xref: /openbmc/qemu/hw/net/e1000e_core.c (revision 6684bef12e42838204a953d49fc2de34653f4bf8)
1 /*
2  * Core code for QEMU e1000e emulation
3  *
4  * Software developer's manuals:
5  * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6  *
7  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8  * Developed by Daynix Computing LTD (http://www.daynix.com)
9  *
10  * Authors:
11  * Dmitry Fleytman <dmitry@daynix.com>
12  * Leonid Bloch <leonid@daynix.com>
13  * Yan Vugenfirer <yan@daynix.com>
14  *
15  * Based on work done by:
16  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17  * Copyright (c) 2008 Qumranet
18  * Based on work done by:
19  * Copyright (c) 2007 Dan Aloni
20  * Copyright (c) 2004 Antony T Curtis
21  *
22  * This library is free software; you can redistribute it and/or
23  * modify it under the terms of the GNU Lesser General Public
24  * License as published by the Free Software Foundation; either
25  * version 2.1 of the License, or (at your option) any later version.
26  *
27  * This library is distributed in the hope that it will be useful,
28  * but WITHOUT ANY WARRANTY; without even the implied warranty of
29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30  * Lesser General Public License for more details.
31  *
32  * You should have received a copy of the GNU Lesser General Public
33  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34  */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
42 #include "sysemu/runstate.h"
43 
44 #include "net_tx_pkt.h"
45 #include "net_rx_pkt.h"
46 
47 #include "e1000x_common.h"
48 #include "e1000e_core.h"
49 
50 #include "trace.h"
51 
52 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
53 #define E1000E_MIN_XITR     (500)
54 
55 #define E1000E_MAX_TX_FRAGS (64)
56 
57 static inline void
58 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
59 
60 static inline void
61 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
62 {
63     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
64         trace_e1000e_wrn_no_ts_support();
65     }
66 }
67 
68 static inline void
69 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
70 {
71     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
72         trace_e1000e_wrn_no_snap_support();
73     }
74 }
75 
76 static inline void
77 e1000e_raise_legacy_irq(E1000ECore *core)
78 {
79     trace_e1000e_irq_legacy_notify(true);
80     e1000x_inc_reg_if_not_full(core->mac, IAC);
81     pci_set_irq(core->owner, 1);
82 }
83 
84 static inline void
85 e1000e_lower_legacy_irq(E1000ECore *core)
86 {
87     trace_e1000e_irq_legacy_notify(false);
88     pci_set_irq(core->owner, 0);
89 }
90 
91 static inline void
92 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
93 {
94     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
95                                  timer->delay_resolution_ns;
96 
97     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
98 
99     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
100 
101     timer->running = true;
102 }
103 
104 static void
105 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
106 {
107     if (timer->running) {
108         e1000e_intrmgr_rearm_timer(timer);
109     }
110 }
111 
112 static void
113 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
114 {
115     if (timer->running) {
116         timer_del(timer->timer);
117     }
118 }
119 
120 static inline void
121 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
122 {
123     if (timer->running) {
124         timer_del(timer->timer);
125         timer->running = false;
126     }
127 }
128 
129 static inline void
130 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
131 {
132     trace_e1000e_irq_fire_delayed_interrupts();
133     e1000e_set_interrupt_cause(core, 0);
134 }
135 
136 static void
137 e1000e_intrmgr_on_timer(void *opaque)
138 {
139     E1000IntrDelayTimer *timer = opaque;
140 
141     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
142 
143     timer->running = false;
144     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
145 }
146 
147 static void
148 e1000e_intrmgr_on_throttling_timer(void *opaque)
149 {
150     E1000IntrDelayTimer *timer = opaque;
151 
152     assert(!msix_enabled(timer->core->owner));
153 
154     timer->running = false;
155 
156     if (!timer->core->itr_intr_pending) {
157         trace_e1000e_irq_throttling_no_pending_interrupts();
158         return;
159     }
160 
161     if (msi_enabled(timer->core->owner)) {
162         trace_e1000e_irq_msi_notify_postponed();
163         /* Clear msi_causes_pending to fire MSI eventually */
164         timer->core->msi_causes_pending = 0;
165         e1000e_set_interrupt_cause(timer->core, 0);
166     } else {
167         trace_e1000e_irq_legacy_notify_postponed();
168         e1000e_set_interrupt_cause(timer->core, 0);
169     }
170 }
171 
172 static void
173 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
174 {
175     E1000IntrDelayTimer *timer = opaque;
176     int idx = timer - &timer->core->eitr[0];
177 
178     assert(msix_enabled(timer->core->owner));
179 
180     timer->running = false;
181 
182     if (!timer->core->eitr_intr_pending[idx]) {
183         trace_e1000e_irq_throttling_no_pending_vec(idx);
184         return;
185     }
186 
187     trace_e1000e_irq_msix_notify_postponed_vec(idx);
188     msix_notify(timer->core->owner, idx);
189 }
190 
191 static void
192 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
193 {
194     int i;
195 
196     core->radv.delay_reg = RADV;
197     core->rdtr.delay_reg = RDTR;
198     core->raid.delay_reg = RAID;
199     core->tadv.delay_reg = TADV;
200     core->tidv.delay_reg = TIDV;
201 
202     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
205     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
206     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
207 
208     core->radv.core = core;
209     core->rdtr.core = core;
210     core->raid.core = core;
211     core->tadv.core = core;
212     core->tidv.core = core;
213 
214     core->itr.core = core;
215     core->itr.delay_reg = ITR;
216     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
217 
218     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
219         core->eitr[i].core = core;
220         core->eitr[i].delay_reg = EITR + i;
221         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
222     }
223 
224     if (!create) {
225         return;
226     }
227 
228     core->radv.timer =
229         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
230     core->rdtr.timer =
231         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
232     core->raid.timer =
233         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
234 
235     core->tadv.timer =
236         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
237     core->tidv.timer =
238         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
239 
240     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
241                                    e1000e_intrmgr_on_throttling_timer,
242                                    &core->itr);
243 
244     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
245         core->eitr[i].timer =
246             timer_new_ns(QEMU_CLOCK_VIRTUAL,
247                          e1000e_intrmgr_on_msix_throttling_timer,
248                          &core->eitr[i]);
249     }
250 }
251 
252 static inline void
253 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
254 {
255     e1000e_intrmgr_stop_timer(&core->radv);
256     e1000e_intrmgr_stop_timer(&core->rdtr);
257     e1000e_intrmgr_stop_timer(&core->raid);
258     e1000e_intrmgr_stop_timer(&core->tidv);
259     e1000e_intrmgr_stop_timer(&core->tadv);
260 }
261 
262 static bool
263 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
264 {
265     uint32_t delayable_causes;
266     uint32_t rdtr = core->mac[RDTR];
267     uint32_t radv = core->mac[RADV];
268     uint32_t raid = core->mac[RAID];
269 
270     if (msix_enabled(core->owner)) {
271         return false;
272     }
273 
274     delayable_causes = E1000_ICR_RXQ0 |
275                        E1000_ICR_RXQ1 |
276                        E1000_ICR_RXT0;
277 
278     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
279         delayable_causes |= E1000_ICR_ACK;
280     }
281 
282     /* Clean up all causes that may be delayed */
283     core->delayed_causes |= *causes & delayable_causes;
284     *causes &= ~delayable_causes;
285 
286     /*
287      * Check if delayed RX interrupts disabled by client
288      * or if there are causes that cannot be delayed
289      */
290     if ((rdtr == 0) || (*causes != 0)) {
291         return false;
292     }
293 
294     /*
295      * Check if delayed RX ACK interrupts disabled by client
296      * and there is an ACK packet received
297      */
298     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
299         return false;
300     }
301 
302     /* All causes delayed */
303     e1000e_intrmgr_rearm_timer(&core->rdtr);
304 
305     if (!core->radv.running && (radv != 0)) {
306         e1000e_intrmgr_rearm_timer(&core->radv);
307     }
308 
309     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
310         e1000e_intrmgr_rearm_timer(&core->raid);
311     }
312 
313     return true;
314 }
315 
316 static bool
317 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
318 {
319     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
320                                              E1000_ICR_TXQ1 |
321                                              E1000_ICR_TXQE |
322                                              E1000_ICR_TXDW;
323 
324     if (msix_enabled(core->owner)) {
325         return false;
326     }
327 
328     /* Clean up all causes that may be delayed */
329     core->delayed_causes |= *causes & delayable_causes;
330     *causes &= ~delayable_causes;
331 
332     /* If there are causes that cannot be delayed */
333     if (*causes != 0) {
334         return false;
335     }
336 
337     /* All causes delayed */
338     e1000e_intrmgr_rearm_timer(&core->tidv);
339 
340     if (!core->tadv.running && (core->mac[TADV] != 0)) {
341         e1000e_intrmgr_rearm_timer(&core->tadv);
342     }
343 
344     return true;
345 }
346 
347 static uint32_t
348 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
349 {
350     uint32_t res;
351 
352     if (msix_enabled(core->owner)) {
353         assert(core->delayed_causes == 0);
354         return 0;
355     }
356 
357     res = core->delayed_causes;
358     core->delayed_causes = 0;
359 
360     e1000e_intrmgr_stop_delay_timers(core);
361 
362     return res;
363 }
364 
365 static void
366 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
367 {
368     int i;
369     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
370 
371     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
372     core->mac[ICR] |= val;
373 
374     if (core->itr.running) {
375         timer_del(core->itr.timer);
376         e1000e_intrmgr_on_throttling_timer(&core->itr);
377     }
378 
379     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
380         if (core->eitr[i].running) {
381             timer_del(core->eitr[i].timer);
382             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
383         }
384     }
385 }
386 
387 static void
388 e1000e_intrmgr_resume(E1000ECore *core)
389 {
390     int i;
391 
392     e1000e_intmgr_timer_resume(&core->radv);
393     e1000e_intmgr_timer_resume(&core->rdtr);
394     e1000e_intmgr_timer_resume(&core->raid);
395     e1000e_intmgr_timer_resume(&core->tidv);
396     e1000e_intmgr_timer_resume(&core->tadv);
397 
398     e1000e_intmgr_timer_resume(&core->itr);
399 
400     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
401         e1000e_intmgr_timer_resume(&core->eitr[i]);
402     }
403 }
404 
405 static void
406 e1000e_intrmgr_pause(E1000ECore *core)
407 {
408     int i;
409 
410     e1000e_intmgr_timer_pause(&core->radv);
411     e1000e_intmgr_timer_pause(&core->rdtr);
412     e1000e_intmgr_timer_pause(&core->raid);
413     e1000e_intmgr_timer_pause(&core->tidv);
414     e1000e_intmgr_timer_pause(&core->tadv);
415 
416     e1000e_intmgr_timer_pause(&core->itr);
417 
418     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
419         e1000e_intmgr_timer_pause(&core->eitr[i]);
420     }
421 }
422 
423 static void
424 e1000e_intrmgr_reset(E1000ECore *core)
425 {
426     int i;
427 
428     core->delayed_causes = 0;
429 
430     e1000e_intrmgr_stop_delay_timers(core);
431 
432     e1000e_intrmgr_stop_timer(&core->itr);
433 
434     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
435         e1000e_intrmgr_stop_timer(&core->eitr[i]);
436     }
437 }
438 
439 static void
440 e1000e_intrmgr_pci_unint(E1000ECore *core)
441 {
442     int i;
443 
444     timer_free(core->radv.timer);
445     timer_free(core->rdtr.timer);
446     timer_free(core->raid.timer);
447 
448     timer_free(core->tadv.timer);
449     timer_free(core->tidv.timer);
450 
451     timer_free(core->itr.timer);
452 
453     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
454         timer_free(core->eitr[i].timer);
455     }
456 }
457 
458 static void
459 e1000e_intrmgr_pci_realize(E1000ECore *core)
460 {
461     e1000e_intrmgr_initialize_all_timers(core, true);
462 }
463 
464 static inline bool
465 e1000e_rx_csum_enabled(E1000ECore *core)
466 {
467     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
468 }
469 
470 static inline bool
471 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
472 {
473     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
474 }
475 
476 static inline bool
477 e1000e_rx_use_ps_descriptor(E1000ECore *core)
478 {
479     return !e1000e_rx_use_legacy_descriptor(core) &&
480            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
481 }
482 
483 static inline bool
484 e1000e_rss_enabled(E1000ECore *core)
485 {
486     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
487            !e1000e_rx_csum_enabled(core) &&
488            !e1000e_rx_use_legacy_descriptor(core);
489 }
490 
491 typedef struct E1000E_RSSInfo_st {
492     bool enabled;
493     uint32_t hash;
494     uint32_t queue;
495     uint32_t type;
496 } E1000E_RSSInfo;
497 
498 static uint32_t
499 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
500 {
501     bool isip4, isip6, isudp, istcp;
502 
503     assert(e1000e_rss_enabled(core));
504 
505     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
506 
507     if (isip4) {
508         bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
509 
510         trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
511                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
512                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
513 
514         if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
515             return E1000_MRQ_RSS_TYPE_IPV4TCP;
516         }
517 
518         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
519             return E1000_MRQ_RSS_TYPE_IPV4;
520         }
521     } else if (isip6) {
522         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
523 
524         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
525         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
526 
527         /*
528          * Following two traces must not be combined because resulting
529          * event will have 11 arguments totally and some trace backends
530          * (at least "ust") have limitation of maximum 10 arguments per
531          * event. Events with more arguments fail to compile for
532          * backends like these.
