xref: /openbmc/qemu/hw/net/e1000e_core.c (revision 80adf54e)
1 /*
2 * Core code for QEMU e1000e emulation
3 *
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6 *
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
9 *
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
14 *
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 */
35 
36 #include "qemu/osdep.h"
37 #include "sysemu/sysemu.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
42 
43 #include "net_tx_pkt.h"
44 #include "net_rx_pkt.h"
45 
46 #include "e1000x_common.h"
47 #include "e1000e_core.h"
48 
49 #include "trace.h"
50 
51 #define E1000E_MIN_XITR     (500) /* No more then 7813 interrupts per
52                                      second according to spec 10.2.4.2 */
53 #define E1000E_MAX_TX_FRAGS (64)
54 
55 static inline void
56 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
57 
58 static inline void
59 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
60 {
61     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
62         trace_e1000e_wrn_no_ts_support();
63     }
64 }
65 
66 static inline void
67 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
68 {
69     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
70         trace_e1000e_wrn_no_snap_support();
71     }
72 }
73 
74 static inline void
75 e1000e_raise_legacy_irq(E1000ECore *core)
76 {
77     trace_e1000e_irq_legacy_notify(true);
78     e1000x_inc_reg_if_not_full(core->mac, IAC);
79     pci_set_irq(core->owner, 1);
80 }
81 
82 static inline void
83 e1000e_lower_legacy_irq(E1000ECore *core)
84 {
85     trace_e1000e_irq_legacy_notify(false);
86     pci_set_irq(core->owner, 0);
87 }
88 
89 static inline void
90 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
91 {
92     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
93                                  timer->delay_resolution_ns;
94 
95     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
96 
97     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
98 
99     timer->running = true;
100 }
101 
102 static void
103 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
104 {
105     if (timer->running) {
106         e1000e_intrmgr_rearm_timer(timer);
107     }
108 }
109 
110 static void
111 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
112 {
113     if (timer->running) {
114         timer_del(timer->timer);
115     }
116 }
117 
118 static inline void
119 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
120 {
121     if (timer->running) {
122         timer_del(timer->timer);
123         timer->running = false;
124     }
125 }
126 
127 static inline void
128 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
129 {
130     trace_e1000e_irq_fire_delayed_interrupts();
131     e1000e_set_interrupt_cause(core, 0);
132 }
133 
134 static void
135 e1000e_intrmgr_on_timer(void *opaque)
136 {
137     E1000IntrDelayTimer *timer = opaque;
138 
139     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
140 
141     timer->running = false;
142     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
143 }
144 
145 static void
146 e1000e_intrmgr_on_throttling_timer(void *opaque)
147 {
148     E1000IntrDelayTimer *timer = opaque;
149 
150     assert(!msix_enabled(timer->core->owner));
151 
152     timer->running = false;
153 
154     if (!timer->core->itr_intr_pending) {
155         trace_e1000e_irq_throttling_no_pending_interrupts();
156         return;
157     }
158 
159     if (msi_enabled(timer->core->owner)) {
160         trace_e1000e_irq_msi_notify_postponed();
161         e1000e_set_interrupt_cause(timer->core, 0);
162     } else {
163         trace_e1000e_irq_legacy_notify_postponed();
164         e1000e_set_interrupt_cause(timer->core, 0);
165     }
166 }
167 
168 static void
169 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
170 {
171     E1000IntrDelayTimer *timer = opaque;
172     int idx = timer - &timer->core->eitr[0];
173 
174     assert(msix_enabled(timer->core->owner));
175 
176     timer->running = false;
177 
178     if (!timer->core->eitr_intr_pending[idx]) {
179         trace_e1000e_irq_throttling_no_pending_vec(idx);
180         return;
181     }
182 
183     trace_e1000e_irq_msix_notify_postponed_vec(idx);
184     msix_notify(timer->core->owner, idx);
185 }
186 
187 static void
188 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
189 {
190     int i;
191 
192     core->radv.delay_reg = RADV;
193     core->rdtr.delay_reg = RDTR;
194     core->raid.delay_reg = RAID;
195     core->tadv.delay_reg = TADV;
196     core->tidv.delay_reg = TIDV;
197 
198     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
199     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
200     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
201     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
202     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203 
204     core->radv.core = core;
205     core->rdtr.core = core;
206     core->raid.core = core;
207     core->tadv.core = core;
208     core->tidv.core = core;
209 
210     core->itr.core = core;
211     core->itr.delay_reg = ITR;
212     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
213 
214     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
215         core->eitr[i].core = core;
216         core->eitr[i].delay_reg = EITR + i;
217         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
218     }
219 
220     if (!create) {
221         return;
222     }
223 
224     core->radv.timer =
225         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
226     core->rdtr.timer =
227         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
228     core->raid.timer =
229         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
230 
231     core->tadv.timer =
232         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
233     core->tidv.timer =
234         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
235 
236     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
237                                    e1000e_intrmgr_on_throttling_timer,
238                                    &core->itr);
239 
240     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
241         core->eitr[i].timer =
242             timer_new_ns(QEMU_CLOCK_VIRTUAL,
243                          e1000e_intrmgr_on_msix_throttling_timer,
244                          &core->eitr[i]);
245     }
246 }
247 
248 static inline void
249 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
250 {
251     e1000e_intrmgr_stop_timer(&core->radv);
252     e1000e_intrmgr_stop_timer(&core->rdtr);
253     e1000e_intrmgr_stop_timer(&core->raid);
254     e1000e_intrmgr_stop_timer(&core->tidv);
255     e1000e_intrmgr_stop_timer(&core->tadv);
256 }
257 
258 static bool
259 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
260 {
261     uint32_t delayable_causes;
262     uint32_t rdtr = core->mac[RDTR];
263     uint32_t radv = core->mac[RADV];
264     uint32_t raid = core->mac[RAID];
265 
266     if (msix_enabled(core->owner)) {
267         return false;
268     }
269 
270     delayable_causes = E1000_ICR_RXQ0 |
271                        E1000_ICR_RXQ1 |
272                        E1000_ICR_RXT0;
273 
274     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
275         delayable_causes |= E1000_ICR_ACK;
276     }
277 
278     /* Clean up all causes that may be delayed */
279     core->delayed_causes |= *causes & delayable_causes;
280     *causes &= ~delayable_causes;
281 
282     /* Check if delayed RX interrupts disabled by client
283        or if there are causes that cannot be delayed */
284     if ((rdtr == 0) || (*causes != 0)) {
285         return false;
286     }
287 
288     /* Check if delayed RX ACK interrupts disabled by client
289        and there is an ACK packet received */
290     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
291         return false;
292     }
293 
294     /* All causes delayed */
295     e1000e_intrmgr_rearm_timer(&core->rdtr);
296 
297     if (!core->radv.running && (radv != 0)) {
298         e1000e_intrmgr_rearm_timer(&core->radv);
299     }
300 
301     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
302         e1000e_intrmgr_rearm_timer(&core->raid);
303     }
304 
305     return true;
306 }
307 
308 static bool
309 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
310 {
311     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
312                                              E1000_ICR_TXQ1 |
313                                              E1000_ICR_TXQE |
314                                              E1000_ICR_TXDW;
315 
316     if (msix_enabled(core->owner)) {
317         return false;
318     }
319 
320     /* Clean up all causes that may be delayed */
321     core->delayed_causes |= *causes & delayable_causes;
322     *causes &= ~delayable_causes;
323 
324     /* If there are causes that cannot be delayed */
325     if (*causes != 0) {
326         return false;
327     }
328 
329     /* All causes delayed */
330     e1000e_intrmgr_rearm_timer(&core->tidv);
331 
332     if (!core->tadv.running && (core->mac[TADV] != 0)) {
333         e1000e_intrmgr_rearm_timer(&core->tadv);
334     }
335 
336     return true;
337 }
338 
339 static uint32_t
340 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
341 {
342     uint32_t res;
343 
344     if (msix_enabled(core->owner)) {
345         assert(core->delayed_causes == 0);
346         return 0;
347     }
348 
349     res = core->delayed_causes;
350     core->delayed_causes = 0;
351 
352     e1000e_intrmgr_stop_delay_timers(core);
353 
354     return res;
355 }
356 
357 static void
358 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
359 {
360     int i;
361     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
362 
363     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
364     core->mac[ICR] |= val;
365 
366     if (core->itr.running) {
367         timer_del(core->itr.timer);
368         e1000e_intrmgr_on_throttling_timer(&core->itr);
369     }
370 
371     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
372         if (core->eitr[i].running) {
373             timer_del(core->eitr[i].timer);
374             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
375         }
376     }
377 }
378 
379 static void
380 e1000e_intrmgr_resume(E1000ECore *core)
381 {
382     int i;
383 
384     e1000e_intmgr_timer_resume(&core->radv);
385     e1000e_intmgr_timer_resume(&core->rdtr);
386     e1000e_intmgr_timer_resume(&core->raid);
387     e1000e_intmgr_timer_resume(&core->tidv);
388     e1000e_intmgr_timer_resume(&core->tadv);
389 
390     e1000e_intmgr_timer_resume(&core->itr);
391 
392     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
393         e1000e_intmgr_timer_resume(&core->eitr[i]);
394     }
395 }
396 
397 static void
398 e1000e_intrmgr_pause(E1000ECore *core)
399 {
400     int i;
401 
402     e1000e_intmgr_timer_pause(&core->radv);
403     e1000e_intmgr_timer_pause(&core->rdtr);
404     e1000e_intmgr_timer_pause(&core->raid);
405     e1000e_intmgr_timer_pause(&core->tidv);
406     e1000e_intmgr_timer_pause(&core->tadv);
407 
408     e1000e_intmgr_timer_pause(&core->itr);
409 
410     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
411         e1000e_intmgr_timer_pause(&core->eitr[i]);
412     }
413 }
414 
415 static void
416 e1000e_intrmgr_reset(E1000ECore *core)
417 {
418     int i;
419 
420     core->delayed_causes = 0;
421 
422     e1000e_intrmgr_stop_delay_timers(core);
423 
424     e1000e_intrmgr_stop_timer(&core->itr);
425 
426     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
427         e1000e_intrmgr_stop_timer(&core->eitr[i]);
428     }
429 }
430 
431 static void
432 e1000e_intrmgr_pci_unint(E1000ECore *core)
433 {
434     int i;
435 
436     timer_del(core->radv.timer);
437     timer_free(core->radv.timer);
438     timer_del(core->rdtr.timer);
439     timer_free(core->rdtr.timer);
440     timer_del(core->raid.timer);
441     timer_free(core->raid.timer);
442 
443     timer_del(core->tadv.timer);
444     timer_free(core->tadv.timer);
445     timer_del(core->tidv.timer);
446     timer_free(core->tidv.timer);
447 
448     timer_del(core->itr.timer);
449     timer_free(core->itr.timer);
450 
451     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
452         timer_del(core->eitr[i].timer);
453         timer_free(core->eitr[i].timer);
454     }
455 }
456 
457 static void
458 e1000e_intrmgr_pci_realize(E1000ECore *core)
459 {
460     e1000e_intrmgr_initialize_all_timers(core, true);
461 }
462 
463 static inline bool
464 e1000e_rx_csum_enabled(E1000ECore *core)
465 {
466     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
467 }
468 
469 static inline bool
470 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
471 {
472     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
473 }
474 
475 static inline bool
476 e1000e_rx_use_ps_descriptor(E1000ECore *core)
477 {
478     return !e1000e_rx_use_legacy_descriptor(core) &&
479            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
480 }
481 
482 static inline bool
483 e1000e_rss_enabled(E1000ECore *core)
484 {
485     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
486            !e1000e_rx_csum_enabled(core) &&
487            !e1000e_rx_use_legacy_descriptor(core);
488 }
489 
490 typedef struct E1000E_RSSInfo_st {
491     bool enabled;
492     uint32_t hash;
493     uint32_t queue;
494     uint32_t type;
495 } E1000E_RSSInfo;
496 
497 static uint32_t
498 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
499 {
500     bool isip4, isip6, isudp, istcp;
501 
502     assert(e1000e_rss_enabled(core));
503 
504     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
505 
506     if (isip4) {
507         bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
508 
509         trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
510                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
512 
513         if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
514             return E1000_MRQ_RSS_TYPE_IPV4TCP;
515         }
516 
517         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
518             return E1000_MRQ_RSS_TYPE_IPV4;
519         }
520     } else if (isip6) {
521         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
522 
523         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
524         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
525 
526         /*
527          * Following two traces must not be combined because resulting
528          * event will have 11 arguments totally and some trace backends
529          * (at least "ust") have limitation of maximum 10 arguments per
530          * event. Events with more arguments fail to compile for
531          * backends like these.
