xref: /openbmc/qemu/hw/net/e1000e_core.c (revision 6016b7b46edb714a53a31536b30ead9c3aafaef7)
1 /*
2 * Core code for QEMU e1000e emulation
3 *
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6 *
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
9 *
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
14 *
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2.1 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
42 #include "sysemu/runstate.h"
43 
44 #include "net_tx_pkt.h"
45 #include "net_rx_pkt.h"
46 
47 #include "e1000x_common.h"
48 #include "e1000e_core.h"
49 
50 #include "trace.h"
51 
52 #define E1000E_MIN_XITR     (500) /* No more then 7813 interrupts per
53                                      second according to spec 10.2.4.2 */
54 #define E1000E_MAX_TX_FRAGS (64)
55 
56 static inline void
57 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
58 
59 static inline void
60 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
61 {
62     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
63         trace_e1000e_wrn_no_ts_support();
64     }
65 }
66 
67 static inline void
68 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
69 {
70     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
71         trace_e1000e_wrn_no_snap_support();
72     }
73 }
74 
75 static inline void
76 e1000e_raise_legacy_irq(E1000ECore *core)
77 {
78     trace_e1000e_irq_legacy_notify(true);
79     e1000x_inc_reg_if_not_full(core->mac, IAC);
80     pci_set_irq(core->owner, 1);
81 }
82 
83 static inline void
84 e1000e_lower_legacy_irq(E1000ECore *core)
85 {
86     trace_e1000e_irq_legacy_notify(false);
87     pci_set_irq(core->owner, 0);
88 }
89 
90 static inline void
91 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
92 {
93     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
94                                  timer->delay_resolution_ns;
95 
96     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
97 
98     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
99 
100     timer->running = true;
101 }
102 
103 static void
104 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
105 {
106     if (timer->running) {
107         e1000e_intrmgr_rearm_timer(timer);
108     }
109 }
110 
111 static void
112 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
113 {
114     if (timer->running) {
115         timer_del(timer->timer);
116     }
117 }
118 
119 static inline void
120 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
121 {
122     if (timer->running) {
123         timer_del(timer->timer);
124         timer->running = false;
125     }
126 }
127 
128 static inline void
129 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
130 {
131     trace_e1000e_irq_fire_delayed_interrupts();
132     e1000e_set_interrupt_cause(core, 0);
133 }
134 
135 static void
136 e1000e_intrmgr_on_timer(void *opaque)
137 {
138     E1000IntrDelayTimer *timer = opaque;
139 
140     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
141 
142     timer->running = false;
143     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
144 }
145 
146 static void
147 e1000e_intrmgr_on_throttling_timer(void *opaque)
148 {
149     E1000IntrDelayTimer *timer = opaque;
150 
151     assert(!msix_enabled(timer->core->owner));
152 
153     timer->running = false;
154 
155     if (!timer->core->itr_intr_pending) {
156         trace_e1000e_irq_throttling_no_pending_interrupts();
157         return;
158     }
159 
160     if (msi_enabled(timer->core->owner)) {
161         trace_e1000e_irq_msi_notify_postponed();
162         e1000e_set_interrupt_cause(timer->core, 0);
163     } else {
164         trace_e1000e_irq_legacy_notify_postponed();
165         e1000e_set_interrupt_cause(timer->core, 0);
166     }
167 }
168 
169 static void
170 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
171 {
172     E1000IntrDelayTimer *timer = opaque;
173     int idx = timer - &timer->core->eitr[0];
174 
175     assert(msix_enabled(timer->core->owner));
176 
177     timer->running = false;
178 
179     if (!timer->core->eitr_intr_pending[idx]) {
180         trace_e1000e_irq_throttling_no_pending_vec(idx);
181         return;
182     }
183 
184     trace_e1000e_irq_msix_notify_postponed_vec(idx);
185     msix_notify(timer->core->owner, idx);
186 }
187 
188 static void
189 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
190 {
191     int i;
192 
193     core->radv.delay_reg = RADV;
194     core->rdtr.delay_reg = RDTR;
195     core->raid.delay_reg = RAID;
196     core->tadv.delay_reg = TADV;
197     core->tidv.delay_reg = TIDV;
198 
199     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
200     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
201     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
202     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204 
205     core->radv.core = core;
206     core->rdtr.core = core;
207     core->raid.core = core;
208     core->tadv.core = core;
209     core->tidv.core = core;
210 
211     core->itr.core = core;
212     core->itr.delay_reg = ITR;
213     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
214 
215     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
216         core->eitr[i].core = core;
217         core->eitr[i].delay_reg = EITR + i;
218         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
219     }
220 
221     if (!create) {
222         return;
223     }
224 
225     core->radv.timer =
226         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
227     core->rdtr.timer =
228         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
229     core->raid.timer =
230         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
231 
232     core->tadv.timer =
233         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
234     core->tidv.timer =
235         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
236 
237     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
238                                    e1000e_intrmgr_on_throttling_timer,
239                                    &core->itr);
240 
241     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
242         core->eitr[i].timer =
243             timer_new_ns(QEMU_CLOCK_VIRTUAL,
244                          e1000e_intrmgr_on_msix_throttling_timer,
245                          &core->eitr[i]);
246     }
247 }
248 
249 static inline void
250 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
251 {
252     e1000e_intrmgr_stop_timer(&core->radv);
253     e1000e_intrmgr_stop_timer(&core->rdtr);
254     e1000e_intrmgr_stop_timer(&core->raid);
255     e1000e_intrmgr_stop_timer(&core->tidv);
256     e1000e_intrmgr_stop_timer(&core->tadv);
257 }
258 
259 static bool
260 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
261 {
262     uint32_t delayable_causes;
263     uint32_t rdtr = core->mac[RDTR];
264     uint32_t radv = core->mac[RADV];
265     uint32_t raid = core->mac[RAID];
266 
267     if (msix_enabled(core->owner)) {
268         return false;
269     }
270 
271     delayable_causes = E1000_ICR_RXQ0 |
272                        E1000_ICR_RXQ1 |
273                        E1000_ICR_RXT0;
274 
275     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
276         delayable_causes |= E1000_ICR_ACK;
277     }
278 
279     /* Clean up all causes that may be delayed */
280     core->delayed_causes |= *causes & delayable_causes;
281     *causes &= ~delayable_causes;
282 
283     /* Check if delayed RX interrupts disabled by client
284        or if there are causes that cannot be delayed */
285     if ((rdtr == 0) || (*causes != 0)) {
286         return false;
287     }
288 
289     /* Check if delayed RX ACK interrupts disabled by client
290        and there is an ACK packet received */
291     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
292         return false;
293     }
294 
295     /* All causes delayed */
296     e1000e_intrmgr_rearm_timer(&core->rdtr);
297 
298     if (!core->radv.running && (radv != 0)) {
299         e1000e_intrmgr_rearm_timer(&core->radv);
300     }
301 
302     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
303         e1000e_intrmgr_rearm_timer(&core->raid);
304     }
305 
306     return true;
307 }
308 
309 static bool
310 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
311 {
312     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
313                                              E1000_ICR_TXQ1 |
314                                              E1000_ICR_TXQE |
315                                              E1000_ICR_TXDW;
316 
317     if (msix_enabled(core->owner)) {
318         return false;
319     }
320 
321     /* Clean up all causes that may be delayed */
322     core->delayed_causes |= *causes & delayable_causes;
323     *causes &= ~delayable_causes;
324 
325     /* If there are causes that cannot be delayed */
326     if (*causes != 0) {
327         return false;
328     }
329 
330     /* All causes delayed */
331     e1000e_intrmgr_rearm_timer(&core->tidv);
332 
333     if (!core->tadv.running && (core->mac[TADV] != 0)) {
334         e1000e_intrmgr_rearm_timer(&core->tadv);
335     }
336 
337     return true;
338 }
339 
340 static uint32_t
341 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
342 {
343     uint32_t res;
344 
345     if (msix_enabled(core->owner)) {
346         assert(core->delayed_causes == 0);
347         return 0;
348     }
349 
350     res = core->delayed_causes;
351     core->delayed_causes = 0;
352 
353     e1000e_intrmgr_stop_delay_timers(core);
354 
355     return res;
356 }
357 
358 static void
359 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
360 {
361     int i;
362     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
363 
364     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
365     core->mac[ICR] |= val;
366 
367     if (core->itr.running) {
368         timer_del(core->itr.timer);
