1266 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, 1267 struct NetRxPkt *pkt, 1268 const E1000E_RSSInfo *rss_info, 1269 uint16_t length) 1270 { 1271 uint32_t status_flags, rss, mrq; 1272 uint16_t ip_id; 1273 1274 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc; 1275 1276 assert(!rss_info->enabled); 1277 1278 d->length = cpu_to_le16(length); 1279 d->csum = 0; 1280 1281 e1000e_build_rx_metadata(core, pkt, pkt != NULL, 1282 rss_info, 1283 &rss, &mrq, 1284 &status_flags, &ip_id, 1285 &d->special); 1286 d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24); 1287 d->status = (uint8_t) le32_to_cpu(status_flags); 1288 d->special = 0; 1289 } 1290 1291 static inline void 1292 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc, 1293 struct NetRxPkt *pkt, 1294 const E1000E_RSSInfo *rss_info, 1295 uint16_t length) 1296 { 1297 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc; 1298 1299 memset(&d->wb, 0, sizeof(d->wb)); 1300 1301 d->wb.upper.length = cpu_to_le16(length); 1302 1303 e1000e_build_rx_metadata(core, pkt, pkt != NULL, 1304 rss_info, 1305 &d->wb.lower.hi_dword.rss, 1306 &d->wb.lower.mrq, 1307 &d->wb.upper.status_error, 1308 &d->wb.lower.hi_dword.csum_ip.ip_id, 1309 &d->wb.upper.vlan); 1310 } 1311 1312 static inline void 1313 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc, 1314 struct NetRxPkt *pkt, 1315 const E1000E_RSSInfo *rss_info, 1316 size_t ps_hdr_len, 1317 uint16_t(*written)[MAX_PS_BUFFERS]) 1318 { 1319 int i; 1320 union e1000_rx_desc_packet_split *d = 1321 (union e1000_rx_desc_packet_split *) desc; 1322 1323 memset(&d->wb, 0, sizeof(d->wb)); 1324 1325 d->wb.middle.length0 = cpu_to_le16((*written)[0]); 1326 1327 for (i = 0; i < PS_PAGE_BUFFERS; i++) { 1328 d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]); 1329 } 1330 1331 e1000e_build_rx_metadata(core, pkt, pkt != NULL, 1332 rss_info, 1333 &d->wb.lower.hi_dword.rss, 1334 &d->wb.lower.mrq, 1335 &d->wb.middle.status_error, 1336 &d->wb.lower.hi_dword.csum_ip.ip_id, 1337 &d->wb.middle.vlan); 1338 1339 d->wb.upper.header_status = 1340 cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0)); 1341 1342 trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1], 1343 (*written)[2], (*written)[3]); 1344 } 1345 1346 static inline void 1347 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc, 1348 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, 1349 size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS]) 1350 { 1351 if (e1000e_rx_use_legacy_descriptor(core)) { 1352 assert(ps_hdr_len == 0); 1353 e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]); 1354 } else { 1355 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { 1356 e1000e_write_ps_rx_descr(core, desc, pkt, rss_info, 1357 ps_hdr_len, written); 1358 } else { 1359 assert(ps_hdr_len == 0); 1360 e1000e_write_ext_rx_descr(core, desc, pkt, rss_info, 1361 (*written)[0]); 1362 } 1363 } 1364 } 1365 1366 typedef struct e1000e_ba_state_st { 1367 uint16_t written[MAX_PS_BUFFERS]; 1368 uint8_t cur_idx; 1369 } e1000e_ba_state; 1370 1371 static inline void 1372 e1000e_write_hdr_to_rx_buffers(E1000ECore *core, 1373 hwaddr (*ba)[MAX_PS_BUFFERS], 1374 e1000e_ba_state *bastate, 1375 const char *data, 1376 dma_addr_t data_len) 1377 { 1378 assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]); 1379 1380 pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len); 1381 bastate->written[0] += data_len; 1382 1383 bastate->cur_idx = 1; 1384 } 1385 1386 static void 1387 e1000e_write_to_rx_buffers(E1000ECore *core, 1388 hwaddr (*ba)[MAX_PS_BUFFERS], 1389 e1000e_ba_state *bastate, 1390 const char *data, 1391 dma_addr_t data_len) 1392 { 1393 while (data_len > 0) { 1394 uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx]; 1395 uint32_t cur_buf_bytes_left = cur_buf_len - 1396 bastate->written[bastate->cur_idx]; 1397 uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left); 1398 1399 trace_e1000e_rx_desc_buff_write(bastate->cur_idx, 1400 (*ba)[bastate->cur_idx], 1401 bastate->written[bastate->cur_idx], 1402 data, 1403 bytes_to_write); 1404 1405 pci_dma_write(core->owner, 1406 (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx], 1407 data, bytes_to_write); 1408 1409 bastate->written[bastate->cur_idx] += bytes_to_write; 1410 data += bytes_to_write; 1411 data_len -= bytes_to_write; 1412 1413 if (bastate->written[bastate->cur_idx] == cur_buf_len) { 1414 bastate->cur_idx++; 1415 } 1416 1417 assert(bastate->cur_idx < MAX_PS_BUFFERS); 1418 } 1419 } 1420 1421 static void 1422 e1000e_update_rx_stats(E1000ECore *core, 1423 size_t data_size, 1424 size_t data_fcs_size) 1425 { 1426 e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size); 1427 1428 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { 1429 case ETH_PKT_BCAST: 1430 e1000x_inc_reg_if_not_full(core->mac, BPRC); 1431 break; 1432 1433 case ETH_PKT_MCAST: 1434 e1000x_inc_reg_if_not_full(core->mac, MPRC); 1435 break; 1436 1437 default: 1438 break; 1439 } 1440 } 1441 1442 static inline bool 1443 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi) 1444 { 1445 return e1000e_ring_free_descr_num(core, rxi) == 1446 e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift; 1447 } 1448 1449 static bool 1450 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len) 1451 { 1452 bool isip4, isip6, isudp, istcp; 1453 bool fragment; 1454 1455 if (!e1000e_rx_use_ps_descriptor(core)) { 1456 return false; 1457 } 1458 1459 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); 1460 1461 if (isip4) { 1462 fragment = net_rx_pkt_get_ip4_info(pkt)->fragment; 1463 } else if (isip6) { 1464 fragment = net_rx_pkt_get_ip6_info(pkt)->fragment; 1465 } else { 1466 return false; 1467 } 1468 1469 if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) { 1470 return false; 1471 } 1472 1473 if (!fragment && (isudp || istcp)) { 1474 *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt); 1475 } else { 1476 *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt); 1477 } 1478 1479 if ((*hdr_len > core->rxbuf_sizes[0]) || 1480 (*hdr_len > net_rx_pkt_get_total_len(pkt))) { 1481 return false; 1482 } 1483 1484 return true; 1485 } 1486 1487 static void 1488 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt, 1489 const E1000E_RxRing *rxr, 1490 const E1000E_RSSInfo *rss_info) 1491 { 1492 PCIDevice *d = core->owner; 1493 dma_addr_t base; 1494 uint8_t desc[E1000_MAX_RX_DESC_LEN]; 1495 size_t desc_size; 1496 size_t desc_offset = 0; 1497 size_t iov_ofs = 0; 1498 1499 struct iovec *iov = net_rx_pkt_get_iovec(pkt); 1500 size_t size = net_rx_pkt_get_total_len(pkt); 1501 size_t total_size = size + e1000x_fcs_len(core->mac); 1502 const E1000E_RingInfo *rxi; 1503 size_t ps_hdr_len = 0; 1504 bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len); 1505 bool is_first = true; 1506 1507 rxi = rxr->i; 1508 1509 do { 1510 hwaddr ba[MAX_PS_BUFFERS]; 1511 e1000e_ba_state bastate = { { 0 } }; 1512 bool is_last = false; 1513 1514 desc_size = total_size - desc_offset; 1515 1516 if (desc_size > core->rx_desc_buf_size) { 1517 desc_size = core->rx_desc_buf_size; 1518 } 1519 1520 if (e1000e_ring_empty(core, rxi)) { 1521 return; 1522 } 1523 1524 base = e1000e_ring_head_descr(core, rxi); 1525 1526 pci_dma_read(d, base, &desc, core->rx_desc_len); 1527 1528 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len); 1529 1530 e1000e_read_rx_descr(core, desc, &ba); 1531 1532 if (ba[0]) { 1533 if (desc_offset < size) { 1534 static const uint32_t fcs_pad; 1535 size_t iov_copy; 1536 size_t copy_size = size - desc_offset; 1537 if (copy_size > core->rx_desc_buf_size) { 1538 copy_size = core->rx_desc_buf_size; 1539 } 1540 1541 /* For PS mode copy the packet header first */ 1542 if (do_ps) { 1543 if (is_first) { 1544 size_t ps_hdr_copied = 0; 1545 do { 1546 iov_copy = MIN(ps_hdr_len - ps_hdr_copied, 1547 iov->iov_len - iov_ofs); 1548 1549 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate, 1550 iov->iov_base, iov_copy); 1551 1552 copy_size -= iov_copy; 1553 ps_hdr_copied += iov_copy; 1554 1555 iov_ofs += iov_copy; 1556 if (iov_ofs == iov->iov_len) { 1557 iov++; 1558 iov_ofs = 0; 1559 } 1560 } while (ps_hdr_copied < ps_hdr_len); 1561 1562 is_first = false; 1563 } else { 1564 /* Leave buffer 0 of each