532          */
533         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
534         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
535                                 ip6info->has_ext_hdrs,
536                                 ip6info->rss_ex_dst_valid,
537                                 ip6info->rss_ex_src_valid,
538                                 core->mac[MRQC],
539                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
540                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
541                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
542 
543         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
544             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
545                               ip6info->rss_ex_src_valid))) {
546 
547             if (istcp && !ip6info->fragment &&
548                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
549                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
550             }
551 
552             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
553                 return E1000_MRQ_RSS_TYPE_IPV6EX;
554             }
555 
556         }
557 
558         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
559             return E1000_MRQ_RSS_TYPE_IPV6;
560         }
561 
562     }
563 
564     return E1000_MRQ_RSS_TYPE_NONE;
565 }
566 
567 static uint32_t
568 e1000e_rss_calc_hash(E1000ECore *core,
569                      struct NetRxPkt *pkt,
570                      E1000E_RSSInfo *info)
571 {
572     NetRxPktRssType type;
573 
574     assert(e1000e_rss_enabled(core));
575 
576     switch (info->type) {
577     case E1000_MRQ_RSS_TYPE_IPV4:
578         type = NetPktRssIpV4;
579         break;
580     case E1000_MRQ_RSS_TYPE_IPV4TCP:
581         type = NetPktRssIpV4Tcp;
582         break;
583     case E1000_MRQ_RSS_TYPE_IPV6TCP:
584         type = NetPktRssIpV6Tcp;
585         break;
586     case E1000_MRQ_RSS_TYPE_IPV6:
587         type = NetPktRssIpV6;
588         break;
589     case E1000_MRQ_RSS_TYPE_IPV6EX:
590         type = NetPktRssIpV6Ex;
591         break;
592     default:
593         assert(false);
594         return 0;
595     }
596 
597     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
598 }
599 
600 static void
601 e1000e_rss_parse_packet(E1000ECore *core,
602                         struct NetRxPkt *pkt,
603                         E1000E_RSSInfo *info)
604 {
605     trace_e1000e_rx_rss_started();
606 
607     if (!e1000e_rss_enabled(core)) {
608         info->enabled = false;
609         info->hash = 0;
610         info->queue = 0;
611         info->type = 0;
612         trace_e1000e_rx_rss_disabled();
613         return;
614     }
615 
616     info->enabled = true;
617 
618     info->type = e1000e_rss_get_hash_type(core, pkt);
619 
620     trace_e1000e_rx_rss_type(info->type);
621 
622     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
623         info->hash = 0;
624         info->queue = 0;
625         return;
626     }
627 
628     info->hash = e1000e_rss_calc_hash(core, pkt, info);
629     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
630 }
631 
632 static void
633 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
634 {
635     if (tx->props.tse && tx->props.cptse) {
636         net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
637         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
638         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
639         return;
640     }
641 
642     if (tx->props.sum_needed & E1000_TXD_POPTS_TXSM) {
643         net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
644     }
645 
646     if (tx->props.sum_needed & E1000_TXD_POPTS_IXSM) {
647         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
648     }
649 }
650 
651 static bool
652 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
653 {
654     int target_queue = MIN(core->max_queue_num, queue_index);
655     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
656 
657     e1000e_setup_tx_offloads(core, tx);
658 
659     net_tx_pkt_dump(tx->tx_pkt);
660 
661     if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
662         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
663         return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
664     } else {
665         return net_tx_pkt_send(tx->tx_pkt, queue);
666     }
667 }
668 
669 static void
670 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
671 {
672     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
673                                     PTC1023, PTC1522 };
674 
675     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
676 
677     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
678     e1000x_inc_reg_if_not_full(core->mac, TPT);
679     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
680 
681     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
682     case ETH_PKT_BCAST:
683         e1000x_inc_reg_if_not_full(core->mac, BPTC);
684         break;
685     case ETH_PKT_MCAST:
686         e1000x_inc_reg_if_not_full(core->mac, MPTC);
687         break;
688     case ETH_PKT_UCAST:
689         break;
690     default:
691         g_assert_not_reached();
692     }
693 
694     core->mac[GPTC] = core->mac[TPT];
695     core->mac[GOTCL] = core->mac[TOTL];
696     core->mac[GOTCH] = core->mac[TOTH];
697 }
698 
699 static void
700 e1000e_process_tx_desc(E1000ECore *core,
701                        struct e1000e_tx *tx,
702                        struct e1000_tx_desc *dp,
703                        int queue_index)
704 {
705     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
706     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
707     unsigned int split_size = txd_lower & 0xffff;
708     uint64_t addr;
709     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
710     bool eop = txd_lower & E1000_TXD_CMD_EOP;
711 
712     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
713         e1000x_read_tx_ctx_descr(xp, &tx->props);
714         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
715         return;
716     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
717         /* data descriptor */
718         tx->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8;
719         tx->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
720         e1000e_process_ts_option(core, dp);
721     } else {
722         /* legacy descriptor */
723         e1000e_process_ts_option(core, dp);
724         tx->props.cptse = 0;
725     }
726 
727     addr = le64_to_cpu(dp->buffer_addr);
728 
729     if (!tx->skip_cp) {
730         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
731             tx->skip_cp = true;
732         }
733     }
734 
735     if (eop) {
736         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
737             if (e1000x_vlan_enabled(core->mac) &&
738                 e1000x_is_vlan_txd(txd_lower)) {
739                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
740                     le16_to_cpu(dp->upper.fields.special), core->vet);
741             }
742             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
743                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
744             }
745         }
746 
747         tx->skip_cp = false;
748         net_tx_pkt_reset(tx->tx_pkt);
749 
750         tx->props.sum_needed = 0;
751         tx->props.cptse = 0;
752     }
753 }
754 
755 static inline uint32_t
756 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
757 {
758     if (!msix_enabled(core->owner)) {
759         return E1000_ICR_TXDW;
760     }
761 
762     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
763 }
764 
765 static inline uint32_t
766 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
767                              bool min_threshold_hit)
768 {
769     if (!msix_enabled(core->owner)) {
770         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
771     }
772 
773     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
774 }
775 
776 static uint32_t
777 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
778                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
779 {
780     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
781 
782     if (!(txd_lower & E1000_TXD_CMD_RS) &&
783         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
784         return 0;
785     }
786 
787     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
788 
789     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
790 
791     dp->upper.data = cpu_to_le32(txd_upper);
792     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
793                   &dp->upper, sizeof(dp->upper));
794     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
795 }
796 
797 typedef struct E1000E_RingInfo_st {
798     int dbah;
799     int dbal;
800     int dlen;
801     int dh;
802     int dt;
803     int idx;
804 } E1000E_RingInfo;
805 
806 static inline bool
807 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
808 {
809     return core->mac[r->dh] == core->mac[r->dt] ||
810                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
811 }
812 
813 static inline uint64_t
814 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
815 {
816     uint64_t bah = core->mac[r->dbah];
817     uint64_t bal = core->mac[r->dbal];
818 
819     return (bah << 32) + bal;
820 }
821 
822 static inline uint64_t
823 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
824 {
825     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
826 }
827 
828 static inline void
829 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
830 {
831     core->mac[r->dh] += count;
832 
833     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
834         core->mac[r->dh] = 0;
835     }
836 }
837 
838 static inline uint32_t
839 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
840 {
841     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
842                                  core->mac[r->dh],  core->mac[r->dt]);
843 
844     if (core->mac[r->dh] <= core->mac[r->dt]) {
845         return core->mac[r->dt] - core->mac[r->dh];
846     }
847 
848     if (core->mac[r->dh] > core->mac[r->dt]) {
849         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
850                core->mac[r->dt] - core->mac[r->dh];
851     }
852 
853     g_assert_not_reached();
854     return 0;
855 }
856 
857 static inline bool
858 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
859 {
860     return core->mac[r->dlen] > 0;
861 }
862 
863 static inline uint32_t
864 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
865 {
866     return core->mac[r->dlen];
867 }
868 
869 typedef struct E1000E_TxRing_st {
870     const E1000E_RingInfo *i;
871     struct e1000e_tx *tx;
872 } E1000E_TxRing;
873 
874 static inline int
875 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
876 {
877     return (reg_idx - base_reg_idx) / (0x100 >> 2);
878 }
879 
880 static inline void
881 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
882 {
883     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
884         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
885         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
886     };
887 
888     assert(idx < ARRAY_SIZE(i));
889 
890     txr->i     = &i[idx];
891     txr->tx    = &core->tx[idx];
892 }
893 
894 typedef struct E1000E_RxRing_st {
895     const E1000E_RingInfo *i;
896 } E1000E_RxRing;
897 
898 static inline void
899 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
900 {
901     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
902         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
903         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
904     };
905 
906     assert(idx < ARRAY_SIZE(i));
907 
908     rxr->i      = &i[idx];
909 }
910 
911 static void
912 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
913 {
914     dma_addr_t base;
915     struct e1000_tx_desc desc;
916     bool ide = false;
917     const E1000E_RingInfo *txi = txr->i;
918     uint32_t cause = E1000_ICS_TXQE;
919 
920     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
921         trace_e1000e_tx_disabled();
922         return;
923     }
924 
925     while (!e1000e_ring_empty(core, txi)) {
926         base = e1000e_ring_head_descr(core, txi);
927 
928         pci_dma_read(core->owner, base, &desc, sizeof(desc));
929 
930         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
931                               desc.lower.data, desc.upper.data);
932 
933         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
934         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
935 
936         e1000e_ring_advance(core, txi, 1);
937     }
938 
939     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
940         e1000e_set_interrupt_cause(core, cause);
941     }
942 }
943 
944 static bool
945 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
946                   size_t total_size)
947 {
948     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
949 
950     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
951                                 core->rx_desc_buf_size);
952 
953     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
954                          core->rx_desc_buf_size;
955 }
956 
957 void
958 e1000e_start_recv(E1000ECore *core)
959 {
960     int i;
961 
962     trace_e1000e_rx_start_recv();
963 
964     for (i = 0; i <= core->max_queue_num; i++) {
965         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
966     }
967 }
968 
969 int
970 e1000e_can_receive(E1000ECore *core)
971 {
972     int i;
973 
974     if (!e1000x_rx_ready(core->owner, core->mac)) {
975         return false;
976     }
977 
978     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
979         E1000E_RxRing rxr;
980 
981         e1000e_rx_ring_init(core, &rxr, i);
982         if (e1000e_ring_enabled(core, rxr.i) &&
983             e1000e_has_rxbufs(core, rxr.i, 1)) {
984             trace_e1000e_rx_can_recv();
985             return true;
986         }
987     }
988 
989     trace_e1000e_rx_can_recv_rings_full();
990     return false;
991 }
992 
993 ssize_t
994 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
995 {
996     const struct iovec iov = {
997         .iov_base = (uint8_t *)buf,
998         .iov_len = size
999     };
1000 
1001     return e1000e_receive_iov(core, &iov, 1);
1002 }
1003 
1004 static inline bool
1005 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1006 {
1007     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1008 }
1009 
1010 static inline bool
1011 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1012 {
1013     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1014 }
1015 
1016 static bool
1017 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1018 {
1019     uint32_t rctl = core->mac[RCTL];
1020 
1021     if (e1000x_is_vlan_packet(buf, core->vet) &&
1022         e1000x_vlan_rx_filter_enabled(core->mac)) {
1023         uint16_t vid = lduw_be_p(buf + 14);
1024         uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1025                                  ((vid >> 5) & 0x7f));
1026         if ((vfta & (1 << (vid & 0x1f))) == 0) {
1027             trace_e1000e_rx_flt_vlan_mismatch(vid);
1028             return false;
1029         } else {
1030             trace_e1000e_rx_flt_vlan_match(vid);
1031         }
1032     }
1033 
1034     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1035     case ETH_PKT_UCAST:
1036         if (rctl & E1000_RCTL_UPE) {
1037             return true; /* promiscuous ucast */
1038         }
1039         break;
1040 
1041     case ETH_PKT_BCAST:
1042         if (rctl & E1000_RCTL_BAM) {
1043             return true; /* broadcast enabled */
1044         }
1045         break;
1046 
1047     case ETH_PKT_MCAST:
1048         if (rctl & E1000_RCTL_MPE) {
1049             return true; /* promiscuous mcast */
1050         }
1051         break;
1052 
1053     default:
1054         g_assert_not_reached();
1055     }
1056 
1057     return e1000x_rx_group_filter(core->mac, buf);
1058 }
1059 
1060 static inline void