369         e1000e_intrmgr_on_throttling_timer(&core->itr);
370     }
371 
372     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
373         if (core->eitr[i].running) {
374             timer_del(core->eitr[i].timer);
375             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
376         }
377     }
378 }
379 
380 static void
381 e1000e_intrmgr_resume(E1000ECore *core)
382 {
383     int i;
384 
385     e1000e_intmgr_timer_resume(&core->radv);
386     e1000e_intmgr_timer_resume(&core->rdtr);
387     e1000e_intmgr_timer_resume(&core->raid);
388     e1000e_intmgr_timer_resume(&core->tidv);
389     e1000e_intmgr_timer_resume(&core->tadv);
390 
391     e1000e_intmgr_timer_resume(&core->itr);
392 
393     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
394         e1000e_intmgr_timer_resume(&core->eitr[i]);
395     }
396 }
397 
398 static void
399 e1000e_intrmgr_pause(E1000ECore *core)
400 {
401     int i;
402 
403     e1000e_intmgr_timer_pause(&core->radv);
404     e1000e_intmgr_timer_pause(&core->rdtr);
405     e1000e_intmgr_timer_pause(&core->raid);
406     e1000e_intmgr_timer_pause(&core->tidv);
407     e1000e_intmgr_timer_pause(&core->tadv);
408 
409     e1000e_intmgr_timer_pause(&core->itr);
410 
411     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
412         e1000e_intmgr_timer_pause(&core->eitr[i]);
413     }
414 }
415 
416 static void
417 e1000e_intrmgr_reset(E1000ECore *core)
418 {
419     int i;
420 
421     core->delayed_causes = 0;
422 
423     e1000e_intrmgr_stop_delay_timers(core);
424 
425     e1000e_intrmgr_stop_timer(&core->itr);
426 
427     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
428         e1000e_intrmgr_stop_timer(&core->eitr[i]);
429     }
430 }
431 
432 static void
433 e1000e_intrmgr_pci_unint(E1000ECore *core)
434 {
435     int i;
436 
437     timer_free(core->radv.timer);
438     timer_free(core->rdtr.timer);
439     timer_free(core->raid.timer);
440 
441     timer_free(core->tadv.timer);
442     timer_free(core->tidv.timer);
443 
444     timer_free(core->itr.timer);
445 
446     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
447         timer_free(core->eitr[i].timer);
448     }
449 }
450 
451 static void
452 e1000e_intrmgr_pci_realize(E1000ECore *core)
453 {
454     e1000e_intrmgr_initialize_all_timers(core, true);
455 }
456 
457 static inline bool
458 e1000e_rx_csum_enabled(E1000ECore *core)
459 {
460     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
461 }
462 
463 static inline bool
464 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
465 {
466     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
467 }
468 
469 static inline bool
470 e1000e_rx_use_ps_descriptor(E1000ECore *core)
471 {
472     return !e1000e_rx_use_legacy_descriptor(core) &&
473            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
474 }
475 
476 static inline bool
477 e1000e_rss_enabled(E1000ECore *core)
478 {
479     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
480            !e1000e_rx_csum_enabled(core) &&
481            !e1000e_rx_use_legacy_descriptor(core);
482 }
483 
484 typedef struct E1000E_RSSInfo_st {
485     bool enabled;
486     uint32_t hash;
487     uint32_t queue;
488     uint32_t type;
489 } E1000E_RSSInfo;
490 
491 static uint32_t
492 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
493 {
494     bool isip4, isip6, isudp, istcp;
495 
496     assert(e1000e_rss_enabled(core));
497 
498     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
499 
500     if (isip4) {
501         bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
502 
503         trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
504                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
505                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
506 
507         if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
508             return E1000_MRQ_RSS_TYPE_IPV4TCP;
509         }
510 
511         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
512             return E1000_MRQ_RSS_TYPE_IPV4;
513         }
514     } else if (isip6) {
515         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
516 
517         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
518         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
519 
520         /*
521          * Following two traces must not be combined because resulting
522          * event will have 11 arguments totally and some trace backends
523          * (at least "ust") have limitation of maximum 10 arguments per
524          * event. Events with more arguments fail to compile for
525          * backends like these.
526          */
527         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
528         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
529                                 ip6info->has_ext_hdrs,
530                                 ip6info->rss_ex_dst_valid,
531                                 ip6info->rss_ex_src_valid,
532                                 core->mac[MRQC],
533                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
534                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
535                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
536 
537         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
538             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
539                               ip6info->rss_ex_src_valid))) {
540 
541             if (istcp && !ip6info->fragment &&
542                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
543                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
544             }
545 
546             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
547                 return E1000_MRQ_RSS_TYPE_IPV6EX;
548             }
549 
550         }
551 
552         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
553             return E1000_MRQ_RSS_TYPE_IPV6;
554         }
555 
556     }
557 
558     return E1000_MRQ_RSS_TYPE_NONE;
559 }
560 
561 static uint32_t
562 e1000e_rss_calc_hash(E1000ECore *core,
563                      struct NetRxPkt *pkt,
564                      E1000E_RSSInfo *info)
565 {
566     NetRxPktRssType type;
567 
568     assert(e1000e_rss_enabled(core));
569 
570     switch (info->type) {
571     case E1000_MRQ_RSS_TYPE_IPV4:
572         type = NetPktRssIpV4;
573         break;
574     case E1000_MRQ_RSS_TYPE_IPV4TCP:
575         type = NetPktRssIpV4Tcp;
576         break;
577     case E1000_MRQ_RSS_TYPE_IPV6TCP:
578         type = NetPktRssIpV6TcpEx;
579         break;
580     case E1000_MRQ_RSS_TYPE_IPV6:
581         type = NetPktRssIpV6;
582         break;
583     case E1000_MRQ_RSS_TYPE_IPV6EX:
584         type = NetPktRssIpV6Ex;
585         break;
586     default:
587         assert(false);
588         return 0;
589     }
590 
591     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
592 }
593 
594 static void
595 e1000e_rss_parse_packet(E1000ECore *core,
596                         struct NetRxPkt *pkt,
597                         E1000E_RSSInfo *info)
598 {
599     trace_e1000e_rx_rss_started();
600 
601     if (!e1000e_rss_enabled(core)) {
602         info->enabled = false;
603         info->hash = 0;
604         info->queue = 0;
605         info->type = 0;
606         trace_e1000e_rx_rss_disabled();
607         return;
608     }
609 
610     info->enabled = true;
611 
612     info->type = e1000e_rss_get_hash_type(core, pkt);
613 
614     trace_e1000e_rx_rss_type(info->type);
615 
616     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
617         info->hash = 0;
618         info->queue = 0;
619         return;
620     }
621 
622     info->hash = e1000e_rss_calc_hash(core, pkt, info);
623     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
624 }
625 
626 static void
627 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
628 {
629     if (tx->props.tse && tx->cptse) {
630         net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
631         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
632         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
633         return;
634     }
635 
636     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
637         net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
638     }
639 
640     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
641         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
642     }
643 }
644 
645 static bool
646 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
647 {
648     int target_queue = MIN(core->max_queue_num, queue_index);
649     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
650 
651     e1000e_setup_tx_offloads(core, tx);
652 
653     net_tx_pkt_dump(tx->tx_pkt);
654 
655     if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
656         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
657         return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
658     } else {
659         return net_tx_pkt_send(tx->tx_pkt, queue);
660     }
661 }
662 
663 static void
664 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
665 {
666     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
667                                     PTC1023, PTC1522 };
668 
669     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
670 
671     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
672     e1000x_inc_reg_if_not_full(core->mac, TPT);
673     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
674 
675     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
676     case ETH_PKT_BCAST:
677         e1000x_inc_reg_if_not_full(core->mac, BPTC);
678         break;
679     case ETH_PKT_MCAST:
680         e1000x_inc_reg_if_not_full(core->mac, MPTC);
681         break;
682     case ETH_PKT_UCAST:
683         break;
684     default:
685         g_assert_not_reached();
686     }
687 
688     core->mac[GPTC] = core->mac[TPT];
689     core->mac[GOTCL] = core->mac[TOTL];
690     core->mac[GOTCH] = core->mac[TOTH];
691 }
692 
693 static void
694 e1000e_process_tx_desc(E1000ECore *core,
695                        struct e1000e_tx *tx,
696                        struct e1000_tx_desc *dp,
697                        int queue_index)
698 {
699     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
700     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
701     unsigned int split_size = txd_lower & 0xffff;
702     uint64_t addr;
703     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
704     bool eop = txd_lower & E1000_TXD_CMD_EOP;
705 
706     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
707         e1000x_read_tx_ctx_descr(xp, &tx->props);
708         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
709         return;
710     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
711         /* data descriptor */
712         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
713         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
714         e1000e_process_ts_option(core, dp);
715     } else {
716         /* legacy descriptor */
717         e1000e_process_ts_option(core, dp);
718         tx->cptse = 0;
719     }
720 
721     addr = le64_to_cpu(dp->buffer_addr);
722 
723     if (!tx->skip_cp) {
724         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
725             tx->skip_cp = true;
726         }
727     }
728 
729     if (eop) {
730         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
731             if (e1000x_vlan_enabled(core->mac) &&
732                 e1000x_is_vlan_txd(txd_lower)) {
733                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
734                     le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
735             }
736             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
737                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
738             }
739         }
740 
741         tx->skip_cp = false;
742         net_tx_pkt_reset(tx->tx_pkt);
743 
744         tx->sum_needed = 0;
745         tx->cptse = 0;
746     }
747 }
748 
749 static inline uint32_t
750 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
751 {
752     if (!msix_enabled(core->owner)) {
753         return E1000_ICR_TXDW;
754     }
755 
756     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
757 }
758 
759 static inline uint32_t
760 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
761                              bool min_threshold_hit)
762 {
763     if (!msix_enabled(core->owner)) {
764         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
765     }
766 
767     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
768 }
769 
770 static uint32_t
771 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
772                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
773 {
774     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
775 
776     if (!(txd_lower & E1000_TXD_CMD_RS) &&
777         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
778         return 0;
779     }
780 
781     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
782 
783     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
784 
785     dp->upper.data = cpu_to_le32(txd_upper);
786     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
787                   &dp->upper, sizeof(dp->upper));
788     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
789 }
790 
791 typedef struct E1000E_RingInfo_st {
792     int dbah;
793     int dbal;
794     int dlen;
795     int dh;
796     int dt;
797     int idx;
798 } E1000E_RingInfo;
799 
800 static inline bool
801 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
802 {
803     return core->mac[r->dh] == core->mac[r->dt] ||
804                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
805 }
806 
807 static inline uint64_t
808 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
809 {
810     uint64_t bah = core->mac[r->dbah];
811     uint64_t bal = core->mac[r->dbal];
812 
813     return (bah << 32) + bal;
814 }
815 
816 static inline uint64_t
817 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
818 {
819     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
820 }
821 
822 static inline void
823 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
824 {
825     core->mac[r->dh] += count;
826 
827     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
828         core->mac[r->dh] = 0;
829     }
830 }
831 
832 static inline uint32_t
833 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
834 {
835     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
836                                  core->mac[r->dh],  core->mac[r->dt]);
837 
838     if (core->mac[r->dh] <= core->mac[r->dt]) {
839         return core->mac[r->dt] - core->mac[r->dh];
840     }
841 
842     if (core->mac[r->dh] > core->mac[r->dt]) {
843         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
844                core->mac[r->dt] - core->mac[r->dh];
845     }
846 
847     g_assert_not_reached();
848     return 0;
849 }
850 
851 static inline bool
852 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
853 {
854     return core->mac[r->dlen] > 0;
855 }
856 
857 static inline uint32_t
858 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
859 {
860     return core->mac[r->dlen];
861 }
862 
863 typedef struct E1000E_TxRing_st {
864     const E1000E_RingInfo *i;
865     struct e1000e_tx *tx;
866 } E1000E_TxRing;
867 
868 static inline int
869 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
870 {
871     return (reg_idx - base_reg_idx) / (0x100 >> 2);
872 }
873 
874 static inline void
875 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
876 {
877     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
878         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
879         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
880     };
881 
882     assert(idx < ARRAY_SIZE(i));
883 
884     txr->i     = &i[idx];
885     txr->tx    = &core->tx[idx];
886 }
887 
888 typedef struct E1000E_RxRing_st {
889     const E1000E_RingInfo *i;
890 } E1000E_RxRing;
891 
892 static inline void
893 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
894 {
895     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
896         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
897         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
898     };
899 
900     assert(idx < ARRAY_SIZE(i));
901 
902     rxr->i      = &i[idx];
903 }
904 
905 static void
906 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
907 {
908     dma_addr_t base;
909     struct e1000_tx_desc desc;
910     bool ide = false;
911     const E1000E_RingInfo *txi = txr->i;
912     uint32_t cause = E1000_ICS_TXQE;
913 
914     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
915         trace_e1000e_tx_disabled();
916         return;
917     }
918 
919     while (!e1000e_ring_empty(core, txi)) {
920         base = e1000e_ring_head_descr(core, txi);
921 
922         pci_dma_read(core->owner, base, &desc, sizeof(desc));
923 
924         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
925                               desc.lower.data, desc.upper.data);
926 
927         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
928         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
929 
930         e1000e_ring_advance(core, txi, 1);
931     }
932 
933     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
934         e1000e_set_interrupt_cause(core, cause);
935     }
936 }
937 
938 static bool
939 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
940                   size_t total_size)
941 {
942     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
943 
944     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
945                                 core->rx_desc_buf_size);
946 
947     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
948                          core->rx_desc_buf_size;
949 }
950 
951 void
952 e1000e_start_recv(E1000ECore *core)
953 {
954     int i;
955 
956     trace_e1000e_rx_start_recv();
957 
958     for (i = 0; i <= core->max_queue_num; i++) {
959         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
960     }
961 }
962 
963 bool
964 e1000e_can_receive(E1000ECore *core)
965 {
966     int i;
967 
968     if (!e1000x_rx_ready(core->owner, core->mac)) {
969         return false;
970     }
971 
972     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
973         E1000E_RxRing rxr;
974 
975         e1000e_rx_ring_init(core, &rxr, i);
976         if (e1000e_ring_enabled(core, rxr.i) &&
977             e1000e_has_rxbufs(core, rxr.i, 1)) {
978             trace_e1000e_rx_can_recv();
979             return true;
980         }
981     }
982 
983     trace_e1000e_rx_can_recv_rings_full();
984     return false;
985 }
986 
987 ssize_t
988 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
989 {
990     const struct iovec iov = {
991         .iov_base = (uint8_t *)buf,
992         .iov_len = size
993     };
994 
995     return e1000e_receive_iov(core, &iov, 1);
996 }
997 
998 static inline bool
999 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1000 {
1001     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1002 }
1003 
1004 static inline bool
1005 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1006 {
1007     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1008 }
1009 
1010 static bool
1011 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1012 {
1013     uint32_t rctl = core->mac[RCTL];
1014 
1015     if (e1000x_is_vlan_packet(buf, core->mac[VET]) &&
1016         e1000x_vlan_rx_filter_enabled(core->mac)) {
1017         uint16_t vid = lduw_be_p(buf + 14);
