xref: /openbmc/qemu/hw/net/e1000e_core.c (revision e9e5b930)
1 /*
2  * Core code for QEMU e1000e emulation
3  *
4  * Software developer's manuals:
5  * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6  *
7  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8  * Developed by Daynix Computing LTD (http://www.daynix.com)
9  *
10  * Authors:
11  * Dmitry Fleytman <dmitry@daynix.com>
12  * Leonid Bloch <leonid@daynix.com>
13  * Yan Vugenfirer <yan@daynix.com>
14  *
15  * Based on work done by:
16  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17  * Copyright (c) 2008 Qumranet
18  * Based on work done by:
19  * Copyright (c) 2007 Dan Aloni
20  * Copyright (c) 2004 Antony T Curtis
21  *
22  * This library is free software; you can redistribute it and/or
23  * modify it under the terms of the GNU Lesser General Public
24  * License as published by the Free Software Foundation; either
25  * version 2.1 of the License, or (at your option) any later version.
26  *
27  * This library is distributed in the hope that it will be useful,
28  * but WITHOUT ANY WARRANTY; without even the implied warranty of
29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30  * Lesser General Public License for more details.
31  *
32  * You should have received a copy of the GNU Lesser General Public
33  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34  */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/net/mii.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 #include "sysemu/runstate.h"
44 
45 #include "net_tx_pkt.h"
46 #include "net_rx_pkt.h"
47 
48 #include "e1000_common.h"
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
51 
52 #include "trace.h"
53 
54 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
55 #define E1000E_MIN_XITR     (500)
56 
57 #define E1000E_MAX_TX_FRAGS (64)
58 
59 union e1000_rx_desc_union {
60     struct e1000_rx_desc legacy;
61     union e1000_rx_desc_extended extended;
62     union e1000_rx_desc_packet_split packet_split;
63 };
64 
65 static ssize_t
66 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
67                         bool has_vnet);
68 
69 static inline void
70 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
71 
72 static void e1000e_reset(E1000ECore *core, bool sw);
73 
74 static inline void
75 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
76 {
77     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
78         trace_e1000e_wrn_no_ts_support();
79     }
80 }
81 
82 static inline void
83 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
84 {
85     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
86         trace_e1000e_wrn_no_snap_support();
87     }
88 }
89 
90 static inline void
91 e1000e_raise_legacy_irq(E1000ECore *core)
92 {
93     trace_e1000e_irq_legacy_notify(true);
94     e1000x_inc_reg_if_not_full(core->mac, IAC);
95     pci_set_irq(core->owner, 1);
96 }
97 
98 static inline void
99 e1000e_lower_legacy_irq(E1000ECore *core)
100 {
101     trace_e1000e_irq_legacy_notify(false);
102     pci_set_irq(core->owner, 0);
103 }
104 
105 static inline void
106 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
107 {
108     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
109                                  timer->delay_resolution_ns;
110 
111     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
112 
113     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
114 
115     timer->running = true;
116 }
117 
118 static void
119 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
120 {
121     if (timer->running) {
122         e1000e_intrmgr_rearm_timer(timer);
123     }
124 }
125 
126 static void
127 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
128 {
129     if (timer->running) {
130         timer_del(timer->timer);
131     }
132 }
133 
134 static inline void
135 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
136 {
137     if (timer->running) {
138         timer_del(timer->timer);
139         timer->running = false;
140     }
141 }
142 
143 static inline void
144 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
145 {
146     trace_e1000e_irq_fire_delayed_interrupts();
147     e1000e_set_interrupt_cause(core, 0);
148 }
149 
150 static void
151 e1000e_intrmgr_on_timer(void *opaque)
152 {
153     E1000IntrDelayTimer *timer = opaque;
154 
155     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
156 
157     timer->running = false;
158     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
159 }
160 
161 static void
162 e1000e_intrmgr_on_throttling_timer(void *opaque)
163 {
164     E1000IntrDelayTimer *timer = opaque;
165 
166     timer->running = false;
167 
168     if (msi_enabled(timer->core->owner)) {
169         trace_e1000e_irq_msi_notify_postponed();
170         /* Clear msi_causes_pending to fire MSI eventually */
171         timer->core->msi_causes_pending = 0;
172         e1000e_set_interrupt_cause(timer->core, 0);
173     } else {
174         trace_e1000e_irq_legacy_notify_postponed();
175         e1000e_set_interrupt_cause(timer->core, 0);
176     }
177 }
178 
179 static void
180 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
181 {
182     E1000IntrDelayTimer *timer = opaque;
183     int idx = timer - &timer->core->eitr[0];
184 
185     timer->running = false;
186 
187     trace_e1000e_irq_msix_notify_postponed_vec(idx);
188     msix_notify(timer->core->owner, idx);
189 }
190 
191 static void
192 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
193 {
194     int i;
195 
196     core->radv.delay_reg = RADV;
197     core->rdtr.delay_reg = RDTR;
198     core->raid.delay_reg = RAID;
199     core->tadv.delay_reg = TADV;
200     core->tidv.delay_reg = TIDV;
201 
202     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
205     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
206     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
207 
208     core->radv.core = core;
209     core->rdtr.core = core;
210     core->raid.core = core;
211     core->tadv.core = core;
212     core->tidv.core = core;
213 
214     core->itr.core = core;
215     core->itr.delay_reg = ITR;
216     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
217 
218     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
219         core->eitr[i].core = core;
220         core->eitr[i].delay_reg = EITR + i;
221         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
222     }
223 
224     if (!create) {
225         return;
226     }
227 
228     core->radv.timer =
229         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
230     core->rdtr.timer =
231         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
232     core->raid.timer =
233         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
234 
235     core->tadv.timer =
236         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
237     core->tidv.timer =
238         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
239 
240     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
241                                    e1000e_intrmgr_on_throttling_timer,
242                                    &core->itr);
243 
244     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
245         core->eitr[i].timer =
246             timer_new_ns(QEMU_CLOCK_VIRTUAL,
247                          e1000e_intrmgr_on_msix_throttling_timer,
248                          &core->eitr[i]);
249     }
250 }
251 
252 static inline void
253 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
254 {
255     e1000e_intrmgr_stop_timer(&core->radv);
256     e1000e_intrmgr_stop_timer(&core->rdtr);
257     e1000e_intrmgr_stop_timer(&core->raid);
258     e1000e_intrmgr_stop_timer(&core->tidv);
259     e1000e_intrmgr_stop_timer(&core->tadv);
260 }
261 
262 static bool
263 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
264 {
265     uint32_t delayable_causes;
266     uint32_t rdtr = core->mac[RDTR];
267     uint32_t radv = core->mac[RADV];
268     uint32_t raid = core->mac[RAID];
269 
270     if (msix_enabled(core->owner)) {
271         return false;
272     }
273 
274     delayable_causes = E1000_ICR_RXQ0 |
275                        E1000_ICR_RXQ1 |
276                        E1000_ICR_RXT0;
277 
278     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
279         delayable_causes |= E1000_ICR_ACK;
280     }
281 
282     /* Clean up all causes that may be delayed */
283     core->delayed_causes |= *causes & delayable_causes;
284     *causes &= ~delayable_causes;
285 
286     /*
287      * Check if delayed RX interrupts disabled by client
288      * or if there are causes that cannot be delayed
289      */
290     if ((rdtr == 0) || (*causes != 0)) {
291         return false;
292     }
293 
294     /*
295      * Check if delayed RX ACK interrupts disabled by client
296      * and there is an ACK packet received
297      */
298     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
299         return false;
300     }
301 
302     /* All causes delayed */
303     e1000e_intrmgr_rearm_timer(&core->rdtr);
304 
305     if (!core->radv.running && (radv != 0)) {
306         e1000e_intrmgr_rearm_timer(&core->radv);
307     }
308 
309     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
310         e1000e_intrmgr_rearm_timer(&core->raid);
311     }
312 
313     return true;
314 }
315 
316 static bool
317 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
318 {
319     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
320                                              E1000_ICR_TXQ1 |
321                                              E1000_ICR_TXQE |
322                                              E1000_ICR_TXDW;
323 
324     if (msix_enabled(core->owner)) {
325         return false;
326     }
327 
328     /* Clean up all causes that may be delayed */
329     core->delayed_causes |= *causes & delayable_causes;
330     *causes &= ~delayable_causes;
331 
332     /* If there are causes that cannot be delayed */
333     if (*causes != 0) {
334         return false;
335     }
336 
337     /* All causes delayed */
338     e1000e_intrmgr_rearm_timer(&core->tidv);
339 
340     if (!core->tadv.running && (core->mac[TADV] != 0)) {
341         e1000e_intrmgr_rearm_timer(&core->tadv);
342     }
343 
344     return true;
345 }
346 
347 static uint32_t
348 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
349 {
350     uint32_t res;
351 
352     if (msix_enabled(core->owner)) {
353         assert(core->delayed_causes == 0);
354         return 0;
355     }
356 
357     res = core->delayed_causes;
358     core->delayed_causes = 0;
359 
360     e1000e_intrmgr_stop_delay_timers(core);
361 
362     return res;
363 }
364 
365 static void
366 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
367 {
368     int i;
369     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
370 
371     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
372     core->mac[ICR] |= val;
373 
374     if (core->itr.running) {
375         timer_del(core->itr.timer);
376         e1000e_intrmgr_on_throttling_timer(&core->itr);
377     }
378 
379     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
380         if (core->eitr[i].running) {
381             timer_del(core->eitr[i].timer);
382             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
383         }
384     }
385 }
386 
387 static void
388 e1000e_intrmgr_resume(E1000ECore *core)
389 {
390     int i;
391 
392     e1000e_intmgr_timer_resume(&core->radv);
393     e1000e_intmgr_timer_resume(&core->rdtr);
394     e1000e_intmgr_timer_resume(&core->raid);
395     e1000e_intmgr_timer_resume(&core->tidv);
396     e1000e_intmgr_timer_resume(&core->tadv);
397 
398     e1000e_intmgr_timer_resume(&core->itr);
399 
400     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
401         e1000e_intmgr_timer_resume(&core->eitr[i]);
402     }
403 }
404 
405 static void
406 e1000e_intrmgr_pause(E1000ECore *core)
407 {
408     int i;
409 
410     e1000e_intmgr_timer_pause(&core->radv);
411     e1000e_intmgr_timer_pause(&core->rdtr);
412     e1000e_intmgr_timer_pause(&core->raid);
413     e1000e_intmgr_timer_pause(&core->tidv);
414     e1000e_intmgr_timer_pause(&core->tadv);
415 
416     e1000e_intmgr_timer_pause(&core->itr);
417 
418     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
419         e1000e_intmgr_timer_pause(&core->eitr[i]);
420     }
421 }
422 
423 static void
424 e1000e_intrmgr_reset(E1000ECore *core)
425 {
426     int i;
427 
428     core->delayed_causes = 0;
429 
430     e1000e_intrmgr_stop_delay_timers(core);
431 
432     e1000e_intrmgr_stop_timer(&core->itr);
433 
434     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
435         e1000e_intrmgr_stop_timer(&core->eitr[i]);
436     }
437 }
438 
439 static void
440 e1000e_intrmgr_pci_unint(E1000ECore *core)
441 {
442     int i;
443 
444     timer_free(core->radv.timer);
445     timer_free(core->rdtr.timer);
446     timer_free(core->raid.timer);
447 
448     timer_free(core->tadv.timer);
449     timer_free(core->tidv.timer);
450 
451     timer_free(core->itr.timer);
452 
453     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
454         timer_free(core->eitr[i].timer);
455     }
456 }
457 
458 static void
459 e1000e_intrmgr_pci_realize(E1000ECore *core)
460 {
461     e1000e_intrmgr_initialize_all_timers(core, true);
462 }
463 
464 static inline bool
465 e1000e_rx_csum_enabled(E1000ECore *core)
466 {
467     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
468 }
469 
470 static inline bool
471 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
472 {
473     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
474 }
475 
476 static inline bool
477 e1000e_rx_use_ps_descriptor(E1000ECore *core)
478 {
479     return !e1000e_rx_use_legacy_descriptor(core) &&
480            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
481 }
482 
483 static inline bool
484 e1000e_rss_enabled(E1000ECore *core)
485 {
486     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
487            !e1000e_rx_csum_enabled(core) &&
488            !e1000e_rx_use_legacy_descriptor(core);
489 }
490 
491 typedef struct E1000E_RSSInfo_st {
492     bool enabled;
493     uint32_t hash;
494     uint32_t queue;
495     uint32_t type;
496 } E1000E_RSSInfo;
497 
498 static uint32_t
499 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
500 {
501     bool hasip4, hasip6;
502     EthL4HdrProto l4hdr_proto;
503 
504     assert(e1000e_rss_enabled(core));
505 
506     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
507 
508     if (hasip4) {
509         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
510                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
512 
513         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
514             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
515             return E1000_MRQ_RSS_TYPE_IPV4TCP;
516         }
517 
518         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
519             return E1000_MRQ_RSS_TYPE_IPV4;
520         }
521     } else if (hasip6) {
522         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
523 
524         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
525         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
526 
527         /*
528          * Following two traces must not be combined because resulting
529          * event will have 11 arguments totally and some trace backends
530          * (at least "ust") have limitation of maximum 10 arguments per
531          * event. Events with more arguments fail to compile for
532          * backends like these.