1061 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1062 {
1063     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1064     *buff_addr = le64_to_cpu(d->buffer_addr);
1065 }
1066 
1067 static inline void
1068 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1069 {
1070     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1071     *buff_addr = le64_to_cpu(d->read.buffer_addr);
1072 }
1073 
1074 static inline void
1075 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1076                         hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1077 {
1078     int i;
1079     union e1000_rx_desc_packet_split *d =
1080         (union e1000_rx_desc_packet_split *) desc;
1081 
1082     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1083         (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1084     }
1085 
1086     trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1087                                  (*buff_addr)[2], (*buff_addr)[3]);
1088 }
1089 
1090 static inline void
1091 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1092                      hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1093 {
1094     if (e1000e_rx_use_legacy_descriptor(core)) {
1095         e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1096         (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1097     } else {
1098         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1099             e1000e_read_ps_rx_descr(core, desc, buff_addr);
1100         } else {
1101             e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1102             (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1103         }
1104     }
1105 }
1106 
1107 static void
1108 e1000e_verify_csum_in_sw(E1000ECore *core,
1109                          struct NetRxPkt *pkt,
1110                          uint32_t *status_flags,
1111                          bool istcp, bool isudp)
1112 {
1113     bool csum_valid;
1114     uint32_t csum_error;
1115 
1116     if (e1000e_rx_l3_cso_enabled(core)) {
1117         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1118             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1119         } else {
1120             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1121             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1122         }
1123     } else {
1124         trace_e1000e_rx_metadata_l3_cso_disabled();
1125     }
1126 
1127     if (!e1000e_rx_l4_cso_enabled(core)) {
1128         trace_e1000e_rx_metadata_l4_cso_disabled();
1129         return;
1130     }
1131 
1132     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1133         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1134         return;
1135     }
1136 
1137     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1138 
1139     if (istcp) {
1140         *status_flags |= E1000_RXD_STAT_TCPCS |
1141                          csum_error;
1142     } else if (isudp) {
1143         *status_flags |= E1000_RXD_STAT_TCPCS |
1144                          E1000_RXD_STAT_UDPCS |
1145                          csum_error;
1146     }
1147 }
1148 
1149 static inline bool
1150 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1151 {
1152     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1153         return false;
1154     }
1155 
1156     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1157         return !net_rx_pkt_has_tcp_data(rx_pkt);
1158     }
1159 
1160     return true;
1161 }
1162 
1163 static void
1164 e1000e_build_rx_metadata(E1000ECore *core,
1165                          struct NetRxPkt *pkt,
1166                          bool is_eop,
1167                          const E1000E_RSSInfo *rss_info,
1168                          uint32_t *rss, uint32_t *mrq,
1169                          uint32_t *status_flags,
1170                          uint16_t *ip_id,
1171                          uint16_t *vlan_tag)
1172 {
1173     struct virtio_net_hdr *vhdr;
1174     bool isip4, isip6, istcp, isudp;
1175     uint32_t pkt_type;
1176 
1177     *status_flags = E1000_RXD_STAT_DD;
1178 
1179     /* No additional metadata needed for non-EOP descriptors */
1180     if (!is_eop) {
1181         goto func_exit;
1182     }
1183 
1184     *status_flags |= E1000_RXD_STAT_EOP;
1185 
1186     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1187     trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1188 
1189     /* VLAN state */
1190     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1191         *status_flags |= E1000_RXD_STAT_VP;
1192         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1193         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1194     }
1195 
1196     /* Packet parsing results */
1197     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1198         if (rss_info->enabled) {
1199             *rss = cpu_to_le32(rss_info->hash);
1200             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1201             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1202         }
1203     } else if (isip4) {
1204             *status_flags |= E1000_RXD_STAT_IPIDV;
1205             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1206             trace_e1000e_rx_metadata_ip_id(*ip_id);
1207     }
1208 
1209     if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1210         *status_flags |= E1000_RXD_STAT_ACK;
1211         trace_e1000e_rx_metadata_ack();
1212     }
1213 
1214     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1215         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1216         pkt_type = E1000_RXD_PKT_MAC;
1217     } else if (istcp || isudp) {
1218         pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1219     } else if (isip4 || isip6) {
1220         pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1221     } else {
1222         pkt_type = E1000_RXD_PKT_MAC;
1223     }
1224 
1225     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1226     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1227 
1228     /* RX CSO information */
1229     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1230         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1231         goto func_exit;
1232     }
1233 
1234     if (!net_rx_pkt_has_virt_hdr(pkt)) {
1235         trace_e1000e_rx_metadata_no_virthdr();
1236         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1237         goto func_exit;
1238     }
1239 
1240     vhdr = net_rx_pkt_get_vhdr(pkt);
1241 
1242     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1243         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1244         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1245         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1246         goto func_exit;
1247     }
1248 
1249     if (e1000e_rx_l3_cso_enabled(core)) {
1250         *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1251     } else {
1252         trace_e1000e_rx_metadata_l3_cso_disabled();
1253     }
1254 
1255     if (e1000e_rx_l4_cso_enabled(core)) {
1256         if (istcp) {
1257             *status_flags |= E1000_RXD_STAT_TCPCS;
1258         } else if (isudp) {
1259             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1260         }
1261     } else {
1262         trace_e1000e_rx_metadata_l4_cso_disabled();
1263     }
1264 
1265     trace_e1000e_rx_metadata_status_flags(*status_flags);
1266 
1267 func_exit:
1268     *status_flags = cpu_to_le32(*status_flags);
1269 }
1270 
1271 static inline void
1272 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1273                            struct NetRxPkt *pkt,
1274                            const E1000E_RSSInfo *rss_info,
1275                            uint16_t length)
1276 {
1277     uint32_t status_flags, rss, mrq;
1278     uint16_t ip_id;
1279 
1280     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1281 
1282     assert(!rss_info->enabled);
1283 
1284     d->length = cpu_to_le16(length);
1285     d->csum = 0;
1286 
1287     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1288                              rss_info,
1289                              &rss, &mrq,
1290                              &status_flags, &ip_id,
1291                              &d->special);
1292     d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1293     d->status = (uint8_t) le32_to_cpu(status_flags);
1294     d->special = 0;
1295 }
1296 
1297 static inline void
1298 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1299                           struct NetRxPkt *pkt,
1300                           const E1000E_RSSInfo *rss_info,
1301                           uint16_t length)
1302 {
1303     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1304 
1305     memset(&d->wb, 0, sizeof(d->wb));
1306 
1307     d->wb.upper.length = cpu_to_le16(length);
1308 
1309     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1310                              rss_info,
1311                              &d->wb.lower.hi_dword.rss,
1312                              &d->wb.lower.mrq,
1313                              &d->wb.upper.status_error,
1314                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1315                              &d->wb.upper.vlan);
1316 }
1317 
1318 static inline void
1319 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1320                          struct NetRxPkt *pkt,
1321                          const E1000E_RSSInfo *rss_info,
1322                          size_t ps_hdr_len,
1323                          uint16_t(*written)[MAX_PS_BUFFERS])
1324 {
1325     int i;
1326     union e1000_rx_desc_packet_split *d =
1327         (union e1000_rx_desc_packet_split *) desc;
1328 
1329     memset(&d->wb, 0, sizeof(d->wb));
1330 
1331     d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1332 
1333     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1334         d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1335     }
1336 
1337     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1338                              rss_info,
1339                              &d->wb.lower.hi_dword.rss,
1340                              &d->wb.lower.mrq,
1341                              &d->wb.middle.status_error,
1342                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1343                              &d->wb.middle.vlan);
1344 
1345     d->wb.upper.header_status =
1346         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1347 
1348     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1349                                   (*written)[2], (*written)[3]);
1350 }
1351 
1352 static inline void
1353 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1354 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1355     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1356 {
1357     if (e1000e_rx_use_legacy_descriptor(core)) {
1358         assert(ps_hdr_len == 0);
1359         e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1360     } else {
1361         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1362             e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1363                                       ps_hdr_len, written);
1364         } else {
1365             assert(ps_hdr_len == 0);
1366             e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1367                                        (*written)[0]);
1368         }
1369     }
1370 }
1371 
1372 typedef struct e1000e_ba_state_st {
1373     uint16_t written[MAX_PS_BUFFERS];
1374     uint8_t cur_idx;
1375 } e1000e_ba_state;
1376 
1377 static inline void
1378 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1379                                hwaddr (*ba)[MAX_PS_BUFFERS],
1380                                e1000e_ba_state *bastate,
1381                                const char *data,
1382                                dma_addr_t data_len)
1383 {
1384     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1385 
1386     pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1387     bastate->written[0] += data_len;
1388 
1389     bastate->cur_idx = 1;
1390 }
1391 
1392 static void
1393 e1000e_write_to_rx_buffers(E1000ECore *core,
1394                            hwaddr (*ba)[MAX_PS_BUFFERS],
1395                            e1000e_ba_state *bastate,
1396                            const char *data,
1397                            dma_addr_t data_len)
1398 {
1399     while (data_len > 0) {
1400         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1401         uint32_t cur_buf_bytes_left = cur_buf_len -
1402                                       bastate->written[bastate->cur_idx];
1403         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1404 
1405         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1406                                         (*ba)[bastate->cur_idx],
1407                                         bastate->written[bastate->cur_idx],
1408                                         data,
1409                                         bytes_to_write);
1410 
1411         pci_dma_write(core->owner,
1412             (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1413             data, bytes_to_write);
1414 
1415         bastate->written[bastate->cur_idx] += bytes_to_write;
1416         data += bytes_to_write;
1417         data_len -= bytes_to_write;
1418 
1419         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1420             bastate->cur_idx++;
1421         }
1422 
1423         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1424     }
1425 }
1426 
1427 static void
1428 e1000e_update_rx_stats(E1000ECore *core,
1429                        size_t data_size,
1430                        size_t data_fcs_size)
1431 {
1432     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1433 
1434     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1435     case ETH_PKT_BCAST:
1436         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1437         break;
1438 
1439     case ETH_PKT_MCAST:
1440         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1441         break;
1442 
1443     default:
1444         break;
1445     }
1446 }
1447 
1448 static inline bool
1449 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1450 {
1451     return e1000e_ring_free_descr_num(core, rxi) ==
1452            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1453 }
1454 
1455 static bool
1456 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1457 {
1458     bool isip4, isip6, isudp, istcp;
1459     bool fragment;
1460 
1461     if (!e1000e_rx_use_ps_descriptor(core)) {
1462         return false;
1463     }
1464 
1465     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1466 
1467     if (isip4) {
1468         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1469     } else if (isip6) {
1470         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1471     } else {
1472         return false;
1473     }
1474 
1475     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1476         return false;
1477     }
1478 
1479     if (!fragment && (isudp || istcp)) {
1480         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1481     } else {
1482         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1483     }
1484 
1485     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1486         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1487         return false;
1488     }
1489 
1490     return true;
1491 }
1492 
1493 static void
1494 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1495                              const E1000E_RxRing *rxr,
1496                              const E1000E_RSSInfo *rss_info)
1497 {
1498     PCIDevice *d = core->owner;
1499     dma_addr_t base;
1500     uint8_t desc[E1000_MAX_RX_DESC_LEN];
1501     size_t desc_size;
1502     size_t desc_offset = 0;
1503     size_t iov_ofs = 0;
1504 
1505     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1506     size_t size = net_rx_pkt_get_total_len(pkt);
1507     size_t total_size = size + e1000x_fcs_len(core->mac);
1508     const E1000E_RingInfo *rxi;
1509     size_t ps_hdr_len = 0;
1510     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1511     bool is_first = true;