1018         uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1019                                  ((vid >> 5) & 0x7f));
1020         if ((vfta & (1 << (vid & 0x1f))) == 0) {
1021             trace_e1000e_rx_flt_vlan_mismatch(vid);
1022             return false;
1023         } else {
1024             trace_e1000e_rx_flt_vlan_match(vid);
1025         }
1026     }
1027 
1028     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1029     case ETH_PKT_UCAST:
1030         if (rctl & E1000_RCTL_UPE) {
1031             return true; /* promiscuous ucast */
1032         }
1033         break;
1034 
1035     case ETH_PKT_BCAST:
1036         if (rctl & E1000_RCTL_BAM) {
1037             return true; /* broadcast enabled */
1038         }
1039         break;
1040 
1041     case ETH_PKT_MCAST:
1042         if (rctl & E1000_RCTL_MPE) {
1043             return true; /* promiscuous mcast */
1044         }
1045         break;
1046 
1047     default:
1048         g_assert_not_reached();
1049     }
1050 
1051     return e1000x_rx_group_filter(core->mac, buf);
1052 }
1053 
1054 static inline void
1055 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1056 {
1057     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1058     *buff_addr = le64_to_cpu(d->buffer_addr);
1059 }
1060 
1061 static inline void
1062 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1063 {
1064     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1065     *buff_addr = le64_to_cpu(d->read.buffer_addr);
1066 }
1067 
1068 static inline void
1069 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1070                         hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1071 {
1072     int i;
1073     union e1000_rx_desc_packet_split *d =
1074         (union e1000_rx_desc_packet_split *) desc;
1075 
1076     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1077         (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1078     }
1079 
1080     trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1081                                  (*buff_addr)[2], (*buff_addr)[3]);
1082 }
1083 
1084 static inline void
1085 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1086                      hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1087 {
1088     if (e1000e_rx_use_legacy_descriptor(core)) {
1089         e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1090         (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1091     } else {
1092         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1093             e1000e_read_ps_rx_descr(core, desc, buff_addr);
1094         } else {
1095             e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1096             (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1097         }
1098     }
1099 }
1100 
1101 static void
1102 e1000e_verify_csum_in_sw(E1000ECore *core,
1103                          struct NetRxPkt *pkt,
1104                          uint32_t *status_flags,
1105                          bool istcp, bool isudp)
1106 {
1107     bool csum_valid;
1108     uint32_t csum_error;
1109 
1110     if (e1000e_rx_l3_cso_enabled(core)) {
1111         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1112             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1113         } else {
1114             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1115             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1116         }
1117     } else {
1118         trace_e1000e_rx_metadata_l3_cso_disabled();
1119     }
1120 
1121     if (!e1000e_rx_l4_cso_enabled(core)) {
1122         trace_e1000e_rx_metadata_l4_cso_disabled();
1123         return;
1124     }
1125 
1126     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1127         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1128         return;
1129     }
1130 
1131     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1132 
1133     if (istcp) {
1134         *status_flags |= E1000_RXD_STAT_TCPCS |
1135                          csum_error;
1136     } else if (isudp) {
1137         *status_flags |= E1000_RXD_STAT_TCPCS |
1138                          E1000_RXD_STAT_UDPCS |
1139                          csum_error;
1140     }
1141 }
1142 
1143 static inline bool
1144 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1145 {
1146     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1147         return false;
1148     }
1149 
1150     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1151         return !net_rx_pkt_has_tcp_data(rx_pkt);
1152     }
1153 
1154     return true;
1155 }
1156 
1157 static void
1158 e1000e_build_rx_metadata(E1000ECore *core,
1159                          struct NetRxPkt *pkt,
1160                          bool is_eop,
1161                          const E1000E_RSSInfo *rss_info,
1162                          uint32_t *rss, uint32_t *mrq,
1163                          uint32_t *status_flags,
1164                          uint16_t *ip_id,
1165                          uint16_t *vlan_tag)
1166 {
1167     struct virtio_net_hdr *vhdr;
1168     bool isip4, isip6, istcp, isudp;
1169     uint32_t pkt_type;
1170 
1171     *status_flags = E1000_RXD_STAT_DD;
1172 
1173     /* No additional metadata needed for non-EOP descriptors */
1174     if (!is_eop) {
1175         goto func_exit;
1176     }
1177 
1178     *status_flags |= E1000_RXD_STAT_EOP;
1179 
1180     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1181     trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1182 
1183     /* VLAN state */
1184     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1185         *status_flags |= E1000_RXD_STAT_VP;
1186         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1187         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1188     }
1189 
1190     /* Packet parsing results */
1191     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1192         if (rss_info->enabled) {
1193             *rss = cpu_to_le32(rss_info->hash);
1194             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1195             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1196         }
1197     } else if (isip4) {
1198             *status_flags |= E1000_RXD_STAT_IPIDV;
1199             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1200             trace_e1000e_rx_metadata_ip_id(*ip_id);
1201     }
1202 
1203     if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1204         *status_flags |= E1000_RXD_STAT_ACK;
1205         trace_e1000e_rx_metadata_ack();
1206     }
1207 
1208     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1209         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1210         pkt_type = E1000_RXD_PKT_MAC;
1211     } else if (istcp || isudp) {
1212         pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1213     } else if (isip4 || isip6) {
1214         pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1215     } else {
1216         pkt_type = E1000_RXD_PKT_MAC;
1217     }
1218 
1219     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1220     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1221 
1222     /* RX CSO information */
1223     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1224         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1225         goto func_exit;
1226     }
1227 
1228     if (!net_rx_pkt_has_virt_hdr(pkt)) {
1229         trace_e1000e_rx_metadata_no_virthdr();
1230         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1231         goto func_exit;
1232     }
1233 
1234     vhdr = net_rx_pkt_get_vhdr(pkt);
1235 
1236     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1237         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1238         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1239         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1240         goto func_exit;
1241     }
1242 
1243     if (e1000e_rx_l3_cso_enabled(core)) {
1244         *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1245     } else {
1246         trace_e1000e_rx_metadata_l3_cso_disabled();
1247     }
1248 
1249     if (e1000e_rx_l4_cso_enabled(core)) {
1250         if (istcp) {
1251             *status_flags |= E1000_RXD_STAT_TCPCS;
1252         } else if (isudp) {
1253             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1254         }
1255     } else {
1256         trace_e1000e_rx_metadata_l4_cso_disabled();
1257     }
1258 
1259     trace_e1000e_rx_metadata_status_flags(*status_flags);
1260 
1261 func_exit:
1262     *status_flags = cpu_to_le32(*status_flags);
1263 }
1264 
1265 static inline void
1266 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1267                            struct NetRxPkt *pkt,
1268                            const E1000E_RSSInfo *rss_info,
1269                            uint16_t length)
1270 {
1271     uint32_t status_flags, rss, mrq;
1272     uint16_t ip_id;
1273 
1274     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1275 
1276     assert(!rss_info->enabled);
1277 
1278     d->length = cpu_to_le16(length);
1279     d->csum = 0;
1280 
1281     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1282                              rss_info,
1283                              &rss, &mrq,
1284                              &status_flags, &ip_id,
1285                              &d->special);
1286     d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1287     d->status = (uint8_t) le32_to_cpu(status_flags);
1288 }
1289 
1290 static inline void
1291 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1292                           struct NetRxPkt *pkt,
1293                           const E1000E_RSSInfo *rss_info,
1294                           uint16_t length)
1295 {
1296     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1297 
1298     memset(&d->wb, 0, sizeof(d->wb));
1299 