533          */
534         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
535         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
536                                 ip6info->has_ext_hdrs,
537                                 ip6info->rss_ex_dst_valid,
538                                 ip6info->rss_ex_src_valid,
539                                 core->mac[MRQC],
540                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
541                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
542                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
543 
544         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
545             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
546                               ip6info->rss_ex_src_valid))) {
547 
548             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
549                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
550                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
551             }
552 
553             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
554                 return E1000_MRQ_RSS_TYPE_IPV6EX;
555             }
556 
557         }
558 
559         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
560             return E1000_MRQ_RSS_TYPE_IPV6;
561         }
562 
563     }
564 
565     return E1000_MRQ_RSS_TYPE_NONE;
566 }
567 
568 static uint32_t
569 e1000e_rss_calc_hash(E1000ECore *core,
570                      struct NetRxPkt *pkt,
571                      E1000E_RSSInfo *info)
572 {
573     NetRxPktRssType type;
574 
575     assert(e1000e_rss_enabled(core));
576 
577     switch (info->type) {
578     case E1000_MRQ_RSS_TYPE_IPV4:
579         type = NetPktRssIpV4;
580         break;
581     case E1000_MRQ_RSS_TYPE_IPV4TCP:
582         type = NetPktRssIpV4Tcp;
583         break;
584     case E1000_MRQ_RSS_TYPE_IPV6TCP:
585         type = NetPktRssIpV6TcpEx;
586         break;
587     case E1000_MRQ_RSS_TYPE_IPV6:
588         type = NetPktRssIpV6;
589         break;
590     case E1000_MRQ_RSS_TYPE_IPV6EX:
591         type = NetPktRssIpV6Ex;
592         break;
593     default:
594         assert(false);
595         return 0;
596     }
597 
598     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
599 }
600 
601 static void
602 e1000e_rss_parse_packet(E1000ECore *core,
603                         struct NetRxPkt *pkt,
604                         E1000E_RSSInfo *info)
605 {
606     trace_e1000e_rx_rss_started();
607 
608     if (!e1000e_rss_enabled(core)) {
609         info->enabled = false;
610         info->hash = 0;
611         info->queue = 0;
612         info->type = 0;
613         trace_e1000e_rx_rss_disabled();
614         return;
615     }
616 
617     info->enabled = true;
618 
619     info->type = e1000e_rss_get_hash_type(core, pkt);
620 
621     trace_e1000e_rx_rss_type(info->type);
622 
623     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
624         info->hash = 0;
625         info->queue = 0;
626         return;
627     }
628 
629     info->hash = e1000e_rss_calc_hash(core, pkt, info);
630     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
631 }
632 
633 static bool
634 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
635 {
636     if (tx->props.tse && tx->cptse) {
637         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
638             return false;
639         }
640 
641         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
642         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
643         return true;
644     }
645 
646     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
647         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
648             return false;
649         }
650     }
651 
652     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
653         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
654     }
655 
656     return true;
657 }
658 
659 static void e1000e_tx_pkt_callback(void *core,
660                                    const struct iovec *iov,
661                                    int iovcnt,
662                                    const struct iovec *virt_iov,
663                                    int virt_iovcnt)
664 {
665     e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
666 }
667 
668 static bool
669 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
670 {
671     int target_queue = MIN(core->max_queue_num, queue_index);
672     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
673 
674     if (!e1000e_setup_tx_offloads(core, tx)) {
675         return false;
676     }
677 
678     net_tx_pkt_dump(tx->tx_pkt);
679 
680     if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
681         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
682         return net_tx_pkt_send_custom(tx->tx_pkt, false,
683                                       e1000e_tx_pkt_callback, core);
684     } else {
685         return net_tx_pkt_send(tx->tx_pkt, queue);
686     }
687 }
688 
689 static void
690 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
691 {
692     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
693                                     PTC1023, PTC1522 };
694 
695     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
696 
697     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
698     e1000x_inc_reg_if_not_full(core->mac, TPT);
699     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
700 
701     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
702     case ETH_PKT_BCAST:
703         e1000x_inc_reg_if_not_full(core->mac, BPTC);
704         break;
705     case ETH_PKT_MCAST:
706         e1000x_inc_reg_if_not_full(core->mac, MPTC);
707         break;
708     case ETH_PKT_UCAST:
709         break;
710     default:
711         g_assert_not_reached();
712     }
713 
714     e1000x_inc_reg_if_not_full(core->mac, GPTC);
715     e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
716 }
717 
718 static void
719 e1000e_process_tx_desc(E1000ECore *core,
720                        struct e1000e_tx *tx,
721                        struct e1000_tx_desc *dp,
722                        int queue_index)
723 {
724     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
725     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
726     unsigned int split_size = txd_lower & 0xffff;
727     uint64_t addr;
728     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
729     bool eop = txd_lower & E1000_TXD_CMD_EOP;
730 
731     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
732         e1000x_read_tx_ctx_descr(xp, &tx->props);
733         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
734         return;
735     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
736         /* data descriptor */
737         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
738         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
739         e1000e_process_ts_option(core, dp);
740     } else {
741         /* legacy descriptor */
742         e1000e_process_ts_option(core, dp);
743         tx->cptse = 0;
744     }
745 
746     addr = le64_to_cpu(dp->buffer_addr);
747 
748     if (!tx->skip_cp) {
749         if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner,
750                                              addr, split_size)) {
751             tx->skip_cp = true;
752         }
753     }
754 
755     if (eop) {
756         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
757             if (e1000x_vlan_enabled(core->mac) &&
758                 e1000x_is_vlan_txd(txd_lower)) {
759                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
760                     le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
761             }
762             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
763                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
764             }
765         }
766 
767         tx->skip_cp = false;
768         net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
769 
770         tx->sum_needed = 0;
771         tx->cptse = 0;
772     }
773 }
774 
775 static inline uint32_t
776 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
777 {
778     if (!msix_enabled(core->owner)) {
779         return E1000_ICR_TXDW;
780     }
781 
782     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
783 }
784 
785 static inline uint32_t
786 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
787                              bool min_threshold_hit)
788 {
789     if (!msix_enabled(core->owner)) {
790         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
791     }
792 
793     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
794 }
795 
796 static uint32_t
797 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
798                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
799 {
800     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
801 
802     if (!(txd_lower & E1000_TXD_CMD_RS) &&
803         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
804         return 0;
805     }
806 
807     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
808 
809     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
810 
811     dp->upper.data = cpu_to_le32(txd_upper);
812     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
813                   &dp->upper, sizeof(dp->upper));
814     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
815 }
816 
817 typedef struct E1000E_RingInfo_st {
818     int dbah;
819     int dbal;
820     int dlen;
821     int dh;
822     int dt;
823     int idx;
824 } E1000E_RingInfo;
825 
826 static inline bool
827 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
828 {
829     return core->mac[r->dh] == core->mac[r->dt] ||
830                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
831 }
832 
833 static inline uint64_t
834 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
835 {
836     uint64_t bah = core->mac[r->dbah];
837     uint64_t bal = core->mac[r->dbal];
838 
839     return (bah << 32) + bal;
840 }
841 
842 static inline uint64_t
843 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
844 {
845     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
846 }
847 
848 static inline void
849 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
850 {
851     core->mac[r->dh] += count;
852 
853     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
854         core->mac[r->dh] = 0;
855     }
856 }
857 
858 static inline uint32_t
859 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
860 {
861     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
862                                  core->mac[r->dh],  core->mac[r->dt]);
863 
864     if (core->mac[r->dh] <= core->mac[r->dt]) {
865         return core->mac[r->dt] - core->mac[r->dh];
866     }
867 
868     if (core->mac[r->dh] > core->mac[r->dt]) {
869         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
870                core->mac[r->dt] - core->mac[r->dh];
871     }
872 
873     g_assert_not_reached();
874     return 0;
875 }
876 
877 static inline bool
878 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
879 {
880     return core->mac[r->dlen] > 0;
881 }
882 
883 static inline uint32_t
884 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
885 {
886     return core->mac[r->dlen];
887 }
888 
889 typedef struct E1000E_TxRing_st {
890     const E1000E_RingInfo *i;
891     struct e1000e_tx *tx;
892 } E1000E_TxRing;
893 
894 static inline int
895 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
896 {
897     return (reg_idx - base_reg_idx) / (0x100 >> 2);
898 }
899 
900 static inline void
901 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
902 {
903     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
904         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
905         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
906     };
907 
908     assert(idx < ARRAY_SIZE(i));
909 
910     txr->i     = &i[idx];
911     txr->tx    = &core->tx[idx];
912 }
913 
914 typedef struct E1000E_RxRing_st {
915     const E1000E_RingInfo *i;
916 } E1000E_RxRing;
917 
918 static inline void
919 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
920 {
921     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
922         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
923         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
924     };
925 
926     assert(idx < ARRAY_SIZE(i));
927 
928     rxr->i      = &i[idx];
929 }
930 
931 static void
932 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
933 {
934     dma_addr_t base;
935     struct e1000_tx_desc desc;
936     bool ide = false;
937     const E1000E_RingInfo *txi = txr->i;
938     uint32_t cause = E1000_ICS_TXQE;
939 
940     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
941         trace_e1000e_tx_disabled();
942         return;
943     }
944 
945     while (!e1000e_ring_empty(core, txi)) {
946         base = e1000e_ring_head_descr(core, txi);
947 
948         pci_dma_read(core->owner, base, &desc, sizeof(desc));
949 
950         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
951                               desc.lower.data, desc.upper.data);
952 
953         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
954         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
955 
956         e1000e_ring_advance(core, txi, 1);
957     }
958 
959     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
960         e1000e_set_interrupt_cause(core, cause);
961     }
962 }
963 
964 static bool
965 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
966                   size_t total_size)
967 {
968     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
969 
970     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
971                                 core->rx_desc_buf_size);
972 
973     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
974                          core->rx_desc_buf_size;
975 }
976 
977 void
978 e1000e_start_recv(E1000ECore *core)
979 {
980     int i;
981 
982     trace_e1000e_rx_start_recv();
983 
984     for (i = 0; i <= core->max_queue_num; i++) {
985         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
986     }
987 }
988 
989 bool
990 e1000e_can_receive(E1000ECore *core)
991 {
992     int i;
993 
994     if (!e1000x_rx_ready(core->owner, core->mac)) {
995         return false;
996     }
997 
998     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
999         E1000E_RxRing rxr;
1000 
1001         e1000e_rx_ring_init(core, &rxr, i);
1002         if (e1000e_ring_enabled(core, rxr.i) &&
1003             e1000e_has_rxbufs(core, rxr.i, 1)) {
1004             trace_e1000e_rx_can_recv();
1005             return true;
1006         }
1007     }
1008 
1009     trace_e1000e_rx_can_recv_rings_full();
1010     return false;
1011 }
1012 
1013 ssize_t
1014 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
1015 {
1016     const struct iovec iov = {
1017         .iov_base = (uint8_t *)buf,
1018         .iov_len = size
1019     };
1020 
1021     return e1000e_receive_iov(core, &iov, 1);
1022 }
1023 
1024 static inline bool
1025 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1026 {
1027     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1028 }
1029 
1030 static inline bool
1031 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1032 {
1033     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1034 }
1035 
1036 static bool
1037 e1000e_receive_filter(E1000ECore *core, const void *buf)
1038 {
1039     return (!e1000x_is_vlan_packet(buf, core->mac[VET]) ||
1040             e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) &&
1041            e1000x_rx_group_filter(core->mac, buf);
1042 }
1043 
1044 static inline void
1045 e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1046                           hwaddr *buff_addr)
1047 {
1048     *buff_addr = le64_to_cpu(desc->buffer_addr);
1049 }
1050 
1051 static inline void
1052 e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1053                          hwaddr *buff_addr)
1054 {
1055     *buff_addr = le64_to_cpu(desc->read.buffer_addr);
1056 }
1057 
1058 static inline void
1059 e1000e_read_ps_rx_descr(E1000ECore *core,
1060                         union e1000_rx_desc_packet_split *desc,
1061                         hwaddr buff_addr[MAX_PS_BUFFERS])
1062 {
1063     int i;
1064 
1065     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1066         buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