1512 
1513     rxi = rxr->i;
1514 
1515     do {
1516         hwaddr ba[MAX_PS_BUFFERS];
1517         e1000e_ba_state bastate = { { 0 } };
1518         bool is_last = false;
1519 
1520         desc_size = total_size - desc_offset;
1521 
1522         if (desc_size > core->rx_desc_buf_size) {
1523             desc_size = core->rx_desc_buf_size;
1524         }
1525 
1526         if (e1000e_ring_empty(core, rxi)) {
1527             return;
1528         }
1529 
1530         base = e1000e_ring_head_descr(core, rxi);
1531 
1532         pci_dma_read(d, base, &desc, core->rx_desc_len);
1533 
1534         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1535 
1536         e1000e_read_rx_descr(core, desc, &ba);
1537 
1538         if (ba[0]) {
1539             if (desc_offset < size) {
1540                 static const uint32_t fcs_pad;
1541                 size_t iov_copy;
1542                 size_t copy_size = size - desc_offset;
1543                 if (copy_size > core->rx_desc_buf_size) {
1544                     copy_size = core->rx_desc_buf_size;
1545                 }
1546 
1547                 /* For PS mode copy the packet header first */
1548                 if (do_ps) {
1549                     if (is_first) {
1550                         size_t ps_hdr_copied = 0;
1551                         do {
1552                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1553                                            iov->iov_len - iov_ofs);
1554 
1555                             e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1556                                                       iov->iov_base, iov_copy);
1557 
1558                             copy_size -= iov_copy;
1559                             ps_hdr_copied += iov_copy;
1560 
1561                             iov_ofs += iov_copy;
1562                             if (iov_ofs == iov->iov_len) {
1563                                 iov++;
1564                                 iov_ofs = 0;
1565                             }
1566                         } while (ps_hdr_copied < ps_hdr_len);
1567 
1568                         is_first = false;
1569                     } else {
1570                         /* Leave buffer 0 of each descriptor except first */
1571                         /* empty as per spec 7.1.5.1                      */
1572                         e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1573                                                        NULL, 0);
1574                     }
1575                 }
1576 
1577                 /* Copy packet payload */
1578                 while (copy_size) {
1579                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1580 
1581                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1582                                             iov->iov_base + iov_ofs, iov_copy);
1583 
1584                     copy_size -= iov_copy;
1585                     iov_ofs += iov_copy;
1586                     if (iov_ofs == iov->iov_len) {
1587                         iov++;
1588                         iov_ofs = 0;
1589                     }
1590                 }
1591 
1592                 if (desc_offset + desc_size >= total_size) {
1593                     /* Simulate FCS checksum presence in the last descriptor */
1594                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1595                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1596                 }
1597             }
1598             desc_offset += desc_size;
1599             if (desc_offset >= total_size) {
1600                 is_last = true;
1601             }
1602         } else { /* as per intel docs; skip descriptors with null buf addr */
1603             trace_e1000e_rx_null_descriptor();
1604         }
1605 
1606         e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1607                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1608         pci_dma_write(d, base, &desc, core->rx_desc_len);
1609 
1610         e1000e_ring_advance(core, rxi,
1611                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1612 
1613     } while (desc_offset < total_size);
1614 
1615     e1000e_update_rx_stats(core, size, total_size);
1616 }
1617 
1618 static inline void
1619 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1620 {
1621     if (net_rx_pkt_has_virt_hdr(pkt)) {
1622         struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1623 
1624         if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1625             net_rx_pkt_fix_l4_csum(pkt);
1626         }
1627     }
1628 }
1629 
1630 ssize_t
1631 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1632 {
1633     static const int maximum_ethernet_hdr_len = (14 + 4);
1634     /* Min. octets in an ethernet frame sans FCS */
1635     static const int min_buf_size = 60;
1636 
1637     uint32_t n = 0;
1638     uint8_t min_buf[min_buf_size];
1639     struct iovec min_iov;
1640     uint8_t *filter_buf;
1641     size_t size, orig_size;
1642     size_t iov_ofs = 0;
1643     E1000E_RxRing rxr;
1644     E1000E_RSSInfo rss_info;
1645     size_t total_size;
1646     ssize_t retval;
1647     bool rdmts_hit;
1648 
1649     trace_e1000e_rx_receive_iov(iovcnt);
1650 
1651     if (!e1000x_hw_rx_enabled(core->mac)) {
1652         return -1;
1653     }
1654 
1655     /* Pull virtio header in */
1656     if (core->has_vnet) {
1657         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1658         iov_ofs = sizeof(struct virtio_net_hdr);
1659     }
1660 
1661     filter_buf = iov->iov_base + iov_ofs;
1662     orig_size = iov_size(iov, iovcnt);
1663     size = orig_size - iov_ofs;
1664 
1665     /* Pad to minimum Ethernet frame length */
1666     if (size < sizeof(min_buf)) {
1667         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1668         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1669         e1000x_inc_reg_if_not_full(core->mac, RUC);
1670         min_iov.iov_base = filter_buf = min_buf;
1671         min_iov.iov_len = size = sizeof(min_buf);
1672         iovcnt = 1;
1673         iov = &min_iov;
1674         iov_ofs = 0;
1675     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1676         /* This is very unlikely, but may happen. */
1677         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1678         filter_buf = min_buf;
1679     }
1680 
1681     /* Discard oversized packets if !LPE and !SBP. */
1682     if (e1000x_is_oversized(core->mac, size)) {
1683         return orig_size;
1684     }
1685 
1686     net_rx_pkt_set_packet_type(core->rx_pkt,
1687         get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1688 
1689     if (!e1000e_receive_filter(core, filter_buf, size)) {
1690         trace_e1000e_rx_flt_dropped();
1691         return orig_size;
1692     }
1693 
1694     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1695                                e1000x_vlan_enabled(core->mac), core->vet);
1696 
1697     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1698     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1699 
1700     trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1701 
1702     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1703         e1000x_fcs_len(core->mac);
1704 
1705     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1706         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1707 
1708         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1709 
1710         retval = orig_size;
1711 
1712         /* Perform small receive detection (RSRPD) */
1713         if (total_size < core->mac[RSRPD]) {
1714             n |= E1000_ICS_SRPD;
1715         }
1716 
1717         /* Perform ACK receive detection */
1718         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1719              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1720             n |= E1000_ICS_ACK;
1721         }
1722 
1723         /* Check if receive descriptor minimum threshold hit */
1724         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1725         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1726 
1727         trace_e1000e_rx_written_to_guest(n);
1728     } else {
1729         n |= E1000_ICS_RXO;
1730         retval = 0;
1731 
1732         trace_e1000e_rx_not_written_to_guest(n);
1733     }
1734 
1735     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1736         trace_e1000e_rx_interrupt_set(n);
1737         e1000e_set_interrupt_cause(core, n);
1738     } else {
1739         trace_e1000e_rx_interrupt_delayed(n);
1740     }
1741 
1742     return retval;
1743 }
1744 
1745 static inline bool
1746 e1000e_have_autoneg(E1000ECore *core)
1747 {
1748     return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1749 }
1750 
1751 static void e1000e_update_flowctl_status(E1000ECore *core)
1752 {
1753     if (e1000e_have_autoneg(core) &&
1754         core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1755         trace_e1000e_link_autoneg_flowctl(true);
1756         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1757     } else {
1758         trace_e1000e_link_autoneg_flowctl(false);
1759     }
1760 }
1761 
1762 static inline void
1763 e1000e_link_down(E1000ECore *core)
1764 {
1765     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1766     e1000e_update_flowctl_status(core);
1767 }
1768 
1769 static inline void
1770 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1771 {
1772     /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1773     core->phy[0][PHY_CTRL] = val & ~(0x3f |
1774                                      MII_CR_RESET |
1775                                      MII_CR_RESTART_AUTO_NEG);
1776 
1777     if ((val & MII_CR_RESTART_AUTO_NEG) &&
1778         e1000e_have_autoneg(core)) {
1779         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1780     }
1781 }
1782 
1783 static void
1784 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1785 {
1786     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1787 
1788     if (val & BIT(10)) {
1789         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1790     }
1791 }
1792 
1793 static void
1794 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1795 {
1796     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1797 }
1798 
1799 void
1800 e1000e_core_set_link_status(E1000ECore *core)
1801 {
1802     NetClientState *nc = qemu_get_queue(core->owner_nic);
1803     uint32_t old_status = core->mac[STATUS];
1804 
1805     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1806 
1807     if (nc->link_down) {
1808         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1809     } else {
1810         if (e1000e_have_autoneg(core) &&
1811             !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1812             e1000x_restart_autoneg(core->mac, core->phy[0],
1813                                    core->autoneg_timer);
1814         } else {
1815             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1816             e1000e_start_recv(core);
1817         }
1818     }
1819 
1820     if (core->mac[STATUS] != old_status) {
1821         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1822     }
1823 }
1824 
1825 static void
1826 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1827 {
1828     trace_e1000e_core_ctrl_write(index, val);
1829 
1830     /* RST is self clearing */
1831     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1832     core->mac[CTRL_DUP] = core->mac[CTRL];
1833 
1834     trace_e1000e_link_set_params(
1835         !!(val & E1000_CTRL_ASDE),
1836         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1837         !!(val & E1000_CTRL_FRCSPD),
1838         !!(val & E1000_CTRL_FRCDPX),
1839         !!(val & E1000_CTRL_RFCE),
1840         !!(val & E1000_CTRL_TFCE));
1841 
1842     if (val & E1000_CTRL_RST) {
1843         trace_e1000e_core_ctrl_sw_reset();
1844         e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1845     }
1846 
1847     if (val & E1000_CTRL_PHY_RST) {
1848         trace_e1000e_core_ctrl_phy_reset();
1849         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1850     }
1851 }
1852 
1853 static void
1854 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1855 {
1856     trace_e1000e_rx_set_rfctl(val);
1857 
1858     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1859         trace_e1000e_wrn_iscsi_filtering_not_supported();
1860     }
1861 
1862     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1863         trace_e1000e_wrn_nfsw_filtering_not_supported();
1864     }
1865 
1866     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1867         trace_e1000e_wrn_nfsr_filtering_not_supported();
1868     }
1869 
1870     core->mac[RFCTL] = val;
1871 }
1872 
1873 static void
1874 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1875 {
1876     int i;
1877     core->rx_desc_buf_size = 0;
1878 
1879     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1880         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1881     }
1882 }
1883 
1884 static void
1885 e1000e_parse_rxbufsize(E1000ECore *core)
1886 {
1887     uint32_t rctl = core->mac[RCTL];
1888 
1889     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1890 
1891     if (rctl & E1000_RCTL_DTYP_MASK) {
1892         uint32_t bsize;
1893 
1894         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1895         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1896 
1897         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1898         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1899 
1900         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1901         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1902 
1903         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1904         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1905     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1906         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1907         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1908     } else {
1909         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1910     }
1911 
1912     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1913                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1914 
1915     e1000e_calc_per_desc_buf_size(core);
1916 }
1917 
1918 static void
1919 e1000e_calc_rxdesclen(E1000ECore *core)
1920 {
1921     if (e1000e_rx_use_legacy_descriptor(core)) {
1922         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1923     } else {
1924         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1925             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1926         } else {
1927             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1928         }
1929     }
1930     trace_e1000e_rx_desc_len(core->rx_desc_len);
1931 }
1932 
1933 static void
1934 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1935 {
1936     core->mac[RCTL] = val;
1937     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1938 
1939     if (val & E1000_RCTL_EN) {
1940         e1000e_parse_rxbufsize(core);
1941         e1000e_calc_rxdesclen(core);
1942         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1943                                 E1000_RING_DESC_LEN_SHIFT;
1944 
1945         e1000e_start_recv(core);
1946     }
1947 }
1948 
1949 static
1950 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1951 (E1000ECore *, int, uint16_t) = {
1952     [0] = {
1953         [PHY_CTRL]     = e1000e_set_phy_ctrl,
1954         [PHY_PAGE]     = e1000e_set_phy_page,
1955         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1956     }
1957 };
1958 
1959 static inline void
1960 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1961 {
1962     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1963     core->mac[IMS] &= ~bits;
1964 }
1965 
1966 static inline bool
1967 e1000e_postpone_interrupt(bool *interrupt_pending,
1968                            E1000IntrDelayTimer *timer)
1969 {
1970     if (timer->running) {
1971         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1972 
1973         *interrupt_pending = true;
1974         return true;
1975     }