533          */
534         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
535         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
536                                 ip6info->has_ext_hdrs,
537                                 ip6info->rss_ex_dst_valid,
538                                 ip6info->rss_ex_src_valid,
539                                 core->mac[MRQC],
540                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
541                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
542                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
543 
544         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
545             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
546                               ip6info->rss_ex_src_valid))) {
547 
548             if (istcp && !ip6info->fragment &&
549                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
550                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
551             }
552 
553             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
554                 return E1000_MRQ_RSS_TYPE_IPV6EX;
555             }
556 
557         }
558 
559         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
560             return E1000_MRQ_RSS_TYPE_IPV6;
561         }
562 
563     }
564 
565     return E1000_MRQ_RSS_TYPE_NONE;
566 }
567 
568 static uint32_t
569 e1000e_rss_calc_hash(E1000ECore *core,
570                      struct NetRxPkt *pkt,
571                      E1000E_RSSInfo *info)
572 {
573     NetRxPktRssType type;
574 
575     assert(e1000e_rss_enabled(core));
576 
577     switch (info->type) {
578     case E1000_MRQ_RSS_TYPE_IPV4:
579         type = NetPktRssIpV4;
580         break;
581     case E1000_MRQ_RSS_TYPE_IPV4TCP:
582         type = NetPktRssIpV4Tcp;
583         break;
584     case E1000_MRQ_RSS_TYPE_IPV6TCP:
585         type = NetPktRssIpV6TcpEx;
586         break;
587     case E1000_MRQ_RSS_TYPE_IPV6:
588         type = NetPktRssIpV6;
589         break;
590     case E1000_MRQ_RSS_TYPE_IPV6EX:
591         type = NetPktRssIpV6Ex;
592         break;
593     default:
594         assert(false);
595         return 0;
596     }
597 
598     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
599 }
600 
601 static void
602 e1000e_rss_parse_packet(E1000ECore *core,
603                         struct NetRxPkt *pkt,
604                         E1000E_RSSInfo *info)
605 {
606     trace_e1000e_rx_rss_started();
607 
608     if (!e1000e_rss_enabled(core)) {
609         info->enabled = false;
610         info->hash = 0;
611         info->queue = 0;
612         info->type = 0;
613         trace_e1000e_rx_rss_disabled();
614         return;
615     }
616 
617     info->enabled = true;
618 
619     info->type = e1000e_rss_get_hash_type(core, pkt);
620 
621     trace_e1000e_rx_rss_type(info->type);
622 
623     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
624         info->hash = 0;
625         info->queue = 0;
626         return;
627     }
628 
629     info->hash = e1000e_rss_calc_hash(core, pkt, info);
630     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
631 }
632 
633 static void
634 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
635 {
636     if (tx->props.tse && tx->cptse) {
637         net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
638         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
639         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
640         return;
641     }
642 
643     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
644         net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
645     }
646 
647     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
648         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
649     }
650 }
651 
652 static bool
653 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
654 {
655     int target_queue = MIN(core->max_queue_num, queue_index);
656     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
657 
658     e1000e_setup_tx_offloads(core, tx);
659 
660     net_tx_pkt_dump(tx->tx_pkt);
661 
662     if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
663         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
664         return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
665     } else {
666         return net_tx_pkt_send(tx->tx_pkt, queue);
667     }
668 }
669 
670 static void
671 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
672 {
673     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
674                                     PTC1023, PTC1522 };
675 
676     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
677 
678     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
679     e1000x_inc_reg_if_not_full(core->mac, TPT);
680     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
681 
682     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
683     case ETH_PKT_BCAST:
684         e1000x_inc_reg_if_not_full(core->mac, BPTC);
685         break;
686     case ETH_PKT_MCAST:
687         e1000x_inc_reg_if_not_full(core->mac, MPTC);
688         break;
689     case ETH_PKT_UCAST:
690         break;
691     default:
692         g_assert_not_reached();
693     }
694 
695     core->mac[GPTC] = core->mac[TPT];
696     core->mac[GOTCL] = core->mac[TOTL];
697     core->mac[GOTCH] = core->mac[TOTH];
698 }
699 
700 static void
701 e1000e_process_tx_desc(E1000ECore *core,
702                        struct e1000e_tx *tx,
703                        struct e1000_tx_desc *dp,
704                        int queue_index)
705 {
706     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
707     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
708     unsigned int split_size = txd_lower & 0xffff;
709     uint64_t addr;
710     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
711     bool eop = txd_lower & E1000_TXD_CMD_EOP;
712 
713     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
714         e1000x_read_tx_ctx_descr(xp, &tx->props);
715         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
716         return;
717     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
718         /* data descriptor */
719         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
720         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
721         e1000e_process_ts_option(core, dp);
722     } else {
723         /* legacy descriptor */
724         e1000e_process_ts_option(core, dp);
725         tx->cptse = 0;
726     }
727 
728     addr = le64_to_cpu(dp->buffer_addr);
729 
730     if (!tx->skip_cp) {
731         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
732             tx->skip_cp = true;
733         }
734     }
735 
736     if (eop) {
737         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
738             if (e1000x_vlan_enabled(core->mac) &&
739                 e1000x_is_vlan_txd(txd_lower)) {
740                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
741                     le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
742             }
743             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
744                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
745             }
746         }
747 
748         tx->skip_cp = false;
749         net_tx_pkt_reset(tx->tx_pkt);
750 
751         tx->sum_needed = 0;
752         tx->cptse = 0;
753     }
754 }
755 
756 static inline uint32_t
757 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
758 {
759     if (!msix_enabled(core->owner)) {
760         return E1000_ICR_TXDW;
761     }
762 
763     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
764 }
765 
766 static inline uint32_t
767 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
768                              bool min_threshold_hit)
769 {
770     if (!msix_enabled(core->owner)) {
771         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
772     }
773 
774     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
775 }
776 
777 static uint32_t
778 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
779                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
780 {
781     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
782 
783     if (!(txd_lower & E1000_TXD_CMD_RS) &&
784         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
785         return 0;
786     }
787 
788     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
789 
790     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
791 
792     dp->upper.data = cpu_to_le32(txd_upper);
793     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
794                   &dp->upper, sizeof(dp->upper));
795     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
796 }
797 
798 typedef struct E1000E_RingInfo_st {
799     int dbah;
800     int dbal;
801     int dlen;
802     int dh;
803     int dt;
804     int idx;
805 } E1000E_RingInfo;
806 
807 static inline bool
808 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
809 {
810     return core->mac[r->dh] == core->mac[r->dt] ||
811                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
812 }
813 
814 static inline uint64_t
815 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
816 {
817     uint64_t bah = core->mac[r->dbah];
818     uint64_t bal = core->mac[r->dbal];
819 
820     return (bah << 32) + bal;
821 }
822 
823 static inline uint64_t
824 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
825 {
826     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
827 }
828 
829 static inline void
830 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
831 {
832     core->mac[r->dh] += count;
833 
834     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
835         core->mac[r->dh] = 0;
836     }
837 }
838 
839 static inline uint32_t
840 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
841 {
842     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
843                                  core->mac[r->dh],  core->mac[r->dt]);
844 
845     if (core->mac[r->dh] <= core->mac[r->dt]) {
846         return core->mac[r->dt] - core->mac[r->dh];
847     }
848 
849     if (core->mac[r->dh] > core->mac[r->dt]) {
850         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
851                core->mac[r->dt] - core->mac[r->dh];
852     }
853 
854     g_assert_not_reached();
855     return 0;
856 }
857 
858 static inline bool
859 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
860 {
861     return core->mac[r->dlen] > 0;
862 }
863 
864 static inline uint32_t
865 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
866 {
867     return core->mac[r->dlen];
868 }
869 
870 typedef struct E1000E_TxRing_st {
871     const E1000E_RingInfo *i;
872     struct e1000e_tx *tx;
873 } E1000E_TxRing;
874 
875 static inline int
876 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
877 {
878     return (reg_idx - base_reg_idx) / (0x100 >> 2);
879 }
880 
881 static inline void
882 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
883 {
884     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
885         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
886         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
887     };
888 
889     assert(idx < ARRAY_SIZE(i));
890 
891     txr->i     = &i[idx];
892     txr->tx    = &core->tx[idx];
893 }
894 
895 typedef struct E1000E_RxRing_st {
896     const E1000E_RingInfo *i;
897 } E1000E_RxRing;
898 
899 static inline void
900 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
901 {
902     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
903         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
904         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
905     };
906 
907     assert(idx < ARRAY_SIZE(i));
908 
909     rxr->i      = &i[idx];
910 }
911 
912 static void
913 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
914 {
915     dma_addr_t base;
916     struct e1000_tx_desc desc;
917     bool ide = false;
918     const E1000E_RingInfo *txi = txr->i;
919     uint32_t cause = E1000_ICS_TXQE;
920 
921     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
922         trace_e1000e_tx_disabled();
923         return;
924     }
925 
926     while (!e1000e_ring_empty(core, txi)) {
927         base = e1000e_ring_head_descr(core, txi);
928 
929         pci_dma_read(core->owner, base, &desc, sizeof(desc));
930 
931         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
932                               desc.lower.data, desc.upper.data);
933 
934         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
935         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
936 
937         e1000e_ring_advance(core, txi, 1);
938     }
939 
940     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
941         e1000e_set_interrupt_cause(core, cause);
942     }
943 }
944 
945 static bool
946 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
947                   size_t total_size)
948 {
949     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
950 
951     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
952                                 core->rx_desc_buf_size);
953 
954     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
955                          core->rx_desc_buf_size;
956 }
957 
958 void
959 e1000e_start_recv(E1000ECore *core)
960 {
961     int i;
962 
963     trace_e1000e_rx_start_recv();
964 
965     for (i = 0; i <= core->max_queue_num; i++) {
966         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
967     }
968 }
969 
970 bool
971 e1000e_can_receive(E1000ECore *core)
972 {
973     int i;
974 
975     if (!e1000x_rx_ready(core->owner, core->mac)) {
976         return false;
977     }
978 
979     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
980         E1000E_RxRing rxr;
981 
982         e1000e_rx_ring_init(core, &rxr, i);
983         if (e1000e_ring_enabled(core, rxr.i) &&
984             e1000e_has_rxbufs(core, rxr.i, 1)) {
985             trace_e1000e_rx_can_recv();
986             return true;
987         }
988     }
989 
990     trace_e1000e_rx_can_recv_rings_full();
991     return false;
992 }
993 
994 ssize_t
995 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
996 {
997     const struct iovec iov = {
998         .iov_base = (uint8_t *)buf,
999         .iov_len = size
1000     };
1001 
1002     return e1000e_receive_iov(core, &iov, 1);
1003 }
1004 
1005 static inline bool
1006 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1007 {
1008     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1009 }
1010 
1011 static inline bool
1012 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1013 {
1014     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1015 }
1016 
1017 static bool
1018 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1019 {
1020     uint32_t rctl = core->mac[RCTL];
1021 
1022     if (e1000x_is_vlan_packet(buf, core->mac[VET]) &&
1023         e1000x_vlan_rx_filter_enabled(core->mac)) {
1024         uint16_t vid = lduw_be_p(buf + 14);
1025         uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1026                                  ((vid >> 5) & 0x7f));
1027         if ((vfta & (1 << (vid & 0x1f))) == 0) {
1028             trace_e1000e_rx_flt_vlan_mismatch(vid);
1029             return false;
1030         } else {
1031             trace_e1000e_rx_flt_vlan_match(vid);
1032         }
1033     }
1034 
1035     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1036     case ETH_PKT_UCAST:
1037         if (rctl & E1000_RCTL_UPE) {
1038             return true; /* promiscuous ucast */
1039         }
1040         break;
1041 
1042     case ETH_PKT_BCAST:
1043         if (rctl & E1000_RCTL_BAM) {
1044             return true; /* broadcast enabled */
1045         }
1046         break;
1047 
1048     case ETH_PKT_MCAST:
1049         if (rctl & E1000_RCTL_MPE) {
1050             return true; /* promiscuous mcast */
1051         }
1052         break;
1053 
1054     default:
1055         g_assert_not_reached();
1056     }
1057 
1058     return e1000x_rx_group_filter(core->mac, buf);
1059 }
1060 
1061 static inline void
1062 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1063 {
1064     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1065     *buff_addr = le64_to_cpu(d->buffer_addr);
1066 }
1067 
1068 static inline void
1069 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1070 {
1071     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1072     *buff_addr = le64_to_cpu(d->read.buffer_addr);
1073 }
1074 
1075 static inline void
1076 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1077                         hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1078 {
1079     int i;