1067     }
1068 
1069     trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
1070                                  buff_addr[2], buff_addr[3]);
1071 }
1072 
1073 static inline void
1074 e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1075                      hwaddr buff_addr[MAX_PS_BUFFERS])
1076 {
1077     if (e1000e_rx_use_legacy_descriptor(core)) {
1078         e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
1079         buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1080     } else {
1081         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1082             e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
1083         } else {
1084             e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
1085             buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1086         }
1087     }
1088 }
1089 
1090 static void
1091 e1000e_verify_csum_in_sw(E1000ECore *core,
1092                          struct NetRxPkt *pkt,
1093                          uint32_t *status_flags,
1094                          EthL4HdrProto l4hdr_proto)
1095 {
1096     bool csum_valid;
1097     uint32_t csum_error;
1098 
1099     if (e1000e_rx_l3_cso_enabled(core)) {
1100         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1101             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1102         } else {
1103             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1104             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1105         }
1106     } else {
1107         trace_e1000e_rx_metadata_l3_cso_disabled();
1108     }
1109 
1110     if (!e1000e_rx_l4_cso_enabled(core)) {
1111         trace_e1000e_rx_metadata_l4_cso_disabled();
1112         return;
1113     }
1114 
1115     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1116         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1117         return;
1118     }
1119 
1120     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1121     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1122 
1123     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1124         *status_flags |= E1000_RXD_STAT_UDPCS;
1125     }
1126 }
1127 
1128 static inline bool
1129 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1130 {
1131     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1132         return false;
1133     }
1134 
1135     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1136         return !net_rx_pkt_has_tcp_data(rx_pkt);
1137     }
1138 
1139     return true;
1140 }
1141 
1142 static void
1143 e1000e_build_rx_metadata(E1000ECore *core,
1144                          struct NetRxPkt *pkt,
1145                          bool is_eop,
1146                          const E1000E_RSSInfo *rss_info,
1147                          uint32_t *rss, uint32_t *mrq,
1148                          uint32_t *status_flags,
1149                          uint16_t *ip_id,
1150                          uint16_t *vlan_tag)
1151 {
1152     struct virtio_net_hdr *vhdr;
1153     bool hasip4, hasip6;
1154     EthL4HdrProto l4hdr_proto;
1155     uint32_t pkt_type;
1156 
1157     *status_flags = E1000_RXD_STAT_DD;
1158 
1159     /* No additional metadata needed for non-EOP descriptors */
1160     if (!is_eop) {
1161         goto func_exit;
1162     }
1163 
1164     *status_flags |= E1000_RXD_STAT_EOP;
1165 
1166     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1167     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1168 
1169     /* VLAN state */
1170     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1171         *status_flags |= E1000_RXD_STAT_VP;
1172         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1173         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1174     }
1175 
1176     /* Packet parsing results */
1177     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1178         if (rss_info->enabled) {
1179             *rss = cpu_to_le32(rss_info->hash);
1180             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1181             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1182         }
1183     } else if (hasip4) {
1184             *status_flags |= E1000_RXD_STAT_IPIDV;
1185             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1186             trace_e1000e_rx_metadata_ip_id(*ip_id);
1187     }
1188 
1189     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
1190         *status_flags |= E1000_RXD_STAT_ACK;
1191         trace_e1000e_rx_metadata_ack();
1192     }
1193 
1194     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1195         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1196         pkt_type = E1000_RXD_PKT_MAC;
1197     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1198                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1199         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1200     } else if (hasip4 || hasip6) {
1201         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1202     } else {
1203         pkt_type = E1000_RXD_PKT_MAC;
1204     }
1205 
1206     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1207     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1208 
1209     /* RX CSO information */
1210     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1211         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1212         goto func_exit;
1213     }
1214 
1215     vhdr = net_rx_pkt_get_vhdr(pkt);
1216 
1217     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1218         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1219         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1220         e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1221         goto func_exit;
1222     }
1223 
1224     if (e1000e_rx_l3_cso_enabled(core)) {
1225         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1226     } else {
1227         trace_e1000e_rx_metadata_l3_cso_disabled();
1228     }
1229 
1230     if (e1000e_rx_l4_cso_enabled(core)) {
1231         switch (l4hdr_proto) {
1232         case ETH_L4_HDR_PROTO_TCP:
1233             *status_flags |= E1000_RXD_STAT_TCPCS;
1234             break;
1235 
1236         case ETH_L4_HDR_PROTO_UDP:
1237             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1238             break;
1239 
1240         default:
1241             break;
1242         }
1243     } else {
1244         trace_e1000e_rx_metadata_l4_cso_disabled();
1245     }
1246 
1247     trace_e1000e_rx_metadata_status_flags(*status_flags);
1248 
1249 func_exit:
1250     *status_flags = cpu_to_le32(*status_flags);
1251 }
1252 
1253 static inline void
1254 e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1255                            struct NetRxPkt *pkt,
1256                            const E1000E_RSSInfo *rss_info,
1257                            uint16_t length)
1258 {
1259     uint32_t status_flags, rss, mrq;
1260     uint16_t ip_id;
1261 
1262     assert(!rss_info->enabled);
1263 
1264     desc->length = cpu_to_le16(length);
1265     desc->csum = 0;
1266 
1267     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1268                              rss_info,
1269                              &rss, &mrq,
1270                              &status_flags, &ip_id,
1271                              &desc->special);
1272     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1273     desc->status = (uint8_t) le32_to_cpu(status_flags);
1274 }
1275 
1276 static inline void
1277 e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1278                           struct NetRxPkt *pkt,
1279                           const E1000E_RSSInfo *rss_info,
1280                           uint16_t length)
1281 {
1282     memset(&desc->wb, 0, sizeof(desc->wb));
1283 
1284     desc->wb.upper.length = cpu_to_le16(length);
1285 
1286     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1287                              rss_info,
1288                              &desc->wb.lower.hi_dword.rss,
1289                              &desc->wb.lower.mrq,
1290                              &desc->wb.upper.status_error,
1291                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1292                              &desc->wb.upper.vlan);
1293 }
1294 
1295 static inline void
1296 e1000e_write_ps_rx_descr(E1000ECore *core,
1297                          union e1000_rx_desc_packet_split *desc,
1298                          struct NetRxPkt *pkt,
1299                          const E1000E_RSSInfo *rss_info,
1300                          size_t ps_hdr_len,
1301                          uint16_t(*written)[MAX_PS_BUFFERS])
1302 {
1303     int i;
1304 
1305     memset(&desc->wb, 0, sizeof(desc->wb));
1306 
1307     desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
1308 
1309     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1310         desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1311     }
1312 
1313     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1314                              rss_info,
1315                              &desc->wb.lower.hi_dword.rss,
1316                              &desc->wb.lower.mrq,
1317                              &desc->wb.middle.status_error,
1318                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1319                              &desc->wb.middle.vlan);
1320 
1321     desc->wb.upper.header_status =
1322         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1323 
1324     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1325                                   (*written)[2], (*written)[3]);
1326 }
1327 
1328 static inline void
1329 e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1330 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1331     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1332 {
1333     if (e1000e_rx_use_legacy_descriptor(core)) {
1334         assert(ps_hdr_len == 0);
1335         e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1336                                    (*written)[0]);
1337     } else {
1338         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1339             e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
1340                                       ps_hdr_len, written);
1341         } else {
1342             assert(ps_hdr_len == 0);
1343             e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
1344                                        (*written)[0]);
1345         }
1346     }
1347 }
1348 
1349 static inline void
1350 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1351                              union e1000_rx_desc_union *desc, dma_addr_t len)
1352 {
1353     PCIDevice *dev = core->owner;
1354 
1355     if (e1000e_rx_use_legacy_descriptor(core)) {
1356         struct e1000_rx_desc *d = &desc->legacy;
1357         size_t offset = offsetof(struct e1000_rx_desc, status);
1358         uint8_t status = d->status;
1359 
1360         d->status &= ~E1000_RXD_STAT_DD;
1361         pci_dma_write(dev, addr, desc, len);
1362 
1363         if (status & E1000_RXD_STAT_DD) {
1364             d->status = status;
1365             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1366         }
1367     } else {
1368         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1369             union e1000_rx_desc_packet_split *d = &desc->packet_split;
1370             size_t offset = offsetof(union e1000_rx_desc_packet_split,
1371                 wb.middle.status_error);
1372             uint32_t status = d->wb.middle.status_error;
1373 
1374             d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1375             pci_dma_write(dev, addr, desc, len);
1376 
1377             if (status & E1000_RXD_STAT_DD) {
1378                 d->wb.middle.status_error = status;
1379                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1380             }
1381         } else {
1382             union e1000_rx_desc_extended *d = &desc->extended;
1383             size_t offset = offsetof(union e1000_rx_desc_extended,
1384                 wb.upper.status_error);
1385             uint32_t status = d->wb.upper.status_error;
1386 
1387             d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1388             pci_dma_write(dev, addr, desc, len);
1389 
1390             if (status & E1000_RXD_STAT_DD) {
1391                 d->wb.upper.status_error = status;
1392                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1393             }
1394         }
1395     }
1396 }
1397 
1398 typedef struct e1000e_ba_state_st {
1399     uint16_t written[MAX_PS_BUFFERS];
1400     uint8_t cur_idx;
1401 } e1000e_ba_state;
1402 
1403 static inline void
1404 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1405                                hwaddr ba[MAX_PS_BUFFERS],
1406                                e1000e_ba_state *bastate,
1407                                const char *data,
1408                                dma_addr_t data_len)
1409 {
1410     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1411 
1412     pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
1413     bastate->written[0] += data_len;
1414 
1415     bastate->cur_idx = 1;
1416 }
1417 
1418 static void
1419 e1000e_write_to_rx_buffers(E1000ECore *core,
1420                            hwaddr ba[MAX_PS_BUFFERS],
1421                            e1000e_ba_state *bastate,
1422                            const char *data,
1423                            dma_addr_t data_len)
1424 {
1425     while (data_len > 0) {
1426         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1427         uint32_t cur_buf_bytes_left = cur_buf_len -
1428                                       bastate->written[bastate->cur_idx];
1429         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1430 
1431         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1432                                         ba[bastate->cur_idx],
1433                                         bastate->written[bastate->cur_idx],
1434                                         data,
1435                                         bytes_to_write);
1436 
1437         pci_dma_write(core->owner,
1438             ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1439             data, bytes_to_write);
1440 
1441         bastate->written[bastate->cur_idx] += bytes_to_write;
1442         data += bytes_to_write;
1443         data_len -= bytes_to_write;
1444 
1445         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1446             bastate->cur_idx++;
1447         }
1448 
1449         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1450     }
1451 }
1452 
1453 static void
1454 e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size)
1455 {
1456     eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1457     e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1458 }
1459 
1460 static inline bool
1461 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1462 {
1463     return e1000e_ring_free_descr_num(core, rxi) ==
1464            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1465 }
1466 
1467 static bool
1468 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1469 {
1470     bool hasip4, hasip6;
1471     EthL4HdrProto l4hdr_proto;
1472     bool fragment;
1473 
1474     if (!e1000e_rx_use_ps_descriptor(core)) {
1475         return false;
1476     }
1477 
1478     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1479 
1480     if (hasip4) {
1481         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1482     } else if (hasip6) {
1483         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1484     } else {
1485         return false;
1486     }
1487 
1488     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1489         return false;
1490     }
1491 
1492     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1493         l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1494         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1495     } else {
1496         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1497     }
1498 
1499     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1500         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1501         return false;
1502     }
1503 
1504     return true;
1505 }
1506 
1507 static void
1508 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1509                              const E1000E_RxRing *rxr,