descriptor except first */ 1565 /* empty as per spec 7.1.5.1 */ 1566 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate, 1567 NULL, 0); 1568 } 1569 } 1570 1571 /* Copy packet payload */ 1572 while (copy_size) { 1573 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 1574 1575 e1000e_write_to_rx_buffers(core, &ba, &bastate, 1576 iov->iov_base + iov_ofs, iov_copy); 1577 1578 copy_size -= iov_copy; 1579 iov_ofs += iov_copy; 1580 if (iov_ofs == iov->iov_len) { 1581 iov++; 1582 iov_ofs = 0; 1583 } 1584 } 1585 1586 if (desc_offset + desc_size >= total_size) { 1587 /* Simulate FCS checksum presence in the last descriptor */ 1588 e1000e_write_to_rx_buffers(core, &ba, &bastate, 1589 (const char *) &fcs_pad, e1000x_fcs_len(core->mac)); 1590 } 1591 } 1592 } else { /* as per intel docs; skip descriptors with null buf addr */ 1593 trace_e1000e_rx_null_descriptor(); 1594 } 1595 desc_offset += desc_size; 1596 if (desc_offset >= total_size) { 1597 is_last = true; 1598 } 1599 1600 e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL, 1601 rss_info, do_ps ? ps_hdr_len : 0, &bastate.written); 1602 pci_dma_write(d, base, &desc, core->rx_desc_len); 1603 1604 e1000e_ring_advance(core, rxi, 1605 core->rx_desc_len / E1000_MIN_RX_DESC_LEN); 1606 1607 } while (desc_offset < total_size); 1608 1609 e1000e_update_rx_stats(core, size, total_size); 1610 } 1611 1612 static inline void 1613 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt) 1614 { 1615 if (net_rx_pkt_has_virt_hdr(pkt)) { 1616 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt); 1617 1618 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 1619 net_rx_pkt_fix_l4_csum(pkt); 1620 } 1621 } 1622 } 1623 1624 ssize_t 1625 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt) 1626 { 1627 static const int maximum_ethernet_hdr_len = (14 + 4); 1628 /* Min. octets in an ethernet frame sans FCS */ 1629 static const int min_buf_size = 60; 1630 1631 uint32_t n = 0; 1632 uint8_t min_buf[min_buf_size]; 1633 struct iovec min_iov; 1634 uint8_t *filter_buf; 1635 size_t size, orig_size; 1636 size_t iov_ofs = 0; 1637 E1000E_RxRing rxr; 1638 E1000E_RSSInfo rss_info; 1639 size_t total_size; 1640 ssize_t retval; 1641 bool rdmts_hit; 1642 1643 trace_e1000e_rx_receive_iov(iovcnt); 1644 1645 if (!e1000x_hw_rx_enabled(core->mac)) { 1646 return -1; 1647 } 1648 1649 /* Pull virtio header in */ 1650 if (core->has_vnet) { 1651 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt); 1652 iov_ofs = sizeof(struct virtio_net_hdr); 1653 } 1654 1655 filter_buf = iov->iov_base + iov_ofs; 1656 orig_size = iov_size(iov, iovcnt); 1657 size = orig_size - iov_ofs; 1658 1659 /* Pad to minimum Ethernet frame length */ 1660 if (size < sizeof(min_buf)) { 1661 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size); 1662 memset(&min_buf[size], 0, sizeof(min_buf) - size); 1663 e1000x_inc_reg_if_not_full(core->mac, RUC); 1664 min_iov.iov_base = filter_buf = min_buf; 1665 min_iov.iov_len = size = sizeof(min_buf); 1666 iovcnt = 1; 1667 iov = &min_iov; 1668 iov_ofs = 0; 1669 } else if (iov->iov_len < maximum_ethernet_hdr_len) { 1670 /* This is very unlikely, but may happen. */ 1671 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len); 1672 filter_buf = min_buf; 1673 } 1674 1675 /* Discard oversized packets if !LPE and !SBP. */ 1676 if (e1000x_is_oversized(core->mac, size)) { 1677 return orig_size; 1678 } 1679 1680 net_rx_pkt_set_packet_type(core->rx_pkt, 1681 get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf))); 1682 1683 if (!e1000e_receive_filter(core, filter_buf, size)) { 1684 trace_e1000e_rx_flt_dropped(); 1685 return orig_size; 1686 } 1687 1688 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs, 1689 e1000x_vlan_enabled(core->mac), core->vet); 1690 1691 e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info); 1692 e1000e_rx_ring_init(core, &rxr, rss_info.queue); 1693 1694 trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx); 1695 1696 total_size = net_rx_pkt_get_total_len(core->rx_pkt) + 1697 e1000x_fcs_len(core->mac); 1698 1699 if (e1000e_has_rxbufs(core, rxr.i, total_size)) { 1700 e1000e_rx_fix_l4_csum(core, core->rx_pkt); 1701 1702 e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info); 1703 1704 retval = orig_size; 1705 1706 /* Perform small receive detection (RSRPD) */ 1707 if (total_size < core->mac[RSRPD]) { 1708 n |= E1000_ICS_SRPD; 1709 } 1710 1711 /* Perform ACK receive detection */ 1712 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) && 1713 (e1000e_is_tcp_ack(core, core->rx_pkt))) { 1714 n |= E1000_ICS_ACK; 1715 } 1716 1717 /* Check if receive descriptor minimum threshold hit */ 1718 rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i); 1719 n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit); 1720 1721 trace_e1000e_rx_written_to_guest(n); 1722 } else { 1723 n |= E1000_ICS_RXO; 1724 retval = 0; 1725 1726 trace_e1000e_rx_not_written_to_guest(n); 1727 } 1728 1729 if (!e1000e_intrmgr_delay_rx_causes(core, &n)) { 1730 trace_e1000e_rx_interrupt_set(n); 1731 e1000e_set_interrupt_cause(core, n); 1732 } else { 1733 trace_e1000e_rx_interrupt_delayed(n); 1734 } 1735 1736 return retval; 1737 } 1738 1739 static inline bool 1740 e1000e_have_autoneg(E1000ECore *core) 1741 { 1742 return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN; 1743 } 1744 1745 static void e1000e_update_flowctl_status(E1000ECore *core) 1746 { 1747 if (e1000e_have_autoneg(core) && 1748 core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) { 1749 trace_e1000e_link_autoneg_flowctl(true); 1750 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE; 1751 } else { 1752 trace_e1000e_link_autoneg_flowctl(false); 1753 } 1754 } 1755 1756 static inline void 1757 e1000e_link_down(E1000ECore *core) 1758 { 1759 e1000x_update_regs_on_link_down(core->mac, core->phy[0]); 1760 e1000e_update_flowctl_status(core); 1761 } 1762 1763 static inline void 1764 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val) 1765 { 1766 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ 1767 core->phy[0][PHY_CTRL] = val & ~(0x3f | 1768 MII_CR_RESET | 1769 MII_CR_RESTART_AUTO_NEG); 1770 1771 if ((val & MII_CR_RESTART_AUTO_NEG) && 1772 e1000e_have_autoneg(core)) { 1773 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); 1774 } 1775 } 1776 1777 static void 1778 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val) 1779 { 1780 core->phy[0][PHY_OEM_BITS] = val & ~BIT(10); 1781 1782 if (val & BIT(10)) { 1783 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); 1784 } 1785 } 1786 1787 static void 1788 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val) 1789 { 1790 core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK; 1791 } 1792 1793 void 1794 e1000e_core_set_link_status(E1000ECore *core) 1795 { 1796 NetClientState *nc = qemu_get_queue(core->owner_nic); 1797 uint32_t old_status = core->mac[STATUS]; 1798 1799 trace_e1000e_link_status_changed(nc->link_down ? false : true); 1800 1801 if (nc->link_down) { 1802 e1000x_update_regs_on_link_down(core->mac, core->phy[0]); 1803 } else { 1804 if (e1000e_have_autoneg(core) && 1805 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 1806 e1000x_restart_autoneg(core->mac, core->phy[0], 1807 core->autoneg_timer); 1808 } else { 1809 e1000x_update_regs_on_link_up(core->mac, core->phy[0]); 1810 e1000e_start_recv(core); 1811 } 1812 } 1813 1814 if (core->mac[STATUS] != old_status) { 1815 e1000e_set_interrupt_cause(core, E1000_ICR_LSC); 1816 } 1817 } 1818 1819 static void 1820 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val) 1821 { 1822 trace_e1000e_core_ctrl_write(index, val); 1823 1824 /* RST is self clearing */ 1825 core->mac[CTRL] = val & ~E1000_CTRL_RST; 1826 core->mac[CTRL_DUP] = core->mac[CTRL]; 1827 1828 trace_e1000e_link_set_params( 1829 !!(val & E1000_CTRL_ASDE), 1830 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 1831 !!(val & E1000_CTRL_FRCSPD), 1832 !!(val & E1000_CTRL_FRCDPX), 1833 !!(val & E1000_CTRL_RFCE), 1834 !!(val & E1000_CTRL_TFCE)); 1835 1836 if (val & E1000_CTRL_RST) { 1837 trace_e1000e_core_ctrl_sw_reset(); 1838 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); 1839 } 1840 1841 if (val & E1000_CTRL_PHY_RST) { 1842 trace_e1000e_core_ctrl_phy_reset(); 1843 core->mac[STATUS] |= E1000_STATUS_PHYRA; 1844 } 1845 } 1846 1847 static void 1848 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val) 1849 { 1850 trace_e1000e_rx_set_rfctl(val); 1851 1852 if (!