xref: /openbmc/qemu/hw/net/e1000e_core.c (revision 8b876b99a1b60ee657e3ef57b5c04d8836034d60)
1 /*
2  * Core code for QEMU e1000e emulation
3  *
4  * Software developer's manuals:
5  * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6  *
7  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8  * Developed by Daynix Computing LTD (http://www.daynix.com)
9  *
10  * Authors:
11  * Dmitry Fleytman <dmitry@daynix.com>
12  * Leonid Bloch <leonid@daynix.com>
13  * Yan Vugenfirer <yan@daynix.com>
14  *
15  * Based on work done by:
16  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17  * Copyright (c) 2008 Qumranet
18  * Based on work done by:
19  * Copyright (c) 2007 Dan Aloni
20  * Copyright (c) 2004 Antony T Curtis
21  *
22  * This library is free software; you can redistribute it and/or
23  * modify it under the terms of the GNU Lesser General Public
24  * License as published by the Free Software Foundation; either
25  * version 2.1 of the License, or (at your option) any later version.
26  *
27  * This library is distributed in the hope that it will be useful,
28  * but WITHOUT ANY WARRANTY; without even the implied warranty of
29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30  * Lesser General Public License for more details.
31  *
32  * You should have received a copy of the GNU Lesser General Public
33  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34  */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/net/mii.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 #include "sysemu/runstate.h"
44 
45 #include "net_tx_pkt.h"
46 #include "net_rx_pkt.h"
47 
48 #include "e1000_common.h"
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
51 
52 #include "trace.h"
53 
54 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
55 #define E1000E_MIN_XITR     (500)
56 
57 #define E1000E_MAX_TX_FRAGS (64)
58 
59 union e1000_rx_desc_union {
60     struct e1000_rx_desc legacy;
61     union e1000_rx_desc_extended extended;
62     union e1000_rx_desc_packet_split packet_split;
63 };
64 
65 static ssize_t
66 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
67                         bool has_vnet);
68 
69 static inline void
70 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
71 
72 static void e1000e_reset(E1000ECore *core, bool sw);
73 
74 static inline void
75 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
76 {
77     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
78         trace_e1000e_wrn_no_ts_support();
79     }
80 }
81 
82 static inline void
83 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
84 {
85     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
86         trace_e1000e_wrn_no_snap_support();
87     }
88 }
89 
90 static inline void
91 e1000e_raise_legacy_irq(E1000ECore *core)
92 {
93     trace_e1000e_irq_legacy_notify(true);
94     e1000x_inc_reg_if_not_full(core->mac, IAC);
95     pci_set_irq(core->owner, 1);
96 }
97 
98 static inline void
99 e1000e_lower_legacy_irq(E1000ECore *core)
100 {
101     trace_e1000e_irq_legacy_notify(false);
102     pci_set_irq(core->owner, 0);
103 }
104 
105 static inline void
106 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
107 {
108     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
109                                  timer->delay_resolution_ns;
110 
111     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
112 
113     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
114 
115     timer->running = true;
116 }
117 
118 static void
119 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
120 {
121     if (timer->running) {
122         e1000e_intrmgr_rearm_timer(timer);
123     }
124 }
125 
126 static void
127 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
128 {
129     if (timer->running) {
130         timer_del(timer->timer);
131     }
132 }
133 
134 static inline void
135 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
136 {
137     if (timer->running) {
138         timer_del(timer->timer);
139         timer->running = false;
140     }
141 }
142 
143 static inline void
144 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
145 {
146     trace_e1000e_irq_fire_delayed_interrupts();
147     e1000e_set_interrupt_cause(core, 0);
148 }
149 
150 static void
151 e1000e_intrmgr_on_timer(void *opaque)
152 {
153     E1000IntrDelayTimer *timer = opaque;
154 
155     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
156 
157     timer->running = false;
158     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
159 }
160 
161 static void
162 e1000e_intrmgr_on_throttling_timer(void *opaque)
163 {
164     E1000IntrDelayTimer *timer = opaque;
165 
166     timer->running = false;
167 
168     if (msi_enabled(timer->core->owner)) {
169         trace_e1000e_irq_msi_notify_postponed();
170         /* Clear msi_causes_pending to fire MSI eventually */
171         timer->core->msi_causes_pending = 0;
172         e1000e_set_interrupt_cause(timer->core, 0);
173     } else {
174         trace_e1000e_irq_legacy_notify_postponed();
175         e1000e_set_interrupt_cause(timer->core, 0);
176     }
177 }
178 
179 static void
180 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
181 {
182     E1000IntrDelayTimer *timer = opaque;
183     int idx = timer - &timer->core->eitr[0];
184 
185     timer->running = false;
186 
187     trace_e1000e_irq_msix_notify_postponed_vec(idx);
188     msix_notify(timer->core->owner, idx);
189 }
190 
191 static void
192 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
193 {
194     int i;
195 
196     core->radv.delay_reg = RADV;
197     core->rdtr.delay_reg = RDTR;
198     core->raid.delay_reg = RAID;
199     core->tadv.delay_reg = TADV;
200     core->tidv.delay_reg = TIDV;
201 
202     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
205     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
206     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
207 
208     core->radv.core = core;
209     core->rdtr.core = core;
210     core->raid.core = core;
211     core->tadv.core = core;
212     core->tidv.core = core;
213 
214     core->itr.core = core;
215     core->itr.delay_reg = ITR;
216     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
217 
218     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
219         core->eitr[i].core = core;
220         core->eitr[i].delay_reg = EITR + i;
221         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
222     }
223 
224     if (!create) {
225         return;
226     }
227 
228     core->radv.timer =
229         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
230     core->rdtr.timer =
231         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
232     core->raid.timer =
233         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
234 
235     core->tadv.timer =
236         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
237     core->tidv.timer =
238         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
239 
240     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
241                                    e1000e_intrmgr_on_throttling_timer,
242                                    &core->itr);
243 
244     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
245         core->eitr[i].timer =
246             timer_new_ns(QEMU_CLOCK_VIRTUAL,
247                          e1000e_intrmgr_on_msix_throttling_timer,
248                          &core->eitr[i]);
249     }
250 }
251 
252 static inline void
253 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
254 {
255     e1000e_intrmgr_stop_timer(&core->radv);
256     e1000e_intrmgr_stop_timer(&core->rdtr);
257     e1000e_intrmgr_stop_timer(&core->raid);
258     e1000e_intrmgr_stop_timer(&core->tidv);
259     e1000e_intrmgr_stop_timer(&core->tadv);
260 }
261 
262 static bool
263 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
264 {
265     uint32_t delayable_causes;
266     uint32_t rdtr = core->mac[RDTR];
267     uint32_t radv = core->mac[RADV];
268     uint32_t raid = core->mac[RAID];
269 
270     if (msix_enabled(core->owner)) {
271         return false;
272     }
273 
274     delayable_causes = E1000_ICR_RXQ0 |
275                        E1000_ICR_RXQ1 |
276                        E1000_ICR_RXT0;
277 
278     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
279         delayable_causes |= E1000_ICR_ACK;
280     }
281 
282     /* Clean up all causes that may be delayed */
283     core->delayed_causes |= *causes & delayable_causes;
284     *causes &= ~delayable_causes;
285 
286     /*
287      * Check if delayed RX interrupts disabled by client
288      * or if there are causes that cannot be delayed
289      */
290     if ((rdtr == 0) || (*causes != 0)) {
291         return false;
292     }
293 
294     /*
295      * Check if delayed RX ACK interrupts disabled by client
296      * and there is an ACK packet received
297      */
298     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
299         return false;
300     }
301 
302     /* All causes delayed */
303     e1000e_intrmgr_rearm_timer(&core->rdtr);
304 
305     if (!core->radv.running && (radv != 0)) {
306         e1000e_intrmgr_rearm_timer(&core->radv);
307     }
308 
309     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
310         e1000e_intrmgr_rearm_timer(&core->raid);
311     }
312 
313     return true;
314 }
315 
316 static bool
317 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
318 {
319     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
320                                              E1000_ICR_TXQ1 |
321                                              E1000_ICR_TXQE |
322                                              E1000_ICR_TXDW;
323 
324     if (msix_enabled(core->owner)) {
325         return false;
326     }
327 
328     /* Clean up all causes that may be delayed */
329     core->delayed_causes |= *causes & delayable_causes;
330     *causes &= ~delayable_causes;
331 
332     /* If there are causes that cannot be delayed */
333     if (*causes != 0) {
334         return false;
335     }
336 
337     /* All causes delayed */
338     e1000e_intrmgr_rearm_timer(&core->tidv);
339 
340     if (!core->tadv.running && (core->mac[TADV] != 0)) {
341         e1000e_intrmgr_rearm_timer(&core->tadv);
342     }
343 
344     return true;
345 }
346 
347 static uint32_t
348 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
349 {
350     uint32_t res;
351 
352     if (msix_enabled(core->owner)) {
353         assert(core->delayed_causes == 0);
354         return 0;
355     }
356 
357     res = core->delayed_causes;
358     core->delayed_causes = 0;
359 
360     e1000e_intrmgr_stop_delay_timers(core);
361 
362     return res;
363 }
364 
365 static void
366 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
367 {
368     int i;
369     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
370 
371     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
372     core->mac[ICR] |= val;
373 
374     if (core->itr.running) {
375         timer_del(core->itr.timer);
376         e1000e_intrmgr_on_throttling_timer(&core->itr);
377     }
378 
379     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
380         if (core->eitr[i].running) {
381             timer_del(core->eitr[i].timer);
382             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
383         }
384     }
385 }
386 
387 static void
388 e1000e_intrmgr_resume(E1000ECore *core)
389 {
390     int i;
391 
392     e1000e_intmgr_timer_resume(&core->radv);
393     e1000e_intmgr_timer_resume(&core->rdtr);
394     e1000e_intmgr_timer_resume(&core->raid);
395     e1000e_intmgr_timer_resume(&core->tidv);
396     e1000e_intmgr_timer_resume(&core->tadv);
397 
398     e1000e_intmgr_timer_resume(&core->itr);
399 
400     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
401         e1000e_intmgr_timer_resume(&core->eitr[i]);
402     }
403 }
404 
405 static void
406 e1000e_intrmgr_pause(E1000ECore *core)
407 {
408     int i;
409 
410     e1000e_intmgr_timer_pause(&core->radv);
411     e1000e_intmgr_timer_pause(&core->rdtr);
412     e1000e_intmgr_timer_pause(&core->raid);
413     e1000e_intmgr_timer_pause(&core->tidv);
414     e1000e_intmgr_timer_pause(&core->tadv);
415 
416     e1000e_intmgr_timer_pause(&core->itr);
417 
418     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
419         e1000e_intmgr_timer_pause(&core->eitr[i]);
420     }
421 }
422 
423 static void
424 e1000e_intrmgr_reset(E1000ECore *core)
425 {
426     int i;
427 
428     core->delayed_causes = 0;
429 
430     e1000e_intrmgr_stop_delay_timers(core);
431 
432     e1000e_intrmgr_stop_timer(&core->itr);
433 
434     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
435         e1000e_intrmgr_stop_timer(&core->eitr[i]);
436     }
437 }
438 
439 static void
440 e1000e_intrmgr_pci_unint(E1000ECore *core)
441 {
442     int i;
443 
444     timer_free(core->radv.timer);
445     timer_free(core->rdtr.timer);
446     timer_free(core->raid.timer);
447 
448     timer_free(core->tadv.timer);
449     timer_free(core->tidv.timer);
450 
451     timer_free(core->itr.timer);
452 
453     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
454         timer_free(core->eitr[i].timer);
455     }
456 }
457 
458 static void
459 e1000e_intrmgr_pci_realize(E1000ECore *core)
460 {
461     e1000e_intrmgr_initialize_all_timers(core, true);
462 }
463 
464 static inline bool
465 e1000e_rx_csum_enabled(E1000ECore *core)
466 {
467     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
468 }
469 
470 static inline bool
471 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
472 {
473     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
474 }
475 
476 static inline bool
477 e1000e_rx_use_ps_descriptor(E1000ECore *core)
478 {
479     return !e1000e_rx_use_legacy_descriptor(core) &&
480            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
481 }
482 
483 static inline bool
484 e1000e_rss_enabled(E1000ECore *core)
485 {
486     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
487            !e1000e_rx_csum_enabled(core) &&
488            !e1000e_rx_use_legacy_descriptor(core);
489 }
490 
491 typedef struct E1000E_RSSInfo_st {
492     bool enabled;
493     uint32_t hash;
494     uint32_t queue;
495     uint32_t type;
496 } E1000E_RSSInfo;
497 
498 static uint32_t
499 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
500 {
501     bool hasip4, hasip6;
502     EthL4HdrProto l4hdr_proto;
503 
504     assert(e1000e_rss_enabled(core));
505 
506     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
507 
508     if (hasip4) {
509         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
510                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
512 
513         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
514             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
515             return E1000_MRQ_RSS_TYPE_IPV4TCP;
516         }
517 
518         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
519             return E1000_MRQ_RSS_TYPE_IPV4;
520         }
521     } else if (hasip6) {
522         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
523 
524         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
525         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
526 
527         /*
528          * Following two traces must not be combined because resulting
529          * event will have 11 arguments totally and some trace backends
530          * (at least "ust") have limitation of maximum 10 arguments per
531          * event. Events with more arguments fail to compile for
532          * backends like these.