1510                              const E1000E_RSSInfo *rss_info)
1511 {
1512     PCIDevice *d = core->owner;
1513     dma_addr_t base;
1514     union e1000_rx_desc_union desc;
1515     size_t desc_size;
1516     size_t desc_offset = 0;
1517     size_t iov_ofs = 0;
1518 
1519     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1520     size_t size = net_rx_pkt_get_total_len(pkt);
1521     size_t total_size = size + e1000x_fcs_len(core->mac);
1522     const E1000E_RingInfo *rxi;
1523     size_t ps_hdr_len = 0;
1524     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1525     bool is_first = true;
1526 
1527     rxi = rxr->i;
1528 
1529     do {
1530         hwaddr ba[MAX_PS_BUFFERS];
1531         e1000e_ba_state bastate = { { 0 } };
1532         bool is_last = false;
1533 
1534         desc_size = total_size - desc_offset;
1535 
1536         if (desc_size > core->rx_desc_buf_size) {
1537             desc_size = core->rx_desc_buf_size;
1538         }
1539 
1540         if (e1000e_ring_empty(core, rxi)) {
1541             return;
1542         }
1543 
1544         base = e1000e_ring_head_descr(core, rxi);
1545 
1546         pci_dma_read(d, base, &desc, core->rx_desc_len);
1547 
1548         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1549 
1550         e1000e_read_rx_descr(core, &desc, ba);
1551 
1552         if (ba[0]) {
1553             if (desc_offset < size) {
1554                 static const uint32_t fcs_pad;
1555                 size_t iov_copy;
1556                 size_t copy_size = size - desc_offset;
1557                 if (copy_size > core->rx_desc_buf_size) {
1558                     copy_size = core->rx_desc_buf_size;
1559                 }
1560 
1561                 /* For PS mode copy the packet header first */
1562                 if (do_ps) {
1563                     if (is_first) {
1564                         size_t ps_hdr_copied = 0;
1565                         do {
1566                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1567                                            iov->iov_len - iov_ofs);
1568 
1569                             e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1570                                                       iov->iov_base, iov_copy);
1571 
1572                             copy_size -= iov_copy;
1573                             ps_hdr_copied += iov_copy;
1574 
1575                             iov_ofs += iov_copy;
1576                             if (iov_ofs == iov->iov_len) {
1577                                 iov++;
1578                                 iov_ofs = 0;
1579                             }
1580                         } while (ps_hdr_copied < ps_hdr_len);
1581 
1582                         is_first = false;
1583                     } else {
1584                         /* Leave buffer 0 of each descriptor except first */
1585                         /* empty as per spec 7.1.5.1                      */
1586                         e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1587                                                        NULL, 0);
1588                     }
1589                 }
1590 
1591                 /* Copy packet payload */
1592                 while (copy_size) {
1593                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1594 
1595                     e1000e_write_to_rx_buffers(core, ba, &bastate,
1596                                             iov->iov_base + iov_ofs, iov_copy);
1597 
1598                     copy_size -= iov_copy;
1599                     iov_ofs += iov_copy;
1600                     if (iov_ofs == iov->iov_len) {
1601                         iov++;
1602                         iov_ofs = 0;
1603                     }
1604                 }
1605 
1606                 if (desc_offset + desc_size >= total_size) {
1607                     /* Simulate FCS checksum presence in the last descriptor */
1608                     e1000e_write_to_rx_buffers(core, ba, &bastate,
1609                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1610                 }
1611             }
1612         } else { /* as per intel docs; skip descriptors with null buf addr */
1613             trace_e1000e_rx_null_descriptor();
1614         }
1615         desc_offset += desc_size;
1616         if (desc_offset >= total_size) {
1617             is_last = true;
1618         }
1619 
1620         e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1621                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1622         e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
1623 
1624         e1000e_ring_advance(core, rxi,
1625                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1626 
1627     } while (desc_offset < total_size);
1628 
1629     e1000e_update_rx_stats(core, size, total_size);
1630 }
1631 
1632 static inline void
1633 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1634 {
1635     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1636 
1637     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1638         net_rx_pkt_fix_l4_csum(pkt);
1639     }
1640 }
1641 
1642 ssize_t
1643 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1644 {
1645     return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
1646 }
1647 
1648 static ssize_t
1649 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
1650                         bool has_vnet)
1651 {
1652     uint32_t n = 0;
1653     uint8_t buf[ETH_ZLEN];
1654     struct iovec min_iov;
1655     size_t size, orig_size;
1656     size_t iov_ofs = 0;
1657     E1000E_RxRing rxr;
1658     E1000E_RSSInfo rss_info;
1659     size_t total_size;
1660     ssize_t retval;
1661     bool rdmts_hit;
1662 
1663     trace_e1000e_rx_receive_iov(iovcnt);
1664 
1665     if (!e1000x_hw_rx_enabled(core->mac)) {
1666         return -1;
1667     }
1668 
1669     /* Pull virtio header in */
1670     if (has_vnet) {
1671         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1672         iov_ofs = sizeof(struct virtio_net_hdr);
1673     } else {
1674         net_rx_pkt_unset_vhdr(core->rx_pkt);
1675     }
1676 
1677     orig_size = iov_size(iov, iovcnt);
1678     size = orig_size - iov_ofs;
1679 
1680     /* Pad to minimum Ethernet frame length */
1681     if (size < sizeof(buf)) {
1682         iov_to_buf(iov, iovcnt, iov_ofs, buf, size);
1683         memset(&buf[size], 0, sizeof(buf) - size);
1684         e1000x_inc_reg_if_not_full(core->mac, RUC);
1685         min_iov.iov_base = buf;
1686         min_iov.iov_len = size = sizeof(buf);
1687         iovcnt = 1;
1688         iov = &min_iov;
1689         iov_ofs = 0;
1690     } else {
1691         iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4);
1692     }
1693 
1694     /* Discard oversized packets if !LPE and !SBP. */
1695     if (e1000x_is_oversized(core->mac, size)) {
1696         return orig_size;
1697     }
1698 
1699     net_rx_pkt_set_packet_type(core->rx_pkt,
1700         get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
1701 
1702     if (!e1000e_receive_filter(core, buf)) {
1703         trace_e1000e_rx_flt_dropped();
1704         return orig_size;
1705     }
1706 
1707     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1708                                e1000x_vlan_enabled(core->mac), core->mac[VET]);
1709 
1710     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1711     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1712 
1713     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1714         e1000x_fcs_len(core->mac);
1715 
1716     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1717         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1718 
1719         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1720 
1721         retval = orig_size;
1722 
1723         /* Perform small receive detection (RSRPD) */
1724         if (total_size < core->mac[RSRPD]) {
1725             n |= E1000_ICS_SRPD;
1726         }
1727 
1728         /* Perform ACK receive detection */
1729         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1730              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1731             n |= E1000_ICS_ACK;
1732         }
1733 
1734         /* Check if receive descriptor minimum threshold hit */
1735         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1736         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1737 
1738         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1739     } else {
1740         n |= E1000_ICS_RXO;
1741         retval = 0;
1742 
1743         trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1744     }
1745 
1746     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1747         trace_e1000e_rx_interrupt_set(n);
1748         e1000e_set_interrupt_cause(core, n);
1749     } else {
1750         trace_e1000e_rx_interrupt_delayed(n);
1751     }
1752 
1753     return retval;
1754 }
1755 
1756 static inline bool
1757 e1000e_have_autoneg(E1000ECore *core)
1758 {
1759     return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
1760 }
1761 
1762 static void e1000e_update_flowctl_status(E1000ECore *core)
1763 {
1764     if (e1000e_have_autoneg(core) &&
1765         core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
1766         trace_e1000e_link_autoneg_flowctl(true);
1767         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1768     } else {
1769         trace_e1000e_link_autoneg_flowctl(false);
1770     }
1771 }
1772 
1773 static inline void
1774 e1000e_link_down(E1000ECore *core)
1775 {
1776     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1777     e1000e_update_flowctl_status(core);
1778 }
1779 
1780 static inline void
1781 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1782 {
1783     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1784     core->phy[0][MII_BMCR] = val & ~(0x3f |
1785                                      MII_BMCR_RESET |
1786                                      MII_BMCR_ANRESTART);
1787 
1788     if ((val & MII_BMCR_ANRESTART) &&
1789         e1000e_have_autoneg(core)) {
1790         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1791     }
1792 }
1793 
1794 static void
1795 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1796 {
1797     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1798 
1799     if (val & BIT(10)) {
1800         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1801     }
1802 }
1803 
1804 static void
1805 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1806 {
1807     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1808 }
1809 
1810 void
1811 e1000e_core_set_link_status(E1000ECore *core)
1812 {
1813     NetClientState *nc = qemu_get_queue(core->owner_nic);
1814     uint32_t old_status = core->mac[STATUS];
1815 
1816     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1817 
1818     if (nc->link_down) {
1819         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1820     } else {
1821         if (e1000e_have_autoneg(core) &&
1822             !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
1823             e1000x_restart_autoneg(core->mac, core->phy[0],
1824                                    core->autoneg_timer);
1825         } else {
1826             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1827             e1000e_start_recv(core);
1828         }
1829     }
1830 
1831     if (core->mac[STATUS] != old_status) {
1832         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1833     }
1834 }
1835 
1836 static void
1837 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1838 {
1839     trace_e1000e_core_ctrl_write(index, val);
1840 
1841     /* RST is self clearing */
1842     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1843     core->mac[CTRL_DUP] = core->mac[CTRL];
1844 
1845     trace_e1000e_link_set_params(
1846         !!(val & E1000_CTRL_ASDE),
1847         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1848         !!(val & E1000_CTRL_FRCSPD),
1849         !!(val & E1000_CTRL_FRCDPX),
1850         !!(val & E1000_CTRL_RFCE),
1851         !!(val & E1000_CTRL_TFCE));
1852 
1853     if (val & E1000_CTRL_RST) {
1854         trace_e1000e_core_ctrl_sw_reset();
1855         e1000e_reset(core, true);
1856     }
1857 
1858     if (val & E1000_CTRL_PHY_RST) {
1859         trace_e1000e_core_ctrl_phy_reset();
1860         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1861     }
1862 }
1863 
1864 static void
1865 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1866 {
1867     trace_e1000e_rx_set_rfctl(val);
1868 
1869     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1870         trace_e1000e_wrn_iscsi_filtering_not_supported();
1871     }
1872 
1873     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1874         trace_e1000e_wrn_nfsw_filtering_not_supported();
1875     }
1876 
1877     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1878         trace_e1000e_wrn_nfsr_filtering_not_supported();
1879     }
1880 
1881     core->mac[RFCTL] = val;
1882 }
1883 
1884 static void
1885 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1886 {
1887     int i;
1888     core->rx_desc_buf_size = 0;
1889 
1890     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1891         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1892     }
1893 }
1894 
1895 static void
1896 e1000e_parse_rxbufsize(E1000ECore *core)
1897 {
1898     uint32_t rctl = core->mac[RCTL];
1899 
1900     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1901 
1902     if (rctl & E1000_RCTL_DTYP_MASK) {
1903         uint32_t bsize;
1904 
1905         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1906         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1907 
1908         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1909         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1910 
1911         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1912         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1913 
1914         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1915         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1916     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1917         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1918         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1919     } else {
1920         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1921     }
1922 
1923     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1924                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1925 
1926     e1000e_calc_per_desc_buf_size(core);
1927 }
1928 
1929 static void
1930 e1000e_calc_rxdesclen(E1000ECore *core)
1931 {
1932     if (e1000e_rx_use_legacy_descriptor(core)) {
1933         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1934     } else {
1935         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1936             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1937         } else {
1938             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1939         }
1940     }
1941     trace_e1000e_rx_desc_len(core->rx_desc_len);
1942 }
1943 
1944 static void
1945 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1946 {
1947     core->mac[RCTL] = val;
1948     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1949 
1950     if (val & E1000_RCTL_EN) {
1951         e1000e_parse_rxbufsize(core);
1952         e1000e_calc_rxdesclen(core);
1953         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1954                                 E1000_RING_DESC_LEN_SHIFT;
1955 
1956         e1000e_start_recv(core);
1957     }
1958 }
1959 
1960 static
1961 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1962 (E1000ECore *, int, uint16_t) = {
1963     [0] = {
1964         [MII_BMCR]     = e1000e_set_phy_ctrl,
1965         [PHY_PAGE]     = e1000e_set_phy_page,
1966         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1967     }
1968 };
1969 
1970 static inline void
1971 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1972 {
1973     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1974     core->mac[IMS] &= ~bits;
1975 }
1976 
1977 static inline bool
1978 e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
1979 {
1980     if (timer->running) {
1981         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1982 
1983         return true;
1984     }
1985 
1986     if (timer->core->mac[timer->delay_reg] != 0) {
1987         e1000e_intrmgr_rearm_timer(timer);
1988     }
1989 
1990     return false;
1991 }
1992 
