xref: /openbmc/qemu/hw/net/e1000e_core.c (revision 6fdc5bc1)
1 /*
2  * Core code for QEMU e1000e emulation
3  *
4  * Software developer's manuals:
5  * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6  *
7  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8  * Developed by Daynix Computing LTD (http://www.daynix.com)
9  *
10  * Authors:
11  * Dmitry Fleytman <dmitry@daynix.com>
12  * Leonid Bloch <leonid@daynix.com>
13  * Yan Vugenfirer <yan@daynix.com>
14  *
15  * Based on work done by:
16  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17  * Copyright (c) 2008 Qumranet
18  * Based on work done by:
19  * Copyright (c) 2007 Dan Aloni
20  * Copyright (c) 2004 Antony T Curtis
21  *
22  * This library is free software; you can redistribute it and/or
23  * modify it under the terms of the GNU Lesser General Public
24  * License as published by the Free Software Foundation; either
25  * version 2.1 of the License, or (at your option) any later version.
26  *
27  * This library is distributed in the hope that it will be useful,
28  * but WITHOUT ANY WARRANTY; without even the implied warranty of
29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30  * Lesser General Public License for more details.
31  *
32  * You should have received a copy of the GNU Lesser General Public
33  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34  */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/net/mii.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 #include "sysemu/runstate.h"
44 
45 #include "net_tx_pkt.h"
46 #include "net_rx_pkt.h"
47 
48 #include "e1000_common.h"
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
51 
52 #include "trace.h"
53 
54 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
55 #define E1000E_MIN_XITR     (500)
56 
57 #define E1000E_MAX_TX_FRAGS (64)
58 
59 union e1000_rx_desc_union {
60     struct e1000_rx_desc legacy;
61     union e1000_rx_desc_extended extended;
62     union e1000_rx_desc_packet_split packet_split;
63 };
64 
65 static ssize_t
66 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
67                         bool has_vnet);
68 
69 static inline void
70 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
71 
72 static void e1000e_reset(E1000ECore *core, bool sw);
73 
74 static inline void
75 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
76 {
77     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
78         trace_e1000e_wrn_no_ts_support();
79     }
80 }
81 
82 static inline void
83 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
84 {
85     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
86         trace_e1000e_wrn_no_snap_support();
87     }
88 }
89 
90 static inline void
91 e1000e_raise_legacy_irq(E1000ECore *core)
92 {
93     trace_e1000e_irq_legacy_notify(true);
94     e1000x_inc_reg_if_not_full(core->mac, IAC);
95     pci_set_irq(core->owner, 1);
96 }
97 
98 static inline void
99 e1000e_lower_legacy_irq(E1000ECore *core)
100 {
101     trace_e1000e_irq_legacy_notify(false);
102     pci_set_irq(core->owner, 0);
103 }
104 
105 static inline void
106 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
107 {
108     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
109                                  timer->delay_resolution_ns;
110 
111     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
112 
113     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
114 
115     timer->running = true;
116 }
117 
118 static void
119 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
120 {
121     if (timer->running) {
122         e1000e_intrmgr_rearm_timer(timer);
123     }
124 }
125 
126 static inline void
127 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
128 {
129     if (timer->running) {
130         timer_del(timer->timer);
131         timer->running = false;
132     }
133 }
134 
135 static inline void
136 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
137 {
138     trace_e1000e_irq_fire_delayed_interrupts();
139     e1000e_set_interrupt_cause(core, 0);
140 }
141 
142 static void
143 e1000e_intrmgr_on_timer(void *opaque)
144 {
145     E1000IntrDelayTimer *timer = opaque;
146 
147     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
148 
149     timer->running = false;
150     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
151 }
152 
153 static void
154 e1000e_intrmgr_on_throttling_timer(void *opaque)
155 {
156     E1000IntrDelayTimer *timer = opaque;
157 
158     timer->running = false;
159 
160     if (timer->core->mac[IMS] & timer->core->mac[ICR]) {
161         if (msi_enabled(timer->core->owner)) {
162             trace_e1000e_irq_msi_notify_postponed();
163             msi_notify(timer->core->owner, 0);
164         } else {
165             trace_e1000e_irq_legacy_notify_postponed();
166             e1000e_raise_legacy_irq(timer->core);
167         }
168     }
169 }
170 
171 static void
172 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
173 {
174     E1000IntrDelayTimer *timer = opaque;
175     int idx = timer - &timer->core->eitr[0];
176 
177     timer->running = false;
178 
179     trace_e1000e_irq_msix_notify_postponed_vec(idx);
180     msix_notify(timer->core->owner, idx);
181 }
182 
183 static void
184 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
185 {
186     int i;
187 
188     core->radv.delay_reg = RADV;
189     core->rdtr.delay_reg = RDTR;
190     core->raid.delay_reg = RAID;
191     core->tadv.delay_reg = TADV;
192     core->tidv.delay_reg = TIDV;
193 
194     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
195     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
196     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
197     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
198     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
199 
200     core->radv.core = core;
201     core->rdtr.core = core;
202     core->raid.core = core;
203     core->tadv.core = core;
204     core->tidv.core = core;
205 
206     core->itr.core = core;
207     core->itr.delay_reg = ITR;
208     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
209 
210     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
211         core->eitr[i].core = core;
212         core->eitr[i].delay_reg = EITR + i;
213         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
214     }
215 
216     if (!create) {
217         return;
218     }
219 
220     core->radv.timer =
221         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
222     core->rdtr.timer =
223         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
224     core->raid.timer =
225         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
226 
227     core->tadv.timer =
228         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
229     core->tidv.timer =
230         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
231 
232     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
233                                    e1000e_intrmgr_on_throttling_timer,
234                                    &core->itr);
235 
236     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
237         core->eitr[i].timer =
238             timer_new_ns(QEMU_CLOCK_VIRTUAL,
239                          e1000e_intrmgr_on_msix_throttling_timer,
240                          &core->eitr[i]);
241     }
242 }
243 
244 static inline void
245 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
246 {
247     e1000e_intrmgr_stop_timer(&core->radv);
248     e1000e_intrmgr_stop_timer(&core->rdtr);
249     e1000e_intrmgr_stop_timer(&core->raid);
250     e1000e_intrmgr_stop_timer(&core->tidv);
251     e1000e_intrmgr_stop_timer(&core->tadv);
252 }
253 
254 static bool
255 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
256 {
257     uint32_t delayable_causes;
258     uint32_t rdtr = core->mac[RDTR];
259     uint32_t radv = core->mac[RADV];
260     uint32_t raid = core->mac[RAID];
261 
262     if (msix_enabled(core->owner)) {
263         return false;
264     }
265 
266     delayable_causes = E1000_ICR_RXQ0 |
267                        E1000_ICR_RXQ1 |
268                        E1000_ICR_RXT0;
269 
270     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
271         delayable_causes |= E1000_ICR_ACK;
272     }
273 
274     /* Clean up all causes that may be delayed */
275     core->delayed_causes |= *causes & delayable_causes;
276     *causes &= ~delayable_causes;
277 
278     /*
279      * Check if delayed RX interrupts disabled by client
280      * or if there are causes that cannot be delayed
281      */
282     if ((rdtr == 0) || (*causes != 0)) {
283         return false;
284     }
285 
286     /*
287      * Check if delayed RX ACK interrupts disabled by client
288      * and there is an ACK packet received
289      */
290     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
291         return false;
292     }
293 
294     /* All causes delayed */
295     e1000e_intrmgr_rearm_timer(&core->rdtr);
296 
297     if (!core->radv.running && (radv != 0)) {
298         e1000e_intrmgr_rearm_timer(&core->radv);
299     }
300 
301     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
302         e1000e_intrmgr_rearm_timer(&core->raid);
303     }
304 
305     return true;
306 }
307 
308 static bool
309 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
310 {
311     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
312                                              E1000_ICR_TXQ1 |
313                                              E1000_ICR_TXQE |
314                                              E1000_ICR_TXDW;
315 
316     if (msix_enabled(core->owner)) {
317         return false;
318     }
319 
320     /* Clean up all causes that may be delayed */
321     core->delayed_causes |= *causes & delayable_causes;
322     *causes &= ~delayable_causes;
323 
324     /* If there are causes that cannot be delayed */
325     if (*causes != 0) {
326         return false;
327     }
328 
329     /* All causes delayed */
330     e1000e_intrmgr_rearm_timer(&core->tidv);
331 
332     if (!core->tadv.running && (core->mac[TADV] != 0)) {
333         e1000e_intrmgr_rearm_timer(&core->tadv);
334     }
335 
336     return true;
337 }
338 
339 static uint32_t
340 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
341 {
342     uint32_t res;
343 
344     if (msix_enabled(core->owner)) {
345         assert(core->delayed_causes == 0);
346         return 0;
347     }
348 
349     res = core->delayed_causes;
350     core->delayed_causes = 0;
351 
352     e1000e_intrmgr_stop_delay_timers(core);
353 
354     return res;
355 }
356 
357 static void
358 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
359 {
360     int i;
361 
362     if (core->itr.running) {
363         timer_del(core->itr.timer);
364         e1000e_intrmgr_on_throttling_timer(&core->itr);
365     }
366 
367     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
368         if (core->eitr[i].running) {
369             timer_del(core->eitr[i].timer);
370             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
371         }
372     }
373 }
374 
375 static void
376 e1000e_intrmgr_resume(E1000ECore *core)
377 {
378     int i;
379 
380     e1000e_intmgr_timer_resume(&core->radv);
381     e1000e_intmgr_timer_resume(&core->rdtr);
382     e1000e_intmgr_timer_resume(&core->raid);
383     e1000e_intmgr_timer_resume(&core->tidv);
384     e1000e_intmgr_timer_resume(&core->tadv);
385 
386     e1000e_intmgr_timer_resume(&core->itr);
387 
388     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
389         e1000e_intmgr_timer_resume(&core->eitr[i]);
390     }
391 }
392 
393 static void
394 e1000e_intrmgr_reset(E1000ECore *core)
395 {
396     int i;
397 
398     core->delayed_causes = 0;
399 
400     e1000e_intrmgr_stop_delay_timers(core);
401 
402     e1000e_intrmgr_stop_timer(&core->itr);
403 
404     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
405         e1000e_intrmgr_stop_timer(&core->eitr[i]);
406     }
407 }
408 
409 static void
410 e1000e_intrmgr_pci_unint(E1000ECore *core)
411 {
412     int i;
413 
414     timer_free(core->radv.timer);
415     timer_free(core->rdtr.timer);
416     timer_free(core->raid.timer);
417 
418     timer_free(core->tadv.timer);
419     timer_free(core->tidv.timer);
420 
421     timer_free(core->itr.timer);
422 
423     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
424         timer_free(core->eitr[i].timer);
425     }
426 }
427 
428 static void
429 e1000e_intrmgr_pci_realize(E1000ECore *core)
430 {
431     e1000e_intrmgr_initialize_all_timers(core, true);
432 }
433 
434 static inline bool
435 e1000e_rx_csum_enabled(E1000ECore *core)
436 {
437     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
438 }
439 
440 static inline bool
441 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
442 {
443     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
444 }
445 
446 static inline bool
447 e1000e_rx_use_ps_descriptor(E1000ECore *core)
448 {
449     return !e1000e_rx_use_legacy_descriptor(core) &&
450            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
451 }
452 
453 static inline bool
454 e1000e_rss_enabled(E1000ECore *core)
455 {
456     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
457            !e1000e_rx_csum_enabled(core) &&
458            !e1000e_rx_use_legacy_descriptor(core);
459 }
460 
461 typedef struct E1000E_RSSInfo_st {
462     bool enabled;
463     uint32_t hash;
464     uint32_t queue;
465     uint32_t type;
466 } E1000E_RSSInfo;
467 
468 static uint32_t
469 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
470 {
471     bool hasip4, hasip6;
472     EthL4HdrProto l4hdr_proto;
473 
474     assert(e1000e_rss_enabled(core));
475 
476     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
477 
478     if (hasip4) {
479         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
480                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
481                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
482 
483         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
484             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
485             return E1000_MRQ_RSS_TYPE_IPV4TCP;
486         }
487 
488         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
489             return E1000_MRQ_RSS_TYPE_IPV4;
490         }
491     } else if (hasip6) {
492         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
493 
494         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
495         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
496 
497         /*
498          * Following two traces must not be combined because resulting
499          * event will have 11 arguments totally and some trace backends
500          * (at least "ust") have limitation of maximum 10 arguments per
501          * event. Events with more arguments fail to compile for
502          * backends like these.