(val & E1000_RFCTL_ISCSI_DIS)) { 1853 trace_e1000e_wrn_iscsi_filtering_not_supported(); 1854 } 1855 1856 if (!(val & E1000_RFCTL_NFSW_DIS)) { 1857 trace_e1000e_wrn_nfsw_filtering_not_supported(); 1858 } 1859 1860 if (!(val & E1000_RFCTL_NFSR_DIS)) { 1861 trace_e1000e_wrn_nfsr_filtering_not_supported(); 1862 } 1863 1864 core->mac[RFCTL] = val; 1865 } 1866 1867 static void 1868 e1000e_calc_per_desc_buf_size(E1000ECore *core) 1869 { 1870 int i; 1871 core->rx_desc_buf_size = 0; 1872 1873 for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) { 1874 core->rx_desc_buf_size += core->rxbuf_sizes[i]; 1875 } 1876 } 1877 1878 static void 1879 e1000e_parse_rxbufsize(E1000ECore *core) 1880 { 1881 uint32_t rctl = core->mac[RCTL]; 1882 1883 memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes)); 1884 1885 if (rctl & E1000_RCTL_DTYP_MASK) { 1886 uint32_t bsize; 1887 1888 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK; 1889 core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128; 1890 1891 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK; 1892 core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024; 1893 1894 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK; 1895 core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024; 1896 1897 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK; 1898 core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024; 1899 } else if (rctl & E1000_RCTL_FLXBUF_MASK) { 1900 int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK; 1901 core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024; 1902 } else { 1903 core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl); 1904 } 1905 1906 trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1], 1907 core->rxbuf_sizes[2], core->rxbuf_sizes[3]); 1908 1909 e1000e_calc_per_desc_buf_size(core); 1910 } 1911 1912 static void 1913 e1000e_calc_rxdesclen(E1000ECore *core) 1914 { 1915 if (e1000e_rx_use_legacy_descriptor(core)) { 1916 core->rx_desc_len = sizeof(struct e1000_rx_desc); 1917 } else { 1918 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { 1919 core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split); 1920 } else { 1921 core->rx_desc_len = sizeof(union e1000_rx_desc_extended); 1922 } 1923 } 1924 trace_e1000e_rx_desc_len(core->rx_desc_len); 1925 } 1926 1927 static void 1928 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val) 1929 { 1930 core->mac[RCTL] = val; 1931 trace_e1000e_rx_set_rctl(core->mac[RCTL]); 1932 1933 if (val & E1000_RCTL_EN) { 1934 e1000e_parse_rxbufsize(core); 1935 e1000e_calc_rxdesclen(core); 1936 core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 + 1937 E1000_RING_DESC_LEN_SHIFT; 1938 1939 e1000e_start_recv(core); 1940 } 1941 } 1942 1943 static 1944 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE]) 1945 (E1000ECore *, int, uint16_t) = { 1946 [0] = { 1947 [PHY_CTRL] = e1000e_set_phy_ctrl, 1948 [PHY_PAGE] = e1000e_set_phy_page, 1949 [PHY_OEM_BITS] = e1000e_set_phy_oem_bits 1950 } 1951 }; 1952 1953 static inline void 1954 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits) 1955 { 1956 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits); 1957 core->mac[IMS] &= ~bits; 1958 } 1959 1960 static inline bool 1961 e1000e_postpone_interrupt(bool *interrupt_pending, 1962 E1000IntrDelayTimer *timer) 1963 { 1964 if (timer->running) { 1965 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2); 1966 1967 *interrupt_pending = true; 1968 return true; 1969 } 1970 1971 if (timer->core->mac[timer->delay_reg] != 0) { 1972 e1000e_intrmgr_rearm_timer(timer); 1973 } 1974 1975 return false; 1976 } 1977 1978 static inline bool 1979 e1000e_itr_should_postpone(E1000ECore *core) 1980 { 1981 return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr); 1982 } 1983 1984 static inline bool 1985 e1000e_eitr_should_postpone(E1000ECore *core, int idx) 1986 { 1987 return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx], 1988 &core->eitr[idx]); 1989 } 1990 1991 static void 1992 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) 1993 { 1994 uint32_t effective_eiac; 1995 1996 if (E1000_IVAR_ENTRY_VALID(int_cfg)) { 1997 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); 1998 if (vec < E1000E_MSIX_VEC_NUM) { 1999 if (!e1000e_eitr_should_postpone(core, vec)) { 2000 trace_e1000e_irq_msix_notify_vec(vec); 2001 msix_notify(core->owner, vec); 2002 } 2003 } else { 2004 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); 2005 } 2006 } else { 2007 trace_e1000e_wrn_msix_invalid(cause, int_cfg); 2008 } 2009 2010 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) { 2011 trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause); 2012 core->mac[IAM] &= ~cause; 2013 } 2014 2015 trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]); 2016 2017 effective_eiac = core->mac[EIAC] & cause; 2018 2019 core->mac[ICR] &= ~effective_eiac; 2020 core->msi_causes_pending &= ~effective_eiac; 2021 2022 if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { 2023 core->mac[IMS] &= ~effective_eiac; 2024 } 2025 } 2026 2027 static void 2028 e1000e_msix_notify(E1000ECore *core, uint32_t causes) 2029 { 2030 if (causes & E1000_ICR_RXQ0) { 2031 e1000e_msix_notify_one(core, E1000_ICR_RXQ0, 2032 E1000_IVAR_RXQ0(core->mac[IVAR])); 2033 } 2034 2035 if (causes & E1000_ICR_RXQ1) { 2036 e1000e_msix_notify_one(core, E1000_ICR_RXQ1, 2037 E1000_IVAR_RXQ1(core->mac[IVAR])); 2038 } 2039 2040 if (causes & E1000_ICR_TXQ0) { 2041 e1000e_msix_notify_one(core, E1000_ICR_TXQ0, 2042 E1000_IVAR_TXQ0(core->mac[IVAR])); 2043 } 2044 2045 if (causes & E1000_ICR_TXQ1) { 2046 e1000e_msix_notify_one(core, E1000_ICR_TXQ1, 2047 E1000_IVAR_TXQ1(core->mac[IVAR])); 2048 } 2049 2050 if (causes & E1000_ICR_OTHER) { 2051 e1000e_msix_notify_one(core, E1000_ICR_OTHER, 2052 E1000_IVAR_OTHER(core->mac[IVAR])); 2053 } 2054 } 2055 2056 static void 2057 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) 2058 { 2059 if (E1000_IVAR_ENTRY_VALID(int_cfg)) { 2060 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); 2061 if (vec < E1000E_MSIX_VEC_NUM) { 2062 trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec); 2063 msix_clr_pending(core->owner, vec); 2064 } else { 2065 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); 2066 } 2067 } else { 2068 trace_e1000e_wrn_msix_invalid(cause, int_cfg); 2069 } 2070 } 2071 2072 static void 2073 e1000e_msix_clear(E1000ECore *core, uint32_t causes) 2074 { 2075 if (causes & E1000_ICR_RXQ0) { 2076 e1000e_msix_clear_one(core, E1000_ICR_RXQ0, 2077 E1000_IVAR_RXQ0(core->mac[IVAR])); 2078 } 2079 2080 if (causes & E1000_ICR_RXQ1) { 2081 e1000e_msix_clear_one(core, E1000_ICR_RXQ1, 2082 E1000_IVAR_RXQ1(core->mac[IVAR])); 2083 } 2084 2085 if (causes & E1000_ICR_TXQ0) { 2086 e1000e_msix_clear_one(core, E1000_ICR_TXQ0, 2087 E1000_IVAR_TXQ0(core->mac[IVAR])); 2088 } 2089 2090 if (causes & E1000_ICR_TXQ1) { 2091 e1000e_msix_clear_one(core, E1000_ICR_TXQ1, 2092 E1000_IVAR_TXQ1(core->mac[IVAR])); 2093 } 2094 2095 if (causes & E1000_ICR_OTHER) { 2096 e1000e_msix_clear_one(core, E1000_ICR_OTHER, 2097 E1000_IVAR_OTHER(core->mac[IVAR])); 2098 } 2099 } 2100 2101 static inline void 2102 e1000e_fix_icr_asserted(E1000ECore *core) 2103 { 2104 core->mac[ICR] &= ~E1000_ICR_ASSERTED; 2105 if (core->mac[ICR]) { 2106 core->mac[ICR] |= E1000_ICR_ASSERTED; 2107 } 2108 2109 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]); 2110 } 2111 2112 static void 2113 e1000e_send_msi(E1000ECore *core, bool msix) 2114 { 2115 uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED; 2116 2117 core->msi_causes_pending &= causes; 2118 causes ^= core->msi_causes_pending; 2119 if (causes == 0) { 2120 return; 2121 } 2122 core->msi_causes_pending |= causes; 2123 2124 if (msix) { 2125 e1000e_msix_notify(core, causes); 2126 } else { 2127 if (!e1000e_itr_should_postpone(core)) { 2128 trace_e1000e_irq_msi_notify(causes); 2129 msi_notify(core->owner, 0); 2130 } 2131 } 2132 } 2133 2134 static void 2135 e1000e_update_interrupt_state(E1000ECore *core) 2136 { 2137 bool interrupts_pending; 2138 bool is_msix = msix_enabled(core->owner); 2139 2140 /* Set ICR[OTHER] for MSI-X */ 2141 if (is_msix) { 2142 if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) { 2143 core->mac[ICR] |= E1000_ICR_OTHER; 2144 trace_e1000e_irq_add_msi_other(core->mac[ICR]); 2145 } 2146 } 2147 2148 e1000e_fix_icr_asserted(core); 2149 2150 /* 2151 * Make sure ICR and ICS registers have the same value. 