1993 static inline bool
1994 e1000e_itr_should_postpone(E1000ECore *core)
1995 {
1996     return e1000e_postpone_interrupt(&core->itr);
1997 }
1998 
1999 static inline bool
2000 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
2001 {
2002     return e1000e_postpone_interrupt(&core->eitr[idx]);
2003 }
2004 
2005 static void
2006 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2007 {
2008     uint32_t effective_eiac;
2009 
2010     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2011         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2012         if (vec < E1000E_MSIX_VEC_NUM) {
2013             if (!e1000e_eitr_should_postpone(core, vec)) {
2014                 trace_e1000e_irq_msix_notify_vec(vec);
2015                 msix_notify(core->owner, vec);
2016             }
2017         } else {
2018             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2019         }
2020     } else {
2021         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2022     }
2023 
2024     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2025         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2026         core->mac[IAM] &= ~cause;
2027     }
2028 
2029     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2030 
2031     effective_eiac = core->mac[EIAC] & cause;
2032 
2033     core->mac[ICR] &= ~effective_eiac;
2034     core->msi_causes_pending &= ~effective_eiac;
2035 
2036     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2037         core->mac[IMS] &= ~effective_eiac;
2038     }
2039 }
2040 
2041 static void
2042 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2043 {
2044     if (causes & E1000_ICR_RXQ0) {
2045         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2046                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2047     }
2048 
2049     if (causes & E1000_ICR_RXQ1) {
2050         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2051                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2052     }
2053 
2054     if (causes & E1000_ICR_TXQ0) {
2055         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2056                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2057     }
2058 
2059     if (causes & E1000_ICR_TXQ1) {
2060         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2061                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2062     }
2063 
2064     if (causes & E1000_ICR_OTHER) {
2065         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2066                                E1000_IVAR_OTHER(core->mac[IVAR]));
2067     }
2068 }
2069 
2070 static void
2071 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2072 {
2073     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2074         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2075         if (vec < E1000E_MSIX_VEC_NUM) {
2076             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2077             msix_clr_pending(core->owner, vec);
2078         } else {
2079             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2080         }
2081     } else {
2082         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2083     }
2084 }
2085 
2086 static void
2087 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2088 {
2089     if (causes & E1000_ICR_RXQ0) {
2090         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2091                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2092     }
2093 
2094     if (causes & E1000_ICR_RXQ1) {
2095         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2096                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2097     }
2098 
2099     if (causes & E1000_ICR_TXQ0) {
2100         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2101                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2102     }
2103 
2104     if (causes & E1000_ICR_TXQ1) {
2105         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2106                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2107     }
2108 
2109     if (causes & E1000_ICR_OTHER) {
2110         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2111                               E1000_IVAR_OTHER(core->mac[IVAR]));
2112     }
2113 }
2114 
2115 static inline void
2116 e1000e_fix_icr_asserted(E1000ECore *core)
2117 {
2118     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2119     if (core->mac[ICR]) {
2120         core->mac[ICR] |= E1000_ICR_ASSERTED;
2121     }
2122 
2123     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2124 }
2125 
2126 static void
2127 e1000e_send_msi(E1000ECore *core, bool msix)
2128 {
2129     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2130 
2131     core->msi_causes_pending &= causes;
2132     causes ^= core->msi_causes_pending;
2133     if (causes == 0) {
2134         return;
2135     }
2136     core->msi_causes_pending |= causes;
2137 
2138     if (msix) {
2139         e1000e_msix_notify(core, causes);
2140     } else {
2141         if (!e1000e_itr_should_postpone(core)) {
2142             trace_e1000e_irq_msi_notify(causes);
2143             msi_notify(core->owner, 0);
2144         }
2145     }
2146 }
2147 
2148 static void
2149 e1000e_update_interrupt_state(E1000ECore *core)
2150 {
2151     bool interrupts_pending;
2152     bool is_msix = msix_enabled(core->owner);
2153 
2154     /* Set ICR[OTHER] for MSI-X */
2155     if (is_msix) {
2156         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2157             core->mac[ICR] |= E1000_ICR_OTHER;
2158             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2159         }
2160     }
2161 
2162     e1000e_fix_icr_asserted(core);
2163 
2164     /*
2165      * Make sure ICR and ICS registers have the same value.
2166      * The spec says that the ICS register is write-only.  However in practice,
2167      * on real hardware ICS is readable, and for reads it has the same value as
2168      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2169      *
2170      * The VxWorks PRO/1000 driver uses this behaviour.
2171      */
2172     core->mac[ICS] = core->mac[ICR];
2173 
2174     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2175     if (!interrupts_pending) {
2176         core->msi_causes_pending = 0;
2177     }
2178 
2179     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2180                                         core->mac[ICR], core->mac[IMS]);
2181 
2182     if (is_msix || msi_enabled(core->owner)) {
2183         if (interrupts_pending) {
2184             e1000e_send_msi(core, is_msix);
2185         }
2186     } else {
2187         if (interrupts_pending) {
2188             if (!e1000e_itr_should_postpone(core)) {
2189                 e1000e_raise_legacy_irq(core);
2190             }
2191         } else {
2192             e1000e_lower_legacy_irq(core);
2193         }
2194     }
2195 }
2196 
2197 static void
2198 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2199 {
2200     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2201 
2202     val |= e1000e_intmgr_collect_delayed_causes(core);
2203     core->mac[ICR] |= val;
2204 
2205     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2206 
2207     e1000e_update_interrupt_state(core);
2208 }
2209 
2210 static inline void
2211 e1000e_autoneg_timer(void *opaque)
2212 {
2213     E1000ECore *core = opaque;
2214     if (!qemu_get_queue(core->owner_nic)->link_down) {
2215         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2216         e1000e_start_recv(core);
2217 
2218         e1000e_update_flowctl_status(core);
2219         /* signal link status change to the guest */
2220         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2221     }
2222 }
2223 
2224 static inline uint16_t
2225 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2226 {
2227     uint16_t index = (addr & 0x1ffff) >> 2;
2228     return index + (mac_reg_access[index] & 0xfffe);
2229 }
2230 
2231 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2232     [0] = {
2233         [MII_BMCR]              = PHY_ANYPAGE | PHY_RW,
2234         [MII_BMSR]              = PHY_ANYPAGE | PHY_R,
2235         [MII_PHYID1]            = PHY_ANYPAGE | PHY_R,
2236         [MII_PHYID2]            = PHY_ANYPAGE | PHY_R,
2237         [MII_ANAR]              = PHY_ANYPAGE | PHY_RW,
2238         [MII_ANLPAR]            = PHY_ANYPAGE | PHY_R,
2239         [MII_ANER]              = PHY_ANYPAGE | PHY_R,
2240         [MII_ANNP]              = PHY_ANYPAGE | PHY_RW,
2241         [MII_ANLPRNP]           = PHY_ANYPAGE | PHY_R,
2242         [MII_CTRL1000]          = PHY_ANYPAGE | PHY_RW,
2243         [MII_STAT1000]          = PHY_ANYPAGE | PHY_R,
2244         [MII_EXTSTAT]           = PHY_ANYPAGE | PHY_R,
2245         [PHY_PAGE]              = PHY_ANYPAGE | PHY_RW,
2246 
2247         [PHY_COPPER_CTRL1]      = PHY_RW,
2248         [PHY_COPPER_STAT1]      = PHY_R,
2249         [PHY_COPPER_CTRL3]      = PHY_RW,
2250         [PHY_RX_ERR_CNTR]       = PHY_R,
2251         [PHY_OEM_BITS]          = PHY_RW,
2252         [PHY_BIAS_1]            = PHY_RW,
2253         [PHY_BIAS_2]            = PHY_RW,
2254         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2255         [PHY_COPPER_STAT2]      = PHY_R,
2256         [PHY_COPPER_CTRL2]      = PHY_RW
2257     },
2258     [2] = {
2259         [PHY_MAC_CTRL1]         = PHY_RW,
2260         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2261         [PHY_MAC_STAT]          = PHY_R,
2262         [PHY_MAC_CTRL2]         = PHY_RW
2263     },
2264     [3] = {
2265         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2266         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2267         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2268         [PHY_LED_45_CTRL]       = PHY_RW
2269     },
2270     [5] = {
2271         [PHY_1000T_SKEW]        = PHY_R,
2272         [PHY_1000T_SWAP]        = PHY_R
2273     },
2274     [6] = {
2275         [PHY_CRC_COUNTERS]      = PHY_R
2276     }
2277 };
2278 
2279 static bool
2280 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2281                          char cap, uint8_t *page)
2282 {
2283     *page =
2284         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2285                                                     : core->phy[0][PHY_PAGE];
2286 
2287     if (*page >= E1000E_PHY_PAGES) {
2288         return false;
2289     }
2290 
2291     return e1000e_phy_regcap[*page][addr] & cap;
2292 }
2293 
2294 static void
2295 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2296                      uint32_t addr, uint16_t data)
2297 {
2298     assert(page < E1000E_PHY_PAGES);
2299     assert(addr < E1000E_PHY_PAGE_SIZE);
2300 
2301     if (e1000e_phyreg_writeops[page][addr]) {
2302         e1000e_phyreg_writeops[page][addr](core, addr, data);
2303     } else {
2304         core->phy[page][addr] = data;
2305     }
2306 }
2307 
2308 static void
2309 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2310 {
2311     uint32_t data = val & E1000_MDIC_DATA_MASK;
2312     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2313     uint8_t page;
2314 
2315     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2316         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2317     } else if (val & E1000_MDIC_OP_READ) {
2318         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2319             trace_e1000e_core_mdic_read_unhandled(page, addr);
2320             val |= E1000_MDIC_ERROR;
2321         } else {
2322             val = (val ^ data) | core->phy[page][addr];
2323             trace_e1000e_core_mdic_read(page, addr, val);
2324         }
2325     } else if (val & E1000_MDIC_OP_WRITE) {
2326         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2327             trace_e1000e_core_mdic_write_unhandled(page, addr);
2328             val |= E1000_MDIC_ERROR;
2329         } else {
2330             trace_e1000e_core_mdic_write(page, addr, data);
2331             e1000e_phy_reg_write(core, page, addr, data);
2332         }
2333     }
2334     core->mac[MDIC] = val | E1000_MDIC_READY;
2335 
2336     if (val & E1000_MDIC_INT_EN) {
2337         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2338     }
2339 }
2340 
2341 static void
2342 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2343 {
2344     core->mac[index] = val & 0xffff;
2345     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2346     e1000e_start_recv(core);
2347 }
2348 
2349 static void
2350 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2351 {
2352     if ((val & E1000_STATUS_PHYRA) == 0) {
2353         core->mac[index] &= ~E1000_STATUS_PHYRA;
2354     }
2355 }
2356 
2357 static void
2358 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2359 {
2360     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2361                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2362 
2363     /* Zero self-clearing bits */
2364     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2365     core->mac[CTRL_EXT] = val;
2366 }
2367 
2368 static void
2369 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2370 {
2371     int i;
2372 
2373     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2374 
2375     if (!msix_enabled(core->owner)) {
2376         return;
2377     }
2378 
2379     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2380         if (core->mac[PBACLR] & BIT(i)) {
2381             msix_clr_pending(core->owner, i);
2382         }
2383     }
2384 }
2385 
2386 static void
2387 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2388 {
2389     core->mac[FCRTH] = val & 0xFFF8;
2390 }
2391 
2392 static void
2393 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2394 {
2395     core->mac[FCRTL] = val & 0x8000FFF8;
2396 }
2397 
2398 #define E1000E_LOW_BITS_SET_FUNC(num)                                \
2399     static void                                                      \
2400     e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
2401     {                                                                \
2402         core->mac[index] = val & (BIT(num) - 1);                     \
2403     }
2404 
2405 E1000E_LOW_BITS_SET_FUNC(4)
2406 E1000E_LOW_BITS_SET_FUNC(6)
2407 E1000E_LOW_BITS_SET_FUNC(11)
2408 E1000E_LOW_BITS_SET_FUNC(12)
2409 E1000E_LOW_BITS_SET_FUNC(13)
2410 E1000E_LOW_BITS_SET_FUNC(16)
2411 
2412 static void
2413 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2414 {
2415     core->mac[VET] = val & 0xffff;
2416     trace_e1000e_vlan_vet(core->mac[VET]);
2417 }
2418 
2419 static void
2420 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2421 {
2422     core->mac[index] = val & E1000_XDLEN_MASK;
2423 }
2424 
2425 static void
2426 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2427 {
2428     core->mac[index] = val & E1000_XDBAL_MASK;
2429 }
2430 
2431 static void
2432 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2433 {
2434     E1000E_TxRing txr;
2435     core->mac[index] = val;
2436 
2437     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2438         e1000e_tx_ring_init(core, &txr, 0);
2439         e1000e_start_xmit(core, &txr);
2440     }
2441 
2442     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2443         e1000e_tx_ring_init(core, &txr, 1);
2444         e1000e_start_xmit(core, &txr);
2445     }
2446 }
2447 
2448 static void
2449 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2450 {
2451     E1000E_TxRing txr;
2452     int qidx = e1000e_mq_queue_idx(TDT, index);
2453     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2454 
2455     core->mac[index] = val & 0xffff;
2456 
2457     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2458         e1000e_tx_ring_init(core, &txr, qidx);
2459         e1000e_start_xmit(core, &txr);
2460     }
2461 }
2462 
2463 static void
2464 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2465 {
2466     trace_e1000e_irq_write_ics(val);
2467     e1000e_set_interrupt_cause(core, val);
2468 }
2469 
2470 static void
2471 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2472 {
2473     uint32_t icr = 0;
2474     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2475         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2476         trace_e1000e_irq_icr_process_iame();
2477         e1000e_clear_ims_bits(core, core->mac[IAM]);
2478     }
2479 
2480     icr = core->mac[ICR] & ~val;
2481     /*
2482      * Windows driver expects that the "receive overrun" bit and other
2483      * ones to be cleared when the "Other" bit (#24) is cleared.