503          */
504         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
505         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
506                                 ip6info->has_ext_hdrs,
507                                 ip6info->rss_ex_dst_valid,
508                                 ip6info->rss_ex_src_valid,
509                                 core->mac[MRQC],
510                                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]),
511                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
512                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
513 
514         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
515             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
516                               ip6info->rss_ex_src_valid))) {
517 
518             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
519                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) {
520                 return E1000_MRQ_RSS_TYPE_IPV6TCPEX;
521             }
522 
523             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
524                 return E1000_MRQ_RSS_TYPE_IPV6EX;
525             }
526 
527         }
528 
529         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
530             return E1000_MRQ_RSS_TYPE_IPV6;
531         }
532 
533     }
534 
535     return E1000_MRQ_RSS_TYPE_NONE;
536 }
537 
538 static uint32_t
539 e1000e_rss_calc_hash(E1000ECore *core,
540                      struct NetRxPkt *pkt,
541                      E1000E_RSSInfo *info)
542 {
543     NetRxPktRssType type;
544 
545     assert(e1000e_rss_enabled(core));
546 
547     switch (info->type) {
548     case E1000_MRQ_RSS_TYPE_IPV4:
549         type = NetPktRssIpV4;
550         break;
551     case E1000_MRQ_RSS_TYPE_IPV4TCP:
552         type = NetPktRssIpV4Tcp;
553         break;
554     case E1000_MRQ_RSS_TYPE_IPV6TCPEX:
555         type = NetPktRssIpV6TcpEx;
556         break;
557     case E1000_MRQ_RSS_TYPE_IPV6:
558         type = NetPktRssIpV6;
559         break;
560     case E1000_MRQ_RSS_TYPE_IPV6EX:
561         type = NetPktRssIpV6Ex;
562         break;
563     default:
564         g_assert_not_reached();
565     }
566 
567     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
568 }
569 
570 static void
571 e1000e_rss_parse_packet(E1000ECore *core,
572                         struct NetRxPkt *pkt,
573                         E1000E_RSSInfo *info)
574 {
575     trace_e1000e_rx_rss_started();
576 
577     if (!e1000e_rss_enabled(core)) {
578         info->enabled = false;
579         info->hash = 0;
580         info->queue = 0;
581         info->type = 0;
582         trace_e1000e_rx_rss_disabled();
583         return;
584     }
585 
586     info->enabled = true;
587 
588     info->type = e1000e_rss_get_hash_type(core, pkt);
589 
590     trace_e1000e_rx_rss_type(info->type);
591 
592     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
593         info->hash = 0;
594         info->queue = 0;
595         return;
596     }
597 
598     info->hash = e1000e_rss_calc_hash(core, pkt, info);
599     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
600 }
601 
602 static bool
603 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
604 {
605     if (tx->props.tse && tx->cptse) {
606         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
607             return false;
608         }
609 
610         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
611         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
612         return true;
613     }
614 
615     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
616         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
617             return false;
618         }
619     }
620 
621     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
622         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
623     }
624 
625     return true;
626 }
627 
628 static void e1000e_tx_pkt_callback(void *core,
629                                    const struct iovec *iov,
630                                    int iovcnt,
631                                    const struct iovec *virt_iov,
632                                    int virt_iovcnt)
633 {
634     e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
635 }
636 
637 static bool
638 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
639 {
640     int target_queue = MIN(core->max_queue_num, queue_index);
641     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
642 
643     if (!e1000e_setup_tx_offloads(core, tx)) {
644         return false;
645     }
646 
647     net_tx_pkt_dump(tx->tx_pkt);
648 
649     if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
650         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
651         return net_tx_pkt_send_custom(tx->tx_pkt, false,
652                                       e1000e_tx_pkt_callback, core);
653     } else {
654         return net_tx_pkt_send(tx->tx_pkt, queue);
655     }
656 }
657 
658 static void
659 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
660 {
661     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
662                                     PTC1023, PTC1522 };
663 
664     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
665 
666     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
667     e1000x_inc_reg_if_not_full(core->mac, TPT);
668     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
669 
670     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
671     case ETH_PKT_BCAST:
672         e1000x_inc_reg_if_not_full(core->mac, BPTC);
673         break;
674     case ETH_PKT_MCAST:
675         e1000x_inc_reg_if_not_full(core->mac, MPTC);
676         break;
677     case ETH_PKT_UCAST:
678         break;
679     default:
680         g_assert_not_reached();
681     }
682 
683     e1000x_inc_reg_if_not_full(core->mac, GPTC);
684     e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
685 }
686 
687 static void
688 e1000e_process_tx_desc(E1000ECore *core,
689                        struct e1000e_tx *tx,
690                        struct e1000_tx_desc *dp,
691                        int queue_index)
692 {
693     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
694     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
695     unsigned int split_size = txd_lower & 0xffff;
696     uint64_t addr;
697     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
698     bool eop = txd_lower & E1000_TXD_CMD_EOP;
699 
700     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
701         e1000x_read_tx_ctx_descr(xp, &tx->props);
702         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
703         return;
704     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
705         /* data descriptor */
706         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
707         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
708         e1000e_process_ts_option(core, dp);
709     } else {
710         /* legacy descriptor */
711         e1000e_process_ts_option(core, dp);
712         tx->cptse = 0;
713     }
714 
715     addr = le64_to_cpu(dp->buffer_addr);
716 
717     if (!tx->skip_cp) {
718         if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner,
719                                              addr, split_size)) {
720             tx->skip_cp = true;
721         }
722     }
723 
724     if (eop) {
725         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
726             if (e1000x_vlan_enabled(core->mac) &&
727                 e1000x_is_vlan_txd(txd_lower)) {
728                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
729                     le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
730             }
731             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
732                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
733             }
734         }
735 
736         tx->skip_cp = false;
737         net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
738 
739         tx->sum_needed = 0;
740         tx->cptse = 0;
741     }
742 }
743 
744 static inline uint32_t
745 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
746 {
747     if (!msix_enabled(core->owner)) {
748         return E1000_ICR_TXDW;
749     }
750 
751     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
752 }
753 
754 static inline uint32_t
755 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
756                              bool min_threshold_hit)
757 {
758     if (!msix_enabled(core->owner)) {
759         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
760     }
761 
762     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
763 }
764 
765 static uint32_t
766 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
767                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
768 {
769     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
770 
771     if (!(txd_lower & E1000_TXD_CMD_RS) &&
772         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
773         return 0;
774     }
775 
776     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
777 
778     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
779 
780     dp->upper.data = cpu_to_le32(txd_upper);
781     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
782                   &dp->upper, sizeof(dp->upper));
783     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
784 }
785 
786 typedef struct E1000ERingInfo {
787     int dbah;
788     int dbal;
789     int dlen;
790     int dh;
791     int dt;
792     int idx;
793 } E1000ERingInfo;
794 
795 static inline bool
796 e1000e_ring_empty(E1000ECore *core, const E1000ERingInfo *r)
797 {
798     return core->mac[r->dh] == core->mac[r->dt] ||
799                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
800 }
801 
802 static inline uint64_t
803 e1000e_ring_base(E1000ECore *core, const E1000ERingInfo *r)
804 {
805     uint64_t bah = core->mac[r->dbah];
806     uint64_t bal = core->mac[r->dbal];
807 
808     return (bah << 32) + bal;
809 }
810 
811 static inline uint64_t
812 e1000e_ring_head_descr(E1000ECore *core, const E1000ERingInfo *r)
813 {
814     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
815 }
816 
817 static inline void
818 e1000e_ring_advance(E1000ECore *core, const E1000ERingInfo *r, uint32_t count)
819 {
820     core->mac[r->dh] += count;
821 
822     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
823         core->mac[r->dh] = 0;
824     }
825 }
826 
827 static inline uint32_t
828 e1000e_ring_free_descr_num(E1000ECore *core, const E1000ERingInfo *r)
829 {
830     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
831                                  core->mac[r->dh],  core->mac[r->dt]);
832 
833     if (core->mac[r->dh] <= core->mac[r->dt]) {
834         return core->mac[r->dt] - core->mac[r->dh];
835     }
836 
837     if (core->mac[r->dh] > core->mac[r->dt]) {
838         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
839                core->mac[r->dt] - core->mac[r->dh];
840     }
841 
842     g_assert_not_reached();
843 }
844 
845 static inline bool
846 e1000e_ring_enabled(E1000ECore *core, const E1000ERingInfo *r)
847 {
848     return core->mac[r->dlen] > 0;
849 }
850 
851 static inline uint32_t
852 e1000e_ring_len(E1000ECore *core, const E1000ERingInfo *r)
853 {
854     return core->mac[r->dlen];
855 }
856 
857 typedef struct E1000E_TxRing_st {
858     const E1000ERingInfo *i;
859     struct e1000e_tx *tx;
860 } E1000E_TxRing;
861 
862 static inline int
863 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
864 {
865     return (reg_idx - base_reg_idx) / (0x100 >> 2);
866 }
867 
868 static inline void
869 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
870 {
871     static const E1000ERingInfo i[E1000E_NUM_QUEUES] = {
872         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
873         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
874     };
875 
876     assert(idx < ARRAY_SIZE(i));
877 
878     txr->i     = &i[idx];
879     txr->tx    = &core->tx[idx];
880 }
881 
882 typedef struct E1000E_RxRing_st {
883     const E1000ERingInfo *i;
884 } E1000E_RxRing;
885 
886 static inline void
887 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
888 {
889     static const E1000ERingInfo i[E1000E_NUM_QUEUES] = {
890         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
891         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
892     };
893 
894     assert(idx < ARRAY_SIZE(i));
895 
896     rxr->i      = &i[idx];
897 }
898 
899 static void
900 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
901 {
902     dma_addr_t base;
903     struct e1000_tx_desc desc;
904     bool ide = false;
905     const E1000ERingInfo *txi = txr->i;
906     uint32_t cause = E1000_ICS_TXQE;
907 
908     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
909         trace_e1000e_tx_disabled();
910         return;
911     }
912 
913     while (!e1000e_ring_empty(core, txi)) {
914         base = e1000e_ring_head_descr(core, txi);
915 
916         pci_dma_read(core->owner, base, &desc, sizeof(desc));
917 
918         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
919                               desc.lower.data, desc.upper.data);
920 
921         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
922         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
923 
924         e1000e_ring_advance(core, txi, 1);
925     }
926 
927     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
928         e1000e_set_interrupt_cause(core, cause);
929     }
930 
931     net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
932 }
933 
934 static bool
935 e1000e_has_rxbufs(E1000ECore *core, const E1000ERingInfo *r,
936                   size_t total_size)
937 {
938     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
939 
940     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
941                                 core->rx_desc_buf_size);
942 
943     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
944                          core->rx_desc_buf_size;
945 }
946 
947 void
948 e1000e_start_recv(E1000ECore *core)
949 {
950     int i;
951 
952     trace_e1000e_rx_start_recv();
953 
954     for (i = 0; i <= core->max_queue_num; i++) {
955         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
956     }
957 }
958 
959 bool
960 e1000e_can_receive(E1000ECore *core)
961 {
962     int i;
963 
964     if (!e1000x_rx_ready(core->owner, core->mac)) {
965         return false;
966     }
967 
968     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
969         E1000E_RxRing rxr;
970 
971         e1000e_rx_ring_init(core, &rxr, i);
972         if (e1000e_ring_enabled(core, rxr.i) &&
973             e1000e_has_rxbufs(core, rxr.i, 1)) {
974             trace_e1000e_rx_can_recv();
975             return true;
976         }
977     }
978 
979     trace_e1000e_rx_can_recv_rings_full();
980     return false;
981 }
982 
983 ssize_t
984 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
985 {
986     const struct iovec iov = {
987         .iov_base = (uint8_t *)buf,
988         .iov_len = size
989     };
990 
991     return e1000e_receive_iov(core, &iov, 1);
992 }
993 
994 static inline bool
995 e1000e_rx_l3_cso_enabled(E1000ECore *core)
996 {
997     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
998 }
999 
1000 static inline bool
1001 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1002 {
1003     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1004 }
1005 
1006 static bool
1007 e1000e_receive_filter(E1000ECore *core, const void *buf)
1008 {
1009     return (!e1000x_is_vlan_packet(buf, core->mac[VET]) ||
1010             e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) &&
1011            e1000x_rx_group_filter(core->mac, buf);
1012 }
1013 
1014 static inline void
1015 e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1016                           hwaddr *buff_addr)
1017 {
1018     *buff_addr = le64_to_cpu(desc->buffer_addr);
1019 }
1020 
1021 static inline void
1022 e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1023                          hwaddr *buff_addr)
1024 {
1025     *buff_addr = le64_to_cpu(desc->read.buffer_addr);
1026 }
1027 
1028 static inline void
1029 e1000e_read_ps_rx_descr(E1000ECore *core,
1030                         union e1000_rx_desc_packet_split *desc,
1031                         hwaddr buff_addr[MAX_PS_BUFFERS])
1032 {
1033     int i;
1034 
1035     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1036         buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
1037     }
1038 
1039     trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
1040                                  buff_addr[2], buff_addr[3]);
1041 }
1042 
1043 static inline void
1044 e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1045                      hwaddr buff_addr[MAX_PS_BUFFERS])
1046 {
1047     if (e1000e_rx_use_legacy_descriptor(core)) {
1048         e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
1049         buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1050     } else {
1051         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1052             e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
1053         } else {
1054             e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
1055             buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1056         }
1057     }
1058 }
1059 
1060 static void
1061 e1000e_verify_csum_in_sw(E1000ECore *core,
1062                          struct NetRxPkt *pkt,
1063                          uint32_t *status_flags,
1064                          EthL4HdrProto l4hdr_proto)
1065 {
1066     bool csum_valid;
1067     uint32_t csum_error;
1068 
1069     if (e1000e_rx_l3_cso_enabled(core)) {
1070         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1071             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1072         } else {
1073             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1074             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1075         }
1076     } else {
1077         trace_e1000e_rx_metadata_l3_cso_disabled();
1078     }
1079 
1080     if (!e1000e_rx_l4_cso_enabled(core)) {
1081         trace_e1000e_rx_metadata_l4_cso_disabled();
1082         return;
1083     }
1084 
1085     if (l4hdr_proto != ETH_L4_HDR_PROTO_TCP &&