1976 
1977     if (timer->core->mac[timer->delay_reg] != 0) {
1978         e1000e_intrmgr_rearm_timer(timer);
1979     }
1980 
1981     return false;
1982 }
1983 
1984 static inline bool
1985 e1000e_itr_should_postpone(E1000ECore *core)
1986 {
1987     return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1988 }
1989 
1990 static inline bool
1991 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1992 {
1993     return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1994                                      &core->eitr[idx]);
1995 }
1996 
1997 static void
1998 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1999 {
2000     uint32_t effective_eiac;
2001 
2002     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2003         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2004         if (vec < E1000E_MSIX_VEC_NUM) {
2005             if (!e1000e_eitr_should_postpone(core, vec)) {
2006                 trace_e1000e_irq_msix_notify_vec(vec);
2007                 msix_notify(core->owner, vec);
2008             }
2009         } else {
2010             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2011         }
2012     } else {
2013         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2014     }
2015 
2016     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2017         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2018         core->mac[IAM] &= ~cause;
2019     }
2020 
2021     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2022 
2023     effective_eiac = core->mac[EIAC] & cause;
2024 
2025     if (effective_eiac == E1000_ICR_OTHER) {
2026         effective_eiac |= E1000_ICR_OTHER_CAUSES;
2027     }
2028 
2029     core->mac[ICR] &= ~effective_eiac;
2030 
2031     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2032         core->mac[IMS] &= ~effective_eiac;
2033     }
2034 }
2035 
2036 static void
2037 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2038 {
2039     if (causes & E1000_ICR_RXQ0) {
2040         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2041                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2042     }
2043 
2044     if (causes & E1000_ICR_RXQ1) {
2045         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2046                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2047     }
2048 
2049     if (causes & E1000_ICR_TXQ0) {
2050         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2051                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2052     }
2053 
2054     if (causes & E1000_ICR_TXQ1) {
2055         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2056                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2057     }
2058 
2059     if (causes & E1000_ICR_OTHER) {
2060         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2061                                E1000_IVAR_OTHER(core->mac[IVAR]));
2062     }
2063 }
2064 
2065 static void
2066 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2067 {
2068     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2069         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2070         if (vec < E1000E_MSIX_VEC_NUM) {
2071             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2072             msix_clr_pending(core->owner, vec);
2073         } else {
2074             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2075         }
2076     } else {
2077         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2078     }
2079 }
2080 
2081 static void
2082 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2083 {
2084     if (causes & E1000_ICR_RXQ0) {
2085         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2086                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2087     }
2088 
2089     if (causes & E1000_ICR_RXQ1) {
2090         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2091                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2092     }
2093 
2094     if (causes & E1000_ICR_TXQ0) {
2095         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2096                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2097     }
2098 
2099     if (causes & E1000_ICR_TXQ1) {
2100         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2101                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2102     }
2103 
2104     if (causes & E1000_ICR_OTHER) {
2105         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2106                               E1000_IVAR_OTHER(core->mac[IVAR]));
2107     }
2108 }
2109 
2110 static inline void
2111 e1000e_fix_icr_asserted(E1000ECore *core)
2112 {
2113     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2114     if (core->mac[ICR]) {
2115         core->mac[ICR] |= E1000_ICR_ASSERTED;
2116     }
2117 
2118     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2119 }
2120 
2121 static void
2122 e1000e_send_msi(E1000ECore *core, bool msix)
2123 {
2124     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2125 
2126     if (msix) {
2127         e1000e_msix_notify(core, causes);
2128     } else {
2129         if (!e1000e_itr_should_postpone(core)) {
2130             trace_e1000e_irq_msi_notify(causes);
2131             msi_notify(core->owner, 0);
2132         }
2133     }
2134 }
2135 
2136 static void
2137 e1000e_update_interrupt_state(E1000ECore *core)
2138 {
2139     bool interrupts_pending;
2140     bool is_msix = msix_enabled(core->owner);
2141 
2142     /* Set ICR[OTHER] for MSI-X */
2143     if (is_msix) {
2144         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2145             core->mac[ICR] |= E1000_ICR_OTHER;
2146             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2147         }
2148     }
2149 
2150     e1000e_fix_icr_asserted(core);
2151 
2152     /*
2153      * Make sure ICR and ICS registers have the same value.
2154      * The spec says that the ICS register is write-only.  However in practice,
2155      * on real hardware ICS is readable, and for reads it has the same value as
2156      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2157      *
2158      * The VxWorks PRO/1000 driver uses this behaviour.
2159      */
2160     core->mac[ICS] = core->mac[ICR];
2161 
2162     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2163 
2164     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2165                                         core->mac[ICR], core->mac[IMS]);
2166 
2167     if (is_msix || msi_enabled(core->owner)) {
2168         if (interrupts_pending) {
2169             e1000e_send_msi(core, is_msix);
2170         }
2171     } else {
2172         if (interrupts_pending) {
2173             if (!e1000e_itr_should_postpone(core)) {
2174                 e1000e_raise_legacy_irq(core);
2175             }
2176         } else {
2177             e1000e_lower_legacy_irq(core);
2178         }
2179     }
2180 }
2181 
2182 static void
2183 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2184 {
2185     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2186 
2187     val |= e1000e_intmgr_collect_delayed_causes(core);
2188     core->mac[ICR] |= val;
2189 
2190     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2191 
2192     e1000e_update_interrupt_state(core);
2193 }
2194 
2195 static inline void
2196 e1000e_autoneg_timer(void *opaque)
2197 {
2198     E1000ECore *core = opaque;
2199     if (!qemu_get_queue(core->owner_nic)->link_down) {
2200         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2201         e1000e_start_recv(core);
2202 
2203         e1000e_update_flowctl_status(core);
2204         /* signal link status change to the guest */
2205         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2206     }
2207 }
2208 
2209 static inline uint16_t
2210 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2211 {
2212     uint16_t index = (addr & 0x1ffff) >> 2;
2213     return index + (mac_reg_access[index] & 0xfffe);
2214 }
2215 
2216 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2217     [0] = {
2218         [PHY_CTRL]          = PHY_ANYPAGE | PHY_RW,
2219         [PHY_STATUS]        = PHY_ANYPAGE | PHY_R,
2220         [PHY_ID1]           = PHY_ANYPAGE | PHY_R,
2221         [PHY_ID2]           = PHY_ANYPAGE | PHY_R,
2222         [PHY_AUTONEG_ADV]   = PHY_ANYPAGE | PHY_RW,
2223         [PHY_LP_ABILITY]    = PHY_ANYPAGE | PHY_R,
2224         [PHY_AUTONEG_EXP]   = PHY_ANYPAGE | PHY_R,
2225         [PHY_NEXT_PAGE_TX]  = PHY_ANYPAGE | PHY_RW,
2226         [PHY_LP_NEXT_PAGE]  = PHY_ANYPAGE | PHY_R,
2227         [PHY_1000T_CTRL]    = PHY_ANYPAGE | PHY_RW,
2228         [PHY_1000T_STATUS]  = PHY_ANYPAGE | PHY_R,
2229         [PHY_EXT_STATUS]    = PHY_ANYPAGE | PHY_R,
2230         [PHY_PAGE]          = PHY_ANYPAGE | PHY_RW,
2231 
2232         [PHY_COPPER_CTRL1]      = PHY_RW,
2233         [PHY_COPPER_STAT1]      = PHY_R,
2234         [PHY_COPPER_CTRL3]      = PHY_RW,
2235         [PHY_RX_ERR_CNTR]       = PHY_R,
2236         [PHY_OEM_BITS]          = PHY_RW,
2237         [PHY_BIAS_1]            = PHY_RW,
2238         [PHY_BIAS_2]            = PHY_RW,
2239         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2240         [PHY_COPPER_STAT2]      = PHY_R,
2241         [PHY_COPPER_CTRL2]      = PHY_RW
2242     },
2243     [2] = {
2244         [PHY_MAC_CTRL1]         = PHY_RW,
2245         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2246         [PHY_MAC_STAT]          = PHY_R,
2247         [PHY_MAC_CTRL2]         = PHY_RW
2248     },
2249     [3] = {
2250         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2251         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2252         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2253         [PHY_LED_45_CTRL]       = PHY_RW
2254     },
2255     [5] = {
2256         [PHY_1000T_SKEW]        = PHY_R,
2257         [PHY_1000T_SWAP]        = PHY_R
2258     },
2259     [6] = {
2260         [PHY_CRC_COUNTERS]      = PHY_R
2261     }
2262 };
2263 
2264 static bool
2265 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2266                          char cap, uint8_t *page)
2267 {
2268     *page =
2269         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2270                                                     : core->phy[0][PHY_PAGE];
2271 
2272     if (*page >= E1000E_PHY_PAGES) {
2273         return false;
2274     }
2275 
2276     return e1000e_phy_regcap[*page][addr] & cap;
2277 }
2278 
2279 static void
2280 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2281                      uint32_t addr, uint16_t data)
2282 {
2283     assert(page < E1000E_PHY_PAGES);
2284     assert(addr < E1000E_PHY_PAGE_SIZE);
2285 
2286     if (e1000e_phyreg_writeops[page][addr]) {
2287         e1000e_phyreg_writeops[page][addr](core, addr, data);
2288     } else {
2289         core->phy[page][addr] = data;
2290     }
2291 }
2292 
2293 static void
2294 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2295 {
2296     uint32_t data = val & E1000_MDIC_DATA_MASK;
2297     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2298     uint8_t page;
2299 
2300     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2301         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2302     } else if (val & E1000_MDIC_OP_READ) {
2303         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2304             trace_e1000e_core_mdic_read_unhandled(page, addr);
2305             val |= E1000_MDIC_ERROR;
2306         } else {
2307             val = (val ^ data) | core->phy[page][addr];
2308             trace_e1000e_core_mdic_read(page, addr, val);
2309         }
2310     } else if (val & E1000_MDIC_OP_WRITE) {
2311         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2312             trace_e1000e_core_mdic_write_unhandled(page, addr);
2313             val |= E1000_MDIC_ERROR;
2314         } else {
2315             trace_e1000e_core_mdic_write(page, addr, data);
2316             e1000e_phy_reg_write(core, page, addr, data);
2317         }
2318     }
2319     core->mac[MDIC] = val | E1000_MDIC_READY;
2320 
2321     if (val & E1000_MDIC_INT_EN) {
2322         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2323     }
2324 }
2325 
2326 static void
2327 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2328 {
2329     core->mac[index] = val & 0xffff;
2330     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2331     e1000e_start_recv(core);
2332 }
2333 
2334 static void
2335 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2336 {
2337     if ((val & E1000_STATUS_PHYRA) == 0) {
2338         core->mac[index] &= ~E1000_STATUS_PHYRA;
2339     }
2340 }
2341 
2342 static void
2343 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2344 {
2345     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2346                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2347 
2348     /* Zero self-clearing bits */
2349     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2350     core->mac[CTRL_EXT] = val;
2351 }
2352 
2353 static void
2354 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2355 {
2356     int i;
2357 
2358     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2359 
2360     if (!msix_enabled(core->owner)) {
2361         return;
2362     }
2363 
2364     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2365         if (core->mac[PBACLR] & BIT(i)) {
2366             msix_clr_pending(core->owner, i);
2367         }
2368     }
2369 }
2370 
2371 static void
2372 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2373 {
2374     core->mac[FCRTH] = val & 0xFFF8;
2375 }
2376 
2377 static void
2378 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2379 {
2380     core->mac[FCRTL] = val & 0x8000FFF8;
2381 }
2382 
2383 static inline void
2384 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2385 {
2386     core->mac[index] = val & 0xffff;
2387 }
2388 
2389 static void
2390 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2391 {
2392     core->mac[index] = val & 0xfff;
2393 }
2394 
2395 static void
2396 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2397 {
2398     core->mac[VET] = val & 0xffff;
2399     core->vet = le16_to_cpu(core->mac[VET]);
2400     trace_e1000e_vlan_vet(core->vet);
2401 }
2402 
2403 static void
2404 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2405 {
2406     core->mac[index] = val & E1000_XDLEN_MASK;
2407 }
2408 
2409 static void
2410 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2411 {
2412     core->mac[index] = val & E1000_XDBAL_MASK;
2413 }
2414 
2415 static void
2416 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2417 {
2418     E1000E_TxRing txr;
2419     core->mac[index] = val;
2420 
2421     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2422         e1000e_tx_ring_init(core, &txr, 0);
2423         e1000e_start_xmit(core, &txr);
2424     }
2425 
2426     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2427         e1000e_tx_ring_init(core, &txr, 1);
2428         e1000e_start_xmit(core, &txr);
2429     }
2430 }
2431 
2432 static void
2433 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2434 {
2435     E1000E_TxRing txr;
2436     int qidx = e1000e_mq_queue_idx(TDT, index);
2437     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2438 
2439     core->mac[index] = val & 0xffff;
2440 
2441     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2442         e1000e_tx_ring_init(core, &txr, qidx);
2443         e1000e_start_xmit(core, &txr);
2444     }
2445 }
2446 
2447 static void
2448 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2449 {
2450     trace_e1000e_irq_write_ics(val);
2451     e1000e_set_interrupt_cause(core, val);
2452 }
2453 
2454 static void
2455 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2456 {
2457     uint32_t icr = 0;
2458     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2459         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2460         trace_e1000e_irq_icr_process_iame();
2461         e1000e_clear_ims_bits(core, core->mac[IAM]);
2462     }
2463 
2464     icr = core->mac[ICR] & ~val;
2465     /* Windows driver expects that the "receive overrun" bit and other
2466      * ones to be cleared when the "Other" bit (#24) is cleared.