2484      */
2485     icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2486     trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2487     core->mac[ICR] = icr;
2488     e1000e_update_interrupt_state(core);
2489 }
2490 
2491 static void
2492 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2493 {
2494     trace_e1000e_irq_ims_clear_set_imc(val);
2495     e1000e_clear_ims_bits(core, val);
2496     e1000e_update_interrupt_state(core);
2497 }
2498 
2499 static void
2500 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2501 {
2502     static const uint32_t ims_ext_mask =
2503         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2504         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2505         E1000_IMS_OTHER;
2506 
2507     static const uint32_t ims_valid_mask =
2508         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2509         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2510         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2511         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2512         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2513         E1000_IMS_OTHER;
2514 
2515     uint32_t valid_val = val & ims_valid_mask;
2516 
2517     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2518     core->mac[IMS] |= valid_val;
2519 
2520     if ((valid_val & ims_ext_mask) &&
2521         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2522         msix_enabled(core->owner)) {
2523         e1000e_msix_clear(core, valid_val);
2524     }
2525 
2526     if ((valid_val == ims_valid_mask) &&
2527         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2528         trace_e1000e_irq_fire_all_timers(val);
2529         e1000e_intrmgr_fire_all_timers(core);
2530     }
2531 
2532     e1000e_update_interrupt_state(core);
2533 }
2534 
2535 static void
2536 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2537 {
2538     e1000e_set_16bit(core, index, val);
2539 
2540     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2541         trace_e1000e_irq_rdtr_fpd_running();
2542         e1000e_intrmgr_fire_delayed_interrupts(core);
2543     } else {
2544         trace_e1000e_irq_rdtr_fpd_not_running();
2545     }
2546 }
2547 
2548 static void
2549 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2550 {
2551     e1000e_set_16bit(core, index, val);
2552 
2553     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2554         trace_e1000e_irq_tidv_fpd_running();
2555         e1000e_intrmgr_fire_delayed_interrupts(core);
2556     } else {
2557         trace_e1000e_irq_tidv_fpd_not_running();
2558     }
2559 }
2560 
2561 static uint32_t
2562 e1000e_mac_readreg(E1000ECore *core, int index)
2563 {
2564     return core->mac[index];
2565 }
2566 
2567 static uint32_t
2568 e1000e_mac_ics_read(E1000ECore *core, int index)
2569 {
2570     trace_e1000e_irq_read_ics(core->mac[ICS]);
2571     return core->mac[ICS];
2572 }
2573 
2574 static uint32_t
2575 e1000e_mac_ims_read(E1000ECore *core, int index)
2576 {
2577     trace_e1000e_irq_read_ims(core->mac[IMS]);
2578     return core->mac[IMS];
2579 }
2580 
2581 static uint32_t
2582 e1000e_mac_swsm_read(E1000ECore *core, int index)
2583 {
2584     uint32_t val = core->mac[SWSM];
2585     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2586     return val;
2587 }
2588 
2589 static uint32_t
2590 e1000e_mac_itr_read(E1000ECore *core, int index)
2591 {
2592     return core->itr_guest_value;
2593 }
2594 
2595 static uint32_t
2596 e1000e_mac_eitr_read(E1000ECore *core, int index)
2597 {
2598     return core->eitr_guest_value[index - EITR];
2599 }
2600 
2601 static uint32_t
2602 e1000e_mac_icr_read(E1000ECore *core, int index)
2603 {
2604     uint32_t ret = core->mac[ICR];
2605     trace_e1000e_irq_icr_read_entry(ret);
2606 
2607     if (core->mac[IMS] == 0) {
2608         trace_e1000e_irq_icr_clear_zero_ims();
2609         core->mac[ICR] = 0;
2610     }
2611 
2612     if (!msix_enabled(core->owner)) {
2613         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2614         core->mac[ICR] = 0;
2615     }
2616 
2617     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2618         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2619         trace_e1000e_irq_icr_clear_iame();
2620         core->mac[ICR] = 0;
2621         trace_e1000e_irq_icr_process_iame();
2622         e1000e_clear_ims_bits(core, core->mac[IAM]);
2623     }
2624 
2625     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2626     e1000e_update_interrupt_state(core);
2627     return ret;
2628 }
2629 
2630 static uint32_t
2631 e1000e_mac_read_clr4(E1000ECore *core, int index)
2632 {
2633     uint32_t ret = core->mac[index];
2634 
2635     core->mac[index] = 0;
2636     return ret;
2637 }
2638 
2639 static uint32_t
2640 e1000e_mac_read_clr8(E1000ECore *core, int index)
2641 {
2642     uint32_t ret = core->mac[index];
2643 
2644     core->mac[index] = 0;
2645     core->mac[index - 1] = 0;
2646     return ret;
2647 }
2648 
2649 static uint32_t
2650 e1000e_get_ctrl(E1000ECore *core, int index)
2651 {
2652     uint32_t val = core->mac[CTRL];
2653 
2654     trace_e1000e_link_read_params(
2655         !!(val & E1000_CTRL_ASDE),
2656         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2657         !!(val & E1000_CTRL_FRCSPD),
2658         !!(val & E1000_CTRL_FRCDPX),
2659         !!(val & E1000_CTRL_RFCE),
2660         !!(val & E1000_CTRL_TFCE));
2661 
2662     return val;
2663 }
2664 
2665 static uint32_t
2666 e1000e_get_status(E1000ECore *core, int index)
2667 {
2668     uint32_t res = core->mac[STATUS];
2669 
2670     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2671         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2672     }
2673 
2674     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2675         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2676     } else {
2677         res |= E1000_STATUS_FD;
2678     }
2679 
2680     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2681         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2682         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2683         case E1000_CTRL_SPD_10:
2684             res |= E1000_STATUS_SPEED_10;
2685             break;
2686         case E1000_CTRL_SPD_100:
2687             res |= E1000_STATUS_SPEED_100;
2688             break;
2689         case E1000_CTRL_SPD_1000:
2690         default:
2691             res |= E1000_STATUS_SPEED_1000;
2692             break;
2693         }
2694     } else {
2695         res |= E1000_STATUS_SPEED_1000;
2696     }
2697 
2698     trace_e1000e_link_status(
2699         !!(res & E1000_STATUS_LU),
2700         !!(res & E1000_STATUS_FD),
2701         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2702         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2703 
2704     return res;
2705 }
2706 
2707 static uint32_t
2708 e1000e_get_tarc(E1000ECore *core, int index)
2709 {
2710     return core->mac[index] & ((BIT(11) - 1) |
2711                                 BIT(27)      |
2712                                 BIT(28)      |
2713                                 BIT(29)      |
2714                                 BIT(30));
2715 }
2716 
2717 static void
2718 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2719 {
2720     core->mac[index] = val;
2721 }
2722 
2723 static void
2724 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2725 {
2726     uint32_t macaddr[2];
2727 
2728     core->mac[index] = val;
2729 
2730     macaddr[0] = cpu_to_le32(core->mac[RA]);
2731     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2732     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2733         (uint8_t *) macaddr);
2734 
2735     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2736 }
2737 
2738 static void
2739 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2740 {
2741     static const uint32_t ro_bits = E1000_EECD_PRES          |
2742                                     E1000_EECD_AUTO_RD       |
2743                                     E1000_EECD_SIZE_EX_MASK;
2744 
2745     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2746 }
2747 
2748 static void
2749 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2750 {
2751     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2752     uint32_t flags = 0;
2753     uint32_t data = 0;
2754 
2755     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2756         data = core->eeprom[addr];
2757         flags = E1000_EERW_DONE;
2758     }
2759 
2760     core->mac[EERD] = flags                           |
2761                       (addr << E1000_EERW_ADDR_SHIFT) |
2762                       (data << E1000_EERW_DATA_SHIFT);
2763 }
2764 
2765 static void
2766 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2767 {
2768     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2769     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2770     uint32_t flags = 0;
2771 
2772     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2773         core->eeprom[addr] = data;
2774         flags = E1000_EERW_DONE;
2775     }
2776 
2777     core->mac[EERD] = flags                           |
2778                       (addr << E1000_EERW_ADDR_SHIFT) |
2779                       (data << E1000_EERW_DATA_SHIFT);
2780 }
2781 
2782 static void
2783 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2784 {
2785     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2786 }
2787 
2788 static void
2789 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2790 {
2791     uint32_t interval = val & 0xffff;
2792 
2793     trace_e1000e_irq_itr_set(val);
2794 
2795     core->itr_guest_value = interval;
2796     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2797 }
2798 
2799 static void
2800 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2801 {
2802     uint32_t interval = val & 0xffff;
2803     uint32_t eitr_num = index - EITR;
2804 
2805     trace_e1000e_irq_eitr_set(eitr_num, val);
2806 
2807     core->eitr_guest_value[eitr_num] = interval;
2808     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2809 }
2810 
2811 static void
2812 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2813 {
2814     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2815 
2816         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2817             qemu_log_mask(LOG_GUEST_ERROR,
2818                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2819             return;
2820         }
2821 
2822         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2823             qemu_log_mask(LOG_GUEST_ERROR,
2824                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2825             return;
2826         }
2827     }
2828 
2829     core->mac[PSRCTL] = val;
2830 }
2831 
2832 static void
2833 e1000e_update_rx_offloads(E1000ECore *core)
2834 {
2835     int cso_state = e1000e_rx_l4_cso_enabled(core);
2836 
2837     trace_e1000e_rx_set_cso(cso_state);
2838 
2839     if (core->has_vnet) {
2840         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2841                          cso_state, 0, 0, 0, 0);
2842     }
2843 }
2844 
2845 static void
2846 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2847 {
2848     core->mac[RXCSUM] = val;
2849     e1000e_update_rx_offloads(core);
2850 }
2851 
2852 static void
2853 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2854 {
2855     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2856     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2857 }
2858 
2859 static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
2860 {
2861     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2862     return core->mac[SYSTIML];
2863 }
2864 
2865 static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
2866 {
2867     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2868     return core->mac[RXSATRH];
2869 }
2870 
2871 static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
2872 {
2873     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2874     return core->mac[TXSTMPH];
2875 }
2876 
2877 static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
2878 {
2879     e1000x_set_timinca(core->mac, &core->timadj, val);
2880 }
2881 
2882 static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
2883 {
2884     core->mac[TIMADJH] = val;
2885     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2886 }
2887 
2888 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2889 typedef uint32_t (*readops)(E1000ECore *, int);
2890 static const readops e1000e_macreg_readops[] = {
2891     e1000e_getreg(PBA),
2892     e1000e_getreg(WUFC),
2893     e1000e_getreg(MANC),
2894     e1000e_getreg(TOTL),
2895     e1000e_getreg(RDT0),
2896     e1000e_getreg(RDBAH0),
2897     e1000e_getreg(TDBAL1),
2898     e1000e_getreg(RDLEN0),
2899     e1000e_getreg(RDH1),
2900     e1000e_getreg(LATECOL),
2901     e1000e_getreg(SEQEC),
2902     e1000e_getreg(XONTXC),
2903     e1000e_getreg(AIT),
2904     e1000e_getreg(TDFH),