1086         l4hdr_proto != ETH_L4_HDR_PROTO_UDP) {
1087         return;
1088     }
1089 
1090     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1091         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1092         return;
1093     }
1094 
1095     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1096     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1097 
1098     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1099         *status_flags |= E1000_RXD_STAT_UDPCS;
1100     }
1101 }
1102 
1103 static inline bool
1104 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1105 {
1106     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1107         return false;
1108     }
1109 
1110     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1111         return !net_rx_pkt_has_tcp_data(rx_pkt);
1112     }
1113 
1114     return true;
1115 }
1116 
1117 static void
1118 e1000e_build_rx_metadata(E1000ECore *core,
1119                          struct NetRxPkt *pkt,
1120                          bool is_eop,
1121                          const E1000E_RSSInfo *rss_info,
1122                          uint32_t *rss, uint32_t *mrq,
1123                          uint32_t *status_flags,
1124                          uint16_t *ip_id,
1125                          uint16_t *vlan_tag)
1126 {
1127     struct virtio_net_hdr *vhdr;
1128     bool hasip4, hasip6;
1129     EthL4HdrProto l4hdr_proto;
1130     uint32_t pkt_type;
1131 
1132     *status_flags = E1000_RXD_STAT_DD;
1133 
1134     /* No additional metadata needed for non-EOP descriptors */
1135     if (!is_eop) {
1136         goto func_exit;
1137     }
1138 
1139     *status_flags |= E1000_RXD_STAT_EOP;
1140 
1141     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1142     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1143 
1144     /* VLAN state */
1145     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1146         *status_flags |= E1000_RXD_STAT_VP;
1147         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1148         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1149     }
1150 
1151     /* Packet parsing results */
1152     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1153         if (rss_info->enabled) {
1154             *rss = cpu_to_le32(rss_info->hash);
1155             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1156             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1157         }
1158     } else if (hasip4) {
1159             *status_flags |= E1000_RXD_STAT_IPIDV;
1160             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1161             trace_e1000e_rx_metadata_ip_id(*ip_id);
1162     }
1163 
1164     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
1165         *status_flags |= E1000_RXD_STAT_ACK;
1166         trace_e1000e_rx_metadata_ack();
1167     }
1168 
1169     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1170         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1171         pkt_type = E1000_RXD_PKT_MAC;
1172     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1173                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1174         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1175     } else if (hasip4 || hasip6) {
1176         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1177     } else {
1178         pkt_type = E1000_RXD_PKT_MAC;
1179     }
1180 
1181     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1182     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1183 
1184     /* RX CSO information */
1185     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1186         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1187         goto func_exit;
1188     }
1189 
1190     vhdr = net_rx_pkt_get_vhdr(pkt);
1191 
1192     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1193         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1194         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1195         e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1196         goto func_exit;
1197     }
1198 
1199     if (e1000e_rx_l3_cso_enabled(core)) {
1200         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1201     } else {
1202         trace_e1000e_rx_metadata_l3_cso_disabled();
1203     }
1204 
1205     if (e1000e_rx_l4_cso_enabled(core)) {
1206         switch (l4hdr_proto) {
1207         case ETH_L4_HDR_PROTO_TCP:
1208             *status_flags |= E1000_RXD_STAT_TCPCS;
1209             break;
1210 
1211         case ETH_L4_HDR_PROTO_UDP:
1212             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1213             break;
1214 
1215         default:
1216             break;
1217         }
1218     } else {
1219         trace_e1000e_rx_metadata_l4_cso_disabled();
1220     }
1221 
1222 func_exit:
1223     trace_e1000e_rx_metadata_status_flags(*status_flags);
1224     *status_flags = cpu_to_le32(*status_flags);
1225 }
1226 
1227 static inline void
1228 e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1229                            struct NetRxPkt *pkt,
1230                            const E1000E_RSSInfo *rss_info,
1231                            uint16_t length)
1232 {
1233     uint32_t status_flags, rss, mrq;
1234     uint16_t ip_id;
1235 
1236     assert(!rss_info->enabled);
1237 
1238     desc->length = cpu_to_le16(length);
1239     desc->csum = 0;
1240 
1241     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1242                              rss_info,
1243                              &rss, &mrq,
1244                              &status_flags, &ip_id,
1245                              &desc->special);
1246     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1247     desc->status = (uint8_t) le32_to_cpu(status_flags);
1248 }
1249 
1250 static inline void
1251 e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1252                           struct NetRxPkt *pkt,
1253                           const E1000E_RSSInfo *rss_info,
1254                           uint16_t length)
1255 {
1256     memset(&desc->wb, 0, sizeof(desc->wb));
1257 
1258     desc->wb.upper.length = cpu_to_le16(length);
1259 
1260     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1261                              rss_info,
1262                              &desc->wb.lower.hi_dword.rss,
1263                              &desc->wb.lower.mrq,
1264                              &desc->wb.upper.status_error,
1265                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1266                              &desc->wb.upper.vlan);
1267 }
1268 
1269 static inline void
1270 e1000e_write_ps_rx_descr(E1000ECore *core,
1271                          union e1000_rx_desc_packet_split *desc,
1272                          struct NetRxPkt *pkt,
1273                          const E1000E_RSSInfo *rss_info,
1274                          size_t ps_hdr_len,
1275                          uint16_t(*written)[MAX_PS_BUFFERS])
1276 {
1277     int i;
1278 
1279     memset(&desc->wb, 0, sizeof(desc->wb));
1280 
1281     desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
1282 
1283     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1284         desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1285     }
1286 
1287     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1288                              rss_info,
1289                              &desc->wb.lower.hi_dword.rss,
1290                              &desc->wb.lower.mrq,
1291                              &desc->wb.middle.status_error,
1292                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1293                              &desc->wb.middle.vlan);
1294 
1295     desc->wb.upper.header_status =
1296         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1297 
1298     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1299                                   (*written)[2], (*written)[3]);
1300 }
1301 
1302 static inline void
1303 e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1304 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1305     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1306 {
1307     if (e1000e_rx_use_legacy_descriptor(core)) {
1308         assert(ps_hdr_len == 0);
1309         e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1310                                    (*written)[0]);
1311     } else {
1312         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1313             e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
1314                                       ps_hdr_len, written);
1315         } else {
1316             assert(ps_hdr_len == 0);
1317             e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
1318                                        (*written)[0]);
1319         }
1320     }
1321 }
1322 
1323 static inline void
1324 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1325                              union e1000_rx_desc_union *desc, dma_addr_t len)
1326 {
1327     PCIDevice *dev = core->owner;
1328 
1329     if (e1000e_rx_use_legacy_descriptor(core)) {
1330         struct e1000_rx_desc *d = &desc->legacy;
1331         size_t offset = offsetof(struct e1000_rx_desc, status);
1332         uint8_t status = d->status;
1333 
1334         d->status &= ~E1000_RXD_STAT_DD;
1335         pci_dma_write(dev, addr, desc, len);
1336 
1337         if (status & E1000_RXD_STAT_DD) {
1338             d->status = status;
1339             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1340         }
1341     } else {
1342         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1343             union e1000_rx_desc_packet_split *d = &desc->packet_split;
1344             size_t offset = offsetof(union e1000_rx_desc_packet_split,
1345                 wb.middle.status_error);
1346             uint32_t status = d->wb.middle.status_error;
1347 
1348             d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1349             pci_dma_write(dev, addr, desc, len);
1350 
1351             if (status & E1000_RXD_STAT_DD) {
1352                 d->wb.middle.status_error = status;
1353                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1354             }
1355         } else {
1356             union e1000_rx_desc_extended *d = &desc->extended;
1357             size_t offset = offsetof(union e1000_rx_desc_extended,
1358                 wb.upper.status_error);
1359             uint32_t status = d->wb.upper.status_error;
1360 
1361             d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1362             pci_dma_write(dev, addr, desc, len);
1363 
1364             if (status & E1000_RXD_STAT_DD) {
1365                 d->wb.upper.status_error = status;
1366                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1367             }
1368         }
1369     }
1370 }
1371 
1372 typedef struct E1000EBAState {
1373     uint16_t written[MAX_PS_BUFFERS];
1374     uint8_t cur_idx;
1375 } E1000EBAState;
1376 
1377 static inline void
1378 e1000e_write_hdr_frag_to_rx_buffers(E1000ECore *core,
1379                                     hwaddr ba[MAX_PS_BUFFERS],
1380                                     E1000EBAState *bastate,
1381                                     const char *data,
1382                                     dma_addr_t data_len)
1383 {
1384     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1385 
1386     pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
1387     bastate->written[0] += data_len;
1388 
1389     bastate->cur_idx = 1;
1390 }
1391 
1392 static void
1393 e1000e_write_payload_frag_to_rx_buffers(E1000ECore *core,
1394                                         hwaddr ba[MAX_PS_BUFFERS],
1395                                         E1000EBAState *bastate,
1396                                         const char *data,
1397                                         dma_addr_t data_len)
1398 {
1399     while (data_len > 0) {
1400         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1401         uint32_t cur_buf_bytes_left = cur_buf_len -
1402                                       bastate->written[bastate->cur_idx];
1403         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1404 
1405         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1406                                         ba[bastate->cur_idx],
1407                                         bastate->written[bastate->cur_idx],
1408                                         data,
1409                                         bytes_to_write);
1410 
1411         pci_dma_write(core->owner,
1412             ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1413             data, bytes_to_write);
1414 
1415         bastate->written[bastate->cur_idx] += bytes_to_write;
1416         data += bytes_to_write;
1417         data_len -= bytes_to_write;
1418 
1419         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1420             bastate->cur_idx++;
1421         }
1422 
1423         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1424     }
1425 }
1426 
1427 static void
1428 e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size)
1429 {
1430     eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1431     e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1432 }
1433 
1434 static inline bool
1435 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000ERingInfo *rxi)
1436 {
1437     return e1000e_ring_free_descr_num(core, rxi) ==
1438            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1439 }
1440 
1441 static bool
1442 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1443 {
1444     bool hasip4, hasip6;
1445     EthL4HdrProto l4hdr_proto;
1446     bool fragment;
1447 
1448     if (!e1000e_rx_use_ps_descriptor(core)) {
1449         return false;
1450     }
1451 
1452     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1453 
1454     if (hasip4) {
1455         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1456     } else if (hasip6) {
1457         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1458     } else {
1459         return false;
1460     }
1461 
1462     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1463         return false;
1464     }
1465 
1466     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1467         l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1468         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1469     } else {
1470         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1471     }
1472 
1473     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1474         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1475         return false;
1476     }
1477 
1478     return true;
1479 }
1480 
1481 static void
1482 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1483                              const E1000E_RxRing *rxr,
1484                              const E1000E_RSSInfo *rss_info)
1485 {
1486     PCIDevice *d = core->owner;
1487     dma_addr_t base;
1488     union e1000_rx_desc_union desc;
1489     size_t desc_size;
1490     size_t desc_offset = 0;
1491     size_t iov_ofs = 0;
1492 
1493     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1494     size_t size = net_rx_pkt_get_total_len(pkt);
1495     size_t total_size = size + e1000x_fcs_len(core->mac);
1496     const E1000ERingInfo *rxi;
1497     size_t ps_hdr_len = 0;
1498     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1499     bool is_first = true;
1500 
1501     rxi = rxr->i;
1502 
1503     do {
1504         hwaddr ba[MAX_PS_BUFFERS];
1505         E1000EBAState bastate = { { 0 } };
1506         bool is_last = false;
1507 
1508         desc_size = total_size - desc_offset;
1509 
1510         if (desc_size > core->rx_desc_buf_size) {
1511             desc_size = core->rx_desc_buf_size;
1512         }
1513 
1514         if (e1000e_ring_empty(core, rxi)) {
1515             return;
1516         }
1517 
1518         base = e1000e_ring_head_descr(core, rxi);
1519 
1520         pci_dma_read(d, base, &desc, core->rx_desc_len);
1521 
1522         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1523 
1524         e1000e_read_rx_descr(core, &desc, ba);
1525 
1526         if (ba[0]) {
1527             if (desc_offset < size) {
1528                 static const uint32_t fcs_pad;
1529                 size_t iov_copy;
1530                 size_t copy_size = size - desc_offset;
1531                 if (copy_size > core->rx_desc_buf_size) {
1532                     copy_size = core->rx_desc_buf_size;
1533                 }
1534 
1535                 /* For PS mode copy the packet header first */
1536                 if (do_ps) {
1537                     if (is_first) {
1538                         size_t ps_hdr_copied = 0;
1539                         do {
1540                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1541                                            iov->iov_len - iov_ofs);
1542 
1543                             e1000e_write_hdr_frag_to_rx_buffers(core, ba,
1544                                                                 &bastate,
1545                                                                 iov->iov_base,
1546                                                                 iov_copy);
1547 
1548                             copy_size -= iov_copy;
1549                             ps_hdr_copied += iov_copy;
1550 
1551                             iov_ofs += iov_copy;
1552                             if (iov_ofs == iov->iov_len) {
1553                                 iov++;
1554                                 iov_ofs = 0;
1555                             }
1556                         } while (ps_hdr_copied < ps_hdr_len);
1557 
1558                         is_first = false;
1559                     } else {
1560                         /* Leave buffer 0 of each descriptor except first */
1561                         /* empty as per spec 7.1.5.1                      */
1562                         e1000e_write_hdr_frag_to_rx_buffers(core, ba, &bastate,
1563                                                             NULL, 0);
1564                     }
1565                 }
1566 
1567                 /* Copy packet payload */
1568                 while (copy_size) {
1569                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1570 
1571                     e1000e_write_payload_frag_to_rx_buffers(core, ba, &bastate,
1572                                                             iov->iov_base +