533          */
534         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
535         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
536                                 ip6info->has_ext_hdrs,
537                                 ip6info->rss_ex_dst_valid,
538                                 ip6info->rss_ex_src_valid,
539                                 core->mac[MRQC],
540                                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]),
541                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
542                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
543 
544         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
545             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
546                               ip6info->rss_ex_src_valid))) {
547 
548             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
549                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) {
550                 return E1000_MRQ_RSS_TYPE_IPV6TCPEX;
551             }
552 
553             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
554                 return E1000_MRQ_RSS_TYPE_IPV6EX;
555             }
556 
557         }
558 
559         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
560             return E1000_MRQ_RSS_TYPE_IPV6;
561         }
562 
563     }
564 
565     return E1000_MRQ_RSS_TYPE_NONE;
566 }
567 
568 static uint32_t
569 e1000e_rss_calc_hash(E1000ECore *core,
570                      struct NetRxPkt *pkt,
571                      E1000E_RSSInfo *info)
572 {
573     NetRxPktRssType type;
574 
575     assert(e1000e_rss_enabled(core));
576 
577     switch (info->type) {
578     case E1000_MRQ_RSS_TYPE_IPV4:
579         type = NetPktRssIpV4;
580         break;
581     case E1000_MRQ_RSS_TYPE_IPV4TCP:
582         type = NetPktRssIpV4Tcp;
583         break;
584     case E1000_MRQ_RSS_TYPE_IPV6TCPEX:
585         type = NetPktRssIpV6TcpEx;
586         break;
587     case E1000_MRQ_RSS_TYPE_IPV6:
588         type = NetPktRssIpV6;
589         break;
590     case E1000_MRQ_RSS_TYPE_IPV6EX:
591         type = NetPktRssIpV6Ex;
592         break;
593     default:
594         assert(false);
595         return 0;
596     }
597 
598     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
599 }
600 
601 static void
602 e1000e_rss_parse_packet(E1000ECore *core,
603                         struct NetRxPkt *pkt,
604                         E1000E_RSSInfo *info)
605 {
606     trace_e1000e_rx_rss_started();
607 
608     if (!e1000e_rss_enabled(core)) {
609         info->enabled = false;
610         info->hash = 0;
611         info->queue = 0;
612         info->type = 0;
613         trace_e1000e_rx_rss_disabled();
614         return;
615     }
616 
617     info->enabled = true;
618 
619     info->type = e1000e_rss_get_hash_type(core, pkt);
620 
621     trace_e1000e_rx_rss_type(info->type);
622 
623     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
624         info->hash = 0;
625         info->queue = 0;
626         return;
627     }
628 
629     info->hash = e1000e_rss_calc_hash(core, pkt, info);
630     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
631 }
632 
633 static bool
634 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
635 {
636     if (tx->props.tse && tx->cptse) {
637         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
638             return false;
639         }
640 
641         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
642         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
643         return true;
644     }
645 
646     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
647         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
648             return false;
649         }
650     }
651 
652     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
653         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
654     }
655 
656     return true;
657 }
658 
659 static void e1000e_tx_pkt_callback(void *core,
660                                    const struct iovec *iov,
661                                    int iovcnt,
662                                    const struct iovec *virt_iov,
663                                    int virt_iovcnt)
664 {
665     e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
666 }
667 
668 static bool
669 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
670 {
671     int target_queue = MIN(core->max_queue_num, queue_index);
672     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
673 
674     if (!e1000e_setup_tx_offloads(core, tx)) {
675         return false;
676     }
677 
678     net_tx_pkt_dump(tx->tx_pkt);
679 
680     if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
681         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
682         return net_tx_pkt_send_custom(tx->tx_pkt, false,
683                                       e1000e_tx_pkt_callback, core);
684     } else {
685         return net_tx_pkt_send(tx->tx_pkt, queue);
686     }
687 }
688 
689 static void
690 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
691 {
692     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
693                                     PTC1023, PTC1522 };
694 
695     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
696 
697     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
698     e1000x_inc_reg_if_not_full(core->mac, TPT);
699     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
700 
701     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
702     case ETH_PKT_BCAST:
703         e1000x_inc_reg_if_not_full(core->mac, BPTC);
704         break;
705     case ETH_PKT_MCAST:
706         e1000x_inc_reg_if_not_full(core->mac, MPTC);
707         break;
708     case ETH_PKT_UCAST:
709         break;
710     default:
711         g_assert_not_reached();
712     }
713 
714     e1000x_inc_reg_if_not_full(core->mac, GPTC);
715     e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
716 }
717 
718 static void
719 e1000e_process_tx_desc(E1000ECore *core,
720                        struct e1000e_tx *tx,
721                        struct e1000_tx_desc *dp,
722                        int queue_index)
723 {
724     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
725     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
726     unsigned int split_size = txd_lower & 0xffff;
727     uint64_t addr;
728     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
729     bool eop = txd_lower & E1000_TXD_CMD_EOP;
730 
731     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
732         e1000x_read_tx_ctx_descr(xp, &tx->props);
733         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
734         return;
735     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
736         /* data descriptor */
737         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
738         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
739         e1000e_process_ts_option(core, dp);
740     } else {
741         /* legacy descriptor */
742         e1000e_process_ts_option(core, dp);
743         tx->cptse = 0;
744     }
745 
746     addr = le64_to_cpu(dp->buffer_addr);
747 
748     if (!tx->skip_cp) {
749         if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner,
750                                              addr, split_size)) {
751             tx->skip_cp = true;
752         }
753     }
754 
755     if (eop) {
756         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
757             if (e1000x_vlan_enabled(core->mac) &&
758                 e1000x_is_vlan_txd(txd_lower)) {
759                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
760                     le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
761             }
762             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
763                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
764             }
765         }
766 
767         tx->skip_cp = false;
768         net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
769 
770         tx->sum_needed = 0;
771         tx->cptse = 0;
772     }
773 }
774 
775 static inline uint32_t
776 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
777 {
778     if (!msix_enabled(core->owner)) {
779         return E1000_ICR_TXDW;
780     }
781 
782     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
783 }
784 
785 static inline uint32_t
786 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
787                              bool min_threshold_hit)
788 {
789     if (!msix_enabled(core->owner)) {
790         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
791     }
792 
793     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
794 }
795 
796 static uint32_t
797 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
798                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
799 {
800     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
801 
802     if (!(txd_lower & E1000_TXD_CMD_RS) &&
803         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
804         return 0;
805     }
806 
807     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
808 
809     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
810 
811     dp->upper.data = cpu_to_le32(txd_upper);
812     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
813                   &dp->upper, sizeof(dp->upper));
814     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
815 }
816 
817 typedef struct E1000E_RingInfo_st {
818     int dbah;
819     int dbal;
820     int dlen;
821     int dh;
822     int dt;
823     int idx;
824 } E1000E_RingInfo;
825 
826 static inline bool
827 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
828 {
829     return core->mac[r->dh] == core->mac[r->dt] ||
830                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
831 }
832 
833 static inline uint64_t
834 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
835 {
836     uint64_t bah = core->mac[r->dbah];
837     uint64_t bal = core->mac[r->dbal];
838 
839     return (bah << 32) + bal;
840 }
841 
842 static inline uint64_t
843 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
844 {
845     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
846 }
847 
848 static inline void
849 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
850 {
851     core->mac[r->dh] += count;
852 
853     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
854         core->mac[r->dh] = 0;
855     }
856 }
857 
858 static inline uint32_t
859 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
860 {
861     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
862                                  core->mac[r->dh],  core->mac[r->dt]);
863 
864     if (core->mac[r->dh] <= core->mac[r->dt]) {
865         return core->mac[r->dt] - core->mac[r->dh];
866     }
867 
868     if (core->mac[r->dh] > core->mac[r->dt]) {
869         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
870                core->mac[r->dt] - core->mac[r->dh];
871     }
872 
873     g_assert_not_reached();
874     return 0;
875 }
876 
877 static inline bool
878 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
879 {
880     return core->mac[r->dlen] > 0;
881 }
882 
883 static inline uint32_t
884 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
885 {
886     return core->mac[r->dlen];
887 }
888 
889 typedef struct E1000E_TxRing_st {
890     const E1000E_RingInfo *i;
891     struct e1000e_tx *tx;
892 } E1000E_TxRing;
893 
894 static inline int
895 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
896 {
897     return (reg_idx - base_reg_idx) / (0x100 >> 2);
898 }
899 
900 static inline void
901 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
902 {
903     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
904         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
905         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
906     };
907 
908     assert(idx < ARRAY_SIZE(i));
909 
910     txr->i     = &i[idx];
911     txr->tx    = &core->tx[idx];
912 }
913 
914 typedef struct E1000E_RxRing_st {
915     const E1000E_RingInfo *i;
916 } E1000E_RxRing;
917 
918 static inline void
919 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
920 {
921     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
922         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
923         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
924     };
925 
926     assert(idx < ARRAY_SIZE(i));
927 
928     rxr->i      = &i[idx];
929 }
930 
931 static void
932 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
933 {
934     dma_addr_t base;
935     struct e1000_tx_desc desc;
936     bool ide = false;
937     const E1000E_RingInfo *txi = txr->i;
938     uint32_t cause = E1000_ICS_TXQE;
939 
940     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
941         trace_e1000e_tx_disabled();
942         return;
943     }
944 
945     while (!e1000e_ring_empty(core, txi)) {
946         base = e1000e_ring_head_descr(core, txi);
947 
948         pci_dma_read(core->owner, base, &desc, sizeof(desc));
949 
950         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
951                               desc.lower.data, desc.upper.data);
952 
953         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
954         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
955 
956         e1000e_ring_advance(core, txi, 1);
957     }
958 
959     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
960         e1000e_set_interrupt_cause(core, cause);
961     }
962 }
963 
964 static bool
965 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
966                   size_t total_size)
967 {
968     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
969 
970     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
971                                 core->rx_desc_buf_size);
972 
973     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
974                          core->rx_desc_buf_size;
975 }
976 
977 void
978 e1000e_start_recv(E1000ECore *core)
979 {
980     int i;
981 
982     trace_e1000e_rx_start_recv();
983 
984     for (i = 0; i <= core->max_queue_num; i++) {
985         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
986     }
987 }
988 
989 bool
990 e1000e_can_receive(E1000ECore *core)
991 {
992     int i;
993 
994     if (!e1000x_rx_ready(core->owner, core->mac)) {
995         return false;
996     }
997 
998     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
999         E1000E_RxRing rxr;
1000 
1001         e1000e_rx_ring_init(core, &rxr, i);
1002         if (e1000e_ring_enabled(core, rxr.i) &&
1003             e1000e_has_rxbufs(core, rxr.i, 1)) {
1004             trace_e1000e_rx_can_recv();
1005             return true;
1006         }
1007     }
1008 
1009     trace_e1000e_rx_can_recv_rings_full();
1010     return false;
1011 }
1012 
1013 ssize_t
1014 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
1015 {
1016     const struct iovec iov = {
1017         .iov_base = (uint8_t *)buf,
1018         .iov_len = size
1019     };
1020 
1021     return e1000e_receive_iov(core, &iov, 1);
1022 }
1023 
1024 static inline bool
1025 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1026 {
1027     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1028 }
1029 
1030 static inline bool
1031 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1032 {
1033     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1034 }
1035 
1036 static bool
1037 e1000e_receive_filter(E1000ECore *core, const void *buf)
1038 {
1039     return (!e1000x_is_vlan_packet(buf, core->mac[VET]) ||
1040             e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) &&
1041            e1000x_rx_group_filter(core->mac, buf);
1042 }
1043 
1044 static inline void
1045 e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1046                           hwaddr *buff_addr)
1047 {
1048     *buff_addr = le64_to_cpu(desc->buffer_addr);
1049 }
1050 
1051 static inline void
1052 e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1053                          hwaddr *buff_addr)
1054 {
1055     *buff_addr = le64_to_cpu(desc->read.buffer_addr);
1056 }
1057 
1058 static inline void
1059 e1000e_read_ps_rx_descr(E1000ECore *core,
1060                         union e1000_rx_desc_packet_split *desc,
1061                         hwaddr buff_addr[MAX_PS_BUFFERS])
1062 {
1063     int i;
1064 