2467      */
2468     icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2469     trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2470     core->mac[ICR] = icr;
2471     e1000e_update_interrupt_state(core);
2472 }
2473 
2474 static void
2475 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2476 {
2477     trace_e1000e_irq_ims_clear_set_imc(val);
2478     e1000e_clear_ims_bits(core, val);
2479     e1000e_update_interrupt_state(core);
2480 }
2481 
2482 static void
2483 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2484 {
2485     static const uint32_t ims_ext_mask =
2486         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2487         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2488         E1000_IMS_OTHER;
2489 
2490     static const uint32_t ims_valid_mask =
2491         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2492         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2493         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2494         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2495         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2496         E1000_IMS_OTHER;
2497 
2498     uint32_t valid_val = val & ims_valid_mask;
2499 
2500     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2501     core->mac[IMS] |= valid_val;
2502 
2503     if ((valid_val & ims_ext_mask) &&
2504         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2505         msix_enabled(core->owner)) {
2506         e1000e_msix_clear(core, valid_val);
2507     }
2508 
2509     if ((valid_val == ims_valid_mask) &&
2510         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2511         trace_e1000e_irq_fire_all_timers(val);
2512         e1000e_intrmgr_fire_all_timers(core);
2513     }
2514 
2515     e1000e_update_interrupt_state(core);
2516 }
2517 
2518 static void
2519 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2520 {
2521     e1000e_set_16bit(core, index, val);
2522 
2523     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2524         trace_e1000e_irq_rdtr_fpd_running();
2525         e1000e_intrmgr_fire_delayed_interrupts(core);
2526     } else {
2527         trace_e1000e_irq_rdtr_fpd_not_running();
2528     }
2529 }
2530 
2531 static void
2532 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2533 {
2534     e1000e_set_16bit(core, index, val);
2535 
2536     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2537         trace_e1000e_irq_tidv_fpd_running();
2538         e1000e_intrmgr_fire_delayed_interrupts(core);
2539     } else {
2540         trace_e1000e_irq_tidv_fpd_not_running();
2541     }
2542 }
2543 
2544 static uint32_t
2545 e1000e_mac_readreg(E1000ECore *core, int index)
2546 {
2547     return core->mac[index];
2548 }
2549 
2550 static uint32_t
2551 e1000e_mac_ics_read(E1000ECore *core, int index)
2552 {
2553     trace_e1000e_irq_read_ics(core->mac[ICS]);
2554     return core->mac[ICS];
2555 }
2556 
2557 static uint32_t
2558 e1000e_mac_ims_read(E1000ECore *core, int index)
2559 {
2560     trace_e1000e_irq_read_ims(core->mac[IMS]);
2561     return core->mac[IMS];
2562 }
2563 
2564 #define E1000E_LOW_BITS_READ_FUNC(num)                      \
2565     static uint32_t                                         \
2566     e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2567     {                                                       \
2568         return core->mac[index] & (BIT(num) - 1);           \
2569     }                                                       \
2570 
2571 #define E1000E_LOW_BITS_READ(num)                           \
2572     e1000e_mac_low##num##_read
2573 
2574 E1000E_LOW_BITS_READ_FUNC(4);
2575 E1000E_LOW_BITS_READ_FUNC(6);
2576 E1000E_LOW_BITS_READ_FUNC(11);
2577 E1000E_LOW_BITS_READ_FUNC(13);
2578 E1000E_LOW_BITS_READ_FUNC(16);
2579 
2580 static uint32_t
2581 e1000e_mac_swsm_read(E1000ECore *core, int index)
2582 {
2583     uint32_t val = core->mac[SWSM];
2584     core->mac[SWSM] = val | 1;
2585     return val;
2586 }
2587 
2588 static uint32_t
2589 e1000e_mac_itr_read(E1000ECore *core, int index)
2590 {
2591     return core->itr_guest_value;
2592 }
2593 
2594 static uint32_t
2595 e1000e_mac_eitr_read(E1000ECore *core, int index)
2596 {
2597     return core->eitr_guest_value[index - EITR];
2598 }
2599 
2600 static uint32_t
2601 e1000e_mac_icr_read(E1000ECore *core, int index)
2602 {
2603     uint32_t ret = core->mac[ICR];
2604     trace_e1000e_irq_icr_read_entry(ret);
2605 
2606     if (core->mac[IMS] == 0) {
2607         trace_e1000e_irq_icr_clear_zero_ims();
2608         core->mac[ICR] = 0;
2609     }
2610 
2611     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2612         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2613         trace_e1000e_irq_icr_clear_iame();
2614         core->mac[ICR] = 0;
2615         trace_e1000e_irq_icr_process_iame();
2616         e1000e_clear_ims_bits(core, core->mac[IAM]);
2617     }
2618 
2619     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2620     e1000e_update_interrupt_state(core);
2621     return ret;
2622 }
2623 
2624 static uint32_t
2625 e1000e_mac_read_clr4(E1000ECore *core, int index)
2626 {
2627     uint32_t ret = core->mac[index];
2628 
2629     core->mac[index] = 0;
2630     return ret;
2631 }
2632 
2633 static uint32_t
2634 e1000e_mac_read_clr8(E1000ECore *core, int index)
2635 {
2636     uint32_t ret = core->mac[index];
2637 
2638     core->mac[index] = 0;
2639     core->mac[index - 1] = 0;
2640     return ret;
2641 }
2642 
2643 static uint32_t
2644 e1000e_get_ctrl(E1000ECore *core, int index)
2645 {
2646     uint32_t val = core->mac[CTRL];
2647 
2648     trace_e1000e_link_read_params(
2649         !!(val & E1000_CTRL_ASDE),
2650         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2651         !!(val & E1000_CTRL_FRCSPD),
2652         !!(val & E1000_CTRL_FRCDPX),
2653         !!(val & E1000_CTRL_RFCE),
2654         !!(val & E1000_CTRL_TFCE));
2655 
2656     return val;
2657 }
2658 
2659 static uint32_t
2660 e1000e_get_status(E1000ECore *core, int index)
2661 {
2662     uint32_t res = core->mac[STATUS];
2663 
2664     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2665         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2666     }
2667 
2668     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2669         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2670     } else {
2671         res |= E1000_STATUS_FD;
2672     }
2673 
2674     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2675         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2676         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2677         case E1000_CTRL_SPD_10:
2678             res |= E1000_STATUS_SPEED_10;
2679             break;
2680         case E1000_CTRL_SPD_100:
2681             res |= E1000_STATUS_SPEED_100;
2682             break;
2683         case E1000_CTRL_SPD_1000:
2684         default:
2685             res |= E1000_STATUS_SPEED_1000;
2686             break;
2687         }
2688     } else {
2689         res |= E1000_STATUS_SPEED_1000;
2690     }
2691 
2692     trace_e1000e_link_status(
2693         !!(res & E1000_STATUS_LU),
2694         !!(res & E1000_STATUS_FD),
2695         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2696         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2697 
2698     return res;
2699 }
2700 
2701 static uint32_t
2702 e1000e_get_tarc(E1000ECore *core, int index)
2703 {
2704     return core->mac[index] & ((BIT(11) - 1) |
2705                                 BIT(27)      |
2706                                 BIT(28)      |
2707                                 BIT(29)      |
2708                                 BIT(30));
2709 }
2710 
2711 static void
2712 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2713 {
2714     core->mac[index] = val;
2715 }
2716 
2717 static void
2718 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2719 {
2720     uint32_t macaddr[2];
2721 
2722     core->mac[index] = val;
2723 
2724     macaddr[0] = cpu_to_le32(core->mac[RA]);
2725     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2726     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2727         (uint8_t *) macaddr);
2728 
2729     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2730 }
2731 
2732 static void
2733 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2734 {
2735     static const uint32_t ro_bits = E1000_EECD_PRES          |
2736                                     E1000_EECD_AUTO_RD       |
2737                                     E1000_EECD_SIZE_EX_MASK;
2738 
2739     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2740 }
2741 
2742 static void
2743 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2744 {
2745     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2746     uint32_t flags = 0;
2747     uint32_t data = 0;
2748 
2749     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2750         data = core->eeprom[addr];
2751         flags = E1000_EERW_DONE;
2752     }
2753 
2754     core->mac[EERD] = flags                           |
2755                       (addr << E1000_EERW_ADDR_SHIFT) |
2756                       (data << E1000_EERW_DATA_SHIFT);
2757 }
2758 
2759 static void
2760 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2761 {
2762     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2763     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2764     uint32_t flags = 0;
2765 
2766     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2767         core->eeprom[addr] = data;
2768         flags = E1000_EERW_DONE;
2769     }
2770 
2771     core->mac[EERD] = flags                           |
2772                       (addr << E1000_EERW_ADDR_SHIFT) |
2773                       (data << E1000_EERW_DATA_SHIFT);
2774 }
2775 
2776 static void
2777 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2778 {
2779     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2780 }
2781 
2782 static void
2783 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2784 {
2785     uint32_t interval = val & 0xffff;
2786 
2787     trace_e1000e_irq_itr_set(val);
2788 
2789     core->itr_guest_value = interval;
2790     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2791 }
2792 
2793 static void
2794 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2795 {
2796     uint32_t interval = val & 0xffff;
2797     uint32_t eitr_num = index - EITR;
2798 
2799     trace_e1000e_irq_eitr_set(eitr_num, val);
2800 
2801     core->eitr_guest_value[eitr_num] = interval;
2802     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2803 }
2804 
2805 static void
2806 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2807 {
2808     if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2809         hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero");
2810     }
2811 
2812     if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2813         hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero");
2814     }
2815 
2816     core->mac[PSRCTL] = val;
2817 }
2818 
2819 static void
2820 e1000e_update_rx_offloads(E1000ECore *core)
2821 {
2822     int cso_state = e1000e_rx_l4_cso_enabled(core);
2823 
2824     trace_e1000e_rx_set_cso(cso_state);
2825 
2826     if (core->has_vnet) {
2827         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2828                          cso_state, 0, 0, 0, 0);
2829     }
2830 }
2831 
2832 static void
2833 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2834 {
2835     core->mac[RXCSUM] = val;
2836     e1000e_update_rx_offloads(core);
2837 }
2838 
2839 static void
2840 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2841 {
2842     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2843     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2844 }
2845 
2846 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2847 static uint32_t (*e1000e_macreg_readops[])(E1000ECore *, int) = {
2848     e1000e_getreg(PBA),
2849     e1000e_getreg(WUFC),
2850     e1000e_getreg(MANC),
2851     e1000e_getreg(TOTL),
2852     e1000e_getreg(RDT0),
2853     e1000e_getreg(RDBAH0),
2854     e1000e_getreg(TDBAL1),
2855     e1000e_getreg(RDLEN0),