1573                                                             iov_ofs,
1574                                                             iov_copy);
1575 
1576                     copy_size -= iov_copy;
1577                     iov_ofs += iov_copy;
1578                     if (iov_ofs == iov->iov_len) {
1579                         iov++;
1580                         iov_ofs = 0;
1581                     }
1582                 }
1583 
1584                 if (desc_offset + desc_size >= total_size) {
1585                     /* Simulate FCS checksum presence in the last descriptor */
1586                     e1000e_write_payload_frag_to_rx_buffers(core, ba, &bastate,
1587                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1588                 }
1589             }
1590         } else { /* as per intel docs; skip descriptors with null buf addr */
1591             trace_e1000e_rx_null_descriptor();
1592         }
1593         desc_offset += desc_size;
1594         if (desc_offset >= total_size) {
1595             is_last = true;
1596         }
1597 
1598         e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1599                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1600         e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
1601 
1602         e1000e_ring_advance(core, rxi,
1603                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1604 
1605     } while (desc_offset < total_size);
1606 
1607     e1000e_update_rx_stats(core, size, total_size);
1608 }
1609 
1610 static inline void
1611 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1612 {
1613     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1614 
1615     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1616         net_rx_pkt_fix_l4_csum(pkt);
1617     }
1618 }
1619 
1620 ssize_t
1621 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1622 {
1623     return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
1624 }
1625 
1626 static ssize_t
1627 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
1628                         bool has_vnet)
1629 {
1630     uint32_t causes = 0;
1631     uint8_t buf[ETH_ZLEN];
1632     struct iovec min_iov;
1633     size_t size, orig_size;
1634     size_t iov_ofs = 0;
1635     E1000E_RxRing rxr;
1636     E1000E_RSSInfo rss_info;
1637     size_t total_size;
1638     ssize_t retval;
1639     bool rdmts_hit;
1640 
1641     trace_e1000e_rx_receive_iov(iovcnt);
1642 
1643     if (!e1000x_hw_rx_enabled(core->mac)) {
1644         return -1;
1645     }
1646 
1647     /* Pull virtio header in */
1648     if (has_vnet) {
1649         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1650         iov_ofs = sizeof(struct virtio_net_hdr);
1651     } else {
1652         net_rx_pkt_unset_vhdr(core->rx_pkt);
1653     }
1654 
1655     orig_size = iov_size(iov, iovcnt);
1656     size = orig_size - iov_ofs;
1657 
1658     /* Pad to minimum Ethernet frame length */
1659     if (size < sizeof(buf)) {
1660         iov_to_buf(iov, iovcnt, iov_ofs, buf, size);
1661         memset(&buf[size], 0, sizeof(buf) - size);
1662         e1000x_inc_reg_if_not_full(core->mac, RUC);
1663         min_iov.iov_base = buf;
1664         min_iov.iov_len = size = sizeof(buf);
1665         iovcnt = 1;
1666         iov = &min_iov;
1667         iov_ofs = 0;
1668     } else {
1669         iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4);
1670     }
1671 
1672     /* Discard oversized packets if !LPE and !SBP. */
1673     if (e1000x_is_oversized(core->mac, size)) {
1674         return orig_size;
1675     }
1676 
1677     net_rx_pkt_set_packet_type(core->rx_pkt,
1678         get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
1679 
1680     if (!e1000e_receive_filter(core, buf)) {
1681         trace_e1000e_rx_flt_dropped();
1682         return orig_size;
1683     }
1684 
1685     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1686                                e1000x_vlan_enabled(core->mac) ? 0 : -1,
1687                                core->mac[VET], 0);
1688 
1689     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1690     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1691 
1692     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1693         e1000x_fcs_len(core->mac);
1694 
1695     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1696         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1697 
1698         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1699 
1700         retval = orig_size;
1701 
1702         /* Perform small receive detection (RSRPD) */
1703         if (total_size < core->mac[RSRPD]) {
1704             causes |= E1000_ICS_SRPD;
1705         }
1706 
1707         /* Perform ACK receive detection */
1708         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1709              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1710             causes |= E1000_ICS_ACK;
1711         }
1712 
1713         /* Check if receive descriptor minimum threshold hit */
1714         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1715         causes |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1716 
1717         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1718     } else {
1719         causes |= E1000_ICS_RXO;
1720         retval = 0;
1721 
1722         trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1723     }
1724 
1725     if (!e1000e_intrmgr_delay_rx_causes(core, &causes)) {
1726         trace_e1000e_rx_interrupt_set(causes);
1727         e1000e_set_interrupt_cause(core, causes);
1728     } else {
1729         trace_e1000e_rx_interrupt_delayed(causes);
1730     }
1731 
1732     return retval;
1733 }
1734 
1735 static inline bool
1736 e1000e_have_autoneg(E1000ECore *core)
1737 {
1738     return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
1739 }
1740 
1741 static void e1000e_update_flowctl_status(E1000ECore *core)
1742 {
1743     if (e1000e_have_autoneg(core) &&
1744         core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
1745         trace_e1000e_link_autoneg_flowctl(true);
1746         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1747     } else {
1748         trace_e1000e_link_autoneg_flowctl(false);
1749     }
1750 }
1751 
1752 static inline void
1753 e1000e_link_down(E1000ECore *core)
1754 {
1755     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1756     e1000e_update_flowctl_status(core);
1757 }
1758 
1759 static inline void
1760 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1761 {
1762     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1763     core->phy[0][MII_BMCR] = val & ~(0x3f |
1764                                      MII_BMCR_RESET |
1765                                      MII_BMCR_ANRESTART);
1766 
1767     if ((val & MII_BMCR_ANRESTART) &&
1768         e1000e_have_autoneg(core)) {
1769         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1770     }
1771 }
1772 
1773 static void
1774 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1775 {
1776     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1777 
1778     if (val & BIT(10)) {
1779         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1780     }
1781 }
1782 
1783 static void
1784 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1785 {
1786     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1787 }
1788 
1789 void
1790 e1000e_core_set_link_status(E1000ECore *core)
1791 {
1792     NetClientState *nc = qemu_get_queue(core->owner_nic);
1793     uint32_t old_status = core->mac[STATUS];
1794 
1795     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1796 
1797     if (nc->link_down) {
1798         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1799     } else {
1800         if (e1000e_have_autoneg(core) &&
1801             !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
1802             e1000x_restart_autoneg(core->mac, core->phy[0],
1803                                    core->autoneg_timer);
1804         } else {
1805             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1806             e1000e_start_recv(core);
1807         }
1808     }
1809 
1810     if (core->mac[STATUS] != old_status) {
1811         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1812     }
1813 }
1814 
1815 static void
1816 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1817 {
1818     trace_e1000e_core_ctrl_write(index, val);
1819 
1820     /* RST is self clearing */
1821     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1822     core->mac[CTRL_DUP] = core->mac[CTRL];
1823 
1824     trace_e1000e_link_set_params(
1825         !!(val & E1000_CTRL_ASDE),
1826         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1827         !!(val & E1000_CTRL_FRCSPD),
1828         !!(val & E1000_CTRL_FRCDPX),
1829         !!(val & E1000_CTRL_RFCE),
1830         !!(val & E1000_CTRL_TFCE));
1831 
1832     if (val & E1000_CTRL_RST) {
1833         trace_e1000e_core_ctrl_sw_reset();
1834         e1000e_reset(core, true);
1835     }
1836 
1837     if (val & E1000_CTRL_PHY_RST) {
1838         trace_e1000e_core_ctrl_phy_reset();
1839         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1840     }
1841 }
1842 
1843 static void
1844 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1845 {
1846     trace_e1000e_rx_set_rfctl(val);
1847 
1848     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1849         trace_e1000e_wrn_iscsi_filtering_not_supported();
1850     }
1851 
1852     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1853         trace_e1000e_wrn_nfsw_filtering_not_supported();
1854     }
1855 
1856     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1857         trace_e1000e_wrn_nfsr_filtering_not_supported();
1858     }
1859 
1860     core->mac[RFCTL] = val;
1861 }
1862 
1863 static void
1864 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1865 {
1866     int i;
1867     core->rx_desc_buf_size = 0;
1868 
1869     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1870         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1871     }
1872 }
1873 
1874 static void
1875 e1000e_parse_rxbufsize(E1000ECore *core)
1876 {
1877     uint32_t rctl = core->mac[RCTL];
1878 
1879     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1880 
1881     if (rctl & E1000_RCTL_DTYP_MASK) {
1882         uint32_t bsize;
1883 
1884         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1885         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1886 
1887         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1888         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1889 
1890         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1891         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1892 
1893         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1894         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1895     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1896         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1897         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1898     } else {
1899         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1900     }
1901 
1902     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1903                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1904 
1905     e1000e_calc_per_desc_buf_size(core);
1906 }
1907 
1908 static void
1909 e1000e_calc_rxdesclen(E1000ECore *core)
1910 {
1911     if (e1000e_rx_use_legacy_descriptor(core)) {
1912         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1913     } else {
1914         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1915             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1916         } else {
1917             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1918         }
1919     }
1920     trace_e1000e_rx_desc_len(core->rx_desc_len);
1921 }
1922 
1923 static void
1924 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1925 {
1926     core->mac[RCTL] = val;
1927     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1928 
1929     if (val & E1000_RCTL_EN) {
1930         e1000e_parse_rxbufsize(core);
1931         e1000e_calc_rxdesclen(core);
1932         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1933                                 E1000_RING_DESC_LEN_SHIFT;
1934 
1935         e1000e_start_recv(core);
1936     }
1937 }
1938 
1939 static
1940 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1941 (E1000ECore *, int, uint16_t) = {
1942     [0] = {
1943         [MII_BMCR]     = e1000e_set_phy_ctrl,
1944         [PHY_PAGE]     = e1000e_set_phy_page,
1945         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1946     }
1947 };
1948 
1949 static inline bool
1950 e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
1951 {
1952     if (timer->running) {
1953         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1954 
1955         return true;
1956     }
1957 
1958     if (timer->core->mac[timer->delay_reg] != 0) {
1959         e1000e_intrmgr_rearm_timer(timer);
1960     }
1961 
1962     return false;
1963 }
1964 
1965 static inline bool
1966 e1000e_itr_should_postpone(E1000ECore *core)
1967 {
1968     return e1000e_postpone_interrupt(&core->itr);
1969 }
1970 
1971 static inline bool
1972 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1973 {
1974     return e1000e_postpone_interrupt(&core->eitr[idx]);
1975 }
1976 
1977 static void
1978 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1979 {
1980     uint32_t effective_eiac;
1981 
1982     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1983         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1984         if (vec < E1000E_MSIX_VEC_NUM) {
1985             if (!e1000e_eitr_should_postpone(core, vec)) {
1986                 trace_e1000e_irq_msix_notify_vec(vec);
1987                 msix_notify(core->owner, vec);
1988             }
1989         } else {
1990             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
1991         }
1992     } else {
1993         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
1994     }
1995 
1996     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
1997         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
1998         core->mac[IAM] &= ~cause;
1999     }
2000 
2001     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2002 
2003     effective_eiac = core->mac[EIAC] & cause;
2004 
2005     core->mac[ICR] &= ~effective_eiac;
2006 
2007     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2008         core->mac[IMS] &= ~effective_eiac;
2009     }
2010 }
2011 
2012 static void
2013 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2014 {
2015     if (causes & E1000_ICR_RXQ0) {
2016         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2017                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2018     }
2019 
2020     if (causes & E1000_ICR_RXQ1) {
2021         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2022                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2023     }
2024 
2025     if (causes & E1000_ICR_TXQ0) {
2026         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2027                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2028     }
2029 
2030     if (causes & E1000_ICR_TXQ1) {
2031         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2032                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2033     }
2034 
2035     if (causes & E1000_ICR_OTHER) {
2036         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2037                                E1000_IVAR_OTHER(core->mac[IVAR]));
2038     }
2039 }
2040 
2041 static void
2042 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2043 {
2044     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2045         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2046         if (vec < E1000E_MSIX_VEC_NUM) {
2047             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2048             msix_clr_pending(core->owner, vec);
2049         } else {
2050             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2051         }
2052     } else {
2053         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2054     }
2055 }
2056 
2057 static void
2058 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2059 {
2060     if (causes & E1000_ICR_RXQ0) {
2061         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2062                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2063     }
2064 
2065     if (causes & E1000_ICR_RXQ1) {
2066         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2067                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2068     }
2069 
2070     if (causes & E1000_ICR_TXQ0) {
2071         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2072                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2073     }
2074 
2075     if (causes & E1000_ICR_TXQ1) {
2076         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2077                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2078     }
2079 
2080     if (causes & E1000_ICR_OTHER) {
2081         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2082                               E1000_IVAR_OTHER(core->mac[IVAR]));
2083     }
2084 }
2085 
2086 static inline void
2087 e1000e_fix_icr_asserted(E1000ECore *core)
2088 {
2089     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2090     if (core->mac[ICR]) {
2091         core->mac[ICR] |= E1000_ICR_ASSERTED;
2092     }
2093 
2094     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2095 }
2096 
2097 static void e1000e_raise_interrupts(E1000ECore *core,
2098                                     size_t index, uint32_t causes)
2099 {
2100     bool is_msix = msix_enabled(core->owner);
2101     uint32_t old_causes = core->mac[IMS] & core->mac[ICR];
2102     uint32_t raised_causes;
2103 
2104     trace_e1000e_irq_set(index << 2,
2105                          core->mac[index], core->mac[index] | causes);
2106 
2107     core->mac[index] |= causes;
2108 
2109     /* Set ICR[OTHER] for MSI-X */
2110     if (is_msix) {
2111         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2112             core->mac[ICR] |= E1000_ICR_OTHER;
2113             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2114         }
2115     }
2116 
2117     e1000e_fix_icr_asserted(core);
2118 
2119     /*
2120      * Make sure ICR and ICS registers have the same value.