1080     union e1000_rx_desc_packet_split *d =
1081         (union e1000_rx_desc_packet_split *) desc;
1082 
1083     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1084         (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1085     }
1086 
1087     trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1088                                  (*buff_addr)[2], (*buff_addr)[3]);
1089 }
1090 
1091 static inline void
1092 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1093                      hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1094 {
1095     if (e1000e_rx_use_legacy_descriptor(core)) {
1096         e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1097         (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1098     } else {
1099         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1100             e1000e_read_ps_rx_descr(core, desc, buff_addr);
1101         } else {
1102             e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1103             (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1104         }
1105     }
1106 }
1107 
1108 static void
1109 e1000e_verify_csum_in_sw(E1000ECore *core,
1110                          struct NetRxPkt *pkt,
1111                          uint32_t *status_flags,
1112                          bool istcp, bool isudp)
1113 {
1114     bool csum_valid;
1115     uint32_t csum_error;
1116 
1117     if (e1000e_rx_l3_cso_enabled(core)) {
1118         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1119             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1120         } else {
1121             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1122             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1123         }
1124     } else {
1125         trace_e1000e_rx_metadata_l3_cso_disabled();
1126     }
1127 
1128     if (!e1000e_rx_l4_cso_enabled(core)) {
1129         trace_e1000e_rx_metadata_l4_cso_disabled();
1130         return;
1131     }
1132 
1133     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1134         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1135         return;
1136     }
1137 
1138     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1139 
1140     if (istcp) {
1141         *status_flags |= E1000_RXD_STAT_TCPCS |
1142                          csum_error;
1143     } else if (isudp) {
1144         *status_flags |= E1000_RXD_STAT_TCPCS |
1145                          E1000_RXD_STAT_UDPCS |
1146                          csum_error;
1147     }
1148 }
1149 
1150 static inline bool
1151 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1152 {
1153     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1154         return false;
1155     }
1156 
1157     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1158         return !net_rx_pkt_has_tcp_data(rx_pkt);
1159     }
1160 
1161     return true;
1162 }
1163 
1164 static void
1165 e1000e_build_rx_metadata(E1000ECore *core,
1166                          struct NetRxPkt *pkt,
1167                          bool is_eop,
1168                          const E1000E_RSSInfo *rss_info,
1169                          uint32_t *rss, uint32_t *mrq,
1170                          uint32_t *status_flags,
1171                          uint16_t *ip_id,
1172                          uint16_t *vlan_tag)
1173 {
1174     struct virtio_net_hdr *vhdr;
1175     bool isip4, isip6, istcp, isudp;
1176     uint32_t pkt_type;
1177 
1178     *status_flags = E1000_RXD_STAT_DD;
1179 
1180     /* No additional metadata needed for non-EOP descriptors */
1181     if (!is_eop) {
1182         goto func_exit;
1183     }
1184 
1185     *status_flags |= E1000_RXD_STAT_EOP;
1186 
1187     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1188     trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1189 
1190     /* VLAN state */
1191     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1192         *status_flags |= E1000_RXD_STAT_VP;
1193         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1194         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1195     }
1196 
1197     /* Packet parsing results */
1198     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1199         if (rss_info->enabled) {
1200             *rss = cpu_to_le32(rss_info->hash);
1201             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1202             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1203         }
1204     } else if (isip4) {
1205             *status_flags |= E1000_RXD_STAT_IPIDV;
1206             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1207             trace_e1000e_rx_metadata_ip_id(*ip_id);
1208     }
1209 
1210     if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1211         *status_flags |= E1000_RXD_STAT_ACK;
1212         trace_e1000e_rx_metadata_ack();
1213     }
1214 
1215     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1216         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1217         pkt_type = E1000_RXD_PKT_MAC;
1218     } else if (istcp || isudp) {
1219         pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1220     } else if (isip4 || isip6) {
1221         pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1222     } else {
1223         pkt_type = E1000_RXD_PKT_MAC;
1224     }
1225 
1226     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1227     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1228 
1229     /* RX CSO information */
1230     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1231         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1232         goto func_exit;
1233     }
1234 
1235     if (!net_rx_pkt_has_virt_hdr(pkt)) {
1236         trace_e1000e_rx_metadata_no_virthdr();
1237         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1238         goto func_exit;
1239     }
1240 
1241     vhdr = net_rx_pkt_get_vhdr(pkt);
1242 
1243     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1244         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1245         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1246         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1247         goto func_exit;
1248     }
1249 
1250     if (e1000e_rx_l3_cso_enabled(core)) {
1251         *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1252     } else {
1253         trace_e1000e_rx_metadata_l3_cso_disabled();
1254     }
1255 
1256     if (e1000e_rx_l4_cso_enabled(core)) {
1257         if (istcp) {
1258             *status_flags |= E1000_RXD_STAT_TCPCS;
1259         } else if (isudp) {
1260             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1261         }
1262     } else {
1263         trace_e1000e_rx_metadata_l4_cso_disabled();
1264     }
1265 
1266     trace_e1000e_rx_metadata_status_flags(*status_flags);
1267 
1268 func_exit:
1269     *status_flags = cpu_to_le32(*status_flags);
1270 }
1271 
1272 static inline void
1273 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1274                            struct NetRxPkt *pkt,
1275                            const E1000E_RSSInfo *rss_info,
1276                            uint16_t length)
1277 {
1278     uint32_t status_flags, rss, mrq;
1279     uint16_t ip_id;
1280 
1281     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1282 
1283     assert(!rss_info->enabled);
1284 
1285     d->length = cpu_to_le16(length);
1286     d->csum = 0;
1287 
1288     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1289                              rss_info,
1290                              &rss, &mrq,
1291                              &status_flags, &ip_id,
1292                              &d->special);
1293     d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1294     d->status = (uint8_t) le32_to_cpu(status_flags);
1295 }
1296 
1297 static inline void
1298 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1299                           struct NetRxPkt *pkt,
1300                           const E1000E_RSSInfo *rss_info,
1301                           uint16_t length)
1302 {
1303     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1304 
1305     memset(&d->wb, 0, sizeof(d->wb));
1306 
1307     d->wb.upper.length = cpu_to_le16(length);
1308 
1309     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1310                              rss_info,
1311                              &d->wb.lower.hi_dword.rss,
1312                              &d->wb.lower.mrq,
1313                              &d->wb.upper.status_error,
1314                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1315                              &d->wb.upper.vlan);
1316 }
1317 
1318 static inline void
1319 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1320                          struct NetRxPkt *pkt,
1321                          const E1000E_RSSInfo *rss_info,
1322                          size_t ps_hdr_len,
1323                          uint16_t(*written)[MAX_PS_BUFFERS])
1324 {
1325     int i;
1326     union e1000_rx_desc_packet_split *d =
1327         (union e1000_rx_desc_packet_split *) desc;
1328 
1329     memset(&d->wb, 0, sizeof(d->wb));
1330 
1331     d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1332 
1333     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1334         d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1335     }
1336 
1337     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1338                              rss_info,
1339                              &d->wb.lower.hi_dword.rss,
1340                              &d->wb.lower.mrq,
1341                              &d->wb.middle.status_error,
1342                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1343                              &d->wb.middle.vlan);
1344 
1345     d->wb.upper.header_status =
1346         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1347 
1348     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1349                                   (*written)[2], (*written)[3]);
1350 }
1351 
1352 static inline void
1353 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1354 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1355     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1356 {
1357     if (e1000e_rx_use_legacy_descriptor(core)) {
1358         assert(ps_hdr_len == 0);
1359         e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1360     } else {
1361         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1362             e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1363                                       ps_hdr_len, written);
1364         } else {
1365             assert(ps_hdr_len == 0);
1366             e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1367                                        (*written)[0]);
1368         }
1369     }
1370 }
1371 
1372 static inline void
1373 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1374                              uint8_t *desc, dma_addr_t len)
1375 {
1376     PCIDevice *dev = core->owner;
1377 
1378     if (e1000e_rx_use_legacy_descriptor(core)) {
1379         struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1380         size_t offset = offsetof(struct e1000_rx_desc, status);
1381         uint8_t status = d->status;
1382 
1383         d->status &= ~E1000_RXD_STAT_DD;
1384         pci_dma_write(dev, addr, desc, len);
1385 
1386         if (status & E1000_RXD_STAT_DD) {
1387             d->status = status;
1388             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1389         }
1390     } else {
1391         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1392             union e1000_rx_desc_packet_split *d =
1393                 (union e1000_rx_desc_packet_split *) desc;
1394             size_t offset = offsetof(union e1000_rx_desc_packet_split,
1395                 wb.middle.status_error);
1396             uint32_t status = d->wb.middle.status_error;
1397 
1398             d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1399             pci_dma_write(dev, addr, desc, len);
1400 
1401             if (status & E1000_RXD_STAT_DD) {
1402                 d->wb.middle.status_error = status;
1403                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1404             }
1405         } else {
1406             union e1000_rx_desc_extended *d =
1407                 (union e1000_rx_desc_extended *) desc;
1408             size_t offset = offsetof(union e1000_rx_desc_extended,
1409                 wb.upper.status_error);
1410             uint32_t status = d->wb.upper.status_error;
1411 
1412             d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1413             pci_dma_write(dev, addr, desc, len);
1414 
1415             if (status & E1000_RXD_STAT_DD) {
1416                 d->wb.upper.status_error = status;
1417                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1418             }
1419         }
1420     }
1421 }
1422 
1423 typedef struct e1000e_ba_state_st {
1424     uint16_t written[MAX_PS_BUFFERS];
1425     uint8_t cur_idx;
1426 } e1000e_ba_state;
1427 
1428 static inline void
1429 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1430                                hwaddr (*ba)[MAX_PS_BUFFERS],
1431                                e1000e_ba_state *bastate,
1432                                const char *data,
1433                                dma_addr_t data_len)
1434 {
1435     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1436 
1437     pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1438     bastate->written[0] += data_len;
1439 
1440     bastate->cur_idx = 1;
1441 }
1442 
1443 static void
1444 e1000e_write_to_rx_buffers(E1000ECore *core,
1445                            hwaddr (*ba)[MAX_PS_BUFFERS],
1446                            e1000e_ba_state *bastate,
1447                            const char *data,
1448                            dma_addr_t data_len)
1449 {
1450     while (data_len > 0) {
1451         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1452         uint32_t cur_buf_bytes_left = cur_buf_len -
1453                                       bastate->written[bastate->cur_idx];
1454         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1455 
1456         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1457                                         (*ba)[bastate->cur_idx],
1458                                         bastate->written[bastate->cur_idx],
1459                                         data,
1460                                         bytes_to_write);
1461 
1462         pci_dma_write(core->owner,
1463             (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1464             data, bytes_to_write);
1465 
1466         bastate->written[bastate->cur_idx] += bytes_to_write;
1467         data += bytes_to_write;
1468         data_len -= bytes_to_write;
1469 
1470         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1471             bastate->cur_idx++;
1472         }
1473 
1474         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1475     }
1476 }
1477 
1478 static void
1479 e1000e_update_rx_stats(E1000ECore *core,
1480                        size_t data_size,
1481                        size_t data_fcs_size)
1482 {
1483     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1484 
1485     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1486     case ETH_PKT_BCAST:
1487         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1488         break;
1489 
1490     case ETH_PKT_MCAST:
1491         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1492         break;
1493 
1494     default:
1495         break;
1496     }
1497 }
1498 
1499 static inline bool
1500 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1501 {
1502     return e1000e_ring_free_descr_num(core, rxi) ==
1503            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1504 }
1505 
1506 static bool
1507 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1508 {
1509     bool isip4, isip6, isudp, istcp;
1510     bool fragment;
1511 
1512     if (!e1000e_rx_use_ps_descriptor(core)) {
1513         return false;
1514     }
1515 
1516     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1517 
1518     if (isip4) {
1519         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1520     } else if (isip6) {
1521         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1522     } else {
1523         return false;
1524     }
1525 
1526     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1527         return false;
1528     }
1529 
1530     if (!fragment && (isudp || istcp)) {
1531         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1532     } else {
1533         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1534     }