1065     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1066         buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
1067     }
1068 
1069     trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
1070                                  buff_addr[2], buff_addr[3]);
1071 }
1072 
1073 static inline void
1074 e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1075                      hwaddr buff_addr[MAX_PS_BUFFERS])
1076 {
1077     if (e1000e_rx_use_legacy_descriptor(core)) {
1078         e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
1079         buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1080     } else {
1081         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1082             e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
1083         } else {
1084             e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
1085             buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1086         }
1087     }
1088 }
1089 
1090 static void
1091 e1000e_verify_csum_in_sw(E1000ECore *core,
1092                          struct NetRxPkt *pkt,
1093                          uint32_t *status_flags,
1094                          EthL4HdrProto l4hdr_proto)
1095 {
1096     bool csum_valid;
1097     uint32_t csum_error;
1098 
1099     if (e1000e_rx_l3_cso_enabled(core)) {
1100         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1101             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1102         } else {
1103             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1104             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1105         }
1106     } else {
1107         trace_e1000e_rx_metadata_l3_cso_disabled();
1108     }
1109 
1110     if (!e1000e_rx_l4_cso_enabled(core)) {
1111         trace_e1000e_rx_metadata_l4_cso_disabled();
1112         return;
1113     }
1114 
1115     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1116         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1117         return;
1118     }
1119 
1120     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1121     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1122 
1123     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1124         *status_flags |= E1000_RXD_STAT_UDPCS;
1125     }
1126 }
1127 
1128 static inline bool
1129 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1130 {
1131     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1132         return false;
1133     }
1134 
1135     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1136         return !net_rx_pkt_has_tcp_data(rx_pkt);
1137     }
1138 
1139     return true;
1140 }
1141 
1142 static void
1143 e1000e_build_rx_metadata(E1000ECore *core,
1144                          struct NetRxPkt *pkt,
1145                          bool is_eop,
1146                          const E1000E_RSSInfo *rss_info,
1147                          uint32_t *rss, uint32_t *mrq,
1148                          uint32_t *status_flags,
1149                          uint16_t *ip_id,
1150                          uint16_t *vlan_tag)
1151 {
1152     struct virtio_net_hdr *vhdr;
1153     bool hasip4, hasip6;
1154     EthL4HdrProto l4hdr_proto;
1155     uint32_t pkt_type;
1156 
1157     *status_flags = E1000_RXD_STAT_DD;
1158 
1159     /* No additional metadata needed for non-EOP descriptors */
1160     if (!is_eop) {
1161         goto func_exit;
1162     }
1163 
1164     *status_flags |= E1000_RXD_STAT_EOP;
1165 
1166     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1167     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1168 
1169     /* VLAN state */
1170     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1171         *status_flags |= E1000_RXD_STAT_VP;
1172         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1173         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1174     }
1175 
1176     /* Packet parsing results */
1177     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1178         if (rss_info->enabled) {
1179             *rss = cpu_to_le32(rss_info->hash);
1180             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1181             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1182         }
1183     } else if (hasip4) {
1184             *status_flags |= E1000_RXD_STAT_IPIDV;
1185             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1186             trace_e1000e_rx_metadata_ip_id(*ip_id);
1187     }
1188 
1189     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
1190         *status_flags |= E1000_RXD_STAT_ACK;
1191         trace_e1000e_rx_metadata_ack();
1192     }
1193 
1194     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1195         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1196         pkt_type = E1000_RXD_PKT_MAC;
1197     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1198                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1199         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1200     } else if (hasip4 || hasip6) {
1201         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1202     } else {
1203         pkt_type = E1000_RXD_PKT_MAC;
1204     }
1205 
1206     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1207     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1208 
1209     /* RX CSO information */
1210     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1211         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1212         goto func_exit;
1213     }
1214 
1215     vhdr = net_rx_pkt_get_vhdr(pkt);
1216 
1217     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1218         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1219         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1220         e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1221         goto func_exit;
1222     }
1223 
1224     if (e1000e_rx_l3_cso_enabled(core)) {
1225         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1226     } else {
1227         trace_e1000e_rx_metadata_l3_cso_disabled();
1228     }
1229 
1230     if (e1000e_rx_l4_cso_enabled(core)) {
1231         switch (l4hdr_proto) {
1232         case ETH_L4_HDR_PROTO_TCP:
1233             *status_flags |= E1000_RXD_STAT_TCPCS;
1234             break;
1235 
1236         case ETH_L4_HDR_PROTO_UDP:
1237             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1238             break;
1239 
1240         default:
1241             break;
1242         }
1243     } else {
1244         trace_e1000e_rx_metadata_l4_cso_disabled();
1245     }
1246 
1247 func_exit:
1248     trace_e1000e_rx_metadata_status_flags(*status_flags);
1249     *status_flags = cpu_to_le32(*status_flags);
1250 }
1251 
1252 static inline void
1253 e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1254                            struct NetRxPkt *pkt,
1255                            const E1000E_RSSInfo *rss_info,
1256                            uint16_t length)
1257 {
1258     uint32_t status_flags, rss, mrq;
1259     uint16_t ip_id;
1260 
1261     assert(!rss_info->enabled);
1262 
1263     desc->length = cpu_to_le16(length);
1264     desc->csum = 0;
1265 
1266     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1267                              rss_info,
1268                              &rss, &mrq,
1269                              &status_flags, &ip_id,
1270                              &desc->special);
1271     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1272     desc->status = (uint8_t) le32_to_cpu(status_flags);
1273 }
1274 
1275 static inline void
1276 e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1277                           struct NetRxPkt *pkt,
1278                           const E1000E_RSSInfo *rss_info,
1279                           uint16_t length)
1280 {
1281     memset(&desc->wb, 0, sizeof(desc->wb));
1282 
1283     desc->wb.upper.length = cpu_to_le16(length);
1284 
1285     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1286                              rss_info,
1287                              &desc->wb.lower.hi_dword.rss,
1288                              &desc->wb.lower.mrq,
1289                              &desc->wb.upper.status_error,
1290                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1291                              &desc->wb.upper.vlan);
1292 }
1293 
1294 static inline void
1295 e1000e_write_ps_rx_descr(E1000ECore *core,
1296                          union e1000_rx_desc_packet_split *desc,
1297                          struct NetRxPkt *pkt,
1298                          const E1000E_RSSInfo *rss_info,
1299                          size_t ps_hdr_len,
1300                          uint16_t(*written)[MAX_PS_BUFFERS])
1301 {
1302     int i;
1303 
1304     memset(&desc->wb, 0, sizeof(desc->wb));
1305 
1306     desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
1307 
1308     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1309         desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1310     }
1311 
1312     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1313                              rss_info,
1314                              &desc->wb.lower.hi_dword.rss,
1315                              &desc->wb.lower.mrq,
1316                              &desc->wb.middle.status_error,
1317                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1318                              &desc->wb.middle.vlan);
1319 
1320     desc->wb.upper.header_status =
1321         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1322 
1323     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1324                                   (*written)[2], (*written)[3]);
1325 }
1326 
1327 static inline void
1328 e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1329 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1330     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1331 {
1332     if (e1000e_rx_use_legacy_descriptor(core)) {
1333         assert(ps_hdr_len == 0);
1334         e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1335                                    (*written)[0]);
1336     } else {
1337         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1338             e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
1339                                       ps_hdr_len, written);
1340         } else {
1341             assert(ps_hdr_len == 0);
1342             e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
1343                                        (*written)[0]);
1344         }
1345     }
1346 }
1347 
1348 static inline void
1349 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1350                              union e1000_rx_desc_union *desc, dma_addr_t len)
1351 {
1352     PCIDevice *dev = core->owner;
1353 
1354     if (e1000e_rx_use_legacy_descriptor(core)) {
1355         struct e1000_rx_desc *d = &desc->legacy;
1356         size_t offset = offsetof(struct e1000_rx_desc, status);
1357         uint8_t status = d->status;
1358 
1359         d->status &= ~E1000_RXD_STAT_DD;
1360         pci_dma_write(dev, addr, desc, len);
1361 
1362         if (status & E1000_RXD_STAT_DD) {
1363             d->status = status;
1364             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1365         }
1366     } else {
1367         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1368             union e1000_rx_desc_packet_split *d = &desc->packet_split;
1369             size_t offset = offsetof(union e1000_rx_desc_packet_split,
1370                 wb.middle.status_error);
1371             uint32_t status = d->wb.middle.status_error;
1372 
1373             d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1374             pci_dma_write(dev, addr, desc, len);
1375 
1376             if (status & E1000_RXD_STAT_DD) {
1377                 d->wb.middle.status_error = status;
1378                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1379             }
1380         } else {
1381             union e1000_rx_desc_extended *d = &desc->extended;
1382             size_t offset = offsetof(union e1000_rx_desc_extended,
1383                 wb.upper.status_error);
1384             uint32_t status = d->wb.upper.status_error;
1385 
1386             d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1387             pci_dma_write(dev, addr, desc, len);
1388 
1389             if (status & E1000_RXD_STAT_DD) {
1390                 d->wb.upper.status_error = status;
1391                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1392             }
1393         }
1394     }
1395 }
1396 
1397 typedef struct e1000e_ba_state_st {
1398     uint16_t written[MAX_PS_BUFFERS];
1399     uint8_t cur_idx;
1400 } e1000e_ba_state;
1401 
1402 static inline void
1403 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1404                                hwaddr ba[MAX_PS_BUFFERS],
1405                                e1000e_ba_state *bastate,
1406                                const char *data,
1407                                dma_addr_t data_len)
1408 {
1409     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1410 
1411     pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
1412     bastate->written[0] += data_len;
1413 
1414     bastate->cur_idx = 1;
1415 }
1416 
1417 static void
1418 e1000e_write_to_rx_buffers(E1000ECore *core,
1419                            hwaddr ba[MAX_PS_BUFFERS],
1420                            e1000e_ba_state *bastate,
1421                            const char *data,
1422                            dma_addr_t data_len)
1423 {
1424     while (data_len > 0) {
1425         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1426         uint32_t cur_buf_bytes_left = cur_buf_len -
1427                                       bastate->written[bastate->cur_idx];
1428         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1429 
1430         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1431                                         ba[bastate->cur_idx],
1432                                         bastate->written[bastate->cur_idx],
1433                                         data,
1434                                         bytes_to_write);
1435 
1436         pci_dma_write(core->owner,
1437             ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1438             data, bytes_to_write);
1439 
1440         bastate->written[bastate->cur_idx] += bytes_to_write;
1441         data += bytes_to_write;
1442         data_len -= bytes_to_write;
1443 
1444         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1445             bastate->cur_idx++;
1446         }
1447 
1448         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1449     }
1450 }
1451 
1452 static void
1453 e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size)
1454 {
1455     eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1456     e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1457 }
1458 
1459 static inline bool
1460 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1461 {
1462     return e1000e_ring_free_descr_num(core, rxi) ==
1463            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1464 }
1465 
1466 static bool
1467 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1468 {
1469     bool hasip4, hasip6;
1470     EthL4HdrProto l4hdr_proto;
1471     bool fragment;
1472 
1473     if (!e1000e_rx_use_ps_descriptor(core)) {
1474         return false;
1475     }
1476 
1477     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1478 
1479     if (hasip4) {
1480         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1481     } else if (hasip6) {
1482         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1483     } else {
1484         return false;
1485     }
1486 
1487     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1488         return false;
1489     }
1490 
1491     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1492         l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1493         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1494     } else {
1495         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1496     }
1497 
1498     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1499         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1500         return false;
1501     }
1502 
1503     return true;
1504 }
1505 
1506 static void
1507 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1508                              const E1000E_RxRing *rxr,