2152 * The spec says that the ICS register is write-only. However in practice, 2153 * on real hardware ICS is readable, and for reads it has the same value as 2154 * ICR (except that ICS does not have the clear on read behaviour of ICR). 2155 * 2156 * The VxWorks PRO/1000 driver uses this behaviour. 2157 */ 2158 core->mac[ICS] = core->mac[ICR]; 2159 2160 interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false; 2161 if (!interrupts_pending) { 2162 core->msi_causes_pending = 0; 2163 } 2164 2165 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], 2166 core->mac[ICR], core->mac[IMS]); 2167 2168 if (is_msix || msi_enabled(core->owner)) { 2169 if (interrupts_pending) { 2170 e1000e_send_msi(core, is_msix); 2171 } 2172 } else { 2173 if (interrupts_pending) { 2174 if (!e1000e_itr_should_postpone(core)) { 2175 e1000e_raise_legacy_irq(core); 2176 } 2177 } else { 2178 e1000e_lower_legacy_irq(core); 2179 } 2180 } 2181 } 2182 2183 static void 2184 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val) 2185 { 2186 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]); 2187 2188 val |= e1000e_intmgr_collect_delayed_causes(core); 2189 core->mac[ICR] |= val; 2190 2191 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]); 2192 2193 e1000e_update_interrupt_state(core); 2194 } 2195 2196 static inline void 2197 e1000e_autoneg_timer(void *opaque) 2198 { 2199 E1000ECore *core = opaque; 2200 if (!qemu_get_queue(core->owner_nic)->link_down) { 2201 e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]); 2202 e1000e_start_recv(core); 2203 2204 e1000e_update_flowctl_status(core); 2205 /* signal link status change to the guest */ 2206 e1000e_set_interrupt_cause(core, E1000_ICR_LSC); 2207 } 2208 } 2209 2210 static inline uint16_t 2211 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr) 2212 { 2213 uint16_t index = (addr & 0x1ffff) >> 2; 2214 return index + (mac_reg_access[index] & 0xfffe); 2215 } 2216 2217 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = { 2218 [0] = { 2219 [PHY_CTRL] = PHY_ANYPAGE | PHY_RW, 2220 [PHY_STATUS] = PHY_ANYPAGE | PHY_R, 2221 [PHY_ID1] = PHY_ANYPAGE | PHY_R, 2222 [PHY_ID2] = PHY_ANYPAGE | PHY_R, 2223 [PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW, 2224 [PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R, 2225 [PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R, 2226 [PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW, 2227 [PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R, 2228 [PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW, 2229 [PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R, 2230 [PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R, 2231 [PHY_PAGE] = PHY_ANYPAGE | PHY_RW, 2232 2233 [PHY_COPPER_CTRL1] = PHY_RW, 2234 [PHY_COPPER_STAT1] = PHY_R, 2235 [PHY_COPPER_CTRL3] = PHY_RW, 2236 [PHY_RX_ERR_CNTR] = PHY_R, 2237 [PHY_OEM_BITS] = PHY_RW, 2238 [PHY_BIAS_1] = PHY_RW, 2239 [PHY_BIAS_2] = PHY_RW, 2240 [PHY_COPPER_INT_ENABLE] = PHY_RW, 2241 [PHY_COPPER_STAT2] = PHY_R, 2242 [PHY_COPPER_CTRL2] = PHY_RW 2243 }, 2244 [2] = { 2245 [PHY_MAC_CTRL1] = PHY_RW, 2246 [PHY_MAC_INT_ENABLE] = PHY_RW, 2247 [PHY_MAC_STAT] = PHY_R, 2248 [PHY_MAC_CTRL2] = PHY_RW 2249 }, 2250 [3] = { 2251 [PHY_LED_03_FUNC_CTRL1] = PHY_RW, 2252 [PHY_LED_03_POL_CTRL] = PHY_RW, 2253 [PHY_LED_TIMER_CTRL] = PHY_RW, 2254 [PHY_LED_45_CTRL] = PHY_RW 2255 }, 2256 [5] = { 2257 [PHY_1000T_SKEW] = PHY_R, 2258 [PHY_1000T_SWAP] = PHY_R 2259 }, 2260 [6] = { 2261 [PHY_CRC_COUNTERS] = PHY_R 2262 } 2263 }; 2264 2265 static bool 2266 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr, 2267 char cap, uint8_t *page) 2268 { 2269 *page = 2270 (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0 2271 : core->phy[0][PHY_PAGE]; 2272 2273 if (*page >= E1000E_PHY_PAGES) { 2274 return false; 2275 } 2276 2277 return e1000e_phy_regcap[*page][addr] & cap; 2278 } 2279 2280 static void 2281 e1000e_phy_reg_write(E1000ECore *core, uint8_t page, 2282 uint32_t addr, uint16_t data) 2283 { 2284 assert(page < E1000E_PHY_PAGES); 2285 assert(addr < E1000E_PHY_PAGE_SIZE); 2286 2287 if (e1000e_phyreg_writeops[page][addr]) { 2288 e1000e_phyreg_writeops[page][addr](core, addr, data); 2289 } else { 2290 core->phy[page][addr] = data; 2291 } 2292 } 2293 2294 static void 2295 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val) 2296 { 2297 uint32_t data = val & E1000_MDIC_DATA_MASK; 2298 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 2299 uint8_t page; 2300 2301 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */ 2302 val = core->mac[MDIC] | E1000_MDIC_ERROR; 2303 } else if (val & E1000_MDIC_OP_READ) { 2304 if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) { 2305 trace_e1000e_core_mdic_read_unhandled(page, addr); 2306 val |= E1000_MDIC_ERROR; 2307 } else { 2308 val = (val ^ data) | core->phy[page][addr]; 2309 trace_e1000e_core_mdic_read(page, addr, val); 2310 } 2311 } else if (val & E1000_MDIC_OP_WRITE) { 2312 if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) { 2313 trace_e1000e_core_mdic_write_unhandled(page, addr); 2314 val |= E1000_MDIC_ERROR; 2315 } else { 2316 trace_e1000e_core_mdic_write(page, addr, data); 2317 e1000e_phy_reg_write(core, page, addr, data); 2318 } 2319 } 2320 core->mac[MDIC] = val | E1000_MDIC_READY; 2321 2322 if (val & E1000_MDIC_INT_EN) { 2323 e1000e_set_interrupt_cause(core, E1000_ICR_MDAC); 2324 } 2325 } 2326 2327 static void 2328 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val) 2329 { 2330 core->mac[index] = val & 0xffff; 2331 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val); 2332 e1000e_start_recv(core); 2333 } 2334 2335 static void 2336 e1000e_set_status(E1000ECore *core, int index, uint32_t val) 2337 { 2338 if ((val & E1000_STATUS_PHYRA) == 0) { 2339 core->mac[index] &= ~E1000_STATUS_PHYRA; 2340 } 2341 } 2342 2343 static void 2344 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val) 2345 { 2346 trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK), 2347 !!(val & E1000_CTRL_EXT_SPD_BYPS)); 2348 2349 /* Zero self-clearing bits */ 2350 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST); 2351 core->mac[CTRL_EXT] = val; 2352 } 2353 2354 static void 2355 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val) 2356 { 2357 int i; 2358 2359 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK; 2360 2361 if (!msix_enabled(core->owner)) { 2362 return; 2363 } 2364 2365 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 2366 if (core->mac[PBACLR] & BIT(i)) { 2367 msix_clr_pending(core->owner, i); 2368 } 2369 } 2370 } 2371 2372 static void 2373 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val) 2374 { 2375 core->mac[FCRTH] = val & 0xFFF8; 2376 } 2377 2378 static void 2379 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val) 2380 { 2381 core->mac[FCRTL] = val & 0x8000FFF8; 2382 } 2383 2384 static inline void 2385 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val) 2386 { 2387 core->mac[index] = val & 0xffff; 2388 } 2389 2390 static void 2391 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val) 2392 { 2393 core->mac[index] = val & 0xfff; 2394 } 2395 2396 static void 2397 e1000e_set_vet(E1000ECore *core, int index, uint32_t val) 2398 { 2399 core->mac[VET] = val & 0xffff; 2400 core->vet = le16_to_cpu(core->mac[VET]); 2401 trace_e1000e_vlan_vet(core->vet); 2402 } 2403 2404 static void 2405 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val) 2406 { 2407 core->mac[index] = val & E1000_XDLEN_MASK; 2408 } 2409 2410 static void 2411 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val) 2412 { 2413 core->mac[index] = val & E1000_XDBAL_MASK; 2414 } 2415 2416 static void 2417 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val) 2418 { 2419 E1000E_TxRing txr; 2420 core->mac[index] = val; 2421 2422 if (core->mac[TARC0] & E1000_TARC_ENABLE) { 2423 e1000e_tx_ring_init(core, &txr, 0); 2424 e1000e_start_xmit(core, &txr); 2425 } 2426 2427 if (core->mac[TARC1] & E1000_TARC_ENABLE) { 2428 e1000e_tx_ring_init(core, &txr, 1); 2429 e1000e_start_xmit(core, &txr); 2430 } 2431 } 2432 2433 static void 2434 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val) 2435 { 2436 E1000E_TxRing txr; 2437 int qidx = e1000e_mq_queue_idx(TDT, index); 2438 uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1; 2439 2440 core->mac[index] = val & 0xffff; 2441 2442 if (core->mac[tarc_reg] & E1000_TARC_ENABLE) { 2443 e1000e_tx_ring_init(core, &txr, qidx); 2444 e1000e_start_xmit(core, &txr); 2445 } 2446 } 2447 2448 static void 2449 e1000e_set_ics(E1000ECore *core, int index, uint32_t val) 2450 { 2451 trace_e1000e_irq_write_ics(val); 2452 e1000e_set_interrupt_cause(core, val); 2453 } 2454 2455 static void 2456 e1000e_set_icr(E1000ECore *core, int index, uint32_t val) 2457 { 2458 uint32_t icr = 0; 2459 if ((core->mac[ICR] & E1000_ICR_ASSERTED) && 2460 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { 2461 trace_e1000e_irq_icr_process_iame(); 2462 e1000e_clear_ims_bits(core, core->mac[IAM]); 2463 } 2464 2465 icr = core->mac[ICR] & ~val; 2466 /* Windows driver expects that the "receive overrun" bit and other 2467 * ones to be cleared when the "Other" bit (#24) is cleared. 2468 */ 2469 icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr; 2470 trace_e1000e_irq_icr_write(val, core->mac[ICR], icr); 2471 core->mac[ICR] = icr; 2472 e1000e_update_interrupt_state(core); 2473 } 2474 2475 static void 2476 e1000e_set_imc(E1000ECore *core, int index, uint32_t val) 2477 { 2478 trace_e1000e_irq_ims_clear_set_imc(val); 2479 e1000e_clear_ims_bits(core, val); 2480 e1000e_update_interrupt_state(core); 2481 } 2482 2483 static void 2484 e1000e_set_ims(E1000ECore *core, int index, uint32_t val) 2485 { 2486 static const uint32_t ims_ext_mask = 2487 E1000_IMS_RXQ0 | E1000_IMS_RXQ1 | 2488 E1000_IMS_TXQ0 | E1000_IMS_TXQ1 | 2489 E1000_IMS_OTHER; 2490 2491 static const uint32_t ims_valid_mask = 2492 E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC | 2493 E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 | 2494 E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD | 2495 E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 | 2496 E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 | 2497 E1000_IMS_OTHER; 2498 2499 uint32_t valid_val = val & ims_valid_mask; 2500 2501 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val); 2502 core->mac[IMS] |= valid_val; 2503 2504 if ((valid_val & ims_ext_mask) && 2505 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) && 2506 msix_enabled(core->owner)) { 2507 e1000e_msix_clear(core, valid_val); 2508 } 2509 2510 if ((valid_val == ims_valid_mask) && 2511 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) { 2512 trace_e1000e_irq_fire_all_timers(val); 2513 e1000e_intrmgr_fire_all_timers(core); 2514 } 2515 2516 e1000e_update_interrupt_state(core); 2517 } 2518 2519 static void 2520 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val) 2521 { 2522 e1000e_set_16bit(core, index, val); 2523 2524 if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) { 2525 trace_e1000e_irq_rdtr_fpd_running(); 2526 e1000e_intrmgr_fire_delayed_interrupts(core); 2527 } else { 2528 trace_e1000e_irq_rdtr_fpd_not_running(); 2529 } 2530 } 2531 2532 static void 2533 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val) 2534 { 2535 e1000e_set_16bit(core, index, val); 2536 2537 if ((val & E1000_TIDV_FPD) && (core->tidv.running)) { 2538 trace_e1000e_irq_tidv_fpd_running(); 2539 e1000e_intrmgr_fire_delayed_interrupts(core); 2540 } else { 2541 trace_e1000e_irq_tidv_fpd_not_running(); 2542 } 2543 } 2544 2545 static uint32_t 2546 e1000e_mac_readreg(E1000ECore *core, int index) 2547 { 2548 return core->mac[index]; 2549 } 2550 2551 static uint32_t 2552 e1000e_mac_ics_read(E1000ECore *core, int index) 2553 { 2554 trace_e1000e_irq_read_ics(core->mac[ICS]); 2555 return core->mac[ICS]; 2556 } 2557 2558 static uint32_t 2559 e1000e_mac_ims_read(E1000ECore *core, int index) 2560 { 2561 trace_e1000e_irq_read_ims(core->mac[IMS]); 2562 return core->mac[IMS]; 2563 } 2564 2565 #define E1000E_LOW_BITS_READ_FUNC(num) \ 2566 static uint32_t \ 2567 e1000e_mac_low##num##_read(E1000ECore *core, int index) \ 2568 { \ 2569 return core->mac[index] & (BIT(num) - 1); \ 2570 } \ 2571 2572 #define E1000E_LOW_BITS_READ(num) \ 2573 e1000e_mac_low##num##_read 2574 2575 E1000E_LOW_BITS_READ_FUNC(4); 2576 E1000E_LOW_BITS_READ_FUNC(6); 2577 E1000E_LOW_BITS_READ_FUNC(11); 2578 E1000E_LOW_BITS_READ_FUNC(13); 2579 E1000E_LOW_BITS_READ_FUNC(16); 2580 2581 static uint32_t 2582 e1000e_mac_swsm_read(E1000ECore *core, int index) 2583 { 2584 uint32_t val = core->mac[SWSM]; 2585 core->mac[SWSM] = val | 1; 2586 return val; 2587 } 2588 2589 static uint32_t 2590 e1000e_mac_itr_read(E1000ECore *core, int index) 2591 { 2592 return core->itr_guest_value; 2593 } 2594 2595 static uint32_t 2596 e1000e_mac_eitr_read(E1000ECore *core, int index) 2597 { 2598 return core->eitr_guest_value[index - EITR]; 2599 } 2600 2601 static uint32_t 2602 e1000e_mac_icr_read(E1000ECore *core, int index) 2603 { 2604 uint32_t ret = core->mac[ICR]; 2605 trace_e1000e_irq_icr_read_entry(ret); 2606 2607 if (core->mac[IMS] == 0) { 2608 trace_e1000e_irq_icr_clear_zero_ims(); 2609 core->mac[ICR] = 0; 2610 } 2611 2612 if ((core->mac[ICR] & E1000_ICR_ASSERTED) && 2613 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { 2614 trace_e1000e_irq_icr_clear_iame(); 2615 core->mac[ICR] = 0; 2616 trace_e1000e_irq_icr_process_iame(); 2617 e1000e_clear_ims_bits(core, core->mac[IAM]); 2618 } 2619 2620 trace_e1000e_irq_icr_read_exit(core->mac[ICR]); 2621 e1000e_update_interrupt_state(core); 2622 return ret; 2623 } 2624 2625 static uint32_t 2626 e1000e_mac_read_clr4(E1000ECore *core, int index) 2627 { 2628 uint32_t ret = core->mac[index]; 2629 2630 core->mac[index] = 0; 2631 return ret; 2632 } 2633 2634 static uint32_t 2635 e1000e_mac_read_clr8(E1000ECore *core, int index) 2636 { 2637 uint32_t ret = core->mac[index]; 2638 2639 core->mac[index] = 0; 2640 core->mac[index - 1] = 0; 2641 return ret; 2642 } 2643 2644 static uint32_t 2645 e1000e_get_ctrl(E1000ECore *core, int index) 2646 { 2647 uint32_t val = core->mac[CTRL]; 2648 2649 trace_e1000e_link_read_params( 2650 !!(val & E1000_CTRL_ASDE), 2651 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 2652 !!(val & E1000_CTRL_FRCSPD), 2653 !!(val & E1000_CTRL_FRCDPX), 2654 !!(val & E1000_CTRL_RFCE), 2655 !!(val & E1000_CTRL_TFCE)); 2656 2657 return val; 2658 } 2659 2660 static uint32_t 2661 e1000e_get_status(E1000ECore *core, int index) 2662 { 2663 uint32_t res = core->mac[STATUS]; 2664 2665 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) { 2666 res |= E1000_STATUS_GIO_MASTER_ENABLE; 2667 } 2668 2669 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) { 2670 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0; 2671 } else { 2672 res |= E1000_STATUS_FD; 2673 } 2674 2675 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) || 2676 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) { 2677 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) { 2678 case E1000_CTRL_SPD_10: 2679 res |= E1000_STATUS_SPEED_10; 2680 break; 2681 case E1000_CTRL_SPD_100: 2682 res |= E1000_STATUS_SPEED_100; 2683 break; 2684 case E1000_CTRL_SPD_1000: 2685 default: 2686 res |= E1000_STATUS_SPEED_1000; 2687 break; 2688 } 2689 } else { 2690 res |= E1000_STATUS_SPEED_1000; 2691 } 2692 2693 trace_e1000e_link_status( 2694 !!(res & E1000_STATUS_LU), 2695 !!