1300     d->wb.upper.length = cpu_to_le16(length);
1301 
1302     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1303                              rss_info,
1304                              &d->wb.lower.hi_dword.rss,
1305                              &d->wb.lower.mrq,
1306                              &d->wb.upper.status_error,
1307                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1308                              &d->wb.upper.vlan);
1309 }
1310 
1311 static inline void
1312 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1313                          struct NetRxPkt *pkt,
1314                          const E1000E_RSSInfo *rss_info,
1315                          size_t ps_hdr_len,
1316                          uint16_t(*written)[MAX_PS_BUFFERS])
1317 {
1318     int i;
1319     union e1000_rx_desc_packet_split *d =
1320         (union e1000_rx_desc_packet_split *) desc;
1321 
1322     memset(&d->wb, 0, sizeof(d->wb));
1323 
1324     d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1325 
1326     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1327         d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1328     }
1329 
1330     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1331                              rss_info,
1332                              &d->wb.lower.hi_dword.rss,
1333                              &d->wb.lower.mrq,
1334                              &d->wb.middle.status_error,
1335                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1336                              &d->wb.middle.vlan);
1337 
1338     d->wb.upper.header_status =
1339         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1340 
1341     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1342                                   (*written)[2], (*written)[3]);
1343 }
1344 
1345 static inline void
1346 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1347 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1348     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1349 {
1350     if (e1000e_rx_use_legacy_descriptor(core)) {
1351         assert(ps_hdr_len == 0);
1352         e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1353     } else {
1354         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1355             e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1356                                       ps_hdr_len, written);
1357         } else {
1358             assert(ps_hdr_len == 0);
1359             e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1360                                        (*written)[0]);
1361         }
1362     }
1363 }
1364 
1365 typedef struct e1000e_ba_state_st {
1366     uint16_t written[MAX_PS_BUFFERS];
1367     uint8_t cur_idx;
1368 } e1000e_ba_state;
1369 
1370 static inline void
1371 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1372                                hwaddr (*ba)[MAX_PS_BUFFERS],
1373                                e1000e_ba_state *bastate,
1374                                const char *data,
1375                                dma_addr_t data_len)
1376 {
1377     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1378 
1379     pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1380     bastate->written[0] += data_len;
1381 
1382     bastate->cur_idx = 1;
1383 }
1384 
1385 static void
1386 e1000e_write_to_rx_buffers(E1000ECore *core,
1387                            hwaddr (*ba)[MAX_PS_BUFFERS],
1388                            e1000e_ba_state *bastate,
1389                            const char *data,
1390                            dma_addr_t data_len)
1391 {
1392     while (data_len > 0) {
1393         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1394         uint32_t cur_buf_bytes_left = cur_buf_len -
1395                                       bastate->written[bastate->cur_idx];
1396         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1397 
1398         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1399                                         (*ba)[bastate->cur_idx],
1400                                         bastate->written[bastate->cur_idx],
1401                                         data,
1402                                         bytes_to_write);
1403 
1404         pci_dma_write(core->owner,
1405             (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1406             data, bytes_to_write);
1407 
1408         bastate->written[bastate->cur_idx] += bytes_to_write;
1409         data += bytes_to_write;
1410         data_len -= bytes_to_write;
1411 
1412         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1413             bastate->cur_idx++;
1414         }
1415 
1416         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1417     }
1418 }
1419 
1420 static void
1421 e1000e_update_rx_stats(E1000ECore *core,
1422                        size_t data_size,
1423                        size_t data_fcs_size)
1424 {
1425     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1426 
1427     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1428     case ETH_PKT_BCAST:
1429         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1430         break;
1431 
1432     case ETH_PKT_MCAST:
1433         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1434         break;
1435 
1436     default:
1437         break;
1438     }
1439 }
1440 
1441 static inline bool
1442 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1443 {
1444     return e1000e_ring_free_descr_num(core, rxi) ==
1445            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1446 }
1447 
1448 static bool
1449 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1450 {
1451     bool isip4, isip6, isudp, istcp;
1452     bool fragment;
1453 
1454     if (!e1000e_rx_use_ps_descriptor(core)) {
1455         return false;
1456     }
1457 
1458     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1459 
1460     if (isip4) {
1461         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1462     } else if (isip6) {
1463         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1464     } else {
1465         return false;
1466     }
1467 
1468     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1469         return false;
1470     }
1471 
1472     if (!fragment && (isudp || istcp)) {
1473         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1474     } else {
1475         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1476     }
1477 
1478     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1479         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1480         return false;
1481     }
1482 
1483     return true;
1484 }
1485 
1486 static void
1487 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1488                              const E1000E_RxRing *rxr,
1489                              const E1000E_RSSInfo *rss_info)
1490 {
1491     PCIDevice *d = core->owner;
1492     dma_addr_t base;
1493     uint8_t desc[E1000_MAX_RX_DESC_LEN];
1494     size_t desc_size;
1495     size_t desc_offset = 0;
1496     size_t iov_ofs = 0;
1497 
1498     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1499     size_t size = net_rx_pkt_get_total_len(pkt);
1500     size_t total_size = size + e1000x_fcs_len(core->mac);
1501     const E1000E_RingInfo *rxi;
1502     size_t ps_hdr_len = 0;
1503     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1504     bool is_first = true;
1505 
1506     rxi = rxr->i;
1507 
1508     do {
1509         hwaddr ba[MAX_PS_BUFFERS];
1510         e1000e_ba_state bastate = { { 0 } };
1511         bool is_last = false;
1512 
1513         desc_size = total_size - desc_offset;
1514 
1515         if (desc_size > core->rx_desc_buf_size) {
1516             desc_size = core->rx_desc_buf_size;
1517         }
1518 
1519         if (e1000e_ring_empty(core, rxi)) {
1520             return;
1521         }
1522 
1523         base = e1000e_ring_head_descr(core, rxi);
1524 
1525         pci_dma_read(d, base, &desc, core->rx_desc_len);
1526 
1527         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1528 
1529         e1000e_read_rx_descr(core, desc, &ba);
1530 
1531         if (ba[0]) {
1532             if (desc_offset < size) {
1533                 static const uint32_t fcs_pad;
1534                 size_t iov_copy;
1535                 size_t copy_size = size - desc_offset;
1536                 if (copy_size > core->rx_desc_buf_size) {
1537                     copy_size = core->rx_desc_buf_size;
1538                 }
1539 
1540                 /* For PS mode copy the packet header first */
1541                 if (do_ps) {
1542                     if (is_first) {
1543                         size_t ps_hdr_copied = 0;
1544                         do {
1545                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1546                                            iov->iov_len - iov_ofs);
1547 
1548                             e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1549                                                       iov->iov_base, iov_copy);
1550 
1551                             copy_size -= iov_copy;
1552                             ps_hdr_copied += iov_copy;
1553 
1554                             iov_ofs += iov_copy;
1555                             if (iov_ofs == iov->iov_len) {
1556                                 iov++;
1557                                 iov_ofs = 0;
1558                             }
1559                         } while (ps_hdr_copied < ps_hdr_len);
1560 
1561                         is_first = false;
1562                     } else {
1563                         /* Leave buffer 0 of each descriptor except first */
1564                         /* empty as per spec 7.1.5.1                      */
1565                         e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1566                                                        NULL, 0);