1509                              const E1000E_RSSInfo *rss_info)
1510 {
1511     PCIDevice *d = core->owner;
1512     dma_addr_t base;
1513     union e1000_rx_desc_union desc;
1514     size_t desc_size;
1515     size_t desc_offset = 0;
1516     size_t iov_ofs = 0;
1517 
1518     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1519     size_t size = net_rx_pkt_get_total_len(pkt);
1520     size_t total_size = size + e1000x_fcs_len(core->mac);
1521     const E1000E_RingInfo *rxi;
1522     size_t ps_hdr_len = 0;
1523     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1524     bool is_first = true;
1525 
1526     rxi = rxr->i;
1527 
1528     do {
1529         hwaddr ba[MAX_PS_BUFFERS];
1530         e1000e_ba_state bastate = { { 0 } };
1531         bool is_last = false;
1532 
1533         desc_size = total_size - desc_offset;
1534 
1535         if (desc_size > core->rx_desc_buf_size) {
1536             desc_size = core->rx_desc_buf_size;
1537         }
1538 
1539         if (e1000e_ring_empty(core, rxi)) {
1540             return;
1541         }
1542 
1543         base = e1000e_ring_head_descr(core, rxi);
1544 
1545         pci_dma_read(d, base, &desc, core->rx_desc_len);
1546 
1547         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1548 
1549         e1000e_read_rx_descr(core, &desc, ba);
1550 
1551         if (ba[0]) {
1552             if (desc_offset < size) {
1553                 static const uint32_t fcs_pad;
1554                 size_t iov_copy;
1555                 size_t copy_size = size - desc_offset;
1556                 if (copy_size > core->rx_desc_buf_size) {
1557                     copy_size = core->rx_desc_buf_size;
1558                 }
1559 
1560                 /* For PS mode copy the packet header first */
1561                 if (do_ps) {
1562                     if (is_first) {
1563                         size_t ps_hdr_copied = 0;
1564                         do {
1565                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1566                                            iov->iov_len - iov_ofs);
1567 
1568                             e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1569                                                       iov->iov_base, iov_copy);
1570 
1571                             copy_size -= iov_copy;
1572                             ps_hdr_copied += iov_copy;
1573 
1574                             iov_ofs += iov_copy;
1575                             if (iov_ofs == iov->iov_len) {
1576                                 iov++;
1577                                 iov_ofs = 0;
1578                             }
1579                         } while (ps_hdr_copied < ps_hdr_len);
1580 
1581                         is_first = false;
1582                     } else {
1583                         /* Leave buffer 0 of each descriptor except first */
1584                         /* empty as per spec 7.1.5.1                      */
1585                         e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1586                                                        NULL, 0);
1587                     }
1588                 }
1589 
1590                 /* Copy packet payload */
1591                 while (copy_size) {
1592                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1593 
1594                     e1000e_write_to_rx_buffers(core, ba, &bastate,
1595                                             iov->iov_base + iov_ofs, iov_copy);
1596 
1597                     copy_size -= iov_copy;
1598                     iov_ofs += iov_copy;
1599                     if (iov_ofs == iov->iov_len) {
1600                         iov++;
1601                         iov_ofs = 0;
1602                     }
1603                 }
1604 
1605                 if (desc_offset + desc_size >= total_size) {
1606                     /* Simulate FCS checksum presence in the last descriptor */
1607                     e1000e_write_to_rx_buffers(core, ba, &bastate,
1608                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1609                 }
1610             }
1611         } else { /* as per intel docs; skip descriptors with null buf addr */
1612             trace_e1000e_rx_null_descriptor();
1613         }
1614         desc_offset += desc_size;
1615         if (desc_offset >= total_size) {
1616             is_last = true;
1617         }
1618 
1619         e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1620                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1621         e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
1622 
1623         e1000e_ring_advance(core, rxi,
1624                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1625 
1626     } while (desc_offset < total_size);
1627 
1628     e1000e_update_rx_stats(core, size, total_size);
1629 }
1630 
1631 static inline void
1632 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1633 {
1634     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1635 
1636     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1637         net_rx_pkt_fix_l4_csum(pkt);
1638     }
1639 }
1640 
1641 ssize_t
1642 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1643 {
1644     return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
1645 }
1646 
1647 static ssize_t
1648 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
1649                         bool has_vnet)
1650 {
1651     uint32_t n = 0;
1652     uint8_t buf[ETH_ZLEN];
1653     struct iovec min_iov;
1654     size_t size, orig_size;
1655     size_t iov_ofs = 0;
1656     E1000E_RxRing rxr;
1657     E1000E_RSSInfo rss_info;
1658     size_t total_size;
1659     ssize_t retval;
1660     bool rdmts_hit;
1661 
1662     trace_e1000e_rx_receive_iov(iovcnt);
1663 
1664     if (!e1000x_hw_rx_enabled(core->mac)) {
1665         return -1;
1666     }
1667 
1668     /* Pull virtio header in */
1669     if (has_vnet) {
1670         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1671         iov_ofs = sizeof(struct virtio_net_hdr);
1672     } else {
1673         net_rx_pkt_unset_vhdr(core->rx_pkt);
1674     }
1675 
1676     orig_size = iov_size(iov, iovcnt);
1677     size = orig_size - iov_ofs;
1678 
1679     /* Pad to minimum Ethernet frame length */
1680     if (size < sizeof(buf)) {
1681         iov_to_buf(iov, iovcnt, iov_ofs, buf, size);
1682         memset(&buf[size], 0, sizeof(buf) - size);
1683         e1000x_inc_reg_if_not_full(core->mac, RUC);
1684         min_iov.iov_base = buf;
1685         min_iov.iov_len = size = sizeof(buf);
1686         iovcnt = 1;
1687         iov = &min_iov;
1688         iov_ofs = 0;
1689     } else {
1690         iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4);
1691     }
1692 
1693     /* Discard oversized packets if !LPE and !SBP. */
1694     if (e1000x_is_oversized(core->mac, size)) {
1695         return orig_size;
1696     }
1697 
1698     net_rx_pkt_set_packet_type(core->rx_pkt,
1699         get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
1700 
1701     if (!e1000e_receive_filter(core, buf)) {
1702         trace_e1000e_rx_flt_dropped();
1703         return orig_size;
1704     }
1705 
1706     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1707                                e1000x_vlan_enabled(core->mac), core->mac[VET]);
1708 
1709     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1710     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1711 
1712     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1713         e1000x_fcs_len(core->mac);
1714 
1715     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1716         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1717 
1718         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1719 
1720         retval = orig_size;
1721 
1722         /* Perform small receive detection (RSRPD) */
1723         if (total_size < core->mac[RSRPD]) {
1724             n |= E1000_ICS_SRPD;
1725         }
1726 
1727         /* Perform ACK receive detection */
1728         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1729              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1730             n |= E1000_ICS_ACK;
1731         }
1732 
1733         /* Check if receive descriptor minimum threshold hit */
1734         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1735         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1736 
1737         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1738     } else {
1739         n |= E1000_ICS_RXO;
1740         retval = 0;
1741 
1742         trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1743     }
1744 
1745     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1746         trace_e1000e_rx_interrupt_set(n);
1747         e1000e_set_interrupt_cause(core, n);
1748     } else {
1749         trace_e1000e_rx_interrupt_delayed(n);
1750     }
1751 
1752     return retval;
1753 }
1754 
1755 static inline bool
1756 e1000e_have_autoneg(E1000ECore *core)
1757 {
1758     return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
1759 }
1760 
1761 static void e1000e_update_flowctl_status(E1000ECore *core)
1762 {
1763     if (e1000e_have_autoneg(core) &&
1764         core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
1765         trace_e1000e_link_autoneg_flowctl(true);
1766         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1767     } else {
1768         trace_e1000e_link_autoneg_flowctl(false);
1769     }
1770 }
1771 
1772 static inline void
1773 e1000e_link_down(E1000ECore *core)
1774 {
1775     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1776     e1000e_update_flowctl_status(core);
1777 }
1778 
1779 static inline void
1780 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1781 {
1782     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1783     core->phy[0][MII_BMCR] = val & ~(0x3f |
1784                                      MII_BMCR_RESET |
1785                                      MII_BMCR_ANRESTART);
1786 
1787     if ((val & MII_BMCR_ANRESTART) &&
1788         e1000e_have_autoneg(core)) {
1789         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1790     }
1791 }
1792 
1793 static void
1794 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1795 {
1796     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1797 
1798     if (val & BIT(10)) {
1799         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1800     }
1801 }
1802 
1803 static void
1804 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1805 {
1806     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1807 }
1808 
1809 void
1810 e1000e_core_set_link_status(E1000ECore *core)
1811 {
1812     NetClientState *nc = qemu_get_queue(core->owner_nic);
1813     uint32_t old_status = core->mac[STATUS];
1814 
1815     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1816 
1817     if (nc->link_down) {
1818         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1819     } else {
1820         if (e1000e_have_autoneg(core) &&
1821             !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
1822             e1000x_restart_autoneg(core->mac, core->phy[0],
1823                                    core->autoneg_timer);
1824         } else {
1825             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1826             e1000e_start_recv(core);
1827         }
1828     }
1829 
1830     if (core->mac[STATUS] != old_status) {
1831         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1832     }
1833 }
1834 
1835 static void
1836 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1837 {
1838     trace_e1000e_core_ctrl_write(index, val);
1839 
1840     /* RST is self clearing */
1841     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1842     core->mac[CTRL_DUP] = core->mac[CTRL];
1843 
1844     trace_e1000e_link_set_params(
1845         !!(val & E1000_CTRL_ASDE),
1846         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1847         !!(val & E1000_CTRL_FRCSPD),
1848         !!(val & E1000_CTRL_FRCDPX),
1849         !!(val & E1000_CTRL_RFCE),
1850         !!(val & E1000_CTRL_TFCE));
1851 
1852     if (val & E1000_CTRL_RST) {
1853         trace_e1000e_core_ctrl_sw_reset();
1854         e1000e_reset(core, true);
1855     }
1856 
1857     if (val & E1000_CTRL_PHY_RST) {
1858         trace_e1000e_core_ctrl_phy_reset();
1859         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1860     }
1861 }
1862 
1863 static void
1864 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1865 {
1866     trace_e1000e_rx_set_rfctl(val);
1867 
1868     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1869         trace_e1000e_wrn_iscsi_filtering_not_supported();
1870     }
1871 
1872     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1873         trace_e1000e_wrn_nfsw_filtering_not_supported();
1874     }
1875 
1876     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1877         trace_e1000e_wrn_nfsr_filtering_not_supported();
1878     }
1879 
1880     core->mac[RFCTL] = val;
1881 }
1882 
1883 static void
1884 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1885 {
1886     int i;
1887     core->rx_desc_buf_size = 0;
1888 
1889     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1890         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1891     }
1892 }
1893 
1894 static void
1895 e1000e_parse_rxbufsize(E1000ECore *core)
1896 {
1897     uint32_t rctl = core->mac[RCTL];
1898 
1899     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1900 
1901     if (rctl & E1000_RCTL_DTYP_MASK) {
1902         uint32_t bsize;
1903 
1904         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1905         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1906 
1907         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1908         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1909 
1910         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1911         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1912 
1913         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1914         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1915     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1916         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1917         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1918     } else {
1919         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1920     }
1921 
1922     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1923                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1924 
1925     e1000e_calc_per_desc_buf_size(core);
1926 }
1927 
1928 static void
1929 e1000e_calc_rxdesclen(E1000ECore *core)
1930 {
1931     if (e1000e_rx_use_legacy_descriptor(core)) {
1932         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1933     } else {
1934         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1935             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1936         } else {
1937             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1938         }
1939     }
1940     trace_e1000e_rx_desc_len(core->rx_desc_len);
1941 }
1942 
1943 static void
1944 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1945 {
1946     core->mac[RCTL] = val;
1947     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1948 
1949     if (val & E1000_RCTL_EN) {
1950         e1000e_parse_rxbufsize(core);
1951         e1000e_calc_rxdesclen(core);
1952         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1953                                 E1000_RING_DESC_LEN_SHIFT;
1954 
1955         e1000e_start_recv(core);
1956     }
1957 }
1958 
1959 static
1960 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1961 (E1000ECore *, int, uint16_t) = {
1962     [0] = {
1963         [MII_BMCR]     = e1000e_set_phy_ctrl,
1964         [PHY_PAGE]     = e1000e_set_phy_page,
1965         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1966     }
1967 };
1968 
1969 static inline void
1970 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1971 {
1972     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1973     core->mac[IMS] &= ~bits;
1974 }
1975 
1976 static inline bool
1977 e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
1978 {
1979     if (timer->running) {
1980         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1981 
1982         return true;
1983     }
1984 
1985     if (timer->core->mac[timer->delay_reg] != 0) {
1986         e1000e_intrmgr_rearm_timer(timer);
1987     }
1988 
1989     return false;
1990 }
1991 