2121      * The spec says that the ICS register is write-only.  However in practice,
2122      * on real hardware ICS is readable, and for reads it has the same value as
2123      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2124      *
2125      * The VxWorks PRO/1000 driver uses this behaviour.
2126      */
2127     core->mac[ICS] = core->mac[ICR];
2128 
2129     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2130                                         core->mac[ICR], core->mac[IMS]);
2131 
2132     raised_causes = core->mac[IMS] & core->mac[ICR] & ~old_causes;
2133     if (!raised_causes) {
2134         return;
2135     }
2136 
2137     if (is_msix) {
2138         e1000e_msix_notify(core, raised_causes & ~E1000_ICR_ASSERTED);
2139     } else if (!e1000e_itr_should_postpone(core)) {
2140         if (msi_enabled(core->owner)) {
2141             trace_e1000e_irq_msi_notify(raised_causes);
2142             msi_notify(core->owner, 0);
2143         } else {
2144             e1000e_raise_legacy_irq(core);
2145         }
2146     }
2147 }
2148 
2149 static void e1000e_lower_interrupts(E1000ECore *core,
2150                                     size_t index, uint32_t causes)
2151 {
2152     trace_e1000e_irq_clear(index << 2,
2153                            core->mac[index], core->mac[index] & ~causes);
2154 
2155     core->mac[index] &= ~causes;
2156 
2157     /*
2158      * Make sure ICR and ICS registers have the same value.
2159      * The spec says that the ICS register is write-only.  However in practice,
2160      * on real hardware ICS is readable, and for reads it has the same value as
2161      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2162      *
2163      * The VxWorks PRO/1000 driver uses this behaviour.
2164      */
2165     core->mac[ICS] = core->mac[ICR];
2166 
2167     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2168                                         core->mac[ICR], core->mac[IMS]);
2169 
2170     if (!(core->mac[IMS] & core->mac[ICR]) &&
2171         !msix_enabled(core->owner) && !msi_enabled(core->owner)) {
2172         e1000e_lower_legacy_irq(core);
2173     }
2174 }
2175 
2176 static void
2177 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2178 {
2179     val |= e1000e_intmgr_collect_delayed_causes(core);
2180     e1000e_raise_interrupts(core, ICR, val);
2181 }
2182 
2183 static inline void
2184 e1000e_autoneg_timer(void *opaque)
2185 {
2186     E1000ECore *core = opaque;
2187     if (!qemu_get_queue(core->owner_nic)->link_down) {
2188         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2189         e1000e_start_recv(core);
2190 
2191         e1000e_update_flowctl_status(core);
2192         /* signal link status change to the guest */
2193         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2194     }
2195 }
2196 
2197 static inline uint16_t
2198 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2199 {
2200     uint16_t index = (addr & 0x1ffff) >> 2;
2201     return index + (mac_reg_access[index] & 0xfffe);
2202 }
2203 
2204 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2205     [0] = {
2206         [MII_BMCR]              = PHY_ANYPAGE | PHY_RW,
2207         [MII_BMSR]              = PHY_ANYPAGE | PHY_R,
2208         [MII_PHYID1]            = PHY_ANYPAGE | PHY_R,
2209         [MII_PHYID2]            = PHY_ANYPAGE | PHY_R,
2210         [MII_ANAR]              = PHY_ANYPAGE | PHY_RW,
2211         [MII_ANLPAR]            = PHY_ANYPAGE | PHY_R,
2212         [MII_ANER]              = PHY_ANYPAGE | PHY_R,
2213         [MII_ANNP]              = PHY_ANYPAGE | PHY_RW,
2214         [MII_ANLPRNP]           = PHY_ANYPAGE | PHY_R,
2215         [MII_CTRL1000]          = PHY_ANYPAGE | PHY_RW,
2216         [MII_STAT1000]          = PHY_ANYPAGE | PHY_R,
2217         [MII_EXTSTAT]           = PHY_ANYPAGE | PHY_R,
2218         [PHY_PAGE]              = PHY_ANYPAGE | PHY_RW,
2219 
2220         [PHY_COPPER_CTRL1]      = PHY_RW,
2221         [PHY_COPPER_STAT1]      = PHY_R,
2222         [PHY_COPPER_CTRL3]      = PHY_RW,
2223         [PHY_RX_ERR_CNTR]       = PHY_R,
2224         [PHY_OEM_BITS]          = PHY_RW,
2225         [PHY_BIAS_1]            = PHY_RW,
2226         [PHY_BIAS_2]            = PHY_RW,
2227         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2228         [PHY_COPPER_STAT2]      = PHY_R,
2229         [PHY_COPPER_CTRL2]      = PHY_RW
2230     },
2231     [2] = {
2232         [PHY_MAC_CTRL1]         = PHY_RW,
2233         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2234         [PHY_MAC_STAT]          = PHY_R,
2235         [PHY_MAC_CTRL2]         = PHY_RW
2236     },
2237     [3] = {
2238         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2239         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2240         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2241         [PHY_LED_45_CTRL]       = PHY_RW
2242     },
2243     [5] = {
2244         [PHY_1000T_SKEW]        = PHY_R,
2245         [PHY_1000T_SWAP]        = PHY_R
2246     },
2247     [6] = {
2248         [PHY_CRC_COUNTERS]      = PHY_R
2249     }
2250 };
2251 
2252 static bool
2253 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2254                          char cap, uint8_t *page)
2255 {
2256     *page =
2257         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2258                                                     : core->phy[0][PHY_PAGE];
2259 
2260     if (*page >= E1000E_PHY_PAGES) {
2261         return false;
2262     }
2263 
2264     return e1000e_phy_regcap[*page][addr] & cap;
2265 }
2266 
2267 static void
2268 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2269                      uint32_t addr, uint16_t data)
2270 {
2271     assert(page < E1000E_PHY_PAGES);
2272     assert(addr < E1000E_PHY_PAGE_SIZE);
2273 
2274     if (e1000e_phyreg_writeops[page][addr]) {
2275         e1000e_phyreg_writeops[page][addr](core, addr, data);
2276     } else {
2277         core->phy[page][addr] = data;
2278     }
2279 }
2280 
2281 static void
2282 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2283 {
2284     uint32_t data = val & E1000_MDIC_DATA_MASK;
2285     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2286     uint8_t page;
2287 
2288     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2289         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2290     } else if (val & E1000_MDIC_OP_READ) {
2291         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2292             trace_e1000e_core_mdic_read_unhandled(page, addr);
2293             val |= E1000_MDIC_ERROR;
2294         } else {
2295             val = (val ^ data) | core->phy[page][addr];
2296             trace_e1000e_core_mdic_read(page, addr, val);
2297         }
2298     } else if (val & E1000_MDIC_OP_WRITE) {
2299         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2300             trace_e1000e_core_mdic_write_unhandled(page, addr);
2301             val |= E1000_MDIC_ERROR;
2302         } else {
2303             trace_e1000e_core_mdic_write(page, addr, data);
2304             e1000e_phy_reg_write(core, page, addr, data);
2305         }
2306     }
2307     core->mac[MDIC] = val | E1000_MDIC_READY;
2308 
2309     if (val & E1000_MDIC_INT_EN) {
2310         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2311     }
2312 }
2313 
2314 static void
2315 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2316 {
2317     core->mac[index] = val & 0xffff;
2318     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2319     e1000e_start_recv(core);
2320 }
2321 
2322 static void
2323 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2324 {
2325     if ((val & E1000_STATUS_PHYRA) == 0) {
2326         core->mac[index] &= ~E1000_STATUS_PHYRA;
2327     }
2328 }
2329 
2330 static void
2331 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2332 {
2333     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2334                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2335 
2336     /* Zero self-clearing bits */
2337     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2338     core->mac[CTRL_EXT] = val;
2339 }
2340 
2341 static void
2342 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2343 {
2344     int i;
2345 
2346     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2347 
2348     if (!msix_enabled(core->owner)) {
2349         return;
2350     }
2351 
2352     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2353         if (core->mac[PBACLR] & BIT(i)) {
2354             msix_clr_pending(core->owner, i);
2355         }
2356     }
2357 }
2358 
2359 static void
2360 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2361 {
2362     core->mac[FCRTH] = val & 0xFFF8;
2363 }
2364 
2365 static void
2366 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2367 {
2368     core->mac[FCRTL] = val & 0x8000FFF8;
2369 }
2370 
2371 #define E1000E_LOW_BITS_SET_FUNC(num)                                \
2372     static void                                                      \
2373     e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
2374     {                                                                \
2375         core->mac[index] = val & (BIT(num) - 1);                     \
2376     }
2377 
2378 E1000E_LOW_BITS_SET_FUNC(4)
2379 E1000E_LOW_BITS_SET_FUNC(6)
2380 E1000E_LOW_BITS_SET_FUNC(11)
2381 E1000E_LOW_BITS_SET_FUNC(12)
2382 E1000E_LOW_BITS_SET_FUNC(13)
2383 E1000E_LOW_BITS_SET_FUNC(16)
2384 
2385 static void
2386 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2387 {
2388     core->mac[VET] = val & 0xffff;
2389     trace_e1000e_vlan_vet(core->mac[VET]);
2390 }
2391 
2392 static void
2393 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2394 {
2395     core->mac[index] = val & E1000_XDLEN_MASK;
2396 }
2397 
2398 static void
2399 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2400 {
2401     core->mac[index] = val & E1000_XDBAL_MASK;
2402 }
2403 
2404 static void
2405 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2406 {
2407     E1000E_TxRing txr;
2408     core->mac[index] = val;
2409 
2410     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2411         e1000e_tx_ring_init(core, &txr, 0);
2412         e1000e_start_xmit(core, &txr);
2413     }
2414 
2415     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2416         e1000e_tx_ring_init(core, &txr, 1);
2417         e1000e_start_xmit(core, &txr);
2418     }
2419 }
2420 
2421 static void
2422 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2423 {
2424     E1000E_TxRing txr;
2425     int qidx = e1000e_mq_queue_idx(TDT, index);
2426     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2427 
2428     core->mac[index] = val & 0xffff;
2429 
2430     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2431         e1000e_tx_ring_init(core, &txr, qidx);
2432         e1000e_start_xmit(core, &txr);
2433     }
2434 }
2435 
2436 static void
2437 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2438 {
2439     trace_e1000e_irq_write_ics(val);
2440     e1000e_set_interrupt_cause(core, val);
2441 }
2442 
2443 static void
2444 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2445 {
2446     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2447         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2448         trace_e1000e_irq_icr_process_iame();
2449         e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
2450     }
2451 
2452     /*
2453      * Windows driver expects that the "receive overrun" bit and other
2454      * ones to be cleared when the "Other" bit (#24) is cleared.