1567                     }
1568                 }
1569 
1570                 /* Copy packet payload */
1571                 while (copy_size) {
1572                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1573 
1574                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1575                                             iov->iov_base + iov_ofs, iov_copy);
1576 
1577                     copy_size -= iov_copy;
1578                     iov_ofs += iov_copy;
1579                     if (iov_ofs == iov->iov_len) {
1580                         iov++;
1581                         iov_ofs = 0;
1582                     }
1583                 }
1584 
1585                 if (desc_offset + desc_size >= total_size) {
1586                     /* Simulate FCS checksum presence in the last descriptor */
1587                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1588                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1589                 }
1590             }
1591         } else { /* as per intel docs; skip descriptors with null buf addr */
1592             trace_e1000e_rx_null_descriptor();
1593         }
1594         desc_offset += desc_size;
1595         if (desc_offset >= total_size) {
1596             is_last = true;
1597         }
1598 
1599         e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1600                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1601         pci_dma_write(d, base, &desc, core->rx_desc_len);
1602 
1603         e1000e_ring_advance(core, rxi,
1604                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1605 
1606     } while (desc_offset < total_size);
1607 
1608     e1000e_update_rx_stats(core, size, total_size);
1609 }
1610 
1611 static inline void
1612 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1613 {
1614     if (net_rx_pkt_has_virt_hdr(pkt)) {
1615         struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1616 
1617         if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1618             net_rx_pkt_fix_l4_csum(pkt);
1619         }
1620     }
1621 }
1622 
1623 ssize_t
1624 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1625 {
1626     static const int maximum_ethernet_hdr_len = (14 + 4);
1627     /* Min. octets in an ethernet frame sans FCS */
1628     static const int min_buf_size = 60;
1629 
1630     uint32_t n = 0;
1631     uint8_t min_buf[min_buf_size];
1632     struct iovec min_iov;
1633     uint8_t *filter_buf;
1634     size_t size, orig_size;
1635     size_t iov_ofs = 0;
1636     E1000E_RxRing rxr;
1637     E1000E_RSSInfo rss_info;
1638     size_t total_size;
1639     ssize_t retval;
1640     bool rdmts_hit;
1641 
1642     trace_e1000e_rx_receive_iov(iovcnt);
1643 
1644     if (!e1000x_hw_rx_enabled(core->mac)) {
1645         return -1;
1646     }
1647 
1648     /* Pull virtio header in */
1649     if (core->has_vnet) {
1650         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1651         iov_ofs = sizeof(struct virtio_net_hdr);
1652     }
1653 
1654     filter_buf = iov->iov_base + iov_ofs;
1655     orig_size = iov_size(iov, iovcnt);
1656     size = orig_size - iov_ofs;
1657 
1658     /* Pad to minimum Ethernet frame length */
1659     if (size < sizeof(min_buf)) {
1660         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1661         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1662         e1000x_inc_reg_if_not_full(core->mac, RUC);
1663         min_iov.iov_base = filter_buf = min_buf;
1664         min_iov.iov_len = size = sizeof(min_buf);
1665         iovcnt = 1;
1666         iov = &min_iov;
1667         iov_ofs = 0;
1668     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1669         /* This is very unlikely, but may happen. */
1670         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1671         filter_buf = min_buf;
1672     }
1673 
1674     /* Discard oversized packets if !LPE and !SBP. */
1675     if (e1000x_is_oversized(core->mac, size)) {
1676         return orig_size;
1677     }
1678 
1679     net_rx_pkt_set_packet_type(core->rx_pkt,
1680         get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1681 
1682     if (!e1000e_receive_filter(core, filter_buf, size)) {
1683         trace_e1000e_rx_flt_dropped();
1684         return orig_size;
1685     }
1686 
1687     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1688                                e1000x_vlan_enabled(core->mac), core->mac[VET]);
1689 
1690     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1691     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1692 
1693     trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1694 
1695     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1696         e1000x_fcs_len(core->mac);
1697 
1698     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1699         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1700 
1701         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1702 
1703         retval = orig_size;
1704 
1705         /* Perform small receive detection (RSRPD) */
1706         if (total_size < core->mac[RSRPD]) {
1707             n |= E1000_ICS_SRPD;
1708         }
1709 
1710         /* Perform ACK receive detection */
1711         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1712              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1713             n |= E1000_ICS_ACK;
1714         }
1715 
1716         /* Check if receive descriptor minimum threshold hit */
1717         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1718         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1719 
1720         trace_e1000e_rx_written_to_guest(n);
1721     } else {
1722         n |= E1000_ICS_RXO;
1723         retval = 0;
1724 
1725         trace_e1000e_rx_not_written_to_guest(n);
1726     }
1727 
1728     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1729         trace_e1000e_rx_interrupt_set(n);
1730         e1000e_set_interrupt_cause(core, n);
1731     } else {
1732         trace_e1000e_rx_interrupt_delayed(n);
1733     }
1734 
1735     return retval;
1736 }
1737 
1738 static inline bool
1739 e1000e_have_autoneg(E1000ECore *core)
1740 {
1741     return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1742 }
1743 
1744 static void e1000e_update_flowctl_status(E1000ECore *core)
1745 {
1746     if (e1000e_have_autoneg(core) &&
1747         core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1748         trace_e1000e_link_autoneg_flowctl(true);
1749         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1750     } else {
1751         trace_e1000e_link_autoneg_flowctl(false);
1752     }
1753 }
1754 
1755 static inline void
1756 e1000e_link_down(E1000ECore *core)
1757 {
1758     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1759     e1000e_update_flowctl_status(core);
1760 }
1761 
1762 static inline void
1763 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1764 {
1765     /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1766     core->phy[0][PHY_CTRL] = val & ~(0x3f |
1767                                      MII_CR_RESET |
1768                                      MII_CR_RESTART_AUTO_NEG);
1769 
1770     if ((val & MII_CR_RESTART_AUTO_NEG) &&
1771         e1000e_have_autoneg(core)) {
1772         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1773     }
1774 }
1775 
1776 static void
1777 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1778 {
1779     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1780 
1781     if (val & BIT(10)) {
1782         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1783     }
1784 }
1785 
1786 static void
1787 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1788 {
1789     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1790 }
1791 
1792 void
1793 e1000e_core_set_link_status(E1000ECore *core)
1794 {
1795     NetClientState *nc = qemu_get_queue(core->owner_nic);
1796     uint32_t old_status = core->mac[STATUS];
1797 
1798     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1799 
1800     if (nc->link_down) {
1801         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1802     } else {
1803         if (e1000e_have_autoneg(core) &&
1804             !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1805             e1000x_restart_autoneg(core->mac, core->phy[0],
1806                                    core->autoneg_timer);
1807         } else {
1808             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1809             e1000e_start_recv(core);
1810         }
1811     }
1812 
1813     if (core->mac[STATUS] != old_status) {
1814         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1815     }
1816 }
1817 
1818 static void
1819 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1820 {
1821     trace_e1000e_core_ctrl_write(index, val);
1822 
1823     /* RST is self clearing */
1824     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1825     core->mac[CTRL_DUP] = core->mac[CTRL];
1826 
1827     trace_e1000e_link_set_params(
1828         !!(val & E1000_CTRL_ASDE),
1829         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1830         !!(val & E1000_CTRL_FRCSPD),
1831         !!(val & E1000_CTRL_FRCDPX),
1832         !!(val & E1000_CTRL_RFCE),
1833         !!(val & E1000_CTRL_TFCE));
1834 
1835     if (val & E1000_CTRL_RST) {
1836         trace_e1000e_core_ctrl_sw_reset();
1837         e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1838     }
1839 
1840     if (val & E1000_CTRL_PHY_RST) {
1841         trace_e1000e_core_ctrl_phy_reset();
1842         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1843     }
1844 }
1845 
1846 static void
1847 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1848 {
1849     trace_e1000e_rx_set_rfctl(val);
1850 