1992 static inline bool
1993 e1000e_itr_should_postpone(E1000ECore *core)
1994 {
1995     return e1000e_postpone_interrupt(&core->itr);
1996 }
1997 
1998 static inline bool
1999 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
2000 {
2001     return e1000e_postpone_interrupt(&core->eitr[idx]);
2002 }
2003 
2004 static void
2005 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2006 {
2007     uint32_t effective_eiac;
2008 
2009     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2010         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2011         if (vec < E1000E_MSIX_VEC_NUM) {
2012             if (!e1000e_eitr_should_postpone(core, vec)) {
2013                 trace_e1000e_irq_msix_notify_vec(vec);
2014                 msix_notify(core->owner, vec);
2015             }
2016         } else {
2017             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2018         }
2019     } else {
2020         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2021     }
2022 
2023     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2024         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2025         core->mac[IAM] &= ~cause;
2026     }
2027 
2028     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2029 
2030     effective_eiac = core->mac[EIAC] & cause;
2031 
2032     core->mac[ICR] &= ~effective_eiac;
2033     core->msi_causes_pending &= ~effective_eiac;
2034 
2035     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2036         core->mac[IMS] &= ~effective_eiac;
2037     }
2038 }
2039 
2040 static void
2041 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2042 {
2043     if (causes & E1000_ICR_RXQ0) {
2044         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2045                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2046     }
2047 
2048     if (causes & E1000_ICR_RXQ1) {
2049         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2050                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2051     }
2052 
2053     if (causes & E1000_ICR_TXQ0) {
2054         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2055                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2056     }
2057 
2058     if (causes & E1000_ICR_TXQ1) {
2059         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2060                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2061     }
2062 
2063     if (causes & E1000_ICR_OTHER) {
2064         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2065                                E1000_IVAR_OTHER(core->mac[IVAR]));
2066     }
2067 }
2068 
2069 static void
2070 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2071 {
2072     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2073         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2074         if (vec < E1000E_MSIX_VEC_NUM) {
2075             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2076             msix_clr_pending(core->owner, vec);
2077         } else {
2078             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2079         }
2080     } else {
2081         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2082     }
2083 }
2084 
2085 static void
2086 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2087 {
2088     if (causes & E1000_ICR_RXQ0) {
2089         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2090                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2091     }
2092 
2093     if (causes & E1000_ICR_RXQ1) {
2094         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2095                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2096     }
2097 
2098     if (causes & E1000_ICR_TXQ0) {
2099         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2100                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2101     }
2102 
2103     if (causes & E1000_ICR_TXQ1) {
2104         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2105                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2106     }
2107 
2108     if (causes & E1000_ICR_OTHER) {
2109         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2110                               E1000_IVAR_OTHER(core->mac[IVAR]));
2111     }
2112 }
2113 
2114 static inline void
2115 e1000e_fix_icr_asserted(E1000ECore *core)
2116 {
2117     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2118     if (core->mac[ICR]) {
2119         core->mac[ICR] |= E1000_ICR_ASSERTED;
2120     }
2121 
2122     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2123 }
2124 
2125 static void
2126 e1000e_send_msi(E1000ECore *core, bool msix)
2127 {
2128     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2129 
2130     core->msi_causes_pending &= causes;
2131     causes ^= core->msi_causes_pending;
2132     if (causes == 0) {
2133         return;
2134     }
2135     core->msi_causes_pending |= causes;
2136 
2137     if (msix) {
2138         e1000e_msix_notify(core, causes);
2139     } else {
2140         if (!e1000e_itr_should_postpone(core)) {
2141             trace_e1000e_irq_msi_notify(causes);
2142             msi_notify(core->owner, 0);
2143         }
2144     }
2145 }
2146 
2147 static void
2148 e1000e_update_interrupt_state(E1000ECore *core)
2149 {
2150     bool interrupts_pending;
2151     bool is_msix = msix_enabled(core->owner);
2152 
2153     /* Set ICR[OTHER] for MSI-X */
2154     if (is_msix) {
2155         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2156             core->mac[ICR] |= E1000_ICR_OTHER;
2157             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2158         }
2159     }
2160 
2161     e1000e_fix_icr_asserted(core);
2162 
2163     /*
2164      * Make sure ICR and ICS registers have the same value.
2165      * The spec says that the ICS register is write-only.  However in practice,
2166      * on real hardware ICS is readable, and for reads it has the same value as
2167      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2168      *
2169      * The VxWorks PRO/1000 driver uses this behaviour.
2170      */
2171     core->mac[ICS] = core->mac[ICR];
2172 
2173     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2174     if (!interrupts_pending) {
2175         core->msi_causes_pending = 0;
2176     }
2177 
2178     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2179                                         core->mac[ICR], core->mac[IMS]);
2180 
2181     if (is_msix || msi_enabled(core->owner)) {
2182         if (interrupts_pending) {
2183             e1000e_send_msi(core, is_msix);
2184         }
2185     } else {
2186         if (interrupts_pending) {
2187             if (!e1000e_itr_should_postpone(core)) {
2188                 e1000e_raise_legacy_irq(core);
2189             }
2190         } else {
2191             e1000e_lower_legacy_irq(core);
2192         }
2193     }
2194 }
2195 
2196 static void
2197 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2198 {
2199     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2200 
2201     val |= e1000e_intmgr_collect_delayed_causes(core);
2202     core->mac[ICR] |= val;
2203 
2204     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2205 
2206     e1000e_update_interrupt_state(core);
2207 }
2208 
2209 static inline void
2210 e1000e_autoneg_timer(void *opaque)
2211 {
2212     E1000ECore *core = opaque;
2213     if (!qemu_get_queue(core->owner_nic)->link_down) {
2214         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2215         e1000e_start_recv(core);
2216 
2217         e1000e_update_flowctl_status(core);
2218         /* signal link status change to the guest */
2219         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2220     }
2221 }
2222 
2223 static inline uint16_t
2224 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2225 {
2226     uint16_t index = (addr & 0x1ffff) >> 2;
2227     return index + (mac_reg_access[index] & 0xfffe);
2228 }
2229 
2230 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2231     [0] = {
2232         [MII_BMCR]              = PHY_ANYPAGE | PHY_RW,
2233         [MII_BMSR]              = PHY_ANYPAGE | PHY_R,
2234         [MII_PHYID1]            = PHY_ANYPAGE | PHY_R,
2235         [MII_PHYID2]            = PHY_ANYPAGE | PHY_R,
2236         [MII_ANAR]              = PHY_ANYPAGE | PHY_RW,
2237         [MII_ANLPAR]            = PHY_ANYPAGE | PHY_R,
2238         [MII_ANER]              = PHY_ANYPAGE | PHY_R,
2239         [MII_ANNP]              = PHY_ANYPAGE | PHY_RW,
2240         [MII_ANLPRNP]           = PHY_ANYPAGE | PHY_R,
2241         [MII_CTRL1000]          = PHY_ANYPAGE | PHY_RW,
2242         [MII_STAT1000]          = PHY_ANYPAGE | PHY_R,
2243         [MII_EXTSTAT]           = PHY_ANYPAGE | PHY_R,
2244         [PHY_PAGE]              = PHY_ANYPAGE | PHY_RW,
2245 
2246         [PHY_COPPER_CTRL1]      = PHY_RW,
2247         [PHY_COPPER_STAT1]      = PHY_R,
2248         [PHY_COPPER_CTRL3]      = PHY_RW,
2249         [PHY_RX_ERR_CNTR]       = PHY_R,
2250         [PHY_OEM_BITS]          = PHY_RW,
2251         [PHY_BIAS_1]            = PHY_RW,
2252         [PHY_BIAS_2]            = PHY_RW,
2253         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2254         [PHY_COPPER_STAT2]      = PHY_R,
2255         [PHY_COPPER_CTRL2]      = PHY_RW
2256     },
2257     [2] = {
2258         [PHY_MAC_CTRL1]         = PHY_RW,
2259         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2260         [PHY_MAC_STAT]          = PHY_R,
2261         [PHY_MAC_CTRL2]         = PHY_RW
2262     },
2263     [3] = {
2264         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2265         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2266         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2267         [PHY_LED_45_CTRL]       = PHY_RW
2268     },
2269     [5] = {
2270         [PHY_1000T_SKEW]        = PHY_R,
2271         [PHY_1000T_SWAP]        = PHY_R
2272     },
2273     [6] = {
2274         [PHY_CRC_COUNTERS]      = PHY_R
2275     }
2276 };
2277 
2278 static bool
2279 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2280                          char cap, uint8_t *page)
2281 {
2282     *page =
2283         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2284                                                     : core->phy[0][PHY_PAGE];
2285 
2286     if (*page >= E1000E_PHY_PAGES) {
2287         return false;
2288     }
2289 
2290     return e1000e_phy_regcap[*page][addr] & cap;
2291 }
2292 
2293 static void
2294 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2295                      uint32_t addr, uint16_t data)
2296 {
2297     assert(page < E1000E_PHY_PAGES);
2298     assert(addr < E1000E_PHY_PAGE_SIZE);
2299 
2300     if (e1000e_phyreg_writeops[page][addr]) {
2301         e1000e_phyreg_writeops[page][addr](core, addr, data);
2302     } else {
2303         core->phy[page][addr] = data;
2304     }
2305 }
2306 
2307 static void
2308 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2309 {
2310     uint32_t data = val & E1000_MDIC_DATA_MASK;
2311     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2312     uint8_t page;
2313 
2314     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2315         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2316     } else if (val & E1000_MDIC_OP_READ) {
2317         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2318             trace_e1000e_core_mdic_read_unhandled(page, addr);
2319             val |= E1000_MDIC_ERROR;
2320         } else {
2321             val = (val ^ data) | core->phy[page][addr];
2322             trace_e1000e_core_mdic_read(page, addr, val);
2323         }
2324     } else if (val & E1000_MDIC_OP_WRITE) {
2325         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2326             trace_e1000e_core_mdic_write_unhandled(page, addr);
2327             val |= E1000_MDIC_ERROR;
2328         } else {
2329             trace_e1000e_core_mdic_write(page, addr, data);
2330             e1000e_phy_reg_write(core, page, addr, data);
2331         }
2332     }
2333     core->mac[MDIC] = val | E1000_MDIC_READY;
2334 
2335     if (val & E1000_MDIC_INT_EN) {
2336         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2337     }
2338 }
2339 
2340 static void
2341 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2342 {
2343     core->mac[index] = val & 0xffff;
2344     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2345     e1000e_start_recv(core);
2346 }
2347 
2348 static void
2349 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2350 {
2351     if ((val & E1000_STATUS_PHYRA) == 0) {
2352         core->mac[index] &= ~E1000_STATUS_PHYRA;
2353     }
2354 }
2355 
2356 static void
2357 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2358 {
2359     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2360                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2361 
2362     /* Zero self-clearing bits */
2363     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2364     core->mac[CTRL_EXT] = val;
2365 }
2366 
2367 static void
2368 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2369 {
2370     int i;
2371 
2372     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2373 
2374     if (!msix_enabled(core->owner)) {
2375         return;
2376     }
2377 
2378     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2379         if (core->mac[PBACLR] & BIT(i)) {
2380             msix_clr_pending(core->owner, i);
2381         }
2382     }
2383 }
2384 
2385 static void
2386 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2387 {
2388     core->mac[FCRTH] = val & 0xFFF8;
2389 }
2390 
2391 static void
2392 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2393 {
2394     core->mac[FCRTL] = val & 0x8000FFF8;
2395 }
2396 
2397 #define E1000E_LOW_BITS_SET_FUNC(num)                                \
2398     static void                                                      \
2399     e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
2400     {                                                                \
2401         core->mac[index] = val & (BIT(num) - 1);                     \
2402     }
2403 
2404 E1000E_LOW_BITS_SET_FUNC(4)
2405 E1000E_LOW_BITS_SET_FUNC(6)
2406 E1000E_LOW_BITS_SET_FUNC(11)
2407 E1000E_LOW_BITS_SET_FUNC(12)
2408 E1000E_LOW_BITS_SET_FUNC(13)
2409 E1000E_LOW_BITS_SET_FUNC(16)
2410 
2411 static void
2412 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2413 {
2414     core->mac[VET] = val & 0xffff;
2415     trace_e1000e_vlan_vet(core->mac[VET]);
2416 }
2417 
2418 static void
2419 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2420 {
2421     core->mac[index] = val & E1000_XDLEN_MASK;
2422 }
2423 
2424 static void
2425 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2426 {
2427     core->mac[index] = val & E1000_XDBAL_MASK;
2428 }
2429 
2430 static void
2431 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2432 {
2433     E1000E_TxRing txr;
2434     core->mac[index] = val;
2435 
2436     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2437         e1000e_tx_ring_init(core, &txr, 0);
2438         e1000e_start_xmit(core, &txr);
2439     }
2440 
2441     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2442         e1000e_tx_ring_init(core, &txr, 1);
2443         e1000e_start_xmit(core, &txr);
2444     }
2445 }
2446 
2447 static void
2448 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2449 {
2450     E1000E_TxRing txr;
2451     int qidx = e1000e_mq_queue_idx(TDT, index);
2452     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2453 
2454     core->mac[index] = val & 0xffff;
2455 
2456     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2457         e1000e_tx_ring_init(core, &txr, qidx);
2458         e1000e_start_xmit(core, &txr);
2459     }
2460 }
2461 
2462 static void
2463 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2464 {
2465     trace_e1000e_irq_write_ics(val);
2466     e1000e_set_interrupt_cause(core, val);
2467 }
2468 
2469 static void
2470 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2471 {
2472     uint32_t icr = 0;
2473     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2474         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2475         trace_e1000e_irq_icr_process_iame();
2476         e1000e_clear_ims_bits(core, core->mac[IAM]);
2477     }
2478 
2479     icr = core->mac[ICR] & ~val;
2480     /*
2481      * Windows driver expects that the "receive overrun" bit and other
2482      * ones to be cleared when the "Other" bit (#24) is cleared.