2905     e1000e_getreg(TDFT),
2906     e1000e_getreg(TDFHS),
2907     e1000e_getreg(TDFTS),
2908     e1000e_getreg(TDFPC),
2909     e1000e_getreg(WUS),
2910     e1000e_getreg(PBS),
2911     e1000e_getreg(RDFH),
2912     e1000e_getreg(RDFT),
2913     e1000e_getreg(RDFHS),
2914     e1000e_getreg(RDFTS),
2915     e1000e_getreg(RDFPC),
2916     e1000e_getreg(GORCL),
2917     e1000e_getreg(MGTPRC),
2918     e1000e_getreg(EERD),
2919     e1000e_getreg(EIAC),
2920     e1000e_getreg(PSRCTL),
2921     e1000e_getreg(MANC2H),
2922     e1000e_getreg(RXCSUM),
2923     e1000e_getreg(GSCL_3),
2924     e1000e_getreg(GSCN_2),
2925     e1000e_getreg(RSRPD),
2926     e1000e_getreg(RDBAL1),
2927     e1000e_getreg(FCAH),
2928     e1000e_getreg(FCRTH),
2929     e1000e_getreg(FLOP),
2930     e1000e_getreg(FLASHT),
2931     e1000e_getreg(RXSTMPH),
2932     e1000e_getreg(TXSTMPL),
2933     e1000e_getreg(TIMADJL),
2934     e1000e_getreg(TXDCTL),
2935     e1000e_getreg(RDH0),
2936     e1000e_getreg(TDT1),
2937     e1000e_getreg(TNCRS),
2938     e1000e_getreg(RJC),
2939     e1000e_getreg(IAM),
2940     e1000e_getreg(GSCL_2),
2941     e1000e_getreg(RDBAH1),
2942     e1000e_getreg(FLSWDATA),
2943     e1000e_getreg(TIPG),
2944     e1000e_getreg(FLMNGCTL),
2945     e1000e_getreg(FLMNGCNT),
2946     e1000e_getreg(TSYNCTXCTL),
2947     e1000e_getreg(EXTCNF_SIZE),
2948     e1000e_getreg(EXTCNF_CTRL),
2949     e1000e_getreg(EEMNGDATA),
2950     e1000e_getreg(CTRL_EXT),
2951     e1000e_getreg(SYSTIMH),
2952     e1000e_getreg(EEMNGCTL),
2953     e1000e_getreg(FLMNGDATA),
2954     e1000e_getreg(TSYNCRXCTL),
2955     e1000e_getreg(TDH),
2956     e1000e_getreg(LEDCTL),
2957     e1000e_getreg(TCTL),
2958     e1000e_getreg(TDBAL),
2959     e1000e_getreg(TDLEN),
2960     e1000e_getreg(TDH1),
2961     e1000e_getreg(RADV),
2962     e1000e_getreg(ECOL),
2963     e1000e_getreg(DC),
2964     e1000e_getreg(RLEC),
2965     e1000e_getreg(XOFFTXC),
2966     e1000e_getreg(RFC),
2967     e1000e_getreg(RNBC),
2968     e1000e_getreg(MGTPTC),
2969     e1000e_getreg(TIMINCA),
2970     e1000e_getreg(RXCFGL),
2971     e1000e_getreg(MFUTP01),
2972     e1000e_getreg(FACTPS),
2973     e1000e_getreg(GSCL_1),
2974     e1000e_getreg(GSCN_0),
2975     e1000e_getreg(GCR2),
2976     e1000e_getreg(RDT1),
2977     e1000e_getreg(PBACLR),
2978     e1000e_getreg(FCTTV),
2979     e1000e_getreg(EEWR),
2980     e1000e_getreg(FLSWCTL),
2981     e1000e_getreg(RXDCTL1),
2982     e1000e_getreg(RXSATRL),
2983     e1000e_getreg(RXUDP),
2984     e1000e_getreg(TORL),
2985     e1000e_getreg(TDLEN1),
2986     e1000e_getreg(MCC),
2987     e1000e_getreg(WUC),
2988     e1000e_getreg(EECD),
2989     e1000e_getreg(MFUTP23),
2990     e1000e_getreg(RAID),
2991     e1000e_getreg(FCRTV),
2992     e1000e_getreg(TXDCTL1),
2993     e1000e_getreg(RCTL),
2994     e1000e_getreg(TDT),
2995     e1000e_getreg(MDIC),
2996     e1000e_getreg(FCRUC),
2997     e1000e_getreg(VET),
2998     e1000e_getreg(RDBAL0),
2999     e1000e_getreg(TDBAH1),
3000     e1000e_getreg(RDTR),
3001     e1000e_getreg(SCC),
3002     e1000e_getreg(COLC),
3003     e1000e_getreg(CEXTERR),
3004     e1000e_getreg(XOFFRXC),
3005     e1000e_getreg(IPAV),
3006     e1000e_getreg(GOTCL),
3007     e1000e_getreg(MGTPDC),
3008     e1000e_getreg(GCR),
3009     e1000e_getreg(IVAR),
3010     e1000e_getreg(POEMB),
3011     e1000e_getreg(MFVAL),
3012     e1000e_getreg(FUNCTAG),
3013     e1000e_getreg(GSCL_4),
3014     e1000e_getreg(GSCN_3),
3015     e1000e_getreg(MRQC),
3016     e1000e_getreg(RDLEN1),
3017     e1000e_getreg(FCT),
3018     e1000e_getreg(FLA),
3019     e1000e_getreg(FLOL),
3020     e1000e_getreg(RXDCTL),
3021     e1000e_getreg(RXSTMPL),
3022     e1000e_getreg(TIMADJH),
3023     e1000e_getreg(FCRTL),
3024     e1000e_getreg(TDBAH),
3025     e1000e_getreg(TADV),
3026     e1000e_getreg(XONRXC),
3027     e1000e_getreg(TSCTFC),
3028     e1000e_getreg(RFCTL),
3029     e1000e_getreg(GSCN_1),
3030     e1000e_getreg(FCAL),
3031     e1000e_getreg(FLSWCNT),
3032 
3033     [TOTH]    = e1000e_mac_read_clr8,
3034     [GOTCH]   = e1000e_mac_read_clr8,
3035     [PRC64]   = e1000e_mac_read_clr4,
3036     [PRC255]  = e1000e_mac_read_clr4,
3037     [PRC1023] = e1000e_mac_read_clr4,
3038     [PTC64]   = e1000e_mac_read_clr4,
3039     [PTC255]  = e1000e_mac_read_clr4,
3040     [PTC1023] = e1000e_mac_read_clr4,
3041     [GPRC]    = e1000e_mac_read_clr4,
3042     [TPT]     = e1000e_mac_read_clr4,
3043     [RUC]     = e1000e_mac_read_clr4,
3044     [BPRC]    = e1000e_mac_read_clr4,
3045     [MPTC]    = e1000e_mac_read_clr4,
3046     [IAC]     = e1000e_mac_read_clr4,
3047     [ICR]     = e1000e_mac_icr_read,
3048     [STATUS]  = e1000e_get_status,
3049     [TARC0]   = e1000e_get_tarc,
3050     [ICS]     = e1000e_mac_ics_read,
3051     [TORH]    = e1000e_mac_read_clr8,
3052     [GORCH]   = e1000e_mac_read_clr8,
3053     [PRC127]  = e1000e_mac_read_clr4,
3054     [PRC511]  = e1000e_mac_read_clr4,
3055     [PRC1522] = e1000e_mac_read_clr4,
3056     [PTC127]  = e1000e_mac_read_clr4,
3057     [PTC511]  = e1000e_mac_read_clr4,
3058     [PTC1522] = e1000e_mac_read_clr4,
3059     [GPTC]    = e1000e_mac_read_clr4,
3060     [TPR]     = e1000e_mac_read_clr4,
3061     [ROC]     = e1000e_mac_read_clr4,
3062     [MPRC]    = e1000e_mac_read_clr4,
3063     [BPTC]    = e1000e_mac_read_clr4,
3064     [TSCTC]   = e1000e_mac_read_clr4,
3065     [ITR]     = e1000e_mac_itr_read,
3066     [CTRL]    = e1000e_get_ctrl,
3067     [TARC1]   = e1000e_get_tarc,
3068     [SWSM]    = e1000e_mac_swsm_read,
3069     [IMS]     = e1000e_mac_ims_read,
3070     [SYSTIML] = e1000e_get_systiml,
3071     [RXSATRH] = e1000e_get_rxsatrh,
3072     [TXSTMPH] = e1000e_get_txstmph,
3073 
3074     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3075     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3076     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3077     [RA ... RA + 31]       = e1000e_mac_readreg,
3078     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3079     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
3080     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = e1000e_mac_readreg,
3081     [FFMT ... FFMT + 254]  = e1000e_mac_readreg,
3082     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3083     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3084     [FFLT ... FFLT + 10]   = e1000e_mac_readreg,
3085     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3086     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3087     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3088     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3089     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3090     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3091 };
3092 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3093 
3094 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3095 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3096 static const writeops e1000e_macreg_writeops[] = {
3097     e1000e_putreg(PBA),
3098     e1000e_putreg(SWSM),
3099     e1000e_putreg(WUFC),
3100     e1000e_putreg(RDBAH1),
3101     e1000e_putreg(TDBAH),
3102     e1000e_putreg(TXDCTL),
3103     e1000e_putreg(RDBAH0),
3104     e1000e_putreg(LEDCTL),
3105     e1000e_putreg(FCAL),
3106     e1000e_putreg(FCRUC),
3107     e1000e_putreg(WUC),
3108     e1000e_putreg(WUS),
3109     e1000e_putreg(IPAV),
3110     e1000e_putreg(TDBAH1),
3111     e1000e_putreg(IAM),
3112     e1000e_putreg(EIAC),
3113     e1000e_putreg(IVAR),
3114     e1000e_putreg(TARC0),
3115     e1000e_putreg(TARC1),
3116     e1000e_putreg(FLSWDATA),
3117     e1000e_putreg(POEMB),
3118     e1000e_putreg(MFUTP01),
3119     e1000e_putreg(MFUTP23),
3120     e1000e_putreg(MANC),
3121     e1000e_putreg(MANC2H),
3122     e1000e_putreg(MFVAL),
3123     e1000e_putreg(EXTCNF_CTRL),
3124     e1000e_putreg(FACTPS),
3125     e1000e_putreg(FUNCTAG),
3126     e1000e_putreg(GSCL_1),
3127     e1000e_putreg(GSCL_2),
3128     e1000e_putreg(GSCL_3),
3129     e1000e_putreg(GSCL_4),
3130     e1000e_putreg(GSCN_0),
3131     e1000e_putreg(GSCN_1),
3132     e1000e_putreg(GSCN_2),
3133     e1000e_putreg(GSCN_3),
3134     e1000e_putreg(GCR2),
3135     e1000e_putreg(MRQC),
3136     e1000e_putreg(FLOP),
3137     e1000e_putreg(FLOL),
3138     e1000e_putreg(FLSWCTL),
3139     e1000e_putreg(FLSWCNT),
3140     e1000e_putreg(FLA),
3141     e1000e_putreg(RXDCTL1),
3142     e1000e_putreg(TXDCTL1),
3143     e1000e_putreg(TIPG),
3144     e1000e_putreg(RXSTMPH),
3145     e1000e_putreg(RXSTMPL),
3146     e1000e_putreg(RXSATRL),
3147     e1000e_putreg(RXSATRH),
3148     e1000e_putreg(TXSTMPL),
3149     e1000e_putreg(TXSTMPH),
3150     e1000e_putreg(SYSTIML),
3151     e1000e_putreg(SYSTIMH),
3152     e1000e_putreg(TIMADJL),
3153     e1000e_putreg(RXUDP),
3154     e1000e_putreg(RXCFGL),
3155     e1000e_putreg(TSYNCRXCTL),
3156     e1000e_putreg(TSYNCTXCTL),
3157     e1000e_putreg(EXTCNF_SIZE),
3158     e1000e_putreg(EEMNGCTL),
3159     e1000e_putreg(RA),
3160 
3161     [TDH1]     = e1000e_set_16bit,
3162     [TDT1]     = e1000e_set_tdt,
3163     [TCTL]     = e1000e_set_tctl,
3164     [TDT]      = e1000e_set_tdt,
3165     [MDIC]     = e1000e_set_mdic,
3166     [ICS]      = e1000e_set_ics,
3167     [TDH]      = e1000e_set_16bit,
3168     [RDH0]     = e1000e_set_16bit,
3169     [RDT0]     = e1000e_set_rdt,
3170     [IMC]      = e1000e_set_imc,
3171     [IMS]      = e1000e_set_ims,
3172     [ICR]      = e1000e_set_icr,
3173     [EECD]     = e1000e_set_eecd,
3174     [RCTL]     = e1000e_set_rx_control,
3175     [CTRL]     = e1000e_set_ctrl,
3176     [RDTR]     = e1000e_set_rdtr,
3177     [RADV]     = e1000e_set_16bit,
3178     [TADV]     = e1000e_set_16bit,
3179     [ITR]      = e1000e_set_itr,
3180     [EERD]     = e1000e_set_eerd,
3181     [AIT]      = e1000e_set_16bit,
3182     [TDFH]     = e1000e_set_13bit,
3183     [TDFT]     = e1000e_set_13bit,
3184     [TDFHS]    = e1000e_set_13bit,
3185     [TDFTS]    = e1000e_set_13bit,
3186     [TDFPC]    = e1000e_set_13bit,
3187     [RDFH]     = e1000e_set_13bit,
3188     [RDFHS]    = e1000e_set_13bit,
3189     [RDFT]     = e1000e_set_13bit,
3190     [RDFTS]    = e1000e_set_13bit,
3191     [RDFPC]    = e1000e_set_13bit,
3192     [PBS]      = e1000e_set_6bit,
3193     [GCR]      = e1000e_set_gcr,
3194     [PSRCTL]   = e1000e_set_psrctl,
3195     [RXCSUM]   = e1000e_set_rxcsum,
3196     [RAID]     = e1000e_set_16bit,
3197     [RSRPD]    = e1000e_set_12bit,
3198     [TIDV]     = e1000e_set_tidv,
3199     [TDLEN1]   = e1000e_set_dlen,
3200     [TDLEN]    = e1000e_set_dlen,
3201     [RDLEN0]   = e1000e_set_dlen,
3202     [RDLEN1]   = e1000e_set_dlen,
3203     [TDBAL]    = e1000e_set_dbal,
3204     [TDBAL1]   = e1000e_set_dbal,
3205     [RDBAL0]   = e1000e_set_dbal,
3206     [RDBAL1]   = e1000e_set_dbal,
3207     [RDH1]     = e1000e_set_16bit,
3208     [RDT1]     = e1000e_set_rdt,
3209     [STATUS]   = e1000e_set_status,
3210     [PBACLR]   = e1000e_set_pbaclr,
3211     [CTRL_EXT] = e1000e_set_ctrlext,
3212     [FCAH]     = e1000e_set_16bit,
3213     [FCT]      = e1000e_set_16bit,
3214     [FCTTV]    = e1000e_set_16bit,
3215     [FCRTV]    = e1000e_set_16bit,
3216     [FCRTH]    = e1000e_set_fcrth,
3217     [FCRTL]    = e1000e_set_fcrtl,
3218     [VET]      = e1000e_set_vet,
3219     [RXDCTL]   = e1000e_set_rxdctl,
3220     [FLASHT]   = e1000e_set_16bit,
3221     [EEWR]     = e1000e_set_eewr,
3222     [CTRL_DUP] = e1000e_set_ctrl,
3223     [RFCTL]    = e1000e_set_rfctl,
3224     [RA + 1]   = e1000e_mac_setmacaddr,
3225     [TIMINCA]  = e1000e_set_timinca,
3226     [TIMADJH]  = e1000e_set_timadjh,
3227 
3228     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3229     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3230     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3231     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3232     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
3233     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]    = e1000e_mac_writereg,
3234     [FFMT ... FFMT + 254]    = e1000e_set_4bit,
3235     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3236     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3237     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3238     [FFLT ... FFLT + 10]     = e1000e_set_11bit,
3239     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3240     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3241     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3242     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3243     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3244 };
3245 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3246 
3247 enum { MAC_ACCESS_PARTIAL = 1 };
3248 
3249 /*
3250  * The array below combines alias offsets of the index values for the
3251  * MAC registers that have aliases, with the indication of not fully
3252  * implemented registers (lowest bit). This combination is possible
3253  * because all of the offsets are even.