1535 
1536     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1537         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1538         return false;
1539     }
1540 
1541     return true;
1542 }
1543 
1544 static void
1545 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1546                              const E1000E_RxRing *rxr,
1547                              const E1000E_RSSInfo *rss_info)
1548 {
1549     PCIDevice *d = core->owner;
1550     dma_addr_t base;
1551     uint8_t desc[E1000_MAX_RX_DESC_LEN];
1552     size_t desc_size;
1553     size_t desc_offset = 0;
1554     size_t iov_ofs = 0;
1555 
1556     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1557     size_t size = net_rx_pkt_get_total_len(pkt);
1558     size_t total_size = size + e1000x_fcs_len(core->mac);
1559     const E1000E_RingInfo *rxi;
1560     size_t ps_hdr_len = 0;
1561     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1562     bool is_first = true;
1563 
1564     rxi = rxr->i;
1565 
1566     do {
1567         hwaddr ba[MAX_PS_BUFFERS];
1568         e1000e_ba_state bastate = { { 0 } };
1569         bool is_last = false;
1570 
1571         desc_size = total_size - desc_offset;
1572 
1573         if (desc_size > core->rx_desc_buf_size) {
1574             desc_size = core->rx_desc_buf_size;
1575         }
1576 
1577         if (e1000e_ring_empty(core, rxi)) {
1578             return;
1579         }
1580 
1581         base = e1000e_ring_head_descr(core, rxi);
1582 
1583         pci_dma_read(d, base, &desc, core->rx_desc_len);
1584 
1585         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1586 
1587         e1000e_read_rx_descr(core, desc, &ba);
1588 
1589         if (ba[0]) {
1590             if (desc_offset < size) {
1591                 static const uint32_t fcs_pad;
1592                 size_t iov_copy;
1593                 size_t copy_size = size - desc_offset;
1594                 if (copy_size > core->rx_desc_buf_size) {
1595                     copy_size = core->rx_desc_buf_size;
1596                 }
1597 
1598                 /* For PS mode copy the packet header first */
1599                 if (do_ps) {
1600                     if (is_first) {
1601                         size_t ps_hdr_copied = 0;
1602                         do {
1603                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1604                                            iov->iov_len - iov_ofs);
1605 
1606                             e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1607                                                       iov->iov_base, iov_copy);
1608 
1609                             copy_size -= iov_copy;
1610                             ps_hdr_copied += iov_copy;
1611 
1612                             iov_ofs += iov_copy;
1613                             if (iov_ofs == iov->iov_len) {
1614                                 iov++;
1615                                 iov_ofs = 0;
1616                             }
1617                         } while (ps_hdr_copied < ps_hdr_len);
1618 
1619                         is_first = false;
1620                     } else {
1621                         /* Leave buffer 0 of each descriptor except first */
1622                         /* empty as per spec 7.1.5.1                      */
1623                         e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1624                                                        NULL, 0);
1625                     }
1626                 }
1627 
1628                 /* Copy packet payload */
1629                 while (copy_size) {
1630                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1631 
1632                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1633                                             iov->iov_base + iov_ofs, iov_copy);
1634 
1635                     copy_size -= iov_copy;
1636                     iov_ofs += iov_copy;
1637                     if (iov_ofs == iov->iov_len) {
1638                         iov++;
1639                         iov_ofs = 0;
1640                     }
1641                 }
1642 
1643                 if (desc_offset + desc_size >= total_size) {
1644                     /* Simulate FCS checksum presence in the last descriptor */
1645                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1646                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1647                 }
1648             }
1649         } else { /* as per intel docs; skip descriptors with null buf addr */
1650             trace_e1000e_rx_null_descriptor();
1651         }
1652         desc_offset += desc_size;
1653         if (desc_offset >= total_size) {
1654             is_last = true;
1655         }
1656 
1657         e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1658                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1659         e1000e_pci_dma_write_rx_desc(core, base, desc, core->rx_desc_len);
1660 
1661         e1000e_ring_advance(core, rxi,
1662                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1663 
1664     } while (desc_offset < total_size);
1665 
1666     e1000e_update_rx_stats(core, size, total_size);
1667 }
1668 
1669 static inline void
1670 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1671 {
1672     if (net_rx_pkt_has_virt_hdr(pkt)) {
1673         struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1674 
1675         if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1676             net_rx_pkt_fix_l4_csum(pkt);
1677         }
1678     }
1679 }
1680 
1681 /* Min. octets in an ethernet frame sans FCS */
1682 #define MIN_BUF_SIZE 60
1683 
1684 ssize_t
1685 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1686 {
1687     static const int maximum_ethernet_hdr_len = (14 + 4);
1688 
1689     uint32_t n = 0;
1690     uint8_t min_buf[MIN_BUF_SIZE];
1691     struct iovec min_iov;
1692     uint8_t *filter_buf;
1693     size_t size, orig_size;
1694     size_t iov_ofs = 0;
1695     E1000E_RxRing rxr;
1696     E1000E_RSSInfo rss_info;
1697     size_t total_size;
1698     ssize_t retval;
1699     bool rdmts_hit;
1700 
1701     trace_e1000e_rx_receive_iov(iovcnt);
1702 
1703     if (!e1000x_hw_rx_enabled(core->mac)) {
1704         return -1;
1705     }
1706 
1707     /* Pull virtio header in */
1708     if (core->has_vnet) {
1709         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1710         iov_ofs = sizeof(struct virtio_net_hdr);
1711     }
1712 
1713     filter_buf = iov->iov_base + iov_ofs;
1714     orig_size = iov_size(iov, iovcnt);
1715     size = orig_size - iov_ofs;
1716 
1717     /* Pad to minimum Ethernet frame length */
1718     if (size < sizeof(min_buf)) {
1719         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1720         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1721         e1000x_inc_reg_if_not_full(core->mac, RUC);
1722         min_iov.iov_base = filter_buf = min_buf;
1723         min_iov.iov_len = size = sizeof(min_buf);
1724         iovcnt = 1;
1725         iov = &min_iov;
1726         iov_ofs = 0;
1727     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1728         /* This is very unlikely, but may happen. */
1729         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1730         filter_buf = min_buf;
1731     }
1732 
1733     /* Discard oversized packets if !LPE and !SBP. */
1734     if (e1000x_is_oversized(core->mac, size)) {
1735         return orig_size;
1736     }
1737 
1738     net_rx_pkt_set_packet_type(core->rx_pkt,
1739         get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1740 
1741     if (!e1000e_receive_filter(core, filter_buf, size)) {
1742         trace_e1000e_rx_flt_dropped();
1743         return orig_size;
1744     }
1745 
1746     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1747                                e1000x_vlan_enabled(core->mac), core->mac[VET]);
1748 
1749     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1750     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1751 
1752     trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1753 
1754     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1755         e1000x_fcs_len(core->mac);
1756 
1757     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1758         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1759 
1760         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1761 
1762         retval = orig_size;
1763 
1764         /* Perform small receive detection (RSRPD) */
1765         if (total_size < core->mac[RSRPD]) {
1766             n |= E1000_ICS_SRPD;
1767         }
1768 
1769         /* Perform ACK receive detection */
1770         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1771              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1772             n |= E1000_ICS_ACK;
1773         }
1774 
1775         /* Check if receive descriptor minimum threshold hit */
1776         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1777         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1778 
1779         trace_e1000e_rx_written_to_guest(n);
1780     } else {
1781         n |= E1000_ICS_RXO;
1782         retval = 0;
1783 
1784         trace_e1000e_rx_not_written_to_guest(n);
1785     }
1786 
1787     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1788         trace_e1000e_rx_interrupt_set(n);
1789         e1000e_set_interrupt_cause(core, n);
1790     } else {
1791         trace_e1000e_rx_interrupt_delayed(n);
1792     }
1793 
1794     return retval;
1795 }
1796 
1797 static inline bool
1798 e1000e_have_autoneg(E1000ECore *core)
1799 {
1800     return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1801 }
1802 
1803 static void e1000e_update_flowctl_status(E1000ECore *core)
1804 {
1805     if (e1000e_have_autoneg(core) &&
1806         core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1807         trace_e1000e_link_autoneg_flowctl(true);
1808         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1809     } else {
1810         trace_e1000e_link_autoneg_flowctl(false);
1811     }
1812 }
1813 
1814 static inline void
1815 e1000e_link_down(E1000ECore *core)
1816 {
1817     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1818     e1000e_update_flowctl_status(core);
1819 }
1820 
1821 static inline void
1822 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1823 {
1824     /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1825     core->phy[0][PHY_CTRL] = val & ~(0x3f |
1826                                      MII_CR_RESET |
1827                                      MII_CR_RESTART_AUTO_NEG);
1828 
1829     if ((val & MII_CR_RESTART_AUTO_NEG) &&
1830         e1000e_have_autoneg(core)) {
1831         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1832     }
1833 }
1834 
1835 static void
1836 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1837 {
1838     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1839 
1840     if (val & BIT(10)) {
1841         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1842     }
1843 }
1844 
1845 static void
1846 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1847 {
1848     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1849 }
1850 
1851 void
1852 e1000e_core_set_link_status(E1000ECore *core)
1853 {
1854     NetClientState *nc = qemu_get_queue(core->owner_nic);
1855     uint32_t old_status = core->mac[STATUS];
1856 
1857     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1858 
1859     if (nc->link_down) {
1860         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1861     } else {
1862         if (e1000e_have_autoneg(core) &&
1863             !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1864             e1000x_restart_autoneg(core->mac, core->phy[0],
1865                                    core->autoneg_timer);
1866         } else {
1867             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1868             e1000e_start_recv(core);
1869         }
1870     }
1871 
1872     if (core->mac[STATUS] != old_status) {
1873         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1874     }
1875 }
1876 
1877 static void
1878 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1879 {
1880     trace_e1000e_core_ctrl_write(index, val);
1881 
1882     /* RST is self clearing */
1883     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1884     core->mac[CTRL_DUP] = core->mac[CTRL];
1885 
1886     trace_e1000e_link_set_params(
1887         !!(val & E1000_CTRL_ASDE),
1888         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1889         !!(val & E1000_CTRL_FRCSPD),
1890         !!(val & E1000_CTRL_FRCDPX),
1891         !!(val & E1000_CTRL_RFCE),
1892         !!(val & E1000_CTRL_TFCE));
1893 
1894     if (val & E1000_CTRL_RST) {
1895         trace_e1000e_core_ctrl_sw_reset();
1896         e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1897     }
1898 
1899     if (val & E1000_CTRL_PHY_RST) {
1900         trace_e1000e_core_ctrl_phy_reset();
1901         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1902     }
1903 }
1904 
1905 static void
1906 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1907 {
1908     trace_e1000e_rx_set_rfctl(val);
1909 
1910     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1911         trace_e1000e_wrn_iscsi_filtering_not_supported();
1912     }
1913 
1914     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1915         trace_e1000e_wrn_nfsw_filtering_not_supported();
1916     }
1917 
1918     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1919         trace_e1000e_wrn_nfsr_filtering_not_supported();
1920     }
1921 
1922     core->mac[RFCTL] = val;
1923 }
1924 
1925 static void
1926 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1927 {
1928     int i;
1929     core->rx_desc_buf_size = 0;
1930 
1931     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1932         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1933     }
1934 }
1935 
1936 static void
1937 e1000e_parse_rxbufsize(E1000ECore *core)
1938 {
1939     uint32_t rctl = core->mac[RCTL];
1940 
1941     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1942 
1943     if (rctl & E1000_RCTL_DTYP_MASK) {
1944         uint32_t bsize;
1945 
1946         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1947         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1948 
1949         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1950         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1951 
1952         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1953         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1954 
1955         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1956         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1957     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1958         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1959         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1960     } else {
1961         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1962     }
1963 
1964     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1965                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1966 
1967     e1000e_calc_per_desc_buf_size(core);
1968 }
1969 
1970 static void
1971 e1000e_calc_rxdesclen(E1000ECore *core)
1972 {
1973     if (e1000e_rx_use_legacy_descriptor(core)) {
1974         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1975     } else {
1976         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1977             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1978         } else {
1979             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1980         }
1981     }
1982     trace_e1000e_rx_desc_len(core->rx_desc_len);
1983 }
1984 
1985 static void
1986 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1987 {
1988     core->mac[RCTL] = val;
1989     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1990 
1991     if (val & E1000_RCTL_EN) {
1992         e1000e_parse_rxbufsize(core);
1993         e1000e_calc_rxdesclen(core);
1994         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1995                                 E1000_RING_DESC_LEN_SHIFT;
1996 
1997         e1000e_start_recv(core);
1998     }
1999 }
2000 
2001 static
2002 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
2003 (E1000ECore *, int, uint16_t) = {
2004     [0] = {
2005         [PHY_CTRL]     = e1000e_set_phy_ctrl,
2006         [PHY_PAGE]     = e1000e_set_phy_page,
2007         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
2008     }
2009 };
2010 
2011 static inline void
2012 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
2013 {
2014     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