2483      */
2484     icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2485     trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2486     core->mac[ICR] = icr;
2487     e1000e_update_interrupt_state(core);
2488 }
2489 
2490 static void
2491 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2492 {
2493     trace_e1000e_irq_ims_clear_set_imc(val);
2494     e1000e_clear_ims_bits(core, val);
2495     e1000e_update_interrupt_state(core);
2496 }
2497 
2498 static void
2499 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2500 {
2501     static const uint32_t ims_ext_mask =
2502         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2503         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2504         E1000_IMS_OTHER;
2505 
2506     static const uint32_t ims_valid_mask =
2507         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2508         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2509         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2510         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2511         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2512         E1000_IMS_OTHER;
2513 
2514     uint32_t valid_val = val & ims_valid_mask;
2515 
2516     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2517     core->mac[IMS] |= valid_val;
2518 
2519     if ((valid_val & ims_ext_mask) &&
2520         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2521         msix_enabled(core->owner)) {
2522         e1000e_msix_clear(core, valid_val);
2523     }
2524 
2525     if ((valid_val == ims_valid_mask) &&
2526         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2527         trace_e1000e_irq_fire_all_timers(val);
2528         e1000e_intrmgr_fire_all_timers(core);
2529     }
2530 
2531     e1000e_update_interrupt_state(core);
2532 }
2533 
2534 static void
2535 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2536 {
2537     e1000e_set_16bit(core, index, val);
2538 
2539     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2540         trace_e1000e_irq_rdtr_fpd_running();
2541         e1000e_intrmgr_fire_delayed_interrupts(core);
2542     } else {
2543         trace_e1000e_irq_rdtr_fpd_not_running();
2544     }
2545 }
2546 
2547 static void
2548 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2549 {
2550     e1000e_set_16bit(core, index, val);
2551 
2552     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2553         trace_e1000e_irq_tidv_fpd_running();
2554         e1000e_intrmgr_fire_delayed_interrupts(core);
2555     } else {
2556         trace_e1000e_irq_tidv_fpd_not_running();
2557     }
2558 }
2559 
2560 static uint32_t
2561 e1000e_mac_readreg(E1000ECore *core, int index)
2562 {
2563     return core->mac[index];
2564 }
2565 
2566 static uint32_t
2567 e1000e_mac_ics_read(E1000ECore *core, int index)
2568 {
2569     trace_e1000e_irq_read_ics(core->mac[ICS]);
2570     return core->mac[ICS];
2571 }
2572 
2573 static uint32_t
2574 e1000e_mac_ims_read(E1000ECore *core, int index)
2575 {
2576     trace_e1000e_irq_read_ims(core->mac[IMS]);
2577     return core->mac[IMS];
2578 }
2579 
2580 static uint32_t
2581 e1000e_mac_swsm_read(E1000ECore *core, int index)
2582 {
2583     uint32_t val = core->mac[SWSM];
2584     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2585     return val;
2586 }
2587 
2588 static uint32_t
2589 e1000e_mac_itr_read(E1000ECore *core, int index)
2590 {
2591     return core->itr_guest_value;
2592 }
2593 
2594 static uint32_t
2595 e1000e_mac_eitr_read(E1000ECore *core, int index)
2596 {
2597     return core->eitr_guest_value[index - EITR];
2598 }
2599 
2600 static uint32_t
2601 e1000e_mac_icr_read(E1000ECore *core, int index)
2602 {
2603     uint32_t ret = core->mac[ICR];
2604     trace_e1000e_irq_icr_read_entry(ret);
2605 
2606     if (core->mac[IMS] == 0) {
2607         trace_e1000e_irq_icr_clear_zero_ims();
2608         core->mac[ICR] = 0;
2609     }
2610 
2611     if (!msix_enabled(core->owner)) {
2612         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2613         core->mac[ICR] = 0;
2614     }
2615 
2616     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2617         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2618         trace_e1000e_irq_icr_clear_iame();
2619         core->mac[ICR] = 0;
2620         trace_e1000e_irq_icr_process_iame();
2621         e1000e_clear_ims_bits(core, core->mac[IAM]);
2622     }
2623 
2624     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2625     e1000e_update_interrupt_state(core);
2626     return ret;
2627 }
2628 
2629 static uint32_t
2630 e1000e_mac_read_clr4(E1000ECore *core, int index)
2631 {
2632     uint32_t ret = core->mac[index];
2633 
2634     core->mac[index] = 0;
2635     return ret;
2636 }
2637 
2638 static uint32_t
2639 e1000e_mac_read_clr8(E1000ECore *core, int index)
2640 {
2641     uint32_t ret = core->mac[index];
2642 
2643     core->mac[index] = 0;
2644     core->mac[index - 1] = 0;
2645     return ret;
2646 }
2647 
2648 static uint32_t
2649 e1000e_get_ctrl(E1000ECore *core, int index)
2650 {
2651     uint32_t val = core->mac[CTRL];
2652 
2653     trace_e1000e_link_read_params(
2654         !!(val & E1000_CTRL_ASDE),
2655         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2656         !!(val & E1000_CTRL_FRCSPD),
2657         !!(val & E1000_CTRL_FRCDPX),
2658         !!(val & E1000_CTRL_RFCE),
2659         !!(val & E1000_CTRL_TFCE));
2660 
2661     return val;
2662 }
2663 
2664 static uint32_t
2665 e1000e_get_status(E1000ECore *core, int index)
2666 {
2667     uint32_t res = core->mac[STATUS];
2668 
2669     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2670         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2671     }
2672 
2673     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2674         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2675     } else {
2676         res |= E1000_STATUS_FD;
2677     }
2678 
2679     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2680         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2681         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2682         case E1000_CTRL_SPD_10:
2683             res |= E1000_STATUS_SPEED_10;
2684             break;
2685         case E1000_CTRL_SPD_100:
2686             res |= E1000_STATUS_SPEED_100;
2687             break;
2688         case E1000_CTRL_SPD_1000:
2689         default:
2690             res |= E1000_STATUS_SPEED_1000;
2691             break;
2692         }
2693     } else {
2694         res |= E1000_STATUS_SPEED_1000;
2695     }
2696 
2697     trace_e1000e_link_status(
2698         !!(res & E1000_STATUS_LU),
2699         !!(res & E1000_STATUS_FD),
2700         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2701         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2702 
2703     return res;
2704 }
2705 
2706 static uint32_t
2707 e1000e_get_tarc(E1000ECore *core, int index)
2708 {
2709     return core->mac[index] & ((BIT(11) - 1) |
2710                                 BIT(27)      |
2711                                 BIT(28)      |
2712                                 BIT(29)      |
2713                                 BIT(30));
2714 }
2715 
2716 static void
2717 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2718 {
2719     core->mac[index] = val;
2720 }
2721 
2722 static void
2723 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2724 {
2725     uint32_t macaddr[2];
2726 
2727     core->mac[index] = val;
2728 
2729     macaddr[0] = cpu_to_le32(core->mac[RA]);
2730     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2731     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2732         (uint8_t *) macaddr);
2733 
2734     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2735 }
2736 
2737 static void
2738 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2739 {
2740     static const uint32_t ro_bits = E1000_EECD_PRES          |
2741                                     E1000_EECD_AUTO_RD       |
2742                                     E1000_EECD_SIZE_EX_MASK;
2743 
2744     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2745 }
2746 
2747 static void
2748 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2749 {
2750     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2751     uint32_t flags = 0;
2752     uint32_t data = 0;
2753 
2754     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2755         data = core->eeprom[addr];
2756         flags = E1000_EERW_DONE;
2757     }
2758 
2759     core->mac[EERD] = flags                           |
2760                       (addr << E1000_EERW_ADDR_SHIFT) |
2761                       (data << E1000_EERW_DATA_SHIFT);
2762 }
2763 
2764 static void
2765 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2766 {
2767     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2768     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2769     uint32_t flags = 0;
2770 
2771     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2772         core->eeprom[addr] = data;
2773         flags = E1000_EERW_DONE;
2774     }
2775 
2776     core->mac[EERD] = flags                           |
2777                       (addr << E1000_EERW_ADDR_SHIFT) |
2778                       (data << E1000_EERW_DATA_SHIFT);
2779 }
2780 
2781 static void
2782 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2783 {
2784     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2785 }
2786 
2787 static void
2788 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2789 {
2790     uint32_t interval = val & 0xffff;
2791 
2792     trace_e1000e_irq_itr_set(val);
2793 
2794     core->itr_guest_value = interval;
2795     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2796 }
2797 
2798 static void
2799 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2800 {
2801     uint32_t interval = val & 0xffff;
2802     uint32_t eitr_num = index - EITR;
2803 
2804     trace_e1000e_irq_eitr_set(eitr_num, val);
2805 
2806     core->eitr_guest_value[eitr_num] = interval;
2807     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2808 }
2809 
2810 static void
2811 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2812 {
2813     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2814 
2815         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2816             qemu_log_mask(LOG_GUEST_ERROR,
2817                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2818             return;
2819         }
2820 
2821         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2822             qemu_log_mask(LOG_GUEST_ERROR,
2823                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2824             return;
2825         }
2826     }
2827 
2828     core->mac[PSRCTL] = val;
2829 }
2830 
2831 static void
2832 e1000e_update_rx_offloads(E1000ECore *core)
2833 {
2834     int cso_state = e1000e_rx_l4_cso_enabled(core);
2835 
2836     trace_e1000e_rx_set_cso(cso_state);
2837 
2838     if (core->has_vnet) {
2839         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2840                          cso_state, 0, 0, 0, 0);
2841     }
2842 }
2843 
2844 static void
2845 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2846 {
2847     core->mac[RXCSUM] = val;
2848     e1000e_update_rx_offloads(core);
2849 }
2850 
2851 static void
2852 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2853 {
2854     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2855     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2856 }
2857 
2858 static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
2859 {
2860     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2861     return core->mac[SYSTIML];
2862 }
2863 
2864 static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
2865 {
2866     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2867     return core->mac[RXSATRH];
2868 }
2869 
2870 static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
2871 {
2872     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2873     return core->mac[TXSTMPH];
2874 }
2875 
2876 static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
2877 {
2878     e1000x_set_timinca(core->mac, &core->timadj, val);
2879 }
2880 
2881 static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
2882 {
2883     core->mac[TIMADJH] = val;
2884     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2885 }
2886 
2887 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2888 typedef uint32_t (*readops)(E1000ECore *, int);
2889 static const readops e1000e_macreg_readops[] = {
2890     e1000e_getreg(PBA),
2891     e1000e_getreg(WUFC),
2892     e1000e_getreg(MANC),
2893     e1000e_getreg(TOTL),