3254  */
3255 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3256     /* Alias index offsets */
3257     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3258     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3259     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3260     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3261     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3262     [RA_A ... RA_A + 31]      = 0x14f0,
3263     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3264     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3265     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3266     /* Access options */
3267     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3268     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3269     [RDFPC] = MAC_ACCESS_PARTIAL,
3270     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3271     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3272     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3273     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3274     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3275     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3276     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3277     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3278     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3279     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3280 };
3281 
3282 void
3283 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3284 {
3285     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3286 
3287     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3288         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3289             trace_e1000e_wrn_regs_write_trivial(index << 2);
3290         }
3291         trace_e1000e_core_write(index << 2, size, val);
3292         e1000e_macreg_writeops[index](core, index, val);
3293     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3294         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3295     } else {
3296         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3297     }
3298 }
3299 
3300 uint64_t
3301 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3302 {
3303     uint64_t val;
3304     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3305 
3306     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3307         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3308             trace_e1000e_wrn_regs_read_trivial(index << 2);
3309         }
3310         val = e1000e_macreg_readops[index](core, index);
3311         trace_e1000e_core_read(index << 2, size, val);
3312         return val;
3313     } else {
3314         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3315     }
3316     return 0;
3317 }
3318 
3319 static inline void
3320 e1000e_autoneg_pause(E1000ECore *core)
3321 {
3322     timer_del(core->autoneg_timer);
3323 }
3324 
3325 static void
3326 e1000e_autoneg_resume(E1000ECore *core)
3327 {
3328     if (e1000e_have_autoneg(core) &&
3329         !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
3330         qemu_get_queue(core->owner_nic)->link_down = false;
3331         timer_mod(core->autoneg_timer,
3332                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3333     }
3334 }
3335 
3336 static void
3337 e1000e_vm_state_change(void *opaque, bool running, RunState state)
3338 {
3339     E1000ECore *core = opaque;
3340 
3341     if (running) {
3342         trace_e1000e_vm_state_running();
3343         e1000e_intrmgr_resume(core);
3344         e1000e_autoneg_resume(core);
3345     } else {
3346         trace_e1000e_vm_state_stopped();
3347         e1000e_autoneg_pause(core);
3348         e1000e_intrmgr_pause(core);
3349     }
3350 }
3351 
3352 void
3353 e1000e_core_pci_realize(E1000ECore     *core,
3354                         const uint16_t *eeprom_templ,
3355                         uint32_t        eeprom_size,
3356                         const uint8_t  *macaddr)
3357 {
3358     int i;
3359 
3360     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3361                                        e1000e_autoneg_timer, core);
3362     e1000e_intrmgr_pci_realize(core);
3363 
3364     core->vmstate =
3365         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3366 
3367     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3368         net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3369     }
3370 
3371     net_rx_pkt_init(&core->rx_pkt);
3372 
3373     e1000x_core_prepare_eeprom(core->eeprom,
3374                                eeprom_templ,
3375                                eeprom_size,
3376                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3377                                macaddr);
3378     e1000e_update_rx_offloads(core);
3379 }
3380 
3381 void
3382 e1000e_core_pci_uninit(E1000ECore *core)
3383 {
3384     int i;
3385 
3386     timer_free(core->autoneg_timer);
3387 
3388     e1000e_intrmgr_pci_unint(core);
3389 
3390     qemu_del_vm_change_state_handler(core->vmstate);
3391 
3392     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3393         net_tx_pkt_reset(core->tx[i].tx_pkt,
3394                          net_tx_pkt_unmap_frag_pci, core->owner);
3395         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3396     }
3397 
3398     net_rx_pkt_uninit(core->rx_pkt);
3399 }
3400 
3401 static const uint16_t
3402 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3403     [0] = {
3404         [MII_BMCR] = MII_BMCR_SPEED1000 |
3405                      MII_BMCR_FD        |
3406                      MII_BMCR_AUTOEN,
3407 
3408         [MII_BMSR] = MII_BMSR_EXTCAP    |
3409                      MII_BMSR_LINK_ST   |
3410                      MII_BMSR_AUTONEG   |
3411                      MII_BMSR_MFPS      |
3412                      MII_BMSR_EXTSTAT   |
3413                      MII_BMSR_10T_HD    |
3414                      MII_BMSR_10T_FD    |
3415                      MII_BMSR_100TX_HD  |
3416                      MII_BMSR_100TX_FD,
3417 
3418         [MII_PHYID1]            = 0x141,
3419         [MII_PHYID2]            = E1000_PHY_ID2_82574x,
3420         [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3421                                   MII_ANAR_10FD | MII_ANAR_TX |
3422                                   MII_ANAR_TXFD | MII_ANAR_PAUSE |
3423                                   MII_ANAR_PAUSE_ASYM,
3424         [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3425                                   MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3426                                   MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3427         [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3428         [MII_ANNP]              = 1 | MII_ANNP_MP,
3429         [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3430                                   MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3431         [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3432                                   MII_STAT1000_ROK | MII_STAT1000_LOK,
3433         [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3434 
3435         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3436                                   BIT(12) | BIT(13),
3437         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3438     },
3439     [2] = {
3440         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3441         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3442     },
3443     [3] = {
3444         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3445     }
3446 };
3447 
3448 static const uint32_t e1000e_mac_reg_init[] = {
3449     [PBA]           =     0x00140014,
3450     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3451     [EXTCNF_CTRL]   = BIT(3),
3452     [EEMNGCTL]      = BIT(31),
3453     [FLASHT]        = 0x2,
3454     [FLSWCTL]       = BIT(30) | BIT(31),
3455     [FLOL]          = BIT(0),
3456     [RXDCTL]        = BIT(16),
3457     [RXDCTL1]       = BIT(16),
3458     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3459     [RXCFGL]        = 0x88F7,
3460     [RXUDP]         = 0x319,
3461     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3462                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3463                       E1000_CTRL_ADVD3WUC,
3464     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3465     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3466                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3467                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3468     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3469     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3470     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3471     [EERD]          = E1000_EERW_DONE,
3472     [EEWR]          = E1000_EERW_DONE,
3473     [GCR]           = E1000_L0S_ADJUST |
3474                       E1000_L1_ENTRY_LATENCY_MSB |
3475                       E1000_L1_ENTRY_LATENCY_LSB,
3476     [TDFH]          = 0x600,
3477     [TDFT]          = 0x600,
3478     [TDFHS]         = 0x600,
3479     [TDFTS]         = 0x600,
3480     [POEMB]         = 0x30D,
3481     [PBS]           = 0x028,
3482     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3483     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3484     [SWSM]          = 1,
3485     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3486     [ITR]           = E1000E_MIN_XITR,
3487     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3488 };
3489 
3490 static void e1000e_reset(E1000ECore *core, bool sw)
3491 {
3492     int i;
3493 
3494     timer_del(core->autoneg_timer);
3495 
3496     e1000e_intrmgr_reset(core);
3497 
3498     memset(core->phy, 0, sizeof core->phy);
3499     memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3500 
3501     for (i = 0; i < E1000E_MAC_SIZE; i++) {
3502         if (sw && (i == PBA || i == PBS || i == FLA)) {
3503             continue;
3504         }
3505 
3506         core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
3507                        e1000e_mac_reg_init[i] : 0;
3508     }
3509 
3510     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3511 
3512     if (qemu_get_queue(core->owner_nic)->link_down) {
3513         e1000e_link_down(core);
3514     }
3515 
3516     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3517 
3518     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3519         net_tx_pkt_reset(core->tx[i].tx_pkt,
3520                          net_tx_pkt_unmap_frag_pci, core->owner);
3521         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3522         core->tx[i].skip_cp = false;
3523     }
3524 }
3525 
3526 void
3527 e1000e_core_reset(E1000ECore *core)
3528 {
3529     e1000e_reset(core, false);
3530 }
3531 
3532 void e1000e_core_pre_save(E1000ECore *core)
3533 {
3534     int i;
3535     NetClientState *nc = qemu_get_queue(core->owner_nic);
3536 
3537     /*
3538      * If link is down and auto-negotiation is supported and ongoing,
3539      * complete auto-negotiation immediately. This allows us to look
3540      * at MII_BMSR_AN_COMP to infer link status on load.
3541      */
3542     if (nc->link_down && e1000e_have_autoneg(core)) {
3543         core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
3544         e1000e_update_flowctl_status(core);
3545     }
3546 
3547     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3548         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3549             core->tx[i].skip_cp = true;
3550         }
3551     }
3552 }
3553 
3554 int
3555 e1000e_core_post_load(E1000ECore *core)
3556 {
3557     NetClientState *nc = qemu_get_queue(core->owner_nic);
3558 
3559     /*
3560      * nc.link_down can't be migrated, so infer link_down according
3561      * to link status bit in core.mac[STATUS].
3562      */
3563     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3564 
3565     return 0;
3566 }
3567