2015     core->mac[IMS] &= ~bits;
2016 }
2017 
2018 static inline bool
2019 e1000e_postpone_interrupt(bool *interrupt_pending,
2020                            E1000IntrDelayTimer *timer)
2021 {
2022     if (timer->running) {
2023         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
2024 
2025         *interrupt_pending = true;
2026         return true;
2027     }
2028 
2029     if (timer->core->mac[timer->delay_reg] != 0) {
2030         e1000e_intrmgr_rearm_timer(timer);
2031     }
2032 
2033     return false;
2034 }
2035 
2036 static inline bool
2037 e1000e_itr_should_postpone(E1000ECore *core)
2038 {
2039     return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
2040 }
2041 
2042 static inline bool
2043 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
2044 {
2045     return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
2046                                      &core->eitr[idx]);
2047 }
2048 
2049 static void
2050 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2051 {
2052     uint32_t effective_eiac;
2053 
2054     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2055         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2056         if (vec < E1000E_MSIX_VEC_NUM) {
2057             if (!e1000e_eitr_should_postpone(core, vec)) {
2058                 trace_e1000e_irq_msix_notify_vec(vec);
2059                 msix_notify(core->owner, vec);
2060             }
2061         } else {
2062             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2063         }
2064     } else {
2065         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2066     }
2067 
2068     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2069         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2070         core->mac[IAM] &= ~cause;
2071     }
2072 
2073     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2074 
2075     effective_eiac = core->mac[EIAC] & cause;
2076 
2077     core->mac[ICR] &= ~effective_eiac;
2078     core->msi_causes_pending &= ~effective_eiac;
2079 
2080     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2081         core->mac[IMS] &= ~effective_eiac;
2082     }
2083 }
2084 
2085 static void
2086 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2087 {
2088     if (causes & E1000_ICR_RXQ0) {
2089         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2090                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2091     }
2092 
2093     if (causes & E1000_ICR_RXQ1) {
2094         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2095                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2096     }
2097 
2098     if (causes & E1000_ICR_TXQ0) {
2099         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2100                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2101     }
2102 
2103     if (causes & E1000_ICR_TXQ1) {
2104         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2105                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2106     }
2107 
2108     if (causes & E1000_ICR_OTHER) {
2109         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2110                                E1000_IVAR_OTHER(core->mac[IVAR]));
2111     }
2112 }
2113 
2114 static void
2115 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2116 {
2117     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2118         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2119         if (vec < E1000E_MSIX_VEC_NUM) {
2120             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2121             msix_clr_pending(core->owner, vec);
2122         } else {
2123             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2124         }
2125     } else {
2126         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2127     }
2128 }
2129 
2130 static void
2131 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2132 {
2133     if (causes & E1000_ICR_RXQ0) {
2134         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2135                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2136     }
2137 
2138     if (causes & E1000_ICR_RXQ1) {
2139         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2140                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2141     }
2142 
2143     if (causes & E1000_ICR_TXQ0) {
2144         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2145                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2146     }
2147 
2148     if (causes & E1000_ICR_TXQ1) {
2149         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2150                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2151     }
2152 
2153     if (causes & E1000_ICR_OTHER) {
2154         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2155                               E1000_IVAR_OTHER(core->mac[IVAR]));
2156     }
2157 }
2158 
2159 static inline void
2160 e1000e_fix_icr_asserted(E1000ECore *core)
2161 {
2162     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2163     if (core->mac[ICR]) {
2164         core->mac[ICR] |= E1000_ICR_ASSERTED;
2165     }
2166 
2167     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2168 }
2169 
2170 static void
2171 e1000e_send_msi(E1000ECore *core, bool msix)
2172 {
2173     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2174 
2175     core->msi_causes_pending &= causes;
2176     causes ^= core->msi_causes_pending;
2177     if (causes == 0) {
2178         return;
2179     }
2180     core->msi_causes_pending |= causes;
2181 
2182     if (msix) {
2183         e1000e_msix_notify(core, causes);
2184     } else {
2185         if (!e1000e_itr_should_postpone(core)) {
2186             trace_e1000e_irq_msi_notify(causes);
2187             msi_notify(core->owner, 0);
2188         }
2189     }
2190 }
2191 
2192 static void
2193 e1000e_update_interrupt_state(E1000ECore *core)
2194 {
2195     bool interrupts_pending;
2196     bool is_msix = msix_enabled(core->owner);
2197 
2198     /* Set ICR[OTHER] for MSI-X */
2199     if (is_msix) {
2200         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2201             core->mac[ICR] |= E1000_ICR_OTHER;
2202             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2203         }
2204     }
2205 
2206     e1000e_fix_icr_asserted(core);
2207 
2208     /*
2209      * Make sure ICR and ICS registers have the same value.
2210      * The spec says that the ICS register is write-only.  However in practice,
2211      * on real hardware ICS is readable, and for reads it has the same value as
2212      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2213      *
2214      * The VxWorks PRO/1000 driver uses this behaviour.
2215      */
2216     core->mac[ICS] = core->mac[ICR];
2217 
2218     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2219     if (!interrupts_pending) {
2220         core->msi_causes_pending = 0;
2221     }
2222 
2223     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2224                                         core->mac[ICR], core->mac[IMS]);
2225 
2226     if (is_msix || msi_enabled(core->owner)) {
2227         if (interrupts_pending) {
2228             e1000e_send_msi(core, is_msix);
2229         }
2230     } else {
2231         if (interrupts_pending) {
2232             if (!e1000e_itr_should_postpone(core)) {
2233                 e1000e_raise_legacy_irq(core);
2234             }
2235         } else {
2236             e1000e_lower_legacy_irq(core);
2237         }
2238     }
2239 }
2240 
2241 static void
2242 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2243 {
2244     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2245 
2246     val |= e1000e_intmgr_collect_delayed_causes(core);
2247     core->mac[ICR] |= val;
2248 
2249     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2250 
2251     e1000e_update_interrupt_state(core);
2252 }
2253 
2254 static inline void
2255 e1000e_autoneg_timer(void *opaque)
2256 {
2257     E1000ECore *core = opaque;
2258     if (!qemu_get_queue(core->owner_nic)->link_down) {
2259         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2260         e1000e_start_recv(core);
2261 
2262         e1000e_update_flowctl_status(core);
2263         /* signal link status change to the guest */
2264         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2265     }
2266 }
2267 
2268 static inline uint16_t
2269 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2270 {
2271     uint16_t index = (addr & 0x1ffff) >> 2;
2272     return index + (mac_reg_access[index] & 0xfffe);
2273 }
2274 
2275 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2276     [0] = {
2277         [PHY_CTRL]          = PHY_ANYPAGE | PHY_RW,
2278         [PHY_STATUS]        = PHY_ANYPAGE | PHY_R,
2279         [PHY_ID1]           = PHY_ANYPAGE | PHY_R,
2280         [PHY_ID2]           = PHY_ANYPAGE | PHY_R,
2281         [PHY_AUTONEG_ADV]   = PHY_ANYPAGE | PHY_RW,
2282         [PHY_LP_ABILITY]    = PHY_ANYPAGE | PHY_R,
2283         [PHY_AUTONEG_EXP]   = PHY_ANYPAGE | PHY_R,
2284         [PHY_NEXT_PAGE_TX]  = PHY_ANYPAGE | PHY_RW,
2285         [PHY_LP_NEXT_PAGE]  = PHY_ANYPAGE | PHY_R,
2286         [PHY_1000T_CTRL]    = PHY_ANYPAGE | PHY_RW,
2287         [PHY_1000T_STATUS]  = PHY_ANYPAGE | PHY_R,
2288         [PHY_EXT_STATUS]    = PHY_ANYPAGE | PHY_R,
2289         [PHY_PAGE]          = PHY_ANYPAGE | PHY_RW,
2290 
2291         [PHY_COPPER_CTRL1]      = PHY_RW,
2292         [PHY_COPPER_STAT1]      = PHY_R,
2293         [PHY_COPPER_CTRL3]      = PHY_RW,
2294         [PHY_RX_ERR_CNTR]       = PHY_R,
2295         [PHY_OEM_BITS]          = PHY_RW,
2296         [PHY_BIAS_1]            = PHY_RW,
2297         [PHY_BIAS_2]            = PHY_RW,
2298         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2299         [PHY_COPPER_STAT2]      = PHY_R,
2300         [PHY_COPPER_CTRL2]      = PHY_RW
2301     },
2302     [2] = {
2303         [PHY_MAC_CTRL1]         = PHY_RW,
2304         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2305         [PHY_MAC_STAT]          = PHY_R,
2306         [PHY_MAC_CTRL2]         = PHY_RW
2307     },
2308     [3] = {
2309         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2310         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2311         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2312         [PHY_LED_45_CTRL]       = PHY_RW
2313     },
2314     [5] = {
2315         [PHY_1000T_SKEW]        = PHY_R,
2316         [PHY_1000T_SWAP]        = PHY_R
2317     },
2318     [6] = {
2319         [PHY_CRC_COUNTERS]      = PHY_R
2320     }
2321 };
2322 
2323 static bool
2324 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2325                          char cap, uint8_t *page)
2326 {
2327     *page =
2328         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2329                                                     : core->phy[0][PHY_PAGE];
2330 
2331     if (*page >= E1000E_PHY_PAGES) {
2332         return false;
2333     }
2334 
2335     return e1000e_phy_regcap[*page][addr] & cap;
2336 }
2337 
2338 static void
2339 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2340                      uint32_t addr, uint16_t data)
2341 {
2342     assert(page < E1000E_PHY_PAGES);
2343     assert(addr < E1000E_PHY_PAGE_SIZE);
2344 
2345     if (e1000e_phyreg_writeops[page][addr]) {
2346         e1000e_phyreg_writeops[page][addr](core, addr, data);
2347     } else {
2348         core->phy[page][addr] = data;
2349     }
2350 }
2351 
2352 static void
2353 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2354 {
2355     uint32_t data = val & E1000_MDIC_DATA_MASK;
2356     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2357     uint8_t page;
2358 
2359     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2360         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2361     } else if (val & E1000_MDIC_OP_READ) {
2362         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2363             trace_e1000e_core_mdic_read_unhandled(page, addr);
2364             val |= E1000_MDIC_ERROR;
2365         } else {
2366             val = (val ^ data) | core->phy[page][addr];
2367             trace_e1000e_core_mdic_read(page, addr, val);
2368         }
2369     } else if (val & E1000_MDIC_OP_WRITE) {
2370         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2371             trace_e1000e_core_mdic_write_unhandled(page, addr);
2372             val |= E1000_MDIC_ERROR;
2373         } else {
2374             trace_e1000e_core_mdic_write(page, addr, data);
2375             e1000e_phy_reg_write(core, page, addr, data);
2376         }
2377     }
2378     core->mac[MDIC] = val | E1000_MDIC_READY;
2379 
2380     if (val & E1000_MDIC_INT_EN) {
2381         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2382     }
2383 }
2384 
2385 static void
2386 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2387 {
2388     core->mac[index] = val & 0xffff;
2389     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2390     e1000e_start_recv(core);
2391 }
2392 
2393 static void
2394 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2395 {
2396     if ((val & E1000_STATUS_PHYRA) == 0) {
2397         core->mac[index] &= ~E1000_STATUS_PHYRA;
2398     }
2399 }
2400 
2401 static void
2402 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2403 {
2404     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2405                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2406 
2407     /* Zero self-clearing bits */
2408     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2409     core->mac[CTRL_EXT] = val;
2410 }
2411 
2412 static void
2413 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2414 {
2415     int i;
2416 
2417     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2418 
2419     if (!msix_enabled(core->owner)) {
2420         return;
2421     }
2422 
2423     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2424         if (core->mac[PBACLR] & BIT(i)) {
2425             msix_clr_pending(core->owner, i);
2426         }
2427     }
2428 }
2429 
2430 static void
2431 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2432 {
2433     core->mac[FCRTH] = val & 0xFFF8;
2434 }
2435 
2436 static void
2437 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2438 {
2439     core->mac[FCRTL] = val & 0x8000FFF8;
2440 }
2441 
2442 static inline void
2443 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2444 {
2445     core->mac[index] = val & 0xffff;
2446 }
2447 
2448 static void
2449 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2450 {
2451     core->mac[index] = val & 0xfff;
2452 }
2453 
2454 static void
2455 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2456 {
2457     core->mac[VET] = val & 0xffff;
2458     trace_e1000e_vlan_vet(core->mac[VET]);
2459 }
2460 
2461 static void
2462 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2463 {
2464     core->mac[index] = val & E1000_XDLEN_MASK;
2465 }
2466 
2467 static void
2468 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2469 {
2470     core->mac[index] = val & E1000_XDBAL_MASK;
2471 }
2472 
2473 static void
2474 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2475 {
2476     E1000E_TxRing txr;
2477     core->mac[index] = val;
2478 
2479     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2480         e1000e_tx_ring_init(core, &txr, 0);
2481         e1000e_start_xmit(core, &txr);
2482     }
2483 
2484     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2485         e1000e_tx_ring_init(core, &txr, 1);
2486         e1000e_start_xmit(core, &txr);
2487     }
2488 }
2489 
2490 static void
2491 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2492 {
2493     E1000E_TxRing txr;
2494     int qidx = e1000e_mq_queue_idx(TDT, index);
2495     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2496 
2497     core->mac[index] = val & 0xffff;
2498 
2499     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2500         e1000e_tx_ring_init(core, &txr, qidx);
2501         e1000e_start_xmit(core, &txr);
2502     }
2503 }
2504 
2505 static void
2506 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2507 {
2508     trace_e1000e_irq_write_ics(val);
2509     e1000e_set_interrupt_cause(core, val);
2510 }
2511 
2512 static void
2513 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2514 {
2515     uint32_t icr = 0;
2516     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2517         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2518         trace_e1000e_irq_icr_process_iame();
2519         e1000e_clear_ims_bits(core, core->mac[IAM]);
2520     }
2521 
2522     icr = core->mac[ICR] & ~val;
2523     /*
2524      * Windows driver expects that the "receive overrun" bit and other
2525      * ones to be cleared when the "Other" bit (#24) is cleared.