2455      */
2456     if (val & E1000_ICR_OTHER) {
2457         val |= E1000_ICR_OTHER_CAUSES;
2458     }
2459     e1000e_lower_interrupts(core, ICR, val);
2460 }
2461 
2462 static void
2463 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2464 {
2465     trace_e1000e_irq_ims_clear_set_imc(val);
2466     e1000e_lower_interrupts(core, IMS, val);
2467 }
2468 
2469 static void
2470 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2471 {
2472     static const uint32_t ims_ext_mask =
2473         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2474         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2475         E1000_IMS_OTHER;
2476 
2477     static const uint32_t ims_valid_mask =
2478         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2479         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2480         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2481         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2482         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2483         E1000_IMS_OTHER;
2484 
2485     uint32_t valid_val = val & ims_valid_mask;
2486 
2487     if ((valid_val & ims_ext_mask) &&
2488         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2489         msix_enabled(core->owner)) {
2490         e1000e_msix_clear(core, valid_val);
2491     }
2492 
2493     if ((valid_val == ims_valid_mask) &&
2494         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2495         trace_e1000e_irq_fire_all_timers(val);
2496         e1000e_intrmgr_fire_all_timers(core);
2497     }
2498 
2499     e1000e_raise_interrupts(core, IMS, valid_val);
2500 }
2501 
2502 static void
2503 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2504 {
2505     e1000e_set_16bit(core, index, val);
2506 
2507     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2508         trace_e1000e_irq_rdtr_fpd_running();
2509         e1000e_intrmgr_fire_delayed_interrupts(core);
2510     } else {
2511         trace_e1000e_irq_rdtr_fpd_not_running();
2512     }
2513 }
2514 
2515 static void
2516 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2517 {
2518     e1000e_set_16bit(core, index, val);
2519 
2520     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2521         trace_e1000e_irq_tidv_fpd_running();
2522         e1000e_intrmgr_fire_delayed_interrupts(core);
2523     } else {
2524         trace_e1000e_irq_tidv_fpd_not_running();
2525     }
2526 }
2527 
2528 static uint32_t
2529 e1000e_mac_readreg(E1000ECore *core, int index)
2530 {
2531     return core->mac[index];
2532 }
2533 
2534 static uint32_t
2535 e1000e_mac_ics_read(E1000ECore *core, int index)
2536 {
2537     trace_e1000e_irq_read_ics(core->mac[ICS]);
2538     return core->mac[ICS];
2539 }
2540 
2541 static uint32_t
2542 e1000e_mac_ims_read(E1000ECore *core, int index)
2543 {
2544     trace_e1000e_irq_read_ims(core->mac[IMS]);
2545     return core->mac[IMS];
2546 }
2547 
2548 static uint32_t
2549 e1000e_mac_swsm_read(E1000ECore *core, int index)
2550 {
2551     uint32_t val = core->mac[SWSM];
2552     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2553     return val;
2554 }
2555 
2556 static uint32_t
2557 e1000e_mac_itr_read(E1000ECore *core, int index)
2558 {
2559     return core->itr_guest_value;
2560 }
2561 
2562 static uint32_t
2563 e1000e_mac_eitr_read(E1000ECore *core, int index)
2564 {
2565     return core->eitr_guest_value[index - EITR];
2566 }
2567 
2568 static uint32_t
2569 e1000e_mac_icr_read(E1000ECore *core, int index)
2570 {
2571     uint32_t ret = core->mac[ICR];
2572 
2573     if (core->mac[IMS] == 0) {
2574         trace_e1000e_irq_icr_clear_zero_ims();
2575         e1000e_lower_interrupts(core, ICR, 0xffffffff);
2576     }
2577 
2578     if (!msix_enabled(core->owner)) {
2579         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2580         e1000e_lower_interrupts(core, ICR, 0xffffffff);
2581     }
2582 
2583     if (core->mac[ICR] & E1000_ICR_ASSERTED) {
2584         if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME) {
2585             trace_e1000e_irq_icr_clear_iame();
2586             e1000e_lower_interrupts(core, ICR, 0xffffffff);
2587             trace_e1000e_irq_icr_process_iame();
2588             e1000e_lower_interrupts(core, IMS, core->mac[IAM]);
2589         }
2590 
2591         /*
2592          * The datasheet does not say what happens when interrupt was asserted
2593          * (ICR.INT_ASSERT=1) and auto mask is *not* active.
2594          * However, section of 13.3.27 the PCIe* GbE Controllers Open Source
2595          * Software Developer’s Manual, which were written for older devices,
2596          * namely 631xESB/632xESB, 82563EB/82564EB, 82571EB/82572EI &
2597          * 82573E/82573V/82573L, does say:
2598          * > If IMS = 0b, then the ICR register is always clear-on-read. If IMS
2599          * > is not 0b, but some ICR bit is set where the corresponding IMS bit
2600          * > is not set, then a read does not clear the ICR register. For
2601          * > example, if IMS = 10101010b and ICR = 01010101b, then a read to the
2602          * > ICR register does not clear it. If IMS = 10101010b and
2603          * > ICR = 0101011b, then a read to the ICR register clears it entirely
2604          * > (ICR.INT_ASSERTED = 1b).
2605          *
2606          * Linux does no longer activate auto mask since commit
2607          * 0a8047ac68e50e4ccbadcfc6b6b070805b976885 and the real hardware
2608          * clears ICR even in such a case so we also should do so.
2609          */
2610         if (core->mac[ICR] & core->mac[IMS]) {
2611             trace_e1000e_irq_icr_clear_icr_bit_ims(core->mac[ICR],
2612                                                    core->mac[IMS]);
2613             e1000e_lower_interrupts(core, ICR, 0xffffffff);
2614         }
2615     }
2616 
2617     return ret;
2618 }
2619 
2620 static uint32_t
2621 e1000e_mac_read_clr4(E1000ECore *core, int index)
2622 {
2623     uint32_t ret = core->mac[index];
2624 
2625     core->mac[index] = 0;
2626     return ret;
2627 }
2628 
2629 static uint32_t
2630 e1000e_mac_read_clr8(E1000ECore *core, int index)
2631 {
2632     uint32_t ret = core->mac[index];
2633 
2634     core->mac[index] = 0;
2635     core->mac[index - 1] = 0;
2636     return ret;
2637 }
2638 
2639 static uint32_t
2640 e1000e_get_ctrl(E1000ECore *core, int index)
2641 {
2642     uint32_t val = core->mac[CTRL];
2643 
2644     trace_e1000e_link_read_params(
2645         !!(val & E1000_CTRL_ASDE),
2646         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2647         !!(val & E1000_CTRL_FRCSPD),
2648         !!(val & E1000_CTRL_FRCDPX),
2649         !!(val & E1000_CTRL_RFCE),
2650         !!(val & E1000_CTRL_TFCE));
2651 
2652     return val;
2653 }
2654 
2655 static uint32_t
2656 e1000e_get_status(E1000ECore *core, int index)
2657 {
2658     uint32_t res = core->mac[STATUS];
2659 
2660     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2661         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2662     }
2663 
2664     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2665         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2666     } else {
2667         res |= E1000_STATUS_FD;
2668     }
2669 
2670     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2671         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2672         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2673         case E1000_CTRL_SPD_10:
2674             res |= E1000_STATUS_SPEED_10;
2675             break;
2676         case E1000_CTRL_SPD_100:
2677             res |= E1000_STATUS_SPEED_100;
2678             break;
2679         case E1000_CTRL_SPD_1000:
2680         default:
2681             res |= E1000_STATUS_SPEED_1000;
2682             break;
2683         }
2684     } else {
2685         res |= E1000_STATUS_SPEED_1000;
2686     }
2687 
2688     trace_e1000e_link_status(
2689         !!(res & E1000_STATUS_LU),
2690         !!(res & E1000_STATUS_FD),
2691         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2692         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2693 
2694     return res;
2695 }
2696 
2697 static uint32_t
2698 e1000e_get_tarc(E1000ECore *core, int index)
2699 {
2700     return core->mac[index] & ((BIT(11) - 1) |
2701                                 BIT(27)      |
2702                                 BIT(28)      |
2703                                 BIT(29)      |
2704                                 BIT(30));
2705 }
2706 
2707 static void
2708 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2709 {
2710     core->mac[index] = val;
2711 }
2712 
2713 static void
2714 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2715 {
2716     uint32_t macaddr[2];
2717 
2718     core->mac[index] = val;
2719 
2720     macaddr[0] = cpu_to_le32(core->mac[RA]);
2721     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2722     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2723         (uint8_t *) macaddr);
2724 
2725     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2726 }
2727 
2728 static void
2729 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2730 {
2731     static const uint32_t ro_bits = E1000_EECD_PRES          |
2732                                     E1000_EECD_AUTO_RD       |
2733                                     E1000_EECD_SIZE_EX_MASK;
2734 
2735     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2736 }
2737 
2738 static void
2739 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2740 {
2741     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2742     uint32_t flags = 0;
2743     uint32_t data = 0;
2744 
2745     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2746         data = core->eeprom[addr];
2747         flags = E1000_EERW_DONE;
2748     }
2749 
2750     core->mac[EERD] = flags                           |
2751                       (addr << E1000_EERW_ADDR_SHIFT) |
2752                       (data << E1000_EERW_DATA_SHIFT);
2753 }
2754 
2755 static void
2756 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2757 {
2758     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2759     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2760     uint32_t flags = 0;
2761 
2762     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2763         core->eeprom[addr] = data;
2764         flags = E1000_EERW_DONE;
2765     }
2766 
2767     core->mac[EERD] = flags                           |
2768                       (addr << E1000_EERW_ADDR_SHIFT) |
2769                       (data << E1000_EERW_DATA_SHIFT);
2770 }
2771 
2772 static void
2773 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2774 {
2775     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2776 }
2777 
2778 static void
2779 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2780 {
2781     uint32_t interval = val & 0xffff;
2782 
2783     trace_e1000e_irq_itr_set(val);
2784 
2785     core->itr_guest_value = interval;
2786     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2787 }
2788 
2789 static void
2790 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2791 {
2792     uint32_t interval = val & 0xffff;
2793     uint32_t eitr_num = index - EITR;
2794 
2795     trace_e1000e_irq_eitr_set(eitr_num, val);
2796 
2797     core->eitr_guest_value[eitr_num] = interval;
2798     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2799 }
2800 
2801 static void
2802 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2803 {
2804     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2805 
2806         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2807             qemu_log_mask(LOG_GUEST_ERROR,
2808                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2809             return;
2810         }
2811 
2812         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2813             qemu_log_mask(LOG_GUEST_ERROR,
2814                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2815             return;
2816         }
2817     }
2818 
2819     core->mac[PSRCTL] = val;
2820 }
2821 
2822 static void
2823 e1000e_update_rx_offloads(E1000ECore *core)
2824 {
2825     int cso_state = e1000e_rx_l4_cso_enabled(core);
2826 
2827     trace_e1000e_rx_set_cso(cso_state);
2828 
2829     if (core->has_vnet) {
2830         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2831                          cso_state, 0, 0, 0, 0, 0, 0);
2832     }
2833 }
2834 
2835 static void
2836 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2837 {
2838     core->mac[RXCSUM] = val;
2839     e1000e_update_rx_offloads(core);
2840 }
2841 
2842 static void
2843 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2844 {
2845     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2846     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2847 }
2848 
2849 static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