2894     e1000e_getreg(RDT0),
2895     e1000e_getreg(RDBAH0),
2896     e1000e_getreg(TDBAL1),
2897     e1000e_getreg(RDLEN0),
2898     e1000e_getreg(RDH1),
2899     e1000e_getreg(LATECOL),
2900     e1000e_getreg(SEQEC),
2901     e1000e_getreg(XONTXC),
2902     e1000e_getreg(AIT),
2903     e1000e_getreg(TDFH),
2904     e1000e_getreg(TDFT),
2905     e1000e_getreg(TDFHS),
2906     e1000e_getreg(TDFTS),
2907     e1000e_getreg(TDFPC),
2908     e1000e_getreg(WUS),
2909     e1000e_getreg(PBS),
2910     e1000e_getreg(RDFH),
2911     e1000e_getreg(RDFT),
2912     e1000e_getreg(RDFHS),
2913     e1000e_getreg(RDFTS),
2914     e1000e_getreg(RDFPC),
2915     e1000e_getreg(GORCL),
2916     e1000e_getreg(MGTPRC),
2917     e1000e_getreg(EERD),
2918     e1000e_getreg(EIAC),
2919     e1000e_getreg(PSRCTL),
2920     e1000e_getreg(MANC2H),
2921     e1000e_getreg(RXCSUM),
2922     e1000e_getreg(GSCL_3),
2923     e1000e_getreg(GSCN_2),
2924     e1000e_getreg(RSRPD),
2925     e1000e_getreg(RDBAL1),
2926     e1000e_getreg(FCAH),
2927     e1000e_getreg(FCRTH),
2928     e1000e_getreg(FLOP),
2929     e1000e_getreg(FLASHT),
2930     e1000e_getreg(RXSTMPH),
2931     e1000e_getreg(TXSTMPL),
2932     e1000e_getreg(TIMADJL),
2933     e1000e_getreg(TXDCTL),
2934     e1000e_getreg(RDH0),
2935     e1000e_getreg(TDT1),
2936     e1000e_getreg(TNCRS),
2937     e1000e_getreg(RJC),
2938     e1000e_getreg(IAM),
2939     e1000e_getreg(GSCL_2),
2940     e1000e_getreg(RDBAH1),
2941     e1000e_getreg(FLSWDATA),
2942     e1000e_getreg(TIPG),
2943     e1000e_getreg(FLMNGCTL),
2944     e1000e_getreg(FLMNGCNT),
2945     e1000e_getreg(TSYNCTXCTL),
2946     e1000e_getreg(EXTCNF_SIZE),
2947     e1000e_getreg(EXTCNF_CTRL),
2948     e1000e_getreg(EEMNGDATA),
2949     e1000e_getreg(CTRL_EXT),
2950     e1000e_getreg(SYSTIMH),
2951     e1000e_getreg(EEMNGCTL),
2952     e1000e_getreg(FLMNGDATA),
2953     e1000e_getreg(TSYNCRXCTL),
2954     e1000e_getreg(TDH),
2955     e1000e_getreg(LEDCTL),
2956     e1000e_getreg(TCTL),
2957     e1000e_getreg(TDBAL),
2958     e1000e_getreg(TDLEN),
2959     e1000e_getreg(TDH1),
2960     e1000e_getreg(RADV),
2961     e1000e_getreg(ECOL),
2962     e1000e_getreg(DC),
2963     e1000e_getreg(RLEC),
2964     e1000e_getreg(XOFFTXC),
2965     e1000e_getreg(RFC),
2966     e1000e_getreg(RNBC),
2967     e1000e_getreg(MGTPTC),
2968     e1000e_getreg(TIMINCA),
2969     e1000e_getreg(RXCFGL),
2970     e1000e_getreg(MFUTP01),
2971     e1000e_getreg(FACTPS),
2972     e1000e_getreg(GSCL_1),
2973     e1000e_getreg(GSCN_0),
2974     e1000e_getreg(GCR2),
2975     e1000e_getreg(RDT1),
2976     e1000e_getreg(PBACLR),
2977     e1000e_getreg(FCTTV),
2978     e1000e_getreg(EEWR),
2979     e1000e_getreg(FLSWCTL),
2980     e1000e_getreg(RXDCTL1),
2981     e1000e_getreg(RXSATRL),
2982     e1000e_getreg(RXUDP),
2983     e1000e_getreg(TORL),
2984     e1000e_getreg(TDLEN1),
2985     e1000e_getreg(MCC),
2986     e1000e_getreg(WUC),
2987     e1000e_getreg(EECD),
2988     e1000e_getreg(MFUTP23),
2989     e1000e_getreg(RAID),
2990     e1000e_getreg(FCRTV),
2991     e1000e_getreg(TXDCTL1),
2992     e1000e_getreg(RCTL),
2993     e1000e_getreg(TDT),
2994     e1000e_getreg(MDIC),
2995     e1000e_getreg(FCRUC),
2996     e1000e_getreg(VET),
2997     e1000e_getreg(RDBAL0),
2998     e1000e_getreg(TDBAH1),
2999     e1000e_getreg(RDTR),
3000     e1000e_getreg(SCC),
3001     e1000e_getreg(COLC),
3002     e1000e_getreg(CEXTERR),
3003     e1000e_getreg(XOFFRXC),
3004     e1000e_getreg(IPAV),
3005     e1000e_getreg(GOTCL),
3006     e1000e_getreg(MGTPDC),
3007     e1000e_getreg(GCR),
3008     e1000e_getreg(IVAR),
3009     e1000e_getreg(POEMB),
3010     e1000e_getreg(MFVAL),
3011     e1000e_getreg(FUNCTAG),
3012     e1000e_getreg(GSCL_4),
3013     e1000e_getreg(GSCN_3),
3014     e1000e_getreg(MRQC),
3015     e1000e_getreg(RDLEN1),
3016     e1000e_getreg(FCT),
3017     e1000e_getreg(FLA),
3018     e1000e_getreg(FLOL),
3019     e1000e_getreg(RXDCTL),
3020     e1000e_getreg(RXSTMPL),
3021     e1000e_getreg(TIMADJH),
3022     e1000e_getreg(FCRTL),
3023     e1000e_getreg(TDBAH),
3024     e1000e_getreg(TADV),
3025     e1000e_getreg(XONRXC),
3026     e1000e_getreg(TSCTFC),
3027     e1000e_getreg(RFCTL),
3028     e1000e_getreg(GSCN_1),
3029     e1000e_getreg(FCAL),
3030     e1000e_getreg(FLSWCNT),
3031 
3032     [TOTH]    = e1000e_mac_read_clr8,
3033     [GOTCH]   = e1000e_mac_read_clr8,
3034     [PRC64]   = e1000e_mac_read_clr4,
3035     [PRC255]  = e1000e_mac_read_clr4,
3036     [PRC1023] = e1000e_mac_read_clr4,
3037     [PTC64]   = e1000e_mac_read_clr4,
3038     [PTC255]  = e1000e_mac_read_clr4,
3039     [PTC1023] = e1000e_mac_read_clr4,
3040     [GPRC]    = e1000e_mac_read_clr4,
3041     [TPT]     = e1000e_mac_read_clr4,
3042     [RUC]     = e1000e_mac_read_clr4,
3043     [BPRC]    = e1000e_mac_read_clr4,
3044     [MPTC]    = e1000e_mac_read_clr4,
3045     [IAC]     = e1000e_mac_read_clr4,
3046     [ICR]     = e1000e_mac_icr_read,
3047     [STATUS]  = e1000e_get_status,
3048     [TARC0]   = e1000e_get_tarc,
3049     [ICS]     = e1000e_mac_ics_read,
3050     [TORH]    = e1000e_mac_read_clr8,
3051     [GORCH]   = e1000e_mac_read_clr8,
3052     [PRC127]  = e1000e_mac_read_clr4,
3053     [PRC511]  = e1000e_mac_read_clr4,
3054     [PRC1522] = e1000e_mac_read_clr4,
3055     [PTC127]  = e1000e_mac_read_clr4,
3056     [PTC511]  = e1000e_mac_read_clr4,
3057     [PTC1522] = e1000e_mac_read_clr4,
3058     [GPTC]    = e1000e_mac_read_clr4,
3059     [TPR]     = e1000e_mac_read_clr4,
3060     [ROC]     = e1000e_mac_read_clr4,
3061     [MPRC]    = e1000e_mac_read_clr4,
3062     [BPTC]    = e1000e_mac_read_clr4,
3063     [TSCTC]   = e1000e_mac_read_clr4,
3064     [ITR]     = e1000e_mac_itr_read,
3065     [CTRL]    = e1000e_get_ctrl,
3066     [TARC1]   = e1000e_get_tarc,
3067     [SWSM]    = e1000e_mac_swsm_read,
3068     [IMS]     = e1000e_mac_ims_read,
3069     [SYSTIML] = e1000e_get_systiml,
3070     [RXSATRH] = e1000e_get_rxsatrh,
3071     [TXSTMPH] = e1000e_get_txstmph,
3072 
3073     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3074     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3075     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3076     [RA ... RA + 31]       = e1000e_mac_readreg,
3077     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3078     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
3079     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = e1000e_mac_readreg,
3080     [FFMT ... FFMT + 254]  = e1000e_mac_readreg,
3081     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3082     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3083     [FFLT ... FFLT + 10]   = e1000e_mac_readreg,
3084     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3085     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3086     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3087     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3088     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3089     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3090 };
3091 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3092 
3093 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3094 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3095 static const writeops e1000e_macreg_writeops[] = {
3096     e1000e_putreg(PBA),
3097     e1000e_putreg(SWSM),
3098     e1000e_putreg(WUFC),
3099     e1000e_putreg(RDBAH1),
3100     e1000e_putreg(TDBAH),
3101     e1000e_putreg(TXDCTL),
3102     e1000e_putreg(RDBAH0),
3103     e1000e_putreg(LEDCTL),
3104     e1000e_putreg(FCAL),
3105     e1000e_putreg(FCRUC),
3106     e1000e_putreg(WUC),
3107     e1000e_putreg(WUS),
3108     e1000e_putreg(IPAV),
3109     e1000e_putreg(TDBAH1),
3110     e1000e_putreg(IAM),
3111     e1000e_putreg(EIAC),
3112     e1000e_putreg(IVAR),
3113     e1000e_putreg(TARC0),
3114     e1000e_putreg(TARC1),
3115     e1000e_putreg(FLSWDATA),
3116     e1000e_putreg(POEMB),
3117     e1000e_putreg(MFUTP01),
3118     e1000e_putreg(MFUTP23),
3119     e1000e_putreg(MANC),
3120     e1000e_putreg(MANC2H),
3121     e1000e_putreg(MFVAL),
3122     e1000e_putreg(EXTCNF_CTRL),
3123     e1000e_putreg(FACTPS),
3124     e1000e_putreg(FUNCTAG),
3125     e1000e_putreg(GSCL_1),
3126     e1000e_putreg(GSCL_2),
3127     e1000e_putreg(GSCL_3),
3128     e1000e_putreg(GSCL_4),
3129     e1000e_putreg(GSCN_0),
3130     e1000e_putreg(GSCN_1),
3131     e1000e_putreg(GSCN_2),
3132     e1000e_putreg(GSCN_3),
3133     e1000e_putreg(GCR2),
3134     e1000e_putreg(MRQC),
3135     e1000e_putreg(FLOP),
3136     e1000e_putreg(FLOL),
3137     e1000e_putreg(FLSWCTL),
3138     e1000e_putreg(FLSWCNT),
3139     e1000e_putreg(FLA),
3140     e1000e_putreg(RXDCTL1),
3141     e1000e_putreg(TXDCTL1),
3142     e1000e_putreg(TIPG),
3143     e1000e_putreg(RXSTMPH),
3144     e1000e_putreg(RXSTMPL),
3145     e1000e_putreg(RXSATRL),
3146     e1000e_putreg(RXSATRH),
3147     e1000e_putreg(TXSTMPL),
3148     e1000e_putreg(TXSTMPH),
3149     e1000e_putreg(SYSTIML),
3150     e1000e_putreg(SYSTIMH),
3151     e1000e_putreg(TIMADJL),
3152     e1000e_putreg(RXUDP),
3153     e1000e_putreg(RXCFGL),
3154     e1000e_putreg(TSYNCRXCTL),
3155     e1000e_putreg(TSYNCTXCTL),
3156     e1000e_putreg(EXTCNF_SIZE),
3157     e1000e_putreg(EEMNGCTL),
3158     e1000e_putreg(RA),
3159 
3160     [TDH1]     = e1000e_set_16bit,
3161     [TDT1]     = e1000e_set_tdt,
3162     [TCTL]     = e1000e_set_tctl,
3163     [TDT]      = e1000e_set_tdt,
3164     [MDIC]     = e1000e_set_mdic,
3165     [ICS]      = e1000e_set_ics,
3166     [TDH]      = e1000e_set_16bit,
3167     [RDH0]     = e1000e_set_16bit,
3168     [RDT0]     = e1000e_set_rdt,
3169     [IMC]      = e1000e_set_imc,
3170     [IMS]      = e1000e_set_ims,
3171     [ICR]      = e1000e_set_icr,
3172     [EECD]     = e1000e_set_eecd,
3173     [RCTL]     = e1000e_set_rx_control,
3174     [CTRL]     = e1000e_set_ctrl,
3175     [RDTR]     = e1000e_set_rdtr,
3176     [RADV]     = e1000e_set_16bit,
3177     [TADV]     = e1000e_set_16bit,
3178     [ITR]      = e1000e_set_itr,
3179     [EERD]     = e1000e_set_eerd,
3180     [AIT]      = e1000e_set_16bit,
3181     [TDFH]     = e1000e_set_13bit,
3182     [TDFT]     = e1000e_set_13bit,
3183     [TDFHS]    = e1000e_set_13bit,
3184     [TDFTS]    = e1000e_set_13bit,
3185     [TDFPC]    = e1000e_set_13bit,
3186     [RDFH]     = e1000e_set_13bit,
3187     [RDFHS]    = e1000e_set_13bit,
3188     [RDFT]     = e1000e_set_13bit,
3189     [RDFTS]    = e1000e_set_13bit,
3190     [RDFPC]    = e1000e_set_13bit,
3191     [PBS]      = e1000e_set_6bit,
3192     [GCR]      = e1000e_set_gcr,
3193     [PSRCTL]   = e1000e_set_psrctl,
3194     [RXCSUM]   = e1000e_set_rxcsum,
3195     [RAID]     = e1000e_set_16bit,
3196     [RSRPD]    = e1000e_set_12bit,
3197     [TIDV]     = e1000e_set_tidv,
3198     [TDLEN1]   = e1000e_set_dlen,
3199     [TDLEN]    = e1000e_set_dlen,
3200     [RDLEN0]   = e1000e_set_dlen,
3201     [RDLEN1]   = e1000e_set_dlen,
3202     [TDBAL]    = e1000e_set_dbal,
3203     [TDBAL1]   = e1000e_set_dbal,
3204     [RDBAL0]   = e1000e_set_dbal,
3205     [RDBAL1]   = e1000e_set_dbal,
3206     [RDH1]     = e1000e_set_16bit,
3207     [RDT1]     = e1000e_set_rdt,
3208     [STATUS]   = e1000e_set_status,
3209     [PBACLR]   = e1000e_set_pbaclr,
3210     [CTRL_EXT] = e1000e_set_ctrlext,
3211     [FCAH]     = e1000e_set_16bit,
3212     [FCT]      = e1000e_set_16bit,
3213     [FCTTV]    = e1000e_set_16bit,
3214     [FCRTV]    = e1000e_set_16bit,
3215     [FCRTH]    = e1000e_set_fcrth,
3216     [FCRTL]    = e1000e_set_fcrtl,
3217     [VET]      = e1000e_set_vet,
3218     [RXDCTL]   = e1000e_set_rxdctl,
3219     [FLASHT]   = e1000e_set_16bit,
3220     [EEWR]     = e1000e_set_eewr,
3221     [CTRL_DUP] = e1000e_set_ctrl,
3222     [RFCTL]    = e1000e_set_rfctl,
3223     [RA + 1]   = e1000e_mac_setmacaddr,
3224     [TIMINCA]  = e1000e_set_timinca,
3225     [TIMADJH]  = e1000e_set_timadjh,
3226 
3227     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3228     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3229     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3230     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3231     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
3232     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]    = e1000e_mac_writereg,
3233     [FFMT ... FFMT + 254]    = e1000e_set_4bit,
3234     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3235     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3236     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3237     [FFLT ... FFLT + 10]     = e1000e_set_11bit,