2526      */
2527     icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2528     trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2529     core->mac[ICR] = icr;
2530     e1000e_update_interrupt_state(core);
2531 }
2532 
2533 static void
2534 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2535 {
2536     trace_e1000e_irq_ims_clear_set_imc(val);
2537     e1000e_clear_ims_bits(core, val);
2538     e1000e_update_interrupt_state(core);
2539 }
2540 
2541 static void
2542 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2543 {
2544     static const uint32_t ims_ext_mask =
2545         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2546         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2547         E1000_IMS_OTHER;
2548 
2549     static const uint32_t ims_valid_mask =
2550         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2551         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2552         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2553         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2554         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2555         E1000_IMS_OTHER;
2556 
2557     uint32_t valid_val = val & ims_valid_mask;
2558 
2559     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2560     core->mac[IMS] |= valid_val;
2561 
2562     if ((valid_val & ims_ext_mask) &&
2563         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2564         msix_enabled(core->owner)) {
2565         e1000e_msix_clear(core, valid_val);
2566     }
2567 
2568     if ((valid_val == ims_valid_mask) &&
2569         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2570         trace_e1000e_irq_fire_all_timers(val);
2571         e1000e_intrmgr_fire_all_timers(core);
2572     }
2573 
2574     e1000e_update_interrupt_state(core);
2575 }
2576 
2577 static void
2578 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2579 {
2580     e1000e_set_16bit(core, index, val);
2581 
2582     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2583         trace_e1000e_irq_rdtr_fpd_running();
2584         e1000e_intrmgr_fire_delayed_interrupts(core);
2585     } else {
2586         trace_e1000e_irq_rdtr_fpd_not_running();
2587     }
2588 }
2589 
2590 static void
2591 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2592 {
2593     e1000e_set_16bit(core, index, val);
2594 
2595     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2596         trace_e1000e_irq_tidv_fpd_running();
2597         e1000e_intrmgr_fire_delayed_interrupts(core);
2598     } else {
2599         trace_e1000e_irq_tidv_fpd_not_running();
2600     }
2601 }
2602 
2603 static uint32_t
2604 e1000e_mac_readreg(E1000ECore *core, int index)
2605 {
2606     return core->mac[index];
2607 }
2608 
2609 static uint32_t
2610 e1000e_mac_ics_read(E1000ECore *core, int index)
2611 {
2612     trace_e1000e_irq_read_ics(core->mac[ICS]);
2613     return core->mac[ICS];
2614 }
2615 
2616 static uint32_t
2617 e1000e_mac_ims_read(E1000ECore *core, int index)
2618 {
2619     trace_e1000e_irq_read_ims(core->mac[IMS]);
2620     return core->mac[IMS];
2621 }
2622 
2623 #define E1000E_LOW_BITS_READ_FUNC(num)                      \
2624     static uint32_t                                         \
2625     e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2626     {                                                       \
2627         return core->mac[index] & (BIT(num) - 1);           \
2628     }                                                       \
2629 
2630 #define E1000E_LOW_BITS_READ(num)                           \
2631     e1000e_mac_low##num##_read
2632 
2633 E1000E_LOW_BITS_READ_FUNC(4);
2634 E1000E_LOW_BITS_READ_FUNC(6);
2635 E1000E_LOW_BITS_READ_FUNC(11);
2636 E1000E_LOW_BITS_READ_FUNC(13);
2637 E1000E_LOW_BITS_READ_FUNC(16);
2638 
2639 static uint32_t
2640 e1000e_mac_swsm_read(E1000ECore *core, int index)
2641 {
2642     uint32_t val = core->mac[SWSM];
2643     core->mac[SWSM] = val | 1;
2644     return val;
2645 }
2646 
2647 static uint32_t
2648 e1000e_mac_itr_read(E1000ECore *core, int index)
2649 {
2650     return core->itr_guest_value;
2651 }
2652 
2653 static uint32_t
2654 e1000e_mac_eitr_read(E1000ECore *core, int index)
2655 {
2656     return core->eitr_guest_value[index - EITR];
2657 }
2658 
2659 static uint32_t
2660 e1000e_mac_icr_read(E1000ECore *core, int index)
2661 {
2662     uint32_t ret = core->mac[ICR];
2663     trace_e1000e_irq_icr_read_entry(ret);
2664 
2665     if (core->mac[IMS] == 0) {
2666         trace_e1000e_irq_icr_clear_zero_ims();
2667         core->mac[ICR] = 0;
2668     }
2669 
2670     if (!msix_enabled(core->owner)) {
2671         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2672         core->mac[ICR] = 0;
2673     }
2674 
2675     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2676         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2677         trace_e1000e_irq_icr_clear_iame();
2678         core->mac[ICR] = 0;
2679         trace_e1000e_irq_icr_process_iame();
2680         e1000e_clear_ims_bits(core, core->mac[IAM]);
2681     }
2682 
2683     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2684     e1000e_update_interrupt_state(core);
2685     return ret;
2686 }
2687 
2688 static uint32_t
2689 e1000e_mac_read_clr4(E1000ECore *core, int index)
2690 {
2691     uint32_t ret = core->mac[index];
2692 
2693     core->mac[index] = 0;
2694     return ret;
2695 }
2696 
2697 static uint32_t
2698 e1000e_mac_read_clr8(E1000ECore *core, int index)
2699 {
2700     uint32_t ret = core->mac[index];
2701 
2702     core->mac[index] = 0;
2703     core->mac[index - 1] = 0;
2704     return ret;
2705 }
2706 
2707 static uint32_t
2708 e1000e_get_ctrl(E1000ECore *core, int index)
2709 {
2710     uint32_t val = core->mac[CTRL];
2711 
2712     trace_e1000e_link_read_params(
2713         !!(val & E1000_CTRL_ASDE),
2714         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2715         !!(val & E1000_CTRL_FRCSPD),
2716         !!(val & E1000_CTRL_FRCDPX),
2717         !!(val & E1000_CTRL_RFCE),
2718         !!(val & E1000_CTRL_TFCE));
2719 
2720     return val;
2721 }
2722 
2723 static uint32_t
2724 e1000e_get_status(E1000ECore *core, int index)
2725 {
2726     uint32_t res = core->mac[STATUS];
2727 
2728     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2729         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2730     }
2731 
2732     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2733         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2734     } else {
2735         res |= E1000_STATUS_FD;
2736     }
2737 
2738     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2739         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2740         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2741         case E1000_CTRL_SPD_10:
2742             res |= E1000_STATUS_SPEED_10;
2743             break;
2744         case E1000_CTRL_SPD_100:
2745             res |= E1000_STATUS_SPEED_100;
2746             break;
2747         case E1000_CTRL_SPD_1000:
2748         default:
2749             res |= E1000_STATUS_SPEED_1000;
2750             break;
2751         }
2752     } else {
2753         res |= E1000_STATUS_SPEED_1000;
2754     }
2755 
2756     trace_e1000e_link_status(
2757         !!(res & E1000_STATUS_LU),
2758         !!(res & E1000_STATUS_FD),
2759         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2760         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2761 
2762     return res;
2763 }
2764 
2765 static uint32_t
2766 e1000e_get_tarc(E1000ECore *core, int index)
2767 {
2768     return core->mac[index] & ((BIT(11) - 1) |
2769                                 BIT(27)      |
2770                                 BIT(28)      |
2771                                 BIT(29)      |
2772                                 BIT(30));
2773 }
2774 
2775 static void
2776 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2777 {
2778     core->mac[index] = val;
2779 }
2780 
2781 static void
2782 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2783 {
2784     uint32_t macaddr[2];
2785 
2786     core->mac[index] = val;
2787 
2788     macaddr[0] = cpu_to_le32(core->mac[RA]);
2789     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2790     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2791         (uint8_t *) macaddr);
2792 
2793     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2794 }
2795 
2796 static void
2797 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2798 {
2799     static const uint32_t ro_bits = E1000_EECD_PRES          |
2800                                     E1000_EECD_AUTO_RD       |
2801                                     E1000_EECD_SIZE_EX_MASK;
2802 
2803     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2804 }
2805 
2806 static void
2807 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2808 {
2809     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2810     uint32_t flags = 0;
2811     uint32_t data = 0;
2812 
2813     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2814         data = core->eeprom[addr];
2815         flags = E1000_EERW_DONE;
2816     }
2817 
2818     core->mac[EERD] = flags                           |
2819                       (addr << E1000_EERW_ADDR_SHIFT) |
2820                       (data << E1000_EERW_DATA_SHIFT);
2821 }
2822 
2823 static void
2824 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2825 {
2826     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2827     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2828     uint32_t flags = 0;
2829 
2830     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2831         core->eeprom[addr] = data;
2832         flags = E1000_EERW_DONE;
2833     }
2834 
2835     core->mac[EERD] = flags                           |
2836                       (addr << E1000_EERW_ADDR_SHIFT) |
2837                       (data << E1000_EERW_DATA_SHIFT);
2838 }
2839 
2840 static void
2841 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2842 {
2843     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2844 }
2845 
2846 static void
2847 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2848 {
2849     uint32_t interval = val & 0xffff;
2850 
2851     trace_e1000e_irq_itr_set(val);
2852 
2853     core->itr_guest_value = interval;
2854     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2855 }
2856 
2857 static void
2858 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2859 {
2860     uint32_t interval = val & 0xffff;
2861     uint32_t eitr_num = index - EITR;
2862 
2863     trace_e1000e_irq_eitr_set(eitr_num, val);
2864 
2865     core->eitr_guest_value[eitr_num] = interval;
2866     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2867 }
2868 
2869 static void
2870 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2871 {
2872     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2873 
2874         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2875             qemu_log_mask(LOG_GUEST_ERROR,
2876                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2877             return;
2878         }
2879 
2880         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2881             qemu_log_mask(LOG_GUEST_ERROR,
2882                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2883             return;
2884         }
2885     }
2886 
2887     core->mac[PSRCTL] = val;
2888 }
2889 
2890 static void
2891 e1000e_update_rx_offloads(E1000ECore *core)
2892 {
2893     int cso_state = e1000e_rx_l4_cso_enabled(core);
2894 
2895     trace_e1000e_rx_set_cso(cso_state);
2896 
2897     if (core->has_vnet) {
2898         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2899                          cso_state, 0, 0, 0, 0);
2900     }
2901 }
2902 
2903 static void
2904 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2905 {
2906     core->mac[RXCSUM] = val;
2907     e1000e_update_rx_offloads(core);
2908 }
2909 
2910 static void
2911 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2912 {
2913     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2914     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2915 }
2916 
2917 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2918 typedef uint32_t (*readops)(E1000ECore *, int);