2856     e1000e_getreg(RDH1),
2857     e1000e_getreg(LATECOL),
2858     e1000e_getreg(SEC),
2859     e1000e_getreg(XONTXC),
2860     e1000e_getreg(WUS),
2861     e1000e_getreg(GORCL),
2862     e1000e_getreg(MGTPRC),
2863     e1000e_getreg(EERD),
2864     e1000e_getreg(EIAC),
2865     e1000e_getreg(PSRCTL),
2866     e1000e_getreg(MANC2H),
2867     e1000e_getreg(RXCSUM),
2868     e1000e_getreg(GSCL_3),
2869     e1000e_getreg(GSCN_2),
2870     e1000e_getreg(RSRPD),
2871     e1000e_getreg(RDBAL1),
2872     e1000e_getreg(FCAH),
2873     e1000e_getreg(FCRTH),
2874     e1000e_getreg(FLOP),
2875     e1000e_getreg(FLASHT),
2876     e1000e_getreg(RXSTMPH),
2877     e1000e_getreg(TXSTMPL),
2878     e1000e_getreg(TIMADJL),
2879     e1000e_getreg(TXDCTL),
2880     e1000e_getreg(RDH0),
2881     e1000e_getreg(TDT1),
2882     e1000e_getreg(TNCRS),
2883     e1000e_getreg(RJC),
2884     e1000e_getreg(IAM),
2885     e1000e_getreg(GSCL_2),
2886     e1000e_getreg(RDBAH1),
2887     e1000e_getreg(FLSWDATA),
2888     e1000e_getreg(RXSATRH),
2889     e1000e_getreg(TIPG),
2890     e1000e_getreg(FLMNGCTL),
2891     e1000e_getreg(FLMNGCNT),
2892     e1000e_getreg(TSYNCTXCTL),
2893     e1000e_getreg(EXTCNF_SIZE),
2894     e1000e_getreg(EXTCNF_CTRL),
2895     e1000e_getreg(EEMNGDATA),
2896     e1000e_getreg(CTRL_EXT),
2897     e1000e_getreg(SYSTIMH),
2898     e1000e_getreg(EEMNGCTL),
2899     e1000e_getreg(FLMNGDATA),
2900     e1000e_getreg(TSYNCRXCTL),
2901     e1000e_getreg(TDH),
2902     e1000e_getreg(LEDCTL),
2903     e1000e_getreg(STATUS),
2904     e1000e_getreg(TCTL),
2905     e1000e_getreg(TDBAL),
2906     e1000e_getreg(TDLEN),
2907     e1000e_getreg(TDH1),
2908     e1000e_getreg(RADV),
2909     e1000e_getreg(ECOL),
2910     e1000e_getreg(DC),
2911     e1000e_getreg(RLEC),
2912     e1000e_getreg(XOFFTXC),
2913     e1000e_getreg(RFC),
2914     e1000e_getreg(RNBC),
2915     e1000e_getreg(MGTPTC),
2916     e1000e_getreg(TIMINCA),
2917     e1000e_getreg(RXCFGL),
2918     e1000e_getreg(MFUTP01),
2919     e1000e_getreg(FACTPS),
2920     e1000e_getreg(GSCL_1),
2921     e1000e_getreg(GSCN_0),
2922     e1000e_getreg(GCR2),
2923     e1000e_getreg(RDT1),
2924     e1000e_getreg(PBACLR),
2925     e1000e_getreg(FCTTV),
2926     e1000e_getreg(EEWR),
2927     e1000e_getreg(FLSWCTL),
2928     e1000e_getreg(RXDCTL1),
2929     e1000e_getreg(RXSATRL),
2930     e1000e_getreg(SYSTIML),
2931     e1000e_getreg(RXUDP),
2932     e1000e_getreg(TORL),
2933     e1000e_getreg(TDLEN1),
2934     e1000e_getreg(MCC),
2935     e1000e_getreg(WUC),
2936     e1000e_getreg(EECD),
2937     e1000e_getreg(MFUTP23),
2938     e1000e_getreg(RAID),
2939     e1000e_getreg(FCRTV),
2940     e1000e_getreg(TXDCTL1),
2941     e1000e_getreg(RCTL),
2942     e1000e_getreg(TDT),
2943     e1000e_getreg(MDIC),
2944     e1000e_getreg(FCRUC),
2945     e1000e_getreg(VET),
2946     e1000e_getreg(RDBAL0),
2947     e1000e_getreg(TDBAH1),
2948     e1000e_getreg(RDTR),
2949     e1000e_getreg(SCC),
2950     e1000e_getreg(COLC),
2951     e1000e_getreg(CEXTERR),
2952     e1000e_getreg(XOFFRXC),
2953     e1000e_getreg(IPAV),
2954     e1000e_getreg(GOTCL),
2955     e1000e_getreg(MGTPDC),
2956     e1000e_getreg(GCR),
2957     e1000e_getreg(IVAR),
2958     e1000e_getreg(POEMB),
2959     e1000e_getreg(MFVAL),
2960     e1000e_getreg(FUNCTAG),
2961     e1000e_getreg(GSCL_4),
2962     e1000e_getreg(GSCN_3),
2963     e1000e_getreg(MRQC),
2964     e1000e_getreg(RDLEN1),
2965     e1000e_getreg(FCT),
2966     e1000e_getreg(FLA),
2967     e1000e_getreg(FLOL),
2968     e1000e_getreg(RXDCTL),
2969     e1000e_getreg(RXSTMPL),
2970     e1000e_getreg(TXSTMPH),
2971     e1000e_getreg(TIMADJH),
2972     e1000e_getreg(FCRTL),
2973     e1000e_getreg(TDBAH),
2974     e1000e_getreg(TADV),
2975     e1000e_getreg(XONRXC),
2976     e1000e_getreg(TSCTFC),
2977     e1000e_getreg(RFCTL),
2978     e1000e_getreg(GSCN_1),
2979     e1000e_getreg(FCAL),
2980     e1000e_getreg(FLSWCNT),
2981 
2982     [TOTH]    = e1000e_mac_read_clr8,
2983     [GOTCH]   = e1000e_mac_read_clr8,
2984     [PRC64]   = e1000e_mac_read_clr4,
2985     [PRC255]  = e1000e_mac_read_clr4,
2986     [PRC1023] = e1000e_mac_read_clr4,
2987     [PTC64]   = e1000e_mac_read_clr4,
2988     [PTC255]  = e1000e_mac_read_clr4,
2989     [PTC1023] = e1000e_mac_read_clr4,
2990     [GPRC]    = e1000e_mac_read_clr4,
2991     [TPT]     = e1000e_mac_read_clr4,
2992     [RUC]     = e1000e_mac_read_clr4,
2993     [BPRC]    = e1000e_mac_read_clr4,
2994     [MPTC]    = e1000e_mac_read_clr4,
2995     [IAC]     = e1000e_mac_read_clr4,
2996     [ICR]     = e1000e_mac_icr_read,
2997     [RDFH]    = E1000E_LOW_BITS_READ(13),
2998     [RDFHS]   = E1000E_LOW_BITS_READ(13),
2999     [RDFPC]   = E1000E_LOW_BITS_READ(13),
3000     [TDFH]    = E1000E_LOW_BITS_READ(13),
3001     [TDFHS]   = E1000E_LOW_BITS_READ(13),
3002     [STATUS]  = e1000e_get_status,
3003     [TARC0]   = e1000e_get_tarc,
3004     [PBS]     = E1000E_LOW_BITS_READ(6),
3005     [ICS]     = e1000e_mac_ics_read,
3006     [AIT]     = E1000E_LOW_BITS_READ(16),
3007     [TORH]    = e1000e_mac_read_clr8,
3008     [GORCH]   = e1000e_mac_read_clr8,
3009     [PRC127]  = e1000e_mac_read_clr4,
3010     [PRC511]  = e1000e_mac_read_clr4,
3011     [PRC1522] = e1000e_mac_read_clr4,
3012     [PTC127]  = e1000e_mac_read_clr4,
3013     [PTC511]  = e1000e_mac_read_clr4,
3014     [PTC1522] = e1000e_mac_read_clr4,
3015     [GPTC]    = e1000e_mac_read_clr4,
3016     [TPR]     = e1000e_mac_read_clr4,
3017     [ROC]     = e1000e_mac_read_clr4,
3018     [MPRC]    = e1000e_mac_read_clr4,
3019     [BPTC]    = e1000e_mac_read_clr4,
3020     [TSCTC]   = e1000e_mac_read_clr4,
3021     [ITR]     = e1000e_mac_itr_read,
3022     [RDFT]    = E1000E_LOW_BITS_READ(13),
3023     [RDFTS]   = E1000E_LOW_BITS_READ(13),
3024     [TDFPC]   = E1000E_LOW_BITS_READ(13),
3025     [TDFT]    = E1000E_LOW_BITS_READ(13),
3026     [TDFTS]   = E1000E_LOW_BITS_READ(13),
3027     [CTRL]    = e1000e_get_ctrl,
3028     [TARC1]   = e1000e_get_tarc,
3029     [SWSM]    = e1000e_mac_swsm_read,
3030     [IMS]     = e1000e_mac_ims_read,
3031 
3032     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3033     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3034     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3035     [RA ... RA + 31]       = e1000e_mac_readreg,
3036     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3037     [MTA ... MTA + 127]    = e1000e_mac_readreg,
3038     [VFTA ... VFTA + 127]  = e1000e_mac_readreg,
3039     [FFMT ... FFMT + 254]  = E1000E_LOW_BITS_READ(4),
3040     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3041     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3042     [FFLT ... FFLT + 10]   = E1000E_LOW_BITS_READ(11),
3043     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3044     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3045     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3046     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3047     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3048     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3049 };
3050 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3051 
3052 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3053 static void (*e1000e_macreg_writeops[])(E1000ECore *, int, uint32_t) = {
3054     e1000e_putreg(PBA),
3055     e1000e_putreg(SWSM),
3056     e1000e_putreg(WUFC),
3057     e1000e_putreg(RDBAH1),
3058     e1000e_putreg(TDBAH),
3059     e1000e_putreg(TXDCTL),
3060     e1000e_putreg(RDBAH0),
3061     e1000e_putreg(LEDCTL),
3062     e1000e_putreg(FCAL),
3063     e1000e_putreg(FCRUC),
3064     e1000e_putreg(AIT),
3065     e1000e_putreg(TDFH),
3066     e1000e_putreg(TDFT),
3067     e1000e_putreg(TDFHS),
3068     e1000e_putreg(TDFTS),
3069     e1000e_putreg(TDFPC),
3070     e1000e_putreg(WUC),
3071     e1000e_putreg(WUS),
3072     e1000e_putreg(RDFH),
3073     e1000e_putreg(RDFT),
3074     e1000e_putreg(RDFHS),
3075     e1000e_putreg(RDFTS),
3076     e1000e_putreg(RDFPC),
3077     e1000e_putreg(IPAV),
3078     e1000e_putreg(TDBAH1),
3079     e1000e_putreg(TIMINCA),
3080     e1000e_putreg(IAM),
3081     e1000e_putreg(EIAC),
3082     e1000e_putreg(IVAR),
3083     e1000e_putreg(TARC0),
3084     e1000e_putreg(TARC1),
3085     e1000e_putreg(FLSWDATA),
3086     e1000e_putreg(POEMB),
3087     e1000e_putreg(PBS),
3088     e1000e_putreg(MFUTP01),
3089     e1000e_putreg(MFUTP23),
3090     e1000e_putreg(MANC),
3091     e1000e_putreg(MANC2H),
3092     e1000e_putreg(MFVAL),
3093     e1000e_putreg(EXTCNF_CTRL),
3094     e1000e_putreg(FACTPS),
3095     e1000e_putreg(FUNCTAG),
3096     e1000e_putreg(GSCL_1),
3097     e1000e_putreg(GSCL_2),
3098     e1000e_putreg(GSCL_3),
3099     e1000e_putreg(GSCL_4),
3100     e1000e_putreg(GSCN_0),
3101     e1000e_putreg(GSCN_1),
3102     e1000e_putreg(GSCN_2),
3103     e1000e_putreg(GSCN_3),
3104     e1000e_putreg(GCR2),
3105     e1000e_putreg(MRQC),
3106     e1000e_putreg(FLOP),
3107     e1000e_putreg(FLOL),
3108     e1000e_putreg(FLSWCTL),
3109     e1000e_putreg(FLSWCNT),
3110     e1000e_putreg(FLA),
3111     e1000e_putreg(RXDCTL1),
3112     e1000e_putreg(TXDCTL1),
3113     e1000e_putreg(TIPG),
3114     e1000e_putreg(RXSTMPH),
3115     e1000e_putreg(RXSTMPL),
3116     e1000e_putreg(RXSATRL),
3117     e1000e_putreg(RXSATRH),
3118     e1000e_putreg(TXSTMPL),
3119     e1000e_putreg(TXSTMPH),
3120     e1000e_putreg(SYSTIML),
3121     e1000e_putreg(SYSTIMH),
3122     e1000e_putreg(TIMADJL),
3123     e1000e_putreg(TIMADJH),
3124     e1000e_putreg(RXUDP),
3125     e1000e_putreg(RXCFGL),
3126     e1000e_putreg(TSYNCRXCTL),
3127     e1000e_putreg(TSYNCTXCTL),
3128     e1000e_putreg(FLSWDATA),
3129     e1000e_putreg(EXTCNF_SIZE),
3130     e1000e_putreg(EEMNGCTL),
3131     e1000e_putreg(RA),
3132 
3133     [TDH1]     = e1000e_set_16bit,
3134     [TDT1]     = e1000e_set_tdt,
3135     [TCTL]     = e1000e_set_tctl,
3136     [TDT]      = e1000e_set_tdt,
3137     [MDIC]     = e1000e_set_mdic,
3138     [ICS]      = e1000e_set_ics,
3139     [TDH]      = e1000e_set_16bit,
3140     [RDH0]     = e1000e_set_16bit,
3141     [RDT0]     = e1000e_set_rdt,
3142     [IMC]      = e1000e_set_imc,
3143     [IMS]      = e1000e_set_ims,
3144     [ICR]      = e1000e_set_icr,
3145     [EECD]     = e1000e_set_eecd,
3146     [RCTL]     = e1000e_set_rx_control,
3147     [CTRL]     = e1000e_set_ctrl,
3148     [RDTR]     = e1000e_set_rdtr,
3149     [RADV]     = e1000e_set_16bit,
3150     [TADV]     = e1000e_set_16bit,
3151     [ITR]      = e1000e_set_itr,
3152     [EERD]     = e1000e_set_eerd,
3153     [GCR]      = e1000e_set_gcr,
3154     [PSRCTL]   = e1000e_set_psrctl,
3155     [RXCSUM]   = e1000e_set_rxcsum,
3156     [RAID]     = e1000e_set_16bit,
3157     [RSRPD]    = e1000e_set_12bit,
3158     [TIDV]     = e1000e_set_tidv,
3159     [TDLEN1]   = e1000e_set_dlen,
3160     [TDLEN]    = e1000e_set_dlen,
3161     [RDLEN0]   = e1000e_set_dlen,
3162     [RDLEN1]   = e1000e_set_dlen,
3163     [TDBAL]    = e1000e_set_dbal,
3164     [TDBAL1]   = e1000e_set_dbal,
3165     [RDBAL0]   = e1000e_set_dbal,
3166     [RDBAL1]   = e1000e_set_dbal,
3167     [RDH1]     = e1000e_set_16bit,
3168     [RDT1]     = e1000e_set_rdt,
3169     [STATUS]   = e1000e_set_status,
3170     [PBACLR]   = e1000e_set_pbaclr,
3171     [CTRL_EXT] = e1000e_set_ctrlext,
3172     [FCAH]     = e1000e_set_16bit,
3173     [FCT]      = e1000e_set_16bit,
3174     [FCTTV]    = e1000e_set_16bit,
3175     [FCRTV]    = e1000e_set_16bit,
3176     [FCRTH]    = e1000e_set_fcrth,
3177     [FCRTL]    = e1000e_set_fcrtl,
3178     [VET]      = e1000e_set_vet,
3179     [RXDCTL]   = e1000e_set_rxdctl,
3180     [FLASHT]   = e1000e_set_16bit,
3181     [EEWR]     = e1000e_set_eewr,
3182     [CTRL_DUP] = e1000e_set_ctrl,
3183     [RFCTL]    = e1000e_set_rfctl,
3184     [RA + 1]   = e1000e_mac_setmacaddr,
3185 
3186     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3187     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3188     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3189     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3190     [MTA ... MTA + 127]      = e1000e_mac_writereg,
3191     [VFTA ... VFTA + 127]    = e1000e_mac_writereg,