1851     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1852         trace_e1000e_wrn_iscsi_filtering_not_supported();
1853     }
1854 
1855     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1856         trace_e1000e_wrn_nfsw_filtering_not_supported();
1857     }
1858 
1859     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1860         trace_e1000e_wrn_nfsr_filtering_not_supported();
1861     }
1862 
1863     core->mac[RFCTL] = val;
1864 }
1865 
1866 static void
1867 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1868 {
1869     int i;
1870     core->rx_desc_buf_size = 0;
1871 
1872     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1873         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1874     }
1875 }
1876 
1877 static void
1878 e1000e_parse_rxbufsize(E1000ECore *core)
1879 {
1880     uint32_t rctl = core->mac[RCTL];
1881 
1882     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1883 
1884     if (rctl & E1000_RCTL_DTYP_MASK) {
1885         uint32_t bsize;
1886 
1887         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1888         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1889 
1890         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1891         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1892 
1893         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1894         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1895 
1896         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1897         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1898     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1899         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1900         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1901     } else {
1902         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1903     }
1904 
1905     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1906                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1907 
1908     e1000e_calc_per_desc_buf_size(core);
1909 }
1910 
1911 static void
1912 e1000e_calc_rxdesclen(E1000ECore *core)
1913 {
1914     if (e1000e_rx_use_legacy_descriptor(core)) {
1915         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1916     } else {
1917         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1918             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1919         } else {
1920             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1921         }
1922     }
1923     trace_e1000e_rx_desc_len(core->rx_desc_len);
1924 }
1925 
1926 static void
1927 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1928 {
1929     core->mac[RCTL] = val;
1930     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1931 
1932     if (val & E1000_RCTL_EN) {
1933         e1000e_parse_rxbufsize(core);
1934         e1000e_calc_rxdesclen(core);
1935         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1936                                 E1000_RING_DESC_LEN_SHIFT;
1937 
1938         e1000e_start_recv(core);
1939     }
1940 }
1941 
1942 static
1943 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1944 (E1000ECore *, int, uint16_t) = {
1945     [0] = {
1946         [PHY_CTRL]     = e1000e_set_phy_ctrl,
1947         [PHY_PAGE]     = e1000e_set_phy_page,
1948         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1949     }
1950 };
1951 
1952 static inline void
1953 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1954 {
1955     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1956     core->mac[IMS] &= ~bits;
1957 }
1958 
1959 static inline bool
1960 e1000e_postpone_interrupt(bool *interrupt_pending,
1961                            E1000IntrDelayTimer *timer)
1962 {
1963     if (timer->running) {
1964         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1965 
1966         *interrupt_pending = true;
1967         return true;
1968     }
1969 
1970     if (timer->core->mac[timer->delay_reg] != 0) {
1971         e1000e_intrmgr_rearm_timer(timer);
1972     }
1973 
1974     return false;
1975 }
1976 
1977 static inline bool
1978 e1000e_itr_should_postpone(E1000ECore *core)
1979 {
1980     return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1981 }
1982 
1983 static inline bool
1984 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1985 {
1986     return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1987                                      &core->eitr[idx]);
1988 }
1989 
1990 static void
1991 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1992 {
1993     uint32_t effective_eiac;
1994 
1995     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1996         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1997         if (vec < E1000E_MSIX_VEC_NUM) {
1998             if (!e1000e_eitr_should_postpone(core, vec)) {
1999                 trace_e1000e_irq_msix_notify_vec(vec);
2000                 msix_notify(core->owner, vec);
2001             }
2002         } else {
2003             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2004         }
2005     } else {
2006         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2007     }
2008 
2009     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2010         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2011         core->mac[IAM] &= ~cause;
2012     }
2013 
2014     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2015 
2016     effective_eiac = core->mac[EIAC] & cause;
2017 
2018     core->mac[ICR] &= ~effective_eiac;
2019     core->msi_causes_pending &= ~effective_eiac;
2020 
2021     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2022         core->mac[IMS] &= ~effective_eiac;
2023     }
2024 }
2025 
2026 static void
2027 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2028 {
2029     if (causes & E1000_ICR_RXQ0) {
2030         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2031                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2032     }
2033 
2034     if (causes & E1000_ICR_RXQ1) {
2035         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2036                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2037     }
2038 
2039     if (causes & E1000_ICR_TXQ0) {
2040         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2041                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2042     }
2043 
2044     if (causes & E1000_ICR_TXQ1) {
2045         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2046                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2047     }
2048 
2049     if (causes & E1000_ICR_OTHER) {
2050         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2051                                E1000_IVAR_OTHER(core->mac[IVAR]));
2052     }
2053 }
2054 
2055 static void
2056 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2057 {
2058     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2059         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2060         if (vec < E1000E_MSIX_VEC_NUM) {
2061             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2062             msix_clr_pending(core->owner, vec);
2063         } else {
2064             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2065         }
2066     } else {
2067         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2068     }
2069 }
2070 
2071 static void
2072 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2073 {
2074     if (causes & E1000_ICR_RXQ0) {
2075         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2076                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2077     }
2078 
2079     if (causes & E1000_ICR_RXQ1) {
2080         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2081                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2082     }
2083 
2084     if (causes & E1000_ICR_TXQ0) {
2085         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2086                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2087     }
2088 
2089     if (causes & E1000_ICR_TXQ1) {
2090         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2091                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2092     }
2093 
2094     if (causes & E1000_ICR_OTHER) {
2095         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2096                               E1000_IVAR_OTHER(core->mac[IVAR]));
2097     }
2098 }
2099 
2100 static inline void
2101 e1000e_fix_icr_asserted(E1000ECore *core)
2102 {
2103     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2104     if (core->mac[ICR]) {
2105         core->mac[ICR] |= E1000_ICR_ASSERTED;
2106     }
2107 
2108     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2109 }
2110 
2111 static void
2112 e1000e_send_msi(E1000ECore *core, bool msix)
2113 {
2114     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2115 
2116     core->msi_causes_pending &= causes;
2117     causes ^= core->msi_causes_pending;
2118     if (causes == 0) {
2119         return;
2120     }
2121     core->msi_causes_pending |= causes;
2122 
2123     if (msix) {
2124         e1000e_msix_notify(core, causes);
2125     } else {
2126         if (!e1000e_itr_should_postpone(core)) {
2127             trace_e1000e_irq_msi_notify(causes);
2128             msi_notify(core->owner, 0);
2129         }
2130     }
2131 }
2132 
2133 static void
2134 e1000e_update_interrupt_state(E1000ECore *core)
2135 {
2136     bool interrupts_pending;
2137     bool is_msix = msix_enabled(core->owner);
2138 
2139     /* Set ICR[OTHER] for MSI-X */
2140     if (is_msix) {
2141         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2142             core->mac[ICR] |= E1000_ICR_OTHER;
2143             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2144         }
2145     }
2146 
2147     e1000e_fix_icr_asserted(core);
2148 
2149     /*
2150      * Make sure ICR and ICS registers have the same value.