2850 {
2851     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2852     return core->mac[SYSTIML];
2853 }
2854 
2855 static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
2856 {
2857     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2858     return core->mac[RXSATRH];
2859 }
2860 
2861 static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
2862 {
2863     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2864     return core->mac[TXSTMPH];
2865 }
2866 
2867 static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
2868 {
2869     e1000x_set_timinca(core->mac, &core->timadj, val);
2870 }
2871 
2872 static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
2873 {
2874     core->mac[TIMADJH] = val;
2875     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2876 }
2877 
2878 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2879 typedef uint32_t (*readops)(E1000ECore *, int);
2880 static const readops e1000e_macreg_readops[] = {
2881     e1000e_getreg(PBA),
2882     e1000e_getreg(WUFC),
2883     e1000e_getreg(MANC),
2884     e1000e_getreg(TOTL),
2885     e1000e_getreg(RDT0),
2886     e1000e_getreg(RDBAH0),
2887     e1000e_getreg(TDBAL1),
2888     e1000e_getreg(RDLEN0),
2889     e1000e_getreg(RDH1),
2890     e1000e_getreg(LATECOL),
2891     e1000e_getreg(SEQEC),
2892     e1000e_getreg(XONTXC),
2893     e1000e_getreg(AIT),
2894     e1000e_getreg(TDFH),
2895     e1000e_getreg(TDFT),
2896     e1000e_getreg(TDFHS),
2897     e1000e_getreg(TDFTS),
2898     e1000e_getreg(TDFPC),
2899     e1000e_getreg(WUS),
2900     e1000e_getreg(PBS),
2901     e1000e_getreg(RDFH),
2902     e1000e_getreg(RDFT),
2903     e1000e_getreg(RDFHS),
2904     e1000e_getreg(RDFTS),
2905     e1000e_getreg(RDFPC),
2906     e1000e_getreg(GORCL),
2907     e1000e_getreg(MGTPRC),
2908     e1000e_getreg(EERD),
2909     e1000e_getreg(EIAC),
2910     e1000e_getreg(PSRCTL),
2911     e1000e_getreg(MANC2H),
2912     e1000e_getreg(RXCSUM),
2913     e1000e_getreg(GSCL_3),
2914     e1000e_getreg(GSCN_2),
2915     e1000e_getreg(RSRPD),
2916     e1000e_getreg(RDBAL1),
2917     e1000e_getreg(FCAH),
2918     e1000e_getreg(FCRTH),
2919     e1000e_getreg(FLOP),
2920     e1000e_getreg(FLASHT),
2921     e1000e_getreg(RXSTMPH),
2922     e1000e_getreg(TXSTMPL),
2923     e1000e_getreg(TIMADJL),
2924     e1000e_getreg(TXDCTL),
2925     e1000e_getreg(RDH0),
2926     e1000e_getreg(TDT1),
2927     e1000e_getreg(TNCRS),
2928     e1000e_getreg(RJC),
2929     e1000e_getreg(IAM),
2930     e1000e_getreg(GSCL_2),
2931     e1000e_getreg(RDBAH1),
2932     e1000e_getreg(FLSWDATA),
2933     e1000e_getreg(TIPG),
2934     e1000e_getreg(FLMNGCTL),
2935     e1000e_getreg(FLMNGCNT),
2936     e1000e_getreg(TSYNCTXCTL),
2937     e1000e_getreg(EXTCNF_SIZE),
2938     e1000e_getreg(EXTCNF_CTRL),
2939     e1000e_getreg(EEMNGDATA),
2940     e1000e_getreg(CTRL_EXT),
2941     e1000e_getreg(SYSTIMH),
2942     e1000e_getreg(EEMNGCTL),
2943     e1000e_getreg(FLMNGDATA),
2944     e1000e_getreg(TSYNCRXCTL),
2945     e1000e_getreg(TDH),
2946     e1000e_getreg(LEDCTL),
2947     e1000e_getreg(TCTL),
2948     e1000e_getreg(TDBAL),
2949     e1000e_getreg(TDLEN),
2950     e1000e_getreg(TDH1),
2951     e1000e_getreg(RADV),
2952     e1000e_getreg(ECOL),
2953     e1000e_getreg(DC),
2954     e1000e_getreg(RLEC),
2955     e1000e_getreg(XOFFTXC),
2956     e1000e_getreg(RFC),
2957     e1000e_getreg(RNBC),
2958     e1000e_getreg(MGTPTC),
2959     e1000e_getreg(TIMINCA),
2960     e1000e_getreg(RXCFGL),
2961     e1000e_getreg(MFUTP01),
2962     e1000e_getreg(FACTPS),
2963     e1000e_getreg(GSCL_1),
2964     e1000e_getreg(GSCN_0),
2965     e1000e_getreg(GCR2),
2966     e1000e_getreg(RDT1),
2967     e1000e_getreg(PBACLR),
2968     e1000e_getreg(FCTTV),
2969     e1000e_getreg(EEWR),
2970     e1000e_getreg(FLSWCTL),
2971     e1000e_getreg(RXDCTL1),
2972     e1000e_getreg(RXSATRL),
2973     e1000e_getreg(RXUDP),
2974     e1000e_getreg(TORL),
2975     e1000e_getreg(TDLEN1),
2976     e1000e_getreg(MCC),
2977     e1000e_getreg(WUC),
2978     e1000e_getreg(EECD),
2979     e1000e_getreg(MFUTP23),
2980     e1000e_getreg(RAID),
2981     e1000e_getreg(FCRTV),
2982     e1000e_getreg(TXDCTL1),
2983     e1000e_getreg(RCTL),
2984     e1000e_getreg(TDT),
2985     e1000e_getreg(MDIC),
2986     e1000e_getreg(FCRUC),
2987     e1000e_getreg(VET),
2988     e1000e_getreg(RDBAL0),
2989     e1000e_getreg(TDBAH1),
2990     e1000e_getreg(RDTR),
2991     e1000e_getreg(SCC),
2992     e1000e_getreg(COLC),
2993     e1000e_getreg(CEXTERR),
2994     e1000e_getreg(XOFFRXC),
2995     e1000e_getreg(IPAV),
2996     e1000e_getreg(GOTCL),
2997     e1000e_getreg(MGTPDC),
2998     e1000e_getreg(GCR),
2999     e1000e_getreg(IVAR),
3000     e1000e_getreg(POEMB),
3001     e1000e_getreg(MFVAL),
3002     e1000e_getreg(FUNCTAG),
3003     e1000e_getreg(GSCL_4),
3004     e1000e_getreg(GSCN_3),
3005     e1000e_getreg(MRQC),
3006     e1000e_getreg(RDLEN1),
3007     e1000e_getreg(FCT),
3008     e1000e_getreg(FLA),
3009     e1000e_getreg(FLOL),
3010     e1000e_getreg(RXDCTL),
3011     e1000e_getreg(RXSTMPL),
3012     e1000e_getreg(TIMADJH),
3013     e1000e_getreg(FCRTL),
3014     e1000e_getreg(TDBAH),
3015     e1000e_getreg(TADV),
3016     e1000e_getreg(XONRXC),
3017     e1000e_getreg(TSCTFC),
3018     e1000e_getreg(RFCTL),
3019     e1000e_getreg(GSCN_1),
3020     e1000e_getreg(FCAL),
3021     e1000e_getreg(FLSWCNT),
3022 
3023     [TOTH]    = e1000e_mac_read_clr8,
3024     [GOTCH]   = e1000e_mac_read_clr8,
3025     [PRC64]   = e1000e_mac_read_clr4,
3026     [PRC255]  = e1000e_mac_read_clr4,
3027     [PRC1023] = e1000e_mac_read_clr4,
3028     [PTC64]   = e1000e_mac_read_clr4,
3029     [PTC255]  = e1000e_mac_read_clr4,
3030     [PTC1023] = e1000e_mac_read_clr4,
3031     [GPRC]    = e1000e_mac_read_clr4,
3032     [TPT]     = e1000e_mac_read_clr4,
3033     [RUC]     = e1000e_mac_read_clr4,
3034     [BPRC]    = e1000e_mac_read_clr4,
3035     [MPTC]    = e1000e_mac_read_clr4,
3036     [IAC]     = e1000e_mac_read_clr4,
3037     [ICR]     = e1000e_mac_icr_read,
3038     [STATUS]  = e1000e_get_status,
3039     [TARC0]   = e1000e_get_tarc,
3040     [ICS]     = e1000e_mac_ics_read,
3041     [TORH]    = e1000e_mac_read_clr8,
3042     [GORCH]   = e1000e_mac_read_clr8,
3043     [PRC127]  = e1000e_mac_read_clr4,
3044     [PRC511]  = e1000e_mac_read_clr4,
3045     [PRC1522] = e1000e_mac_read_clr4,
3046     [PTC127]  = e1000e_mac_read_clr4,
3047     [PTC511]  = e1000e_mac_read_clr4,
3048     [PTC1522] = e1000e_mac_read_clr4,
3049     [GPTC]    = e1000e_mac_read_clr4,
3050     [TPR]     = e1000e_mac_read_clr4,
3051     [ROC]     = e1000e_mac_read_clr4,
3052     [MPRC]    = e1000e_mac_read_clr4,
3053     [BPTC]    = e1000e_mac_read_clr4,
3054     [TSCTC]   = e1000e_mac_read_clr4,
3055     [ITR]     = e1000e_mac_itr_read,
3056     [CTRL]    = e1000e_get_ctrl,
3057     [TARC1]   = e1000e_get_tarc,
3058     [SWSM]    = e1000e_mac_swsm_read,
3059     [IMS]     = e1000e_mac_ims_read,
3060     [SYSTIML] = e1000e_get_systiml,
3061     [RXSATRH] = e1000e_get_rxsatrh,
3062     [TXSTMPH] = e1000e_get_txstmph,
3063 
3064     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3065     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3066     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3067     [RA ... RA + 31]       = e1000e_mac_readreg,
3068     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3069     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
3070     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = e1000e_mac_readreg,
3071     [FFMT ... FFMT + 254]  = e1000e_mac_readreg,
3072     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3073     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3074     [FFLT ... FFLT + 10]   = e1000e_mac_readreg,
3075     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3076     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3077     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3078     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3079     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3080     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3081 };
3082 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3083 
3084 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3085 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3086 static const writeops e1000e_macreg_writeops[] = {
3087     e1000e_putreg(PBA),
3088     e1000e_putreg(SWSM),
3089     e1000e_putreg(WUFC),
3090     e1000e_putreg(RDBAH1),
3091     e1000e_putreg(TDBAH),
3092     e1000e_putreg(TXDCTL),
3093     e1000e_putreg(RDBAH0),
3094     e1000e_putreg(LEDCTL),
3095     e1000e_putreg(FCAL),
3096     e1000e_putreg(FCRUC),
3097     e1000e_putreg(WUC),
3098     e1000e_putreg(WUS),
3099     e1000e_putreg(IPAV),
3100     e1000e_putreg(TDBAH1),
3101     e1000e_putreg(IAM),
3102     e1000e_putreg(EIAC),
3103     e1000e_putreg(IVAR),
3104     e1000e_putreg(TARC0),
3105     e1000e_putreg(TARC1),
3106     e1000e_putreg(FLSWDATA),
3107     e1000e_putreg(POEMB),
3108     e1000e_putreg(MFUTP01),
3109     e1000e_putreg(MFUTP23),
3110     e1000e_putreg(MANC),
3111     e1000e_putreg(MANC2H),
3112     e1000e_putreg(MFVAL),
3113     e1000e_putreg(EXTCNF_CTRL),
3114     e1000e_putreg(FACTPS),
3115     e1000e_putreg(FUNCTAG),
3116     e1000e_putreg(GSCL_1),
3117     e1000e_putreg(GSCL_2),
3118     e1000e_putreg(GSCL_3),
3119     e1000e_putreg(GSCL_4),
3120     e1000e_putreg(GSCN_0),
3121     e1000e_putreg(GSCN_1),
3122     e1000e_putreg(GSCN_2),
3123     e1000e_putreg(GSCN_3),
3124     e1000e_putreg(GCR2),
3125     e1000e_putreg(MRQC),
3126     e1000e_putreg(FLOP),
3127     e1000e_putreg(FLOL),
3128     e1000e_putreg(FLSWCTL),
3129     e1000e_putreg(FLSWCNT),
3130     e1000e_putreg(FLA),
3131     e1000e_putreg(RXDCTL1),
3132     e1000e_putreg(TXDCTL1),
3133     e1000e_putreg(TIPG),
3134     e1000e_putreg(RXSTMPH),
3135     e1000e_putreg(RXSTMPL),
3136     e1000e_putreg(RXSATRL),
3137     e1000e_putreg(RXSATRH),
3138     e1000e_putreg(TXSTMPL),
3139     e1000e_putreg(TXSTMPH),
3140     e1000e_putreg(SYSTIML),
3141     e1000e_putreg(SYSTIMH),
3142     e1000e_putreg(TIMADJL),
3143     e1000e_putreg(RXUDP),
3144     e1000e_putreg(RXCFGL),
3145     e1000e_putreg(TSYNCRXCTL),
3146     e1000e_putreg(TSYNCTXCTL),
3147     e1000e_putreg(EXTCNF_SIZE),
3148     e1000e_putreg(EEMNGCTL),
3149     e1000e_putreg(RA),
3150 
3151     [TDH1]     = e1000e_set_16bit,
3152     [TDT1]     = e1000e_set_tdt,
3153     [TCTL]     = e1000e_set_tctl,
3154     [TDT]      = e1000e_set_tdt,
3155     [MDIC]     = e1000e_set_mdic,
3156     [ICS]      = e1000e_set_ics,
3157     [TDH]      = e1000e_set_16bit,
3158     [RDH0]     = e1000e_set_16bit,
3159     [RDT0]     = e1000e_set_rdt,
3160     [IMC]      = e1000e_set_imc,
3161     [IMS]      = e1000e_set_ims,
3162     [ICR]      = e1000e_set_icr,
3163     [EECD]     = e1000e_set_eecd,
3164     [RCTL]     = e1000e_set_rx_control,
3165     [CTRL]     = e1000e_set_ctrl,
3166     [RDTR]     = e1000e_set_rdtr,
3167     [RADV]     = e1000e_set_16bit,
3168     [TADV]     = e1000e_set_16bit,
3169     [ITR]      = e1000e_set_itr,
3170     [EERD]     = e1000e_set_eerd,
3171     [AIT]      = e1000e_set_16bit,
3172     [TDFH]     = e1000e_set_13bit,
3173     [TDFT]     = e1000e_set_13bit,
3174     [TDFHS]    = e1000e_set_13bit,
3175     [TDFTS]    = e1000e_set_13bit,
3176     [TDFPC]    = e1000e_set_13bit,
3177     [RDFH]     = e1000e_set_13bit,
3178     [RDFHS]    = e1000e_set_13bit,
3179     [RDFT]     = e1000e_set_13bit,
3180     [RDFTS]    = e1000e_set_13bit,
3181     [RDFPC]    = e1000e_set_13bit,
3182     [PBS]      = e1000e_set_6bit,
3183     [GCR]      = e1000e_set_gcr,
3184     [PSRCTL]   = e1000e_set_psrctl,
3185     [RXCSUM]   = e1000e_set_rxcsum,
3186     [RAID]     = e1000e_set_16bit,
3187     [RSRPD]    = e1000e_set_12bit,
3188     [TIDV]     = e1000e_set_tidv,
3189     [TDLEN1]   = e1000e_set_dlen,
3190     [TDLEN]    = e1000e_set_dlen,
3191     [RDLEN0]   = e1000e_set_dlen,
3192     [RDLEN1]   = e1000e_set_dlen,
3193     [TDBAL]    = e1000e_set_dbal,
3194     [TDBAL1]   = e1000e_set_dbal,
3195     [RDBAL0]   = e1000e_set_dbal,
3196     [RDBAL1]   = e1000e_set_dbal,
3197     [RDH1]     = e1000e_set_16bit,
3198     [RDT1]     = e1000e_set_rdt,
3199     [STATUS]   = e1000e_set_status,
3200     [PBACLR]   = e1000e_set_pbaclr,
3201     [CTRL_EXT] = e1000e_set_ctrlext,
3202     [FCAH]     = e1000e_set_16bit,
3203     [FCT]      = e1000e_set_16bit,
3204     [FCTTV]    = e1000e_set_16bit,
3205     [FCRTV]    = e1000e_set_16bit,
3206     [FCRTH]    = e1000e_set_fcrth,
3207     [FCRTL]    = e1000e_set_fcrtl,
3208     [VET]      = e1000e_set_vet,
3209     [RXDCTL]   = e1000e_set_rxdctl,
3210     [FLASHT]   = e1000e_set_16bit,
3211     [EEWR]     = e1000e_set_eewr,
3212     [CTRL_DUP] = e1000e_set_ctrl,