2919 static const readops e1000e_macreg_readops[] = {
2920     e1000e_getreg(PBA),
2921     e1000e_getreg(WUFC),
2922     e1000e_getreg(MANC),
2923     e1000e_getreg(TOTL),
2924     e1000e_getreg(RDT0),
2925     e1000e_getreg(RDBAH0),
2926     e1000e_getreg(TDBAL1),
2927     e1000e_getreg(RDLEN0),
2928     e1000e_getreg(RDH1),
2929     e1000e_getreg(LATECOL),
2930     e1000e_getreg(SEQEC),
2931     e1000e_getreg(XONTXC),
2932     e1000e_getreg(WUS),
2933     e1000e_getreg(GORCL),
2934     e1000e_getreg(MGTPRC),
2935     e1000e_getreg(EERD),
2936     e1000e_getreg(EIAC),
2937     e1000e_getreg(PSRCTL),
2938     e1000e_getreg(MANC2H),
2939     e1000e_getreg(RXCSUM),
2940     e1000e_getreg(GSCL_3),
2941     e1000e_getreg(GSCN_2),
2942     e1000e_getreg(RSRPD),
2943     e1000e_getreg(RDBAL1),
2944     e1000e_getreg(FCAH),
2945     e1000e_getreg(FCRTH),
2946     e1000e_getreg(FLOP),
2947     e1000e_getreg(FLASHT),
2948     e1000e_getreg(RXSTMPH),
2949     e1000e_getreg(TXSTMPL),
2950     e1000e_getreg(TIMADJL),
2951     e1000e_getreg(TXDCTL),
2952     e1000e_getreg(RDH0),
2953     e1000e_getreg(TDT1),
2954     e1000e_getreg(TNCRS),
2955     e1000e_getreg(RJC),
2956     e1000e_getreg(IAM),
2957     e1000e_getreg(GSCL_2),
2958     e1000e_getreg(RDBAH1),
2959     e1000e_getreg(FLSWDATA),
2960     e1000e_getreg(RXSATRH),
2961     e1000e_getreg(TIPG),
2962     e1000e_getreg(FLMNGCTL),
2963     e1000e_getreg(FLMNGCNT),
2964     e1000e_getreg(TSYNCTXCTL),
2965     e1000e_getreg(EXTCNF_SIZE),
2966     e1000e_getreg(EXTCNF_CTRL),
2967     e1000e_getreg(EEMNGDATA),
2968     e1000e_getreg(CTRL_EXT),
2969     e1000e_getreg(SYSTIMH),
2970     e1000e_getreg(EEMNGCTL),
2971     e1000e_getreg(FLMNGDATA),
2972     e1000e_getreg(TSYNCRXCTL),
2973     e1000e_getreg(TDH),
2974     e1000e_getreg(LEDCTL),
2975     e1000e_getreg(TCTL),
2976     e1000e_getreg(TDBAL),
2977     e1000e_getreg(TDLEN),
2978     e1000e_getreg(TDH1),
2979     e1000e_getreg(RADV),
2980     e1000e_getreg(ECOL),
2981     e1000e_getreg(DC),
2982     e1000e_getreg(RLEC),
2983     e1000e_getreg(XOFFTXC),
2984     e1000e_getreg(RFC),
2985     e1000e_getreg(RNBC),
2986     e1000e_getreg(MGTPTC),
2987     e1000e_getreg(TIMINCA),
2988     e1000e_getreg(RXCFGL),
2989     e1000e_getreg(MFUTP01),
2990     e1000e_getreg(FACTPS),
2991     e1000e_getreg(GSCL_1),
2992     e1000e_getreg(GSCN_0),
2993     e1000e_getreg(GCR2),
2994     e1000e_getreg(RDT1),
2995     e1000e_getreg(PBACLR),
2996     e1000e_getreg(FCTTV),
2997     e1000e_getreg(EEWR),
2998     e1000e_getreg(FLSWCTL),
2999     e1000e_getreg(RXDCTL1),
3000     e1000e_getreg(RXSATRL),
3001     e1000e_getreg(SYSTIML),
3002     e1000e_getreg(RXUDP),
3003     e1000e_getreg(TORL),
3004     e1000e_getreg(TDLEN1),
3005     e1000e_getreg(MCC),
3006     e1000e_getreg(WUC),
3007     e1000e_getreg(EECD),
3008     e1000e_getreg(MFUTP23),
3009     e1000e_getreg(RAID),
3010     e1000e_getreg(FCRTV),
3011     e1000e_getreg(TXDCTL1),
3012     e1000e_getreg(RCTL),
3013     e1000e_getreg(TDT),
3014     e1000e_getreg(MDIC),
3015     e1000e_getreg(FCRUC),
3016     e1000e_getreg(VET),
3017     e1000e_getreg(RDBAL0),
3018     e1000e_getreg(TDBAH1),
3019     e1000e_getreg(RDTR),
3020     e1000e_getreg(SCC),
3021     e1000e_getreg(COLC),
3022     e1000e_getreg(CEXTERR),
3023     e1000e_getreg(XOFFRXC),
3024     e1000e_getreg(IPAV),
3025     e1000e_getreg(GOTCL),
3026     e1000e_getreg(MGTPDC),
3027     e1000e_getreg(GCR),
3028     e1000e_getreg(IVAR),
3029     e1000e_getreg(POEMB),
3030     e1000e_getreg(MFVAL),
3031     e1000e_getreg(FUNCTAG),
3032     e1000e_getreg(GSCL_4),
3033     e1000e_getreg(GSCN_3),
3034     e1000e_getreg(MRQC),
3035     e1000e_getreg(RDLEN1),
3036     e1000e_getreg(FCT),
3037     e1000e_getreg(FLA),
3038     e1000e_getreg(FLOL),
3039     e1000e_getreg(RXDCTL),
3040     e1000e_getreg(RXSTMPL),
3041     e1000e_getreg(TXSTMPH),
3042     e1000e_getreg(TIMADJH),
3043     e1000e_getreg(FCRTL),
3044     e1000e_getreg(TDBAH),
3045     e1000e_getreg(TADV),
3046     e1000e_getreg(XONRXC),
3047     e1000e_getreg(TSCTFC),
3048     e1000e_getreg(RFCTL),
3049     e1000e_getreg(GSCN_1),
3050     e1000e_getreg(FCAL),
3051     e1000e_getreg(FLSWCNT),
3052 
3053     [TOTH]    = e1000e_mac_read_clr8,
3054     [GOTCH]   = e1000e_mac_read_clr8,
3055     [PRC64]   = e1000e_mac_read_clr4,
3056     [PRC255]  = e1000e_mac_read_clr4,
3057     [PRC1023] = e1000e_mac_read_clr4,
3058     [PTC64]   = e1000e_mac_read_clr4,
3059     [PTC255]  = e1000e_mac_read_clr4,
3060     [PTC1023] = e1000e_mac_read_clr4,
3061     [GPRC]    = e1000e_mac_read_clr4,
3062     [TPT]     = e1000e_mac_read_clr4,
3063     [RUC]     = e1000e_mac_read_clr4,
3064     [BPRC]    = e1000e_mac_read_clr4,
3065     [MPTC]    = e1000e_mac_read_clr4,
3066     [IAC]     = e1000e_mac_read_clr4,
3067     [ICR]     = e1000e_mac_icr_read,
3068     [RDFH]    = E1000E_LOW_BITS_READ(13),
3069     [RDFHS]   = E1000E_LOW_BITS_READ(13),
3070     [RDFPC]   = E1000E_LOW_BITS_READ(13),
3071     [TDFH]    = E1000E_LOW_BITS_READ(13),
3072     [TDFHS]   = E1000E_LOW_BITS_READ(13),
3073     [STATUS]  = e1000e_get_status,
3074     [TARC0]   = e1000e_get_tarc,
3075     [PBS]     = E1000E_LOW_BITS_READ(6),
3076     [ICS]     = e1000e_mac_ics_read,
3077     [AIT]     = E1000E_LOW_BITS_READ(16),
3078     [TORH]    = e1000e_mac_read_clr8,
3079     [GORCH]   = e1000e_mac_read_clr8,
3080     [PRC127]  = e1000e_mac_read_clr4,
3081     [PRC511]  = e1000e_mac_read_clr4,
3082     [PRC1522] = e1000e_mac_read_clr4,
3083     [PTC127]  = e1000e_mac_read_clr4,
3084     [PTC511]  = e1000e_mac_read_clr4,
3085     [PTC1522] = e1000e_mac_read_clr4,
3086     [GPTC]    = e1000e_mac_read_clr4,
3087     [TPR]     = e1000e_mac_read_clr4,
3088     [ROC]     = e1000e_mac_read_clr4,
3089     [MPRC]    = e1000e_mac_read_clr4,
3090     [BPTC]    = e1000e_mac_read_clr4,
3091     [TSCTC]   = e1000e_mac_read_clr4,
3092     [ITR]     = e1000e_mac_itr_read,
3093     [RDFT]    = E1000E_LOW_BITS_READ(13),
3094     [RDFTS]   = E1000E_LOW_BITS_READ(13),
3095     [TDFPC]   = E1000E_LOW_BITS_READ(13),
3096     [TDFT]    = E1000E_LOW_BITS_READ(13),
3097     [TDFTS]   = E1000E_LOW_BITS_READ(13),
3098     [CTRL]    = e1000e_get_ctrl,
3099     [TARC1]   = e1000e_get_tarc,
3100     [SWSM]    = e1000e_mac_swsm_read,
3101     [IMS]     = e1000e_mac_ims_read,
3102 
3103     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3104     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3105     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3106     [RA ... RA + 31]       = e1000e_mac_readreg,
3107     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3108     [MTA ... MTA + 127]    = e1000e_mac_readreg,
3109     [VFTA ... VFTA + 127]  = e1000e_mac_readreg,
3110     [FFMT ... FFMT + 254]  = E1000E_LOW_BITS_READ(4),
3111     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3112     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3113     [FFLT ... FFLT + 10]   = E1000E_LOW_BITS_READ(11),
3114     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3115     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3116     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3117     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3118     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3119     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3120 };
3121 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3122 
3123 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3124 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3125 static const writeops e1000e_macreg_writeops[] = {
3126     e1000e_putreg(PBA),
3127     e1000e_putreg(SWSM),
3128     e1000e_putreg(WUFC),
3129     e1000e_putreg(RDBAH1),
3130     e1000e_putreg(TDBAH),
3131     e1000e_putreg(TXDCTL),
3132     e1000e_putreg(RDBAH0),
3133     e1000e_putreg(LEDCTL),
3134     e1000e_putreg(FCAL),
3135     e1000e_putreg(FCRUC),
3136     e1000e_putreg(AIT),
3137     e1000e_putreg(TDFH),
3138     e1000e_putreg(TDFT),
3139     e1000e_putreg(TDFHS),
3140     e1000e_putreg(TDFTS),
3141     e1000e_putreg(TDFPC),
3142     e1000e_putreg(WUC),
3143     e1000e_putreg(WUS),
3144     e1000e_putreg(RDFH),
3145     e1000e_putreg(RDFT),
3146     e1000e_putreg(RDFHS),
3147     e1000e_putreg(RDFTS),
3148     e1000e_putreg(RDFPC),
3149     e1000e_putreg(IPAV),
3150     e1000e_putreg(TDBAH1),
3151     e1000e_putreg(TIMINCA),
3152     e1000e_putreg(IAM),
3153     e1000e_putreg(EIAC),
3154     e1000e_putreg(IVAR),
3155     e1000e_putreg(TARC0),
3156     e1000e_putreg(TARC1),
3157     e1000e_putreg(FLSWDATA),
3158     e1000e_putreg(POEMB),
3159     e1000e_putreg(PBS),
3160     e1000e_putreg(MFUTP01),
3161     e1000e_putreg(MFUTP23),
3162     e1000e_putreg(MANC),
3163     e1000e_putreg(MANC2H),
3164     e1000e_putreg(MFVAL),
3165     e1000e_putreg(EXTCNF_CTRL),
3166     e1000e_putreg(FACTPS),
3167     e1000e_putreg(FUNCTAG),
3168     e1000e_putreg(GSCL_1),
3169     e1000e_putreg(GSCL_2),
3170     e1000e_putreg(GSCL_3),
3171     e1000e_putreg(GSCL_4),
3172     e1000e_putreg(GSCN_0),
3173     e1000e_putreg(GSCN_1),
3174     e1000e_putreg(GSCN_2),
3175     e1000e_putreg(GSCN_3),
3176     e1000e_putreg(GCR2),
3177     e1000e_putreg(MRQC),
3178     e1000e_putreg(FLOP),
3179     e1000e_putreg(FLOL),
3180     e1000e_putreg(FLSWCTL),
3181     e1000e_putreg(FLSWCNT),
3182     e1000e_putreg(FLA),
3183     e1000e_putreg(RXDCTL1),
3184     e1000e_putreg(TXDCTL1),
3185     e1000e_putreg(TIPG),
3186     e1000e_putreg(RXSTMPH),
3187     e1000e_putreg(RXSTMPL),
3188     e1000e_putreg(RXSATRL),
3189     e1000e_putreg(RXSATRH),
3190     e1000e_putreg(TXSTMPL),
3191     e1000e_putreg(TXSTMPH),
3192     e1000e_putreg(SYSTIML),
3193     e1000e_putreg(SYSTIMH),
3194     e1000e_putreg(TIMADJL),
3195     e1000e_putreg(TIMADJH),
3196     e1000e_putreg(RXUDP),
3197     e1000e_putreg(RXCFGL),
3198     e1000e_putreg(TSYNCRXCTL),
3199     e1000e_putreg(TSYNCTXCTL),
3200     e1000e_putreg(EXTCNF_SIZE),
3201     e1000e_putreg(EEMNGCTL),
3202     e1000e_putreg(RA),
3203 
3204     [TDH1]     = e1000e_set_16bit,
3205     [TDT1]     = e1000e_set_tdt,
3206     [TCTL]     = e1000e_set_tctl,
3207     [TDT]      = e1000e_set_tdt,
3208     [MDIC]     = e1000e_set_mdic,
3209     [ICS]      = e1000e_set_ics,
3210     [TDH]      = e1000e_set_16bit,
3211     [RDH0]     = e1000e_set_16bit,
3212     [RDT0]     = e1000e_set_rdt,
3213     [IMC]      = e1000e_set_imc,
3214     [IMS]      = e1000e_set_ims,
3215     [ICR]      = e1000e_set_icr,
3216     [EECD]     = e1000e_set_eecd,
3217     [RCTL]     = e1000e_set_rx_control,
3218     [CTRL]     = e1000e_set_ctrl,
3219     [RDTR]     = e1000e_set_rdtr,
3220     [RADV]     = e1000e_set_16bit,
3221     [TADV]     = e1000e_set_16bit,
3222     [ITR]      = e1000e_set_itr,
3223     [EERD]     = e1000e_set_eerd,
3224     [GCR]      = e1000e_set_gcr,
3225     [PSRCTL]   = e1000e_set_psrctl,
3226     [RXCSUM]   = e1000e_set_rxcsum,
3227     [RAID]     = e1000e_set_16bit,
3228     [RSRPD]    = e1000e_set_12bit,
3229     [TIDV]     = e1000e_set_tidv,
3230     [TDLEN1]   = e1000e_set_dlen,
3231     [TDLEN]    = e1000e_set_dlen,
3232     [RDLEN0]   = e1000e_set_dlen,
3233     [RDLEN1]   = e1000e_set_dlen,
3234     [TDBAL]    = e1000e_set_dbal,
3235     [TDBAL1]   = e1000e_set_dbal,
3236     [RDBAL0]   = e1000e_set_dbal,
3237     [RDBAL1]   = e1000e_set_dbal,
3238     [RDH1]     = e1000e_set_16bit,
3239     [RDT1]     = e1000e_set_rdt,
3240     [STATUS]   = e1000e_set_status,
3241     [PBACLR]   = e1000e_set_pbaclr,
3242     [CTRL_EXT] = e1000e_set_ctrlext,
3243     [FCAH]     = e1000e_set_16bit,
3244     [FCT]      = e1000e_set_16bit,
3245     [FCTTV]    = e1000e_set_16bit,
3246     [FCRTV]    = e1000e_set_16bit,
3247     [FCRTH]    = e1000e_set_fcrth,
3248     [FCRTL]    = e1000e_set_fcrtl,
3249     [VET]      = e1000e_set_vet,
3250     [RXDCTL]   = e1000e_set_rxdctl,
3251     [FLASHT]   = e1000e_set_16bit,
3252     [EEWR]     = e1000e_set_eewr,
3253     [CTRL_DUP] = e1000e_set_ctrl,
3254     [RFCTL]    = e1000e_set_rfctl,
3255     [RA + 1]   = e1000e_mac_setmacaddr,
3256 
3257     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3258     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3259     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3260     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3261     [MTA ... MTA + 127]      = e1000e_mac_writereg,