2151      * The spec says that the ICS register is write-only.  However in practice,
2152      * on real hardware ICS is readable, and for reads it has the same value as
2153      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2154      *
2155      * The VxWorks PRO/1000 driver uses this behaviour.
2156      */
2157     core->mac[ICS] = core->mac[ICR];
2158 
2159     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2160     if (!interrupts_pending) {
2161         core->msi_causes_pending = 0;
2162     }
2163 
2164     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2165                                         core->mac[ICR], core->mac[IMS]);
2166 
2167     if (is_msix || msi_enabled(core->owner)) {
2168         if (interrupts_pending) {
2169             e1000e_send_msi(core, is_msix);
2170         }
2171     } else {
2172         if (interrupts_pending) {
2173             if (!e1000e_itr_should_postpone(core)) {
2174                 e1000e_raise_legacy_irq(core);
2175             }
2176         } else {
2177             e1000e_lower_legacy_irq(core);
2178         }
2179     }
2180 }
2181 
2182 static void
2183 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2184 {
2185     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2186 
2187     val |= e1000e_intmgr_collect_delayed_causes(core);
2188     core->mac[ICR] |= val;
2189 
2190     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2191 
2192     e1000e_update_interrupt_state(core);
2193 }
2194 
2195 static inline void
2196 e1000e_autoneg_timer(void *opaque)
2197 {
2198     E1000ECore *core = opaque;
2199     if (!qemu_get_queue(core->owner_nic)->link_down) {
2200         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2201         e1000e_start_recv(core);
2202 
2203         e1000e_update_flowctl_status(core);
2204         /* signal link status change to the guest */
2205         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2206     }
2207 }
2208 
2209 static inline uint16_t
2210 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2211 {
2212     uint16_t index = (addr & 0x1ffff) >> 2;
2213     return index + (mac_reg_access[index] & 0xfffe);
2214 }
2215 
2216 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2217     [0] = {
2218         [PHY_CTRL]          = PHY_ANYPAGE | PHY_RW,
2219         [PHY_STATUS]        = PHY_ANYPAGE | PHY_R,
2220         [PHY_ID1]           = PHY_ANYPAGE | PHY_R,
2221         [PHY_ID2]           = PHY_ANYPAGE | PHY_R,
2222         [PHY_AUTONEG_ADV]   = PHY_ANYPAGE | PHY_RW,
2223         [PHY_LP_ABILITY]    = PHY_ANYPAGE | PHY_R,
2224         [PHY_AUTONEG_EXP]   = PHY_ANYPAGE | PHY_R,
2225         [PHY_NEXT_PAGE_TX]  = PHY_ANYPAGE | PHY_RW,
2226         [PHY_LP_NEXT_PAGE]  = PHY_ANYPAGE | PHY_R,
2227         [PHY_1000T_CTRL]    = PHY_ANYPAGE | PHY_RW,
2228         [PHY_1000T_STATUS]  = PHY_ANYPAGE | PHY_R,
2229         [PHY_EXT_STATUS]    = PHY_ANYPAGE | PHY_R,
2230         [PHY_PAGE]          = PHY_ANYPAGE | PHY_RW,
2231 
2232         [PHY_COPPER_CTRL1]      = PHY_RW,
2233         [PHY_COPPER_STAT1]      = PHY_R,
2234         [PHY_COPPER_CTRL3]      = PHY_RW,
2235         [PHY_RX_ERR_CNTR]       = PHY_R,
2236         [PHY_OEM_BITS]          = PHY_RW,
2237         [PHY_BIAS_1]            = PHY_RW,
2238         [PHY_BIAS_2]            = PHY_RW,
2239         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2240         [PHY_COPPER_STAT2]      = PHY_R,
2241         [PHY_COPPER_CTRL2]      = PHY_RW
2242     },
2243     [2] = {
2244         [PHY_MAC_CTRL1]         = PHY_RW,
2245         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2246         [PHY_MAC_STAT]          = PHY_R,
2247         [PHY_MAC_CTRL2]         = PHY_RW
2248     },
2249     [3] = {
2250         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2251         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2252         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2253         [PHY_LED_45_CTRL]       = PHY_RW
2254     },
2255     [5] = {
2256         [PHY_1000T_SKEW]        = PHY_R,
2257         [PHY_1000T_SWAP]        = PHY_R
2258     },
2259     [6] = {
2260         [PHY_CRC_COUNTERS]      = PHY_R
2261     }
2262 };
2263 
2264 static bool
2265 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2266                          char cap, uint8_t *page)
2267 {
2268     *page =
2269         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2270                                                     : core->phy[0][PHY_PAGE];
2271 
2272     if (*page >= E1000E_PHY_PAGES) {
2273         return false;
2274     }
2275 
2276     return e1000e_phy_regcap[*page][addr] & cap;
2277 }
2278 
2279 static void
2280 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2281                      uint32_t addr, uint16_t data)
2282 {
2283     assert(page < E1000E_PHY_PAGES);
2284     assert(addr < E1000E_PHY_PAGE_SIZE);
2285 
2286     if (e1000e_phyreg_writeops[page][addr]) {
2287         e1000e_phyreg_writeops[page][addr](core, addr, data);
2288     } else {
2289         core->phy[page][addr] = data;
2290     }
2291 }
2292 
2293 static void
2294 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2295 {
2296     uint32_t data = val & E1000_MDIC_DATA_MASK;
2297     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2298     uint8_t page;
2299 
2300     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2301         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2302     } else if (val & E1000_MDIC_OP_READ) {
2303         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2304             trace_e1000e_core_mdic_read_unhandled(page, addr);
2305             val |= E1000_MDIC_ERROR;
2306         } else {
2307             val = (val ^ data) | core->phy[page][addr];
2308             trace_e1000e_core_mdic_read(page, addr, val);
2309         }
2310     } else if (val & E1000_MDIC_OP_WRITE) {
2311         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2312             trace_e1000e_core_mdic_write_unhandled(page, addr);
2313             val |= E1000_MDIC_ERROR;
2314         } else {
2315             trace_e1000e_core_mdic_write(page, addr, data);
2316             e1000e_phy_reg_write(core, page, addr, data);
2317         }
2318     }
2319     core->mac[MDIC] = val | E1000_MDIC_READY;
2320 
2321     if (val & E1000_MDIC_INT_EN) {
2322         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2323     }
2324 }
2325 
2326 static void
2327 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2328 {
2329     core->mac[index] = val & 0xffff;
2330     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2331     e1000e_start_recv(core);
2332 }
2333 
2334 static void
2335 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2336 {
2337     if ((val & E1000_STATUS_PHYRA) == 0) {
2338         core->mac[index] &= ~E1000_STATUS_PHYRA;
2339     }
2340 }
2341 
2342 static void
2343 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2344 {
2345     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2346                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2347 
2348     /* Zero self-clearing bits */
2349     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2350     core->mac[CTRL_EXT] = val;
2351 }
2352 
2353 static void
2354 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2355 {
2356     int i;
2357 
2358     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2359 
2360     if (!msix_enabled(core->owner)) {
2361         return;
2362     }
2363 
2364     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2365         if (core->mac[PBACLR] & BIT(i)) {
2366             msix_clr_pending(core->owner, i);
2367         }
2368     }
2369 }
2370 
2371 static void
2372 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2373 {
2374     core->mac[FCRTH] = val & 0xFFF8;
2375 }
2376 
2377 static void
2378 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2379 {
2380     core->mac[FCRTL] = val & 0x8000FFF8;
2381 }
2382 
2383 static inline void
2384 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2385 {
2386     core->mac[index] = val & 0xffff;
2387 }
2388 
2389 static void
2390 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2391 {
2392     core->mac[index] = val & 0xfff;
2393 }
2