3192     [FFMT ... FFMT + 254]    = e1000e_mac_writereg,
3193     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3194     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3195     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3196     [FFLT ... FFLT + 10]     = e1000e_mac_writereg,
3197     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3198     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3199     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3200     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3201     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3202 };
3203 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3204 
3205 enum { MAC_ACCESS_PARTIAL = 1 };
3206 
3207 /* The array below combines alias offsets of the index values for the
3208  * MAC registers that have aliases, with the indication of not fully
3209  * implemented registers (lowest bit). This combination is possible
3210  * because all of the offsets are even. */
3211 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3212     /* Alias index offsets */
3213     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3214     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3215     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3216     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3217     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3218     [RA_A ... RA_A + 31]      = 0x14f0,
3219     [VFTA_A ... VFTA_A + 127] = 0x1400,
3220     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3221     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3222     /* Access options */
3223     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3224     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3225     [RDFPC] = MAC_ACCESS_PARTIAL,
3226     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3227     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3228     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3229     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3230     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3231     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3232     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3233     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3234     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3235     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3236 };
3237 
3238 void
3239 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3240 {
3241     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3242 
3243     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3244         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3245             trace_e1000e_wrn_regs_write_trivial(index << 2);
3246         }
3247         trace_e1000e_core_write(index << 2, size, val);
3248         e1000e_macreg_writeops[index](core, index, val);
3249     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3250         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3251     } else {
3252         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3253     }
3254 }
3255 
3256 uint64_t
3257 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3258 {
3259     uint64_t val;
3260     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3261 
3262     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3263         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3264             trace_e1000e_wrn_regs_read_trivial(index << 2);
3265         }
3266         val = e1000e_macreg_readops[index](core, index);
3267         trace_e1000e_core_read(index << 2, size, val);
3268         return val;
3269     } else {
3270         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3271     }
3272     return 0;
3273 }
3274 
3275 static inline void
3276 e1000e_autoneg_pause(E1000ECore *core)
3277 {
3278     timer_del(core->autoneg_timer);
3279 }
3280 
3281 static void
3282 e1000e_autoneg_resume(E1000ECore *core)
3283 {
3284     if (e1000e_have_autoneg(core) &&
3285         !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3286         qemu_get_queue(core->owner_nic)->link_down = false;
3287         timer_mod(core->autoneg_timer,
3288                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3289     }
3290 }
3291 
3292 static void
3293 e1000e_vm_state_change(void *opaque, int running, RunState state)
3294 {
3295     E1000ECore *core = opaque;
3296 
3297     if (running) {
3298         trace_e1000e_vm_state_running();
3299         e1000e_intrmgr_resume(core);
3300         e1000e_autoneg_resume(core);
3301     } else {
3302         trace_e1000e_vm_state_stopped();
3303         e1000e_autoneg_pause(core);
3304         e1000e_intrmgr_pause(core);
3305     }
3306 }
3307 
3308 void
3309 e1000e_core_pci_realize(E1000ECore     *core,
3310                         const uint16_t *eeprom_templ,
3311                         uint32_t        eeprom_size,
3312                         const uint8_t  *macaddr)
3313 {
3314     int i;
3315 
3316     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3317                                        e1000e_autoneg_timer, core);
3318     e1000e_intrmgr_pci_realize(core);
3319 
3320     core->vmstate =
3321         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3322 
3323     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3324         net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3325                         E1000E_MAX_TX_FRAGS, core->has_vnet);
3326     }
3327 
3328     net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3329 
3330     e1000x_core_prepare_eeprom(core->eeprom,
3331                                eeprom_templ,
3332                                eeprom_size,
3333                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3334                                macaddr);
3335     e1000e_update_rx_offloads(core);
3336 }
3337 
3338 void
3339 e1000e_core_pci_uninit(E1000ECore *core)
3340 {
3341     int i;
3342 
3343     timer_del(core->autoneg_timer);
3344     timer_free(core->autoneg_timer);
3345 
3346     e1000e_intrmgr_pci_unint(core);
3347 
3348     qemu_del_vm_change_state_handler(core->vmstate);
3349 
3350     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3351         net_tx_pkt_reset(core->tx[i].tx_pkt);
3352         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3353     }
3354 
3355     net_rx_pkt_uninit(core->rx_pkt);
3356 }
3357 
3358 static const uint16_t
3359 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3360     [0] = {
3361         [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB  |
3362                        MII_CR_FULL_DUPLEX       |
3363                        MII_CR_AUTO_NEG_EN,
3364 
3365         [PHY_STATUS] = MII_SR_EXTENDED_CAPS     |
3366                        MII_SR_LINK_STATUS       |
3367                        MII_SR_AUTONEG_CAPS      |
3368                        MII_SR_PREAMBLE_SUPPRESS |
3369                        MII_SR_EXTENDED_STATUS   |
3370                        MII_SR_10T_HD_CAPS       |
3371                        MII_SR_10T_FD_CAPS       |
3372                        MII_SR_100X_HD_CAPS      |
3373                        MII_SR_100X_FD_CAPS,
3374 
3375         [PHY_ID1]               = 0x141,
3376         [PHY_ID2]               = E1000_PHY_ID2_82574x,
3377         [PHY_AUTONEG_ADV]       = 0xde1,
3378         [PHY_LP_ABILITY]        = 0x7e0,
3379         [PHY_AUTONEG_EXP]       = BIT(2),
3380         [PHY_NEXT_PAGE_TX]      = BIT(0) | BIT(13),
3381         [PHY_1000T_CTRL]        = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3382         [PHY_1000T_STATUS]      = 0x3c00,
3383         [PHY_EXT_STATUS]        = BIT(12) | BIT(13),
3384 
3385         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3386                                   BIT(12) | BIT(13),
3387         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3388     },
3389     [2] = {
3390         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3391         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3392     },
3393     [3] = {
3394         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3395     }
3396 };
3397 
3398 static const uint32_t e1000e_mac_reg_init[] = {
3399     [PBA]           =     0x00140014,
3400     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3401     [EXTCNF_CTRL]   = BIT(3),
3402     [EEMNGCTL]      = BIT(31),
3403     [FLASHT]        = 0x2,
3404     [FLSWCTL]       = BIT(30) | BIT(31),
3405     [FLOL]          = BIT(0),
3406     [RXDCTL]        = BIT(16),
3407     [RXDCTL1]       = BIT(16),
3408     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3409     [RXCFGL]        = 0x88F7,
3410     [RXUDP]         = 0x319,
3411     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3412                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3413                       E1000_CTRL_ADVD3WUC,
3414     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3415     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3416                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3417                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3418     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3419     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3420     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3421     [EERD]          = E1000_EERW_DONE,
3422     [EEWR]          = E1000_EERW_DONE,
3423     [GCR]           = E1000_L0S_ADJUST |
3424                       E1000_L1_ENTRY_LATENCY_MSB |
3425                       E1000_L1_ENTRY_LATENCY_LSB,
3426     [TDFH]          = 0x600,
3427     [TDFT]          = 0x600,
3428     [TDFHS]         = 0x600,
3429     [TDFTS]         = 0x600,
3430     [POEMB]         = 0x30D,
3431     [PBS]           = 0x028,
3432     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3433     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3434     [SWSM]          = 1,
3435     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3436     [ITR]           = E1000E_MIN_XITR,
3437     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3438 };
3439 
3440 void
3441 e1000e_core_reset(E1000ECore *core)
3442 {
3443     int i;
3444 
3445     timer_del(core->autoneg_timer);
3446 
3447     e1000e_intrmgr_reset(core);
3448 
3449     memset(core->phy, 0, sizeof core->phy);
3450     memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3451     memset(core->mac, 0, sizeof core->mac);
3452     memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3453 
3454     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3455 
3456     if (qemu_get_queue(core->owner_nic)->link_down) {
3457         e1000e_link_down(core);
3458     }
3459 
3460     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3461 
3462     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3463         net_tx_pkt_reset(core->tx[i].tx_pkt);
3464         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3465         core->tx[i].skip_cp = false;
3466     }
3467 }
3468 
3469 void e1000e_core_pre_save(E1000ECore *core)
3470 {
3471     int i;
3472     NetClientState *nc = qemu_get_queue(core->owner_nic);
3473 
3474     /*
3475     * If link is down and auto-negotiation is supported and ongoing,
3476     * complete auto-negotiation immediately. This allows us to look
3477     * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3478     */
3479     if (nc->link_down && e1000e_have_autoneg(core)) {
3480         core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3481         e1000e_update_flowctl_status(core);
3482     }
3483 
3484     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3485         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3486             core->tx[i].skip_cp = true;
3487         }
3488     }
3489 }
3490 
3491 int
3492 e1000e_core_post_load(E1000ECore *core)
3493 {
3494     NetClientState *nc = qemu_get_queue(core->owner_nic);
3495 
3496     /* nc.link_down can't be migrated, so infer link_down according
3497      * to link status bit in core.mac[STATUS].
3498      */
3499     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3500 
3501     return 0;
3502 }
3503