3262     [VFTA ... VFTA + 127]    = e1000e_mac_writereg,
3263     [FFMT ... FFMT + 254]    = e1000e_mac_writereg,
3264     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3265     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3266     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3267     [FFLT ... FFLT + 10]     = e1000e_mac_writereg,
3268     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3269     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3270     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3271     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3272     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3273 };
3274 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3275 
3276 enum { MAC_ACCESS_PARTIAL = 1 };
3277 
3278 /*
3279  * The array below combines alias offsets of the index values for the
3280  * MAC registers that have aliases, with the indication of not fully
3281  * implemented registers (lowest bit). This combination is possible
3282  * because all of the offsets are even.
3283  */
3284 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3285     /* Alias index offsets */
3286     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3287     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3288     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3289     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3290     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3291     [RA_A ... RA_A + 31]      = 0x14f0,
3292     [VFTA_A ... VFTA_A + 127] = 0x1400,
3293     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3294     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3295     /* Access options */
3296     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3297     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3298     [RDFPC] = MAC_ACCESS_PARTIAL,
3299     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3300     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3301     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3302     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3303     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3304     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3305     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3306     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3307     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3308     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3309 };
3310 
3311 void
3312 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3313 {
3314     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3315 
3316     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3317         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3318             trace_e1000e_wrn_regs_write_trivial(index << 2);
3319         }
3320         trace_e1000e_core_write(index << 2, size, val);
3321         e1000e_macreg_writeops[index](core, index, val);
3322     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3323         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3324     } else {
3325         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3326     }
3327 }
3328 
3329 uint64_t
3330 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3331 {
3332     uint64_t val;
3333     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3334 
3335     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3336         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3337             trace_e1000e_wrn_regs_read_trivial(index << 2);
3338         }
3339         val = e1000e_macreg_readops[index](core, index);
3340         trace_e1000e_core_read(index << 2, size, val);
3341         return val;
3342     } else {
3343         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3344     }
3345     return 0;
3346 }
3347 
3348 static inline void
3349 e1000e_autoneg_pause(E1000ECore *core)
3350 {
3351     timer_del(core->autoneg_timer);
3352 }
3353 
3354 static void
3355 e1000e_autoneg_resume(E1000ECore *core)
3356 {
3357     if (e1000e_have_autoneg(core) &&
3358         !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3359         qemu_get_queue(core->owner_nic)->link_down = false;
3360         timer_mod(core->autoneg_timer,
3361                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3362     }
3363 }
3364 
3365 static void
3366 e1000e_vm_state_change(void *opaque, bool running, RunState state)
3367 {
3368     E1000ECore *core = opaque;
3369 
3370     if (running) {
3371         trace_e1000e_vm_state_running();
3372         e1000e_intrmgr_resume(core);
3373         e1000e_autoneg_resume(core);
3374     } else {
3375         trace_e1000e_vm_state_stopped();
3376         e1000e_autoneg_pause(core);
3377         e1000e_intrmgr_pause(core);
3378     }
3379 }
3380 
3381 void
3382 e1000e_core_pci_realize(E1000ECore     *core,
3383                         const uint16_t *eeprom_templ,
3384                         uint32_t        eeprom_size,
3385                         const uint8_t  *macaddr)
3386 {
3387     int i;
3388 
3389     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3390                                        e1000e_autoneg_timer, core);
3391     e1000e_intrmgr_pci_realize(core);
3392 
3393     core->vmstate =
3394         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3395 
3396     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3397         net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3398                         E1000E_MAX_TX_FRAGS, core->has_vnet);
3399     }
3400 
3401     net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3402 
3403     e1000x_core_prepare_eeprom(core->eeprom,
3404                                eeprom_templ,
3405                                eeprom_size,
3406                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3407                                macaddr);
3408     e1000e_update_rx_offloads(core);
3409 }
3410 
3411 void
3412 e1000e_core_pci_uninit(E1000ECore *core)
3413 {
3414     int i;
3415 
3416     timer_free(core->autoneg_timer);
3417 
3418     e1000e_intrmgr_pci_unint(core);
3419 
3420     qemu_del_vm_change_state_handler(core->vmstate);
3421 
3422     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3423         net_tx_pkt_reset(core->tx[i].tx_pkt);
3424         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3425     }
3426 
3427     net_rx_pkt_uninit(core->rx_pkt);
3428 }
3429 
3430 static const uint16_t
3431 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3432     [0] = {
3433         [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB  |
3434                        MII_CR_FULL_DUPLEX       |
3435                        MII_CR_AUTO_NEG_EN,
3436 
3437         [PHY_STATUS] = MII_SR_EXTENDED_CAPS     |
3438                        MII_SR_LINK_STATUS       |
3439                        MII_SR_AUTONEG_CAPS      |
3440                        MII_SR_PREAMBLE_SUPPRESS |
3441                        MII_SR_EXTENDED_STATUS   |
3442                        MII_SR_10T_HD_CAPS       |
3443                        MII_SR_10T_FD_CAPS       |
3444                        MII_SR_100X_HD_CAPS      |
3445                        MII_SR_100X_FD_CAPS,
3446 
3447         [PHY_ID1]               = 0x141,
3448         [PHY_ID2]               = E1000_PHY_ID2_82574x,
3449         [PHY_AUTONEG_ADV]       = 0xde1,
3450         [PHY_LP_ABILITY]        = 0x7e0,
3451         [PHY_AUTONEG_EXP]       = BIT(2),
3452         [PHY_NEXT_PAGE_TX]      = BIT(0) | BIT(13),
3453         [PHY_1000T_CTRL]        = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3454         [PHY_1000T_STATUS]      = 0x3c00,
3455         [PHY_EXT_STATUS]        = BIT(12) | BIT(13),
3456 
3457         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3458                                   BIT(12) | BIT(13),
3459         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3460     },
3461     [2] = {
3462         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3463         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3464     },
3465     [3] = {
3466         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3467     }
3468 };
3469 
3470 static const uint32_t e1000e_mac_reg_init[] = {
3471     [PBA]           =     0x00140014,
3472     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3473     [EXTCNF_CTRL]   = BIT(3),
3474     [EEMNGCTL]      = BIT(31),
3475     [FLASHT]        = 0x2,
3476     [FLSWCTL]       = BIT(30) | BIT(31),
3477     [FLOL]          = BIT(0),
3478     [RXDCTL]        = BIT(16),
3479     [RXDCTL1]       = BIT(16),
3480     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3481     [RXCFGL]        = 0x88F7,
3482     [RXUDP]         = 0x319,
3483     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3484                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3485                       E1000_CTRL_ADVD3WUC,
3486     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3487     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3488                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3489                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3490     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3491     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3492     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3493     [EERD]          = E1000_EERW_DONE,
3494     [EEWR]          = E1000_EERW_DONE,
3495     [GCR]           = E1000_L0S_ADJUST |
3496                       E1000_L1_ENTRY_LATENCY_MSB |
3497                       E1000_L1_ENTRY_LATENCY_LSB,
3498     [TDFH]          = 0x600,
3499     [TDFT]          = 0x600,
3500     [TDFHS]         = 0x600,
3501     [TDFTS]         = 0x600,
3502     [POEMB]         = 0x30D,
3503     [PBS]           = 0x028,
3504     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3505     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3506     [SWSM]          = 1,
3507     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3508     [ITR]           = E1000E_MIN_XITR,
3509     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3510 };
3511 
3512 void
3513 e1000e_core_reset(E1000ECore *core)
3514 {
3515     int i;
3516 
3517     timer_del(core->autoneg_timer);
3518 
3519     e1000e_intrmgr_reset(core);
3520 
3521     memset(core->phy, 0, sizeof core->phy);
3522     memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3523     memset(core->mac, 0, sizeof core->mac);
3524     memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3525 
3526     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3527 
3528     if (qemu_get_queue(core->owner_nic)->link_down) {
3529         e1000e_link_down(core);
3530     }
3531 
3532     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3533 
3534     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3535         net_tx_pkt_reset(core->tx[i].tx_pkt);
3536         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3537         core->tx[i].skip_cp = false;
3538     }
3539 }
3540 
3541 void e1000e_core_pre_save(E1000ECore *core)
3542 {
3543     int i;
3544     NetClientState *nc = qemu_get_queue(core->owner_nic);
3545 
3546     /*
3547      * If link is down and auto-negotiation is supported and ongoing,
3548      * complete auto-negotiation immediately. This allows us to look
3549      * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3550      */
3551     if (nc->link_down && e1000e_have_autoneg(core)) {
3552         core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3553         e1000e_update_flowctl_status(core);
3554     }
3555 
3556     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3557         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3558             core->tx[i].skip_cp = true;
3559         }
3560     }
3561 }
3562 
3563 int
3564 e1000e_core_post_load(E1000ECore *core)
3565 {
3566     NetClientState *nc = qemu_get_queue(core->owner_nic);
3567 
3568     /*
3569      * nc.link_down can't be migrated, so infer link_down according
3570      * to link status bit in core.mac[STATUS].
3571      */
3572     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3573 
3574     return 0;
3575 }
3576