(res & E1000_STATUS_FD), 2696 (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT, 2697 (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT); 2698 2699 return res; 2700 } 2701 2702 static uint32_t 2703 e1000e_get_tarc(E1000ECore *core, int index) 2704 { 2705 return core->mac[index] & ((BIT(11) - 1) | 2706 BIT(27) | 2707 BIT(28) | 2708 BIT(29) | 2709 BIT(30)); 2710 } 2711 2712 static void 2713 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val) 2714 { 2715 core->mac[index] = val; 2716 } 2717 2718 static void 2719 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val) 2720 { 2721 uint32_t macaddr[2]; 2722 2723 core->mac[index] = val; 2724 2725 macaddr[0] = cpu_to_le32(core->mac[RA]); 2726 macaddr[1] = cpu_to_le32(core->mac[RA + 1]); 2727 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic), 2728 (uint8_t *) macaddr); 2729 2730 trace_e1000e_mac_set_sw(MAC_ARG(macaddr)); 2731 } 2732 2733 static void 2734 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val) 2735 { 2736 static const uint32_t ro_bits = E1000_EECD_PRES | 2737 E1000_EECD_AUTO_RD | 2738 E1000_EECD_SIZE_EX_MASK; 2739 2740 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits); 2741 } 2742 2743 static void 2744 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val) 2745 { 2746 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; 2747 uint32_t flags = 0; 2748 uint32_t data = 0; 2749 2750 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { 2751 data = core->eeprom[addr]; 2752 flags = E1000_EERW_DONE; 2753 } 2754 2755 core->mac[EERD] = flags | 2756 (addr << E1000_EERW_ADDR_SHIFT) | 2757 (data << E1000_EERW_DATA_SHIFT); 2758 } 2759 2760 static void 2761 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val) 2762 { 2763 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; 2764 uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK; 2765 uint32_t flags = 0; 2766 2767 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { 2768 core->eeprom[addr] = data; 2769 flags = E1000_EERW_DONE; 2770 } 2771 2772 core->mac[EERD] = flags | 2773 (addr << E1000_EERW_ADDR_SHIFT) | 2774 (data << E1000_EERW_DATA_SHIFT); 2775 } 2776 2777 static void 2778 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val) 2779 { 2780 core->mac[RXDCTL] = core->mac[RXDCTL1] = val; 2781 } 2782 2783 static void 2784 e1000e_set_itr(E1000ECore *core, int index, uint32_t val) 2785 { 2786 uint32_t interval = val & 0xffff; 2787 2788 trace_e1000e_irq_itr_set(val); 2789 2790 core->itr_guest_value = interval; 2791 core->mac[index] = MAX(interval, E1000E_MIN_XITR); 2792 } 2793 2794 static void 2795 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val) 2796 { 2797 uint32_t interval = val & 0xffff; 2798 uint32_t eitr_num = index - EITR; 2799 2800 trace_e1000e_irq_eitr_set(eitr_num, val); 2801 2802 core->eitr_guest_value[eitr_num] = interval; 2803 core->mac[index] = MAX(interval, E1000E_MIN_XITR); 2804 } 2805 2806 static void 2807 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val) 2808 { 2809 if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) { 2810 2811 if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) { 2812 qemu_log_mask(LOG_GUEST_ERROR, 2813 "e1000e: PSRCTL.BSIZE0 cannot be zero"); 2814 return; 2815 } 2816 2817 if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) { 2818 qemu_log_mask(LOG_GUEST_ERROR, 2819 "e1000e: PSRCTL.BSIZE1 cannot be zero"); 2820 return; 2821 } 2822 } 2823 2824 core->mac[PSRCTL] = val; 2825 } 2826 2827 static void 2828 e1000e_update_rx_offloads(E1000ECore *core) 2829 { 2830 int cso_state = e1000e_rx_l4_cso_enabled(core); 2831 2832 trace_e1000e_rx_set_cso(cso_state); 2833 2834 if (core->has_vnet) { 2835 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer, 2836 cso_state, 0, 0, 0, 0); 2837 } 2838 } 2839 2840 static void 2841 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val) 2842 { 2843 core->mac[RXCSUM] = val; 2844 e1000e_update_rx_offloads(core); 2845 } 2846 2847 static void 2848 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val) 2849 { 2850 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS; 2851 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits; 2852 } 2853 2854 #define e1000e_getreg(x) [x] = e1000e_mac_readreg 2855 typedef uint32_t (*readops)(E1000ECore *, int); 2856 static const readops e1000e_macreg_readops[] = { 2857 e1000e_getreg(PBA), 2858 e1000e_getreg(WUFC), 2859 e1000e_getreg(MANC), 2860 e1000e_getreg(TOTL), 2861 e1000e_getreg(RDT0), 2862 e1000e_getreg(RDBAH0), 2863 e1000e_getreg(TDBAL1), 2864 e1000e_getreg(RDLEN0), 2865 e1000e_getreg(RDH1), 2866 e1000e_getreg(LATECOL), 2867 e1000e_getreg(SEQEC), 2868 e1000e_getreg(XONTXC), 2869 e1000e_getreg(WUS), 2870 e1000e_getreg(GORCL), 2871 e1000e_getreg(MGTPRC), 2872 e1000e_getreg(EERD), 2873 e1000e_getreg(EIAC), 2874 e1000e_getreg(PSRCTL), 2875 e1000e_getreg(MANC2H), 2876 e1000e_getreg(RXCSUM), 2877 e1000e_getreg(GSCL_3), 2878 e1000e_getreg(GSCN_2), 2879 e1000e_getreg(RSRPD), 2880 e1000e_getreg(RDBAL1), 2881 e1000e_getreg(FCAH), 2882 e1000e_getreg(FCRTH), 2883 e1000e_getreg(FLOP), 2884 e1000e_getreg(FLASHT), 2885 e1000e_getreg(RXSTMPH), 2886 e1000e_getreg(TXSTMPL), 2887 e1000e_getreg(TIMADJL), 2888 e1000e_getreg(TXDCTL), 2889 e1000e_getreg(RDH0), 2890 e1000e_getreg(TDT1), 2891 e1000e_getreg(TNCRS), 2892 e1000e_getreg(RJC), 2893 e1000e_getreg(IAM), 2894 e1000e_getreg(GSCL_2), 2895 e1000e_getreg(RDBAH1), 2896 e1000e_getreg(FLSWDATA), 2897 e1000e_getreg(RXSATRH), 2898 e1000e_getreg(TIPG), 2899 e1000e_getreg(FLMNGCTL), 2900 e1000e_getreg(FLMNGCNT), 2901 e1000e_getreg(TSYNCTXCTL), 2902 e1000e_getreg(EXTCNF_SIZE), 2903 e1000e_getreg(EXTCNF_CTRL), 2904 e1000e_getreg(EEMNGDATA), 2905 e1000e_getreg(CTRL_EXT), 2906 e1000e_getreg(SYSTIMH), 2907 e1000e_getreg(EEMNGCTL), 2908 e1000e_getreg(FLMNGDATA), 2909 e1000e_getreg(TSYNCRXCTL), 2910 e1000e_getreg(TDH), 2911 e1000e_getreg(LEDCTL), 2912 e1000e_getreg(TCTL), 2913 e1000e_getreg(TDBAL), 2914 e1000e_getreg(TDLEN), 2915 e1000e_getreg(TDH1), 2916 e1000e_getreg(RADV), 2917 e1000e_getreg(ECOL), 2918 e1000e_getreg(DC), 2919 e1000e_getreg(RLEC), 2920 e1000e_getreg(XOFFTXC), 2921 e1000e_getreg(RFC), 2922 e1000e_getreg(RNBC), 2923 e1000e_getreg(MGTPTC), 2924 e1000e_getreg(TIMINCA), 2925 e1000e_getreg(RXCFGL), 2926 e1000e_getreg(MFUTP01), 2927 e1000e_getreg(FACTPS), 2928 e1000e_getreg(GSCL_1), 2929 e1000e_getreg(GSCN_0), 2930 e1000e_getreg(GCR2), 2931 e1000e_getreg(RDT1), 2932 e1000e_getreg(PBACLR), 2933 e1000e_getreg(FCTTV), 2934 e1000e_getreg(EEWR), 2935 e1000e_getreg(FLSWCTL), 2936 e1000e_getreg(RXDCTL1), 2937 e1000e_getreg(RXSATRL), 2938 e1000e_getreg(SYSTIML), 2939 e1000e_getreg(RXUDP), 2940 e1000e_getreg(TORL), 2941 e1000e_getreg(TDLEN1), 2942 e1000e_getreg(MCC), 2943 e1000e_getreg(WUC), 2944 e1000e_getreg(EECD), 2945 e1000e_getreg(MFUTP23), 2946 e1000e_getreg(RAID), 2947 e1000e_getreg(FCRTV), 2948 e1000e_getreg(TXDCTL1), 2949 e1000e_getreg(RCTL), 2950 e1000e_getreg(TDT), 2951 e1000e_getreg(MDIC), 2952 e1000e_getreg(FCRUC), 2953 e1000e_getreg(VET), 2954 e1000e_getreg(RDBAL0), 2955 e1000e_getreg(TDBAH1), 2956 e1000e_getreg(RDTR), 2957 e1000e_getreg(SCC), 2958 e1000e_getreg(COLC), 2959 e1000e_getreg(CEXTERR), 2960 e1000e_getreg(XOFFRXC), 2961 e1000e_getreg(IPAV), 2962 e1000e_getreg(GOTCL), 2963 e1000e_getreg(MGTPDC), 2964 e1000e_getreg(GCR), 2965 e1000e_getreg(IVAR), 2966 e1000e_getreg(POEMB), 2967 e1000e_getreg(MFVAL), 2968 e1000e_getreg(FUNCTAG), 2969 e1000e_getreg(GSCL_4), 2970 e1000e_getreg(GSCN_3), 2971 e1000e_getreg(MRQC), 2972 e1000e_getreg(RDLEN1), 2973 e1000e_getreg(FCT), 2974 e1000e_getreg(FLA), 2975 e1000e_getreg(FLOL), 2976 e1000e_getreg(RXDCTL), 2977 e1000e_getreg(RXSTMPL), 2978 e1000e_getreg(TXSTMPH), 2979 e1000e_getreg(TIMADJH), 2980 e1000e_getreg(FCRTL), 2981 e1000e_getreg(TDBAH), 2982 e1000e_getreg(TADV), 2983 e1000e_getreg(XONRXC), 2984 e1000e_getreg(TSCTFC), 2985 e1000e_getreg(RFCTL), 2986 e1000e_getreg(GSCN_1), 2987 e1000e_getreg(FCAL), 2988 e1000e_getreg(FLSWCNT), 2989 2990 [TOTH] = e1000e_mac_read_clr8, 2991 [GOTCH] = e1000e_mac_read_clr8, 2992 [PRC64] = e1000e_mac_read_clr4, 2993 [PRC255] = e1000e_mac_read_clr4, 2994 [PRC1023] = e1000e_mac_read_clr4, 2995 [PTC64] = e1000e_mac_read_clr4, 2996 [PTC255] = e1000e_mac_read_clr4, 2997 [PTC1023] = e1000e_mac_read_clr4, 2998 [GPRC] = e1000e_mac_read_clr4, 2999 [TPT] = e1000e_mac_read_clr4, 3000 [RUC] = e1000e_mac_read_clr4, 3001 [BPRC] = e1000e_mac_read_clr4, 3002 [MPTC] = e1000e_mac_read_clr4, 3003 [IAC] = e1000e_mac_read_clr4, 3004 [ICR] = e1000e_mac_icr_read, 3005 [RDFH] = E1000E_LOW_BITS_READ(13), 3006 [RDFHS] = E1000E_LOW_BITS_READ(13), 3007 [RDFPC] = E1000E_LOW_BITS_READ(13), 3008 [TDFH] = E1000E_LOW_BITS_READ(13), 3009 [TDFHS] = E1000E_LOW_BITS_READ(13), 3010 [STATUS] = e1000e_get_status, 3011 [TARC0] = e1000e_get_tarc, 3012 [PBS] = E1000E_LOW_BITS_READ(6), 3013 [ICS] = e1000e_mac_ics_read, 3014 [AIT] = E1000E_LOW_BITS_READ(16), 3015 [TORH] = e1000e_mac_read_clr8, 3016 [GORCH] = e1000e_mac_read_clr8, 3017 [PRC127] = e1000e_mac_read_clr4, 3018 [PRC511] = e1000e_mac_read_clr4, 3019 [PRC1522] = e1000e_mac_read_clr4, 3020 [PTC127] = e1000e_mac_read_clr4, 3021 [PTC511] = e1000e_mac_read_clr4, 3022 [PTC1522] = e1000e_mac_read_clr4, 3023 [GPTC] = e1000e_mac_read_clr4, 3024 [TPR] = e1000e_mac_read_clr4, 3025 [ROC] = e1000e_mac_read_clr4, 3026 [MPRC] = e1000e_mac_read_clr4, 3027 [BPTC] = e1000e_mac_read_clr4, 3028 [TSCTC] = e1000e_mac_read_clr4, 3029 [ITR] = e1000e_mac_itr_read, 3030 [RDFT] = E1000E_LOW_BITS_READ(13), 3031 [RDFTS] = E1000E_LOW_BITS_READ(13), 3032 [TDFPC] = E1000E_LOW_BITS_READ(13), 3033 [TDFT] = E1000E_LOW_BITS_READ(13), 3034 [TDFTS] = E1000E_LOW_BITS_READ(13), 3035 [CTRL] = e1000e_get_ctrl, 3036 [TARC1] = e1000e_get_tarc, 3037 [SWSM] = e1000e_mac_swsm_read, 3038 [IMS] = e1000e_mac_ims_read, 3039 3040 [CRCERRS ... MPC] = e1000e_mac_readreg, 3041 [IP6AT ... IP6AT + 3] = e1000e_mac_readreg, 3042 [IP4AT ... IP4AT + 6] = e1000e_mac_readreg, 3043 [RA ... RA + 31] = e1000e_mac_readreg, 3044 [WUPM ... WUPM + 31] = e1000e_mac_readreg, 3045 [MTA ... MTA + 127] = e1000e_mac_readreg, 3046 [VFTA ... VFTA + 127] = e1000e_mac_readreg, 3047 [FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4), 3048 [FFVT ... FFVT + 254] = e1000e_mac_readreg, 3049 [MDEF ... MDEF + 7] = e1000e_mac_readreg, 3050 [FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11), 3051 [FTFT ... FTFT + 254] = e1000e_mac_readreg, 3052 [PBM ... PBM + 10239] = e1000e_mac_readreg, 3053 [RETA ... RETA + 31] = e1000e_mac_readreg, 3054 [RSSRK ... RSSRK + 31] = e1000e_mac_readreg, 3055 [MAVTV0 ... MAVTV3] = e1000e_mac_readreg, 3056 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read 3057 }; 3058 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) }; 3059 3060 #define e1000e_putreg(x) [x] = e1000e_mac_writereg 3061 typedef void (*writeops)(E1000ECore *, int, uint32_t); 3062 static const writeops e1000e_macreg_writeops[] = { 3063 e1000e_putreg(PBA), 3064 e1000e_putreg(SWSM), 3065 e1000e_putreg(WUFC), 3066 e1000e_putreg(RDBAH1), 3067 e1000e_putreg(TDBAH), 3068 e1000e_putreg(TXDCTL), 3069 e1000e_putreg(RDBAH0), 3070 e1000e_putreg(LEDCTL), 3071 e1000e_putreg(FCAL), 3072 e1000e_putreg(FCRUC), 3073 e1000e_putreg(AIT), 3074 e1000e_putreg(TDFH), 3075 e1000e_putreg(TDFT), 3076 e1000e_putreg(TDFHS), 3077 e1000e_putreg(TDFTS), 3078 e1000e_putreg(TDFPC), 3079 e1000e_putreg(WUC), 3080 e1000e_putreg(WUS), 3081 e1000e_putreg(RDFH), 3082 e1000e_putreg(RDFT), 3083 e1000e_putreg(RDFHS), 3084 e1000e_putreg(RDFTS), 3085 e1000e_putreg(RDFPC), 3086 e1000e_putreg(IPAV), 3087 e1000e_putreg(TDBAH1), 3088 e1000e_putreg(TIMINCA), 3089 e1000e_putreg(IAM), 3090 e1000e_putreg(EIAC), 3091 e1000e_putreg(IVAR), 3092 e1000e_putreg(TARC0), 3093 e1000e_putreg(TARC1), 3094 e1000e_putreg(FLSWDATA), 3095 e1000e_putreg(POEMB), 3096 e1000e_putreg(PBS), 3097 e1000e_putreg(MFUTP01), 3098 e1000e_putreg(MFUTP23), 3099 e1000e_putreg(MANC), 3100 e1000e_putreg(MANC2H), 3101 e1000e_putreg(MFVAL), 3102 e1000e_putreg(EXTCNF_CTRL), 3103 e1000e_putreg(FACTPS), 3104 e1000e_putreg(FUNCTAG), 3105 e1000e_putreg(GSCL_1), 3106 e1000e_putreg(GSCL_2), 3107 e1000e_putreg(GSCL_3), 3108 e1000e_putreg(GSCL_4), 3109 e1000e_putreg(GSCN_0), 3110 e1000e_putreg(GSCN_1), 3111 e1000e_putreg(GSCN_2), 3112 e1000e_putreg(GSCN_3), 3113 e1000e_putreg(GCR2), 3114 e1000e_putreg(MRQC), 3115 e1000e_putreg(FLOP), 3116 e1000e_putreg(FLOL), 3117 e1000e_putreg(FLSWCTL), 3118 e1000e_putreg(FLSWCNT), 3119 e1000e_putreg(FLA), 3120 e1000e_putreg(RXDCTL1), 3121 e1000e_putreg(TXDCTL1), 3122 e1000e_putreg(TIPG), 3123 e1000e_putreg(RXSTMPH), 3124 e1000e_putreg(RXSTMPL), 3125 e1000e_putreg(RXSATRL), 3126 e1000e_putreg(RXSATRH), 3127 e1000e_putreg(TXSTMPL), 3128 e1000e_putreg(TXSTMPH), 3129 e1000e_putreg(SYSTIML), 3130 e1000e_putreg(SYSTIMH), 3131 e1000e_putreg(TIMADJL), 3132 e1000e_putreg(TIMADJH), 3133 e1000e_putreg(RXUDP), 3134 e1000e_putreg(RXCFGL), 3135 e1000e_putreg(TSYNCRXCTL), 3136 e1000e_putreg(TSYNCTXCTL), 3137 e1000e_putreg(EXTCNF_SIZE), 3138 e1000e_putreg(EEMNGCTL), 3139 e1000e_putreg(RA), 3140 3141 [TDH1] = e1000e_set_16bit, 3142 [TDT1] = e1000e_set_tdt, 3143 [TCTL] = e1000e_set_tctl, 3144 [TDT] = e1000e_set_tdt, 3145 [MDIC] = e1000e_set_mdic, 3146 [ICS] = e1000e_set_ics, 3147 [TDH] = e1000e_set_16bit, 3148 [RDH0] = e1000e_set_16bit, 3149 [RDT0] = e1000e_set_rdt, 3150 [IMC] = e1000e_set_imc, 3151 [IMS] = e1000e_set_ims, 3152 [ICR] = e1000e_set_icr, 3153 [EECD] = e1000e_set_eecd, 3154 [RCTL] = e1000e_set_rx_control, 3155 [CTRL] = e1000e_set_ctrl, 3156 [RDTR] = e1000e_set_rdtr, 3157 [RADV] = e1000e_set_16bit, 3158 [TADV] = e1000e_set_16bit, 3159 [ITR] = e1000e_set_itr, 3160 [EERD] = e1000e_set_eerd, 3161 [GCR] = e1000e_set_gcr, 3162 [PSRCTL] = e1000e_set_psrctl, 3163 [RXCSUM] = e1000e_set_rxcsum, 3164 [RAID] = e1000e_set_16bit, 3165 [RSRPD] = e1000e_set_12bit, 3166 [TIDV] = e1000e_set_tidv, 3167 [TDLEN1] = e1000e_set_dlen, 3168 [TDLEN] = e1000e_set_dlen, 3169 [RDLEN0] = e1000e_set_dlen, 3170 [RDLEN1] = e1000e_set_dlen, 3171 [TDBAL] = e1000e_set_dbal, 3172 [TDBAL1] = e1000e_set_dbal, 3173 [RDBAL0] = e1000e_set_dbal, 3174 [RDBAL1] = e1000e_set_dbal, 3175 [RDH1] = e1000e_set_16bit, 3176 [RDT1] = e1000e_set_rdt, 3177 [STATUS] = e1000e_set_status, 3178 [PBACLR] = e1000e_set_pbaclr, 3179 [CTRL_EXT] = e1000e_set_ctrlext, 3180 [FCAH] = e1000e_set_16bit, 3181 [FCT] = e1000e_set_16bit, 3182 [FCTTV] = e1000e_set_16bit, 3183 [FCRTV] = e1000e_set_16bit, 3184 [FCRTH] = e1000e_set_fcrth, 3185 [FCRTL] = e1000e_set_fcrtl, 3186 [VET] = e1000e_set_vet, 3187 [RXDCTL] = e1000e_set_rxdctl, 3188 [FLASHT] = e1000e_set_16bit, 3189 [EEWR] = e1000e_set_eewr, 3190 [CTRL_DUP] = e1000e_set_ctrl, 3191 [RFCTL] = e1000e_set_rfctl, 3192 [RA + 1] = e1000e_mac_setmacaddr, 3193 3194 [IP6AT ... IP6AT + 3] = e1000e_mac_writereg, 3195 [IP4AT ... IP4AT + 6] = e1000e_mac_writereg, 3196 [RA + 2 ... RA + 31] = e1000e_mac_writereg, 3197 [WUPM ... WUPM + 31] = e1000e_mac_writereg, 3198 [MTA ... MTA + 127] = e1000e_mac_writereg, 3199 [VFTA ... VFTA + 127] = e1000e_mac_writereg, 3200 [FFMT ... FFMT + 254] = e1000e_mac_writereg, 3201 [FFVT ... FFVT + 254] = e1000e_mac_writereg, 3202 [PBM ... PBM + 10239] = e1000e_mac_writereg, 3203 [MDEF ... MDEF + 7] = e1000e_mac_writereg, 3204 [FFLT ... FFLT + 10] = e1000e_mac_writereg, 3205 [FTFT ... FTFT + 254] = e1000e_mac_writereg, 3206 [RETA ... RETA + 31] = e1000e_mac_writereg, 3207 [RSSRK ... RSSRK + 31] = e1000e_mac_writereg, 3208 [MAVTV0 ... MAVTV3] = e1000e_mac_writereg, 3209 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr 3210 }; 3211 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) }; 3212 3213 enum { MAC_ACCESS_PARTIAL = 1 }; 3214 3215 /* The array below combines alias offsets of the index values for the 3216 * MAC registers that have aliases, with the indication of not fully 3217 * implemented registers (lowest bit). This combination is possible 3218 * because all of the offsets are even. */ 3219 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = { 3220 /* Alias index offsets */ 3221 [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802, 3222 [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6, 3223 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904, 3224 [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8, 3225 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00, 3226 [RA_A ... RA_A + 31] = 0x14f0, 3227 [VFTA_A ... VFTA_A + 127] = 0x1400, 3228 [RDBAL0_A ... RDLEN0_A] = 0x09bc, 3229 [TDBAL_A ... TDLEN_A] = 0x0cf8, 3230 /* Access options */ 3231 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL, 3232 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL, 3233 [RDFPC] = MAC_ACCESS_PARTIAL, 3234 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL, 3235 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL, 3236 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL, 3237 [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL, 3238 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL, 3239 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL, 