3213     [RFCTL]    = e1000e_set_rfctl,
3214     [RA + 1]   = e1000e_mac_setmacaddr,
3215     [TIMINCA]  = e1000e_set_timinca,
3216     [TIMADJH]  = e1000e_set_timadjh,
3217 
3218     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3219     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3220     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3221     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3222     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
3223     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]    = e1000e_mac_writereg,
3224     [FFMT ... FFMT + 254]    = e1000e_set_4bit,
3225     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3226     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3227     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3228     [FFLT ... FFLT + 10]     = e1000e_set_11bit,
3229     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3230     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3231     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3232     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3233     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3234 };
3235 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3236 
3237 enum { MAC_ACCESS_PARTIAL = 1 };
3238 
3239 /*
3240  * The array below combines alias offsets of the index values for the
3241  * MAC registers that have aliases, with the indication of not fully
3242  * implemented registers (lowest bit). This combination is possible
3243  * because all of the offsets are even.
3244  */
3245 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3246     /* Alias index offsets */
3247     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3248     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3249     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3250     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3251     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3252     [RA_A ... RA_A + 31]      = 0x14f0,
3253     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3254     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3255     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3256     /* Access options */
3257     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3258     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3259     [RDFPC] = MAC_ACCESS_PARTIAL,
3260     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3261     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3262     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3263     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3264     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3265     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3266     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3267     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3268     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3269     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3270 };
3271 
3272 void
3273 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3274 {
3275     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3276 
3277     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3278         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3279             trace_e1000e_wrn_regs_write_trivial(index << 2);
3280         }
3281         trace_e1000e_core_write(index << 2, size, val);
3282         e1000e_macreg_writeops[index](core, index, val);
3283     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3284         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3285     } else {
3286         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3287     }
3288 }
3289 
3290 uint64_t
3291 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3292 {
3293     uint64_t val;
3294     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3295 
3296     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3297         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3298             trace_e1000e_wrn_regs_read_trivial(index << 2);
3299         }
3300         val = e1000e_macreg_readops[index](core, index);
3301         trace_e1000e_core_read(index << 2, size, val);
3302         return val;
3303     } else {
3304         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3305     }
3306     return 0;
3307 }
3308 
3309 static void
3310 e1000e_autoneg_resume(E1000ECore *core)
3311 {
3312     if (e1000e_have_autoneg(core) &&
3313         !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
3314         qemu_get_queue(core->owner_nic)->link_down = false;
3315         timer_mod(core->autoneg_timer,
3316                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3317     }
3318 }
3319 
3320 void
3321 e1000e_core_pci_realize(E1000ECore     *core,
3322                         const uint16_t *eeprom_templ,
3323                         uint32_t        eeprom_size,
3324                         const uint8_t  *macaddr)
3325 {
3326     int i;
3327 
3328     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3329                                        e1000e_autoneg_timer, core);
3330     e1000e_intrmgr_pci_realize(core);
3331 
3332     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3333         net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3334     }
3335 
3336     net_rx_pkt_init(&core->rx_pkt);
3337 
3338     e1000x_core_prepare_eeprom(core->eeprom,
3339                                eeprom_templ,
3340                                eeprom_size,
3341                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3342                                macaddr);
3343     e1000e_update_rx_offloads(core);
3344 }
3345 
3346 void
3347 e1000e_core_pci_uninit(E1000ECore *core)
3348 {
3349     int i;
3350 
3351     timer_free(core->autoneg_timer);
3352 
3353     e1000e_intrmgr_pci_unint(core);
3354 
3355     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3356         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3357     }
3358 
3359     net_rx_pkt_uninit(core->rx_pkt);
3360 }
3361 
3362 static const uint16_t
3363 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3364     [0] = {
3365         [MII_BMCR] = MII_BMCR_SPEED1000 |
3366                      MII_BMCR_FD        |
3367                      MII_BMCR_AUTOEN,
3368 
3369         [MII_BMSR] = MII_BMSR_EXTCAP    |
3370                      MII_BMSR_LINK_ST   |
3371                      MII_BMSR_AUTONEG   |
3372                      MII_BMSR_MFPS      |
3373                      MII_BMSR_EXTSTAT   |
3374                      MII_BMSR_10T_HD    |
3375                      MII_BMSR_10T_FD    |
3376                      MII_BMSR_100TX_HD  |
3377                      MII_BMSR_100TX_FD,
3378 
3379         [MII_PHYID1]            = 0x141,
3380         [MII_PHYID2]            = E1000_PHY_ID2_82574x,
3381         [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3382                                   MII_ANAR_10FD | MII_ANAR_TX |
3383                                   MII_ANAR_TXFD | MII_ANAR_PAUSE |
3384                                   MII_ANAR_PAUSE_ASYM,
3385         [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3386                                   MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3387                                   MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3388         [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3389         [MII_ANNP]              = 1 | MII_ANNP_MP,
3390         [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3391                                   MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3392         [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3393                                   MII_STAT1000_ROK | MII_STAT1000_LOK,
3394         [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3395 
3396         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3397                                   BIT(12) | BIT(13),
3398         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3399     },
3400     [2] = {
3401         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3402         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3403     },
3404     [3] = {
3405         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3406     }
3407 };
3408 
3409 static const uint32_t e1000e_mac_reg_init[] = {
3410     [PBA]           =     0x00140014,
3411     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3412     [EXTCNF_CTRL]   = BIT(3),
3413     [EEMNGCTL]      = BIT(31),
3414     [FLASHT]        = 0x2,
3415     [FLSWCTL]       = BIT(30) | BIT(31),
3416     [FLOL]          = BIT(0),
3417     [RXDCTL]        = BIT(16),
3418     [RXDCTL1]       = BIT(16),
3419     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3420     [RXCFGL]        = 0x88F7,
3421     [RXUDP]         = 0x319,
3422     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3423                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3424                       E1000_CTRL_ADVD3WUC,
3425     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3426     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3427                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3428                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3429     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3430     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3431     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3432     [EERD]          = E1000_EERW_DONE,
3433     [EEWR]          = E1000_EERW_DONE,
3434     [GCR]           = E1000_L0S_ADJUST |
3435                       E1000_L1_ENTRY_LATENCY_MSB |
3436                       E1000_L1_ENTRY_LATENCY_LSB,
3437     [TDFH]          = 0x600,
3438     [TDFT]          = 0x600,
3439     [TDFHS]         = 0x600,
3440     [TDFTS]         = 0x600,
3441     [POEMB]         = 0x30D,
3442     [PBS]           = 0x028,
3443     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3444     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3445     [SWSM]          = 1,
3446     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3447     [ITR]           = E1000E_MIN_XITR,
3448     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3449 };
3450 
3451 static void e1000e_reset(E1000ECore *core, bool sw)
3452 {
3453     int i;
3454 
3455     timer_del(core->autoneg_timer);
3456 
3457     e1000e_intrmgr_reset(core);
3458 
3459     memset(core->phy, 0, sizeof core->phy);
3460     memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3461 
3462     for (i = 0; i < E1000E_MAC_SIZE; i++) {
3463         if (sw && (i == PBA || i == PBS || i == FLA)) {
3464             continue;
3465         }
3466 
3467         core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
3468                        e1000e_mac_reg_init[i] : 0;
3469     }
3470 
3471     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3472 
3473     if (qemu_get_queue(core->owner_nic)->link_down) {
3474         e1000e_link_down(core);
3475     }
3476 
3477     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3478 
3479     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3480         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3481         core->tx[i].skip_cp = false;
3482     }
3483 }
3484 
3485 void
3486 e1000e_core_reset(E1000ECore *core)
3487 {
3488     e1000e_reset(core, false);
3489 }
3490 
3491 void e1000e_core_pre_save(E1000ECore *core)
3492 {
3493     int i;
3494     NetClientState *nc = qemu_get_queue(core->owner_nic);
3495 
3496     /*
3497      * If link is down and auto-negotiation is supported and ongoing,
3498      * complete auto-negotiation immediately. This allows us to look
3499      * at MII_BMSR_AN_COMP to infer link status on load.
3500      */
3501     if (nc->link_down && e1000e_have_autoneg(core)) {
3502         core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
3503         e1000e_update_flowctl_status(core);
3504     }
3505 
3506     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3507         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3508             core->tx[i].skip_cp = true;
3509         }
3510     }
3511 }
3512 
3513 int
3514 e1000e_core_post_load(E1000ECore *core)
3515 {
3516     NetClientState *nc = qemu_get_queue(core->owner_nic);
3517 
3518     /*
3519      * nc.link_down can't be migrated, so infer link_down according
3520      * to link status bit in core.mac[STATUS].
3521      */
3522     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3523 
3524     /*
3525      * we need to restart intrmgr timers, as an older version of
3526      * QEMU can have stopped them before migration
3527      */
3528     e1000e_intrmgr_resume(core);
3529     e1000e_autoneg_resume(core);
3530 
3531     return 0;
3532 }
3533