3238     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3239     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3240     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3241     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3242     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3243 };
3244 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3245 
3246 enum { MAC_ACCESS_PARTIAL = 1 };
3247 
3248 /*
3249  * The array below combines alias offsets of the index values for the
3250  * MAC registers that have aliases, with the indication of not fully
3251  * implemented registers (lowest bit). This combination is possible
3252  * because all of the offsets are even.
3253  */
3254 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3255     /* Alias index offsets */
3256     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3257     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3258     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3259     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3260     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3261     [RA_A ... RA_A + 31]      = 0x14f0,
3262     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3263     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3264     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3265     /* Access options */
3266     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3267     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3268     [RDFPC] = MAC_ACCESS_PARTIAL,
3269     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3270     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3271     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3272     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3273     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3274     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3275     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3276     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3277     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3278     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3279 };
3280 
3281 void
3282 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3283 {
3284     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3285 
3286     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3287         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3288             trace_e1000e_wrn_regs_write_trivial(index << 2);
3289         }
3290         trace_e1000e_core_write(index << 2, size, val);
3291         e1000e_macreg_writeops[index](core, index, val);
3292     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3293         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3294     } else {
3295         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3296     }
3297 }
3298 
3299 uint64_t
3300 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3301 {
3302     uint64_t val;
3303     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3304 
3305     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3306         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3307             trace_e1000e_wrn_regs_read_trivial(index << 2);
3308         }
3309         val = e1000e_macreg_readops[index](core, index);
3310         trace_e1000e_core_read(index << 2, size, val);
3311         return val;
3312     } else {
3313         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3314     }
3315     return 0;
3316 }
3317 
3318 static inline void
3319 e1000e_autoneg_pause(E1000ECore *core)
3320 {
3321     timer_del(core->autoneg_timer);
3322 }
3323 
3324 static void
3325 e1000e_autoneg_resume(E1000ECore *core)
3326 {
3327     if (e1000e_have_autoneg(core) &&
3328         !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
3329         qemu_get_queue(core->owner_nic)->link_down = false;
3330         timer_mod(core->autoneg_timer,
3331                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3332     }
3333 }
3334 
3335 static void
3336 e1000e_vm_state_change(void *opaque, bool running, RunState state)
3337 {
3338     E1000ECore *core = opaque;
3339 
3340     if (running) {
3341         trace_e1000e_vm_state_running();
3342         e1000e_intrmgr_resume(core);
3343         e1000e_autoneg_resume(core);
3344     } else {
3345         trace_e1000e_vm_state_stopped();
3346         e1000e_autoneg_pause(core);
3347         e1000e_intrmgr_pause(core);
3348     }
3349 }
3350 
3351 void
3352 e1000e_core_pci_realize(E1000ECore     *core,
3353                         const uint16_t *eeprom_templ,
3354                         uint32_t        eeprom_size,
3355                         const uint8_t  *macaddr)
3356 {
3357     int i;
3358 
3359     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3360                                        e1000e_autoneg_timer, core);
3361     e1000e_intrmgr_pci_realize(core);
3362 
3363     core->vmstate =
3364         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3365 
3366     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3367         net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3368     }
3369 
3370     net_rx_pkt_init(&core->rx_pkt);
3371 
3372     e1000x_core_prepare_eeprom(core->eeprom,
3373                                eeprom_templ,
3374                                eeprom_size,
3375                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3376                                macaddr);
3377     e1000e_update_rx_offloads(core);
3378 }
3379 
3380 void
3381 e1000e_core_pci_uninit(E1000ECore *core)
3382 {
3383     int i;
3384 
3385     timer_free(core->autoneg_timer);
3386 
3387     e1000e_intrmgr_pci_unint(core);
3388 
3389     qemu_del_vm_change_state_handler(core->vmstate);
3390 
3391     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3392         net_tx_pkt_reset(core->tx[i].tx_pkt,
3393                          net_tx_pkt_unmap_frag_pci, core->owner);
3394         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3395     }
3396 
3397     net_rx_pkt_uninit(core->rx_pkt);
3398 }
3399 
3400 static const uint16_t
3401 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3402     [0] = {
3403         [MII_BMCR] = MII_BMCR_SPEED1000 |
3404                      MII_BMCR_FD        |
3405                      MII_BMCR_AUTOEN,
3406 
3407         [MII_BMSR] = MII_BMSR_EXTCAP    |
3408                      MII_BMSR_LINK_ST   |
3409                      MII_BMSR_AUTONEG   |
3410                      MII_BMSR_MFPS      |
3411                      MII_BMSR_EXTSTAT   |
3412                      MII_BMSR_10T_HD    |
3413                      MII_BMSR_10T_FD    |
3414                      MII_BMSR_100TX_HD  |
3415                      MII_BMSR_100TX_FD,
3416 
3417         [MII_PHYID1]            = 0x141,
3418         [MII_PHYID2]            = E1000_PHY_ID2_82574x,
3419         [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3420                                   MII_ANAR_10FD | MII_ANAR_TX |
3421                                   MII_ANAR_TXFD | MII_ANAR_PAUSE |
3422                                   MII_ANAR_PAUSE_ASYM,
3423         [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3424                                   MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3425                                   MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3426         [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3427         [MII_ANNP]              = 1 | MII_ANNP_MP,
3428         [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3429                                   MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3430         [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3431                                   MII_STAT1000_ROK | MII_STAT1000_LOK,
3432         [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3433 
3434         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3435                                   BIT(12) | BIT(13),
3436         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3437     },
3438     [2] = {
3439         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3440         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3441     },
3442     [3] = {
3443         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3444     }
3445 };
3446 
3447 static const uint32_t e1000e_mac_reg_init[] = {
3448     [PBA]           =     0x00140014,
3449     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3450     [EXTCNF_CTRL]   = BIT(3),
3451     [EEMNGCTL]      = BIT(31),
3452     [FLASHT]        = 0x2,
3453     [FLSWCTL]       = BIT(30) | BIT(31),
3454     [FLOL]          = BIT(0),
3455     [RXDCTL]        = BIT(16),
3456     [RXDCTL1]       = BIT(16),
3457     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3458     [RXCFGL]        = 0x88F7,
3459     [RXUDP]         = 0x319,
3460     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3461                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3462                       E1000_CTRL_ADVD3WUC,
3463     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3464     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3465                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3466                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3467     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3468     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3469     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3470     [EERD]          = E1000_EERW_DONE,
3471     [EEWR]          = E1000_EERW_DONE,
3472     [GCR]           = E1000_L0S_ADJUST |
3473                       E1000_L1_ENTRY_LATENCY_MSB |
3474                       E1000_L1_ENTRY_LATENCY_LSB,
3475     [TDFH]          = 0x600,
3476     [TDFT]          = 0x600,
3477     [TDFHS]         = 0x600,
3478     [TDFTS]         = 0x600,
3479     [POEMB]         = 0x30D,
3480     [PBS]           = 0x028,
3481     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3482     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3483     [SWSM]          = 1,
3484     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3485     [ITR]           = E1000E_MIN_XITR,
3486     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3487 };
3488 
3489 static void e1000e_reset(E1000ECore *core, bool sw)
3490 {
3491     int i;
3492 
3493     timer_del(core->autoneg_timer);
3494 
3495     e1000e_intrmgr_reset(core);
3496 
3497     memset(core->phy, 0, sizeof core->phy);
3498     memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3499 
3500     for (i = 0; i < E1000E_MAC_SIZE; i++) {
3501         if (sw && (i == PBA || i == PBS || i == FLA)) {
3502             continue;
3503         }
3504 
3505         core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
3506                        e1000e_mac_reg_init[i] : 0;
3507     }
3508 
3509     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3510 
3511     if (qemu_get_queue(core->owner_nic)->link_down) {
3512         e1000e_link_down(core);
3513     }
3514 
3515     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3516 
3517     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3518         net_tx_pkt_reset(core->tx[i].tx_pkt,
3519                          net_tx_pkt_unmap_frag_pci, core->owner);
3520         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3521         core->tx[i].skip_cp = false;
3522     }
3523 }
3524 
3525 void
3526 e1000e_core_reset(E1000ECore *core)
3527 {
3528     e1000e_reset(core, false);
3529 }
3530 
3531 void e1000e_core_pre_save(E1000ECore *core)
3532 {
3533     int i;
3534     NetClientState *nc = qemu_get_queue(core->owner_nic);
3535 
3536     /*
3537      * If link is down and auto-negotiation is supported and ongoing,
3538      * complete auto-negotiation immediately. This allows us to look
3539      * at MII_BMSR_AN_COMP to infer link status on load.
3540      */
3541     if (nc->link_down && e1000e_have_autoneg(core)) {
3542         core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
3543         e1000e_update_flowctl_status(core);
3544     }
3545 
3546     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3547         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3548             core->tx[i].skip_cp = true;
3549         }
3550     }
3551 }
3552 
3553 int
3554 e1000e_core_post_load(E1000ECore *core)
3555 {
3556     NetClientState *nc = qemu_get_queue(core->owner_nic);
3557 
3558     /*
3559      * nc.link_down can't be migrated, so infer link_down according
3560      * to link status bit in core.mac[STATUS].
3561      */
3562     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3563 
3564     return 0;
3565 }
3566