3240 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL, 3241 [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL, 3242 [TXDCTL1] = MAC_ACCESS_PARTIAL, 3243 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL 3244 }; 3245 3246 void 3247 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size) 3248 { 3249 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); 3250 3251 if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) { 3252 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3253 trace_e1000e_wrn_regs_write_trivial(index << 2); 3254 } 3255 trace_e1000e_core_write(index << 2, size, val); 3256 e1000e_macreg_writeops[index](core, index, val); 3257 } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { 3258 trace_e1000e_wrn_regs_write_ro(index << 2, size, val); 3259 } else { 3260 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val); 3261 } 3262 } 3263 3264 uint64_t 3265 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size) 3266 { 3267 uint64_t val; 3268 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); 3269 3270 if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { 3271 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3272 trace_e1000e_wrn_regs_read_trivial(index << 2); 3273 } 3274 val = e1000e_macreg_readops[index](core, index); 3275 trace_e1000e_core_read(index << 2, size, val); 3276 return val; 3277 } else { 3278 trace_e1000e_wrn_regs_read_unknown(index << 2, size); 3279 } 3280 return 0; 3281 } 3282 3283 static inline void 3284 e1000e_autoneg_pause(E1000ECore *core) 3285 { 3286 timer_del(core->autoneg_timer); 3287 } 3288 3289 static void 3290 e1000e_autoneg_resume(E1000ECore *core) 3291 { 3292 if (e1000e_have_autoneg(core) && 3293 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 3294 qemu_get_queue(core->owner_nic)->link_down = false; 3295 timer_mod(core->autoneg_timer, 3296 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 3297 } 3298 } 3299 3300 static void 3301 e1000e_vm_state_change(void *opaque, int running, RunState state) 3302 { 3303 E1000ECore *core = opaque; 3304 3305 if (running) { 3306 trace_e1000e_vm_state_running(); 3307 e1000e_intrmgr_resume(core); 3308 e1000e_autoneg_resume(core); 3309 } else { 3310 trace_e1000e_vm_state_stopped(); 3311 e1000e_autoneg_pause(core); 3312 e1000e_intrmgr_pause(core); 3313 } 3314 } 3315 3316 void 3317 e1000e_core_pci_realize(E1000ECore *core, 3318 const uint16_t *eeprom_templ, 3319 uint32_t eeprom_size, 3320 const uint8_t *macaddr) 3321 { 3322 int i; 3323 3324 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 3325 e1000e_autoneg_timer, core); 3326 e1000e_intrmgr_pci_realize(core); 3327 3328 core->vmstate = 3329 qemu_add_vm_change_state_handler(e1000e_vm_state_change, core); 3330 3331 for (i = 0; i < E1000E_NUM_QUEUES; i++) { 3332 net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner, 3333 E1000E_MAX_TX_FRAGS, core->has_vnet); 3334 } 3335 3336 net_rx_pkt_init(&core->rx_pkt, core->has_vnet); 3337 3338 e1000x_core_prepare_eeprom(core->eeprom, 3339 eeprom_templ, 3340 eeprom_size, 3341 PCI_DEVICE_GET_CLASS(core->owner)->device_id, 3342 macaddr); 3343 e1000e_update_rx_offloads(core); 3344 } 3345 3346 void 3347 e1000e_core_pci_uninit(E1000ECore *core) 3348 { 3349 int i; 3350 3351 timer_free(core->autoneg_timer); 3352 3353 e1000e_intrmgr_pci_unint(core); 3354 3355 qemu_del_vm_change_state_handler(core->vmstate); 3356 3357 for (i = 0; i < E1000E_NUM_QUEUES; i++) { 3358 net_tx_pkt_reset(core->tx[i].tx_pkt); 3359 net_tx_pkt_uninit(core->tx[i].tx_pkt); 3360 } 3361 3362 net_rx_pkt_uninit(core->rx_pkt); 3363 } 3364 3365 static const uint16_t 3366 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = { 3367 [0] = { 3368 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | 3369 MII_CR_FULL_DUPLEX | 3370 MII_CR_AUTO_NEG_EN, 3371 3372 [PHY_STATUS] = MII_SR_EXTENDED_CAPS | 3373 MII_SR_LINK_STATUS | 3374 MII_SR_AUTONEG_CAPS | 3375 MII_SR_PREAMBLE_SUPPRESS | 3376 MII_SR_EXTENDED_STATUS | 3377 MII_SR_10T_HD_CAPS | 3378 MII_SR_10T_FD_CAPS | 3379 MII_SR_100X_HD_CAPS | 3380 MII_SR_100X_FD_CAPS, 3381 3382 [PHY_ID1] = 0x141, 3383 [PHY_ID2] = E1000_PHY_ID2_82574x, 3384 [PHY_AUTONEG_ADV] = 0xde1, 3385 [PHY_LP_ABILITY] = 0x7e0, 3386 [PHY_AUTONEG_EXP] = BIT(2), 3387 [PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13), 3388 [PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11), 3389 [PHY_1000T_STATUS] = 0x3c00, 3390 [PHY_EXT_STATUS] = BIT(12) | BIT(13), 3391 3392 [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) | 3393 BIT(12) | BIT(13), 3394 [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15) 3395 }, 3396 [2] = { 3397 [PHY_MAC_CTRL1] = BIT(3) | BIT(7), 3398 [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12) 3399 }, 3400 [3] = { 3401 [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14) 3402 } 3403 }; 3404 3405 static const uint32_t e1000e_mac_reg_init[] = { 3406 [PBA] = 0x00140014, 3407 [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18), 3408 [EXTCNF_CTRL] = BIT(3), 3409 [EEMNGCTL] = BIT(31), 3410 [FLASHT] = 0x2, 3411 [FLSWCTL] = BIT(30) | BIT(31), 3412 [FLOL] = BIT(0), 3413 [RXDCTL] = BIT(16), 3414 [RXDCTL1] = BIT(16), 3415 [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20), 3416 [RXCFGL] = 0x88F7, 3417 [RXUDP] = 0x319, 3418 [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | 3419 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU | 3420 E1000_CTRL_ADVD3WUC, 3421 [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU, 3422 [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) | 3423 (4 << E1000_PSRCTL_BSIZE1_SHIFT) | 3424 (4 << E1000_PSRCTL_BSIZE2_SHIFT), 3425 [TARC0] = 0x3 | E1000_TARC_ENABLE, 3426 [TARC1] = 0x3 | E1000_TARC_ENABLE, 3427 [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES, 3428 [EERD] = E1000_EERW_DONE, 3429 [EEWR] = E1000_EERW_DONE, 3430 [GCR] = E1000_L0S_ADJUST | 3431 E1000_L1_ENTRY_LATENCY_MSB | 3432 E1000_L1_ENTRY_LATENCY_LSB, 3433 [TDFH] = 0x600, 3434 [TDFT] = 0x600, 3435 [TDFHS] = 0x600, 3436 [TDFTS] = 0x600, 3437 [POEMB] = 0x30D, 3438 [PBS] = 0x028, 3439 [MANC] = E1000_MANC_DIS_IP_CHK_ARP, 3440 [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000, 3441 [SWSM] = 1, 3442 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD, 3443 [ITR] = E1000E_MIN_XITR, 3444 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR, 3445 }; 3446 3447 void 3448 e1000e_core_reset(E1000ECore *core) 3449 { 3450 int i; 3451 3452 timer_del(core->autoneg_timer); 3453 3454 e1000e_intrmgr_reset(core); 3455 3456 memset(core->phy, 0, sizeof core->phy); 3457 memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init); 3458 memset(core->mac, 0, sizeof core->mac); 3459 memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init); 3460 3461 core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT; 3462 3463 if (qemu_get_queue(core->owner_nic)->link_down) { 3464 e1000e_link_down(core); 3465 } 3466 3467 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); 3468 3469 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 3470 net_tx_pkt_reset(core->tx[i].tx_pkt); 3471 memset(&core->tx[i].props, 0, sizeof(core->tx[i].props)); 3472 core->tx[i].skip_cp = false; 3473 } 3474 } 3475 3476 void e1000e_core_pre_save(E1000ECore *core) 3477 { 3478 int i; 3479 NetClientState *nc = qemu_get_queue(core->owner_nic); 3480 3481 /* 3482 * If link is down and auto-negotiation is supported and ongoing, 3483 * complete auto-negotiation immediately. This allows us to look 3484 * at MII_SR_AUTONEG_COMPLETE to infer link status on load. 3485 */ 3486 if (nc->link_down && e1000e_have_autoneg(core)) { 3487 core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; 3488 e1000e_update_flowctl_status(core); 3489 } 3490 3491 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 3492 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) { 3493 core->tx[i].skip_cp = true; 3494 } 3495 } 3496 } 3497 3498 int 3499 e1000e_core_post_load(E1000ECore *core) 3500 { 3501 NetClientState *nc = qemu_get_queue(core->owner_nic); 3502 3503 /* nc.link_down can't be migrated, so infer link_down according 3504 * to link status bit in core.mac[STATUS]. 3505 */ 3506 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0; 3507 3508 return 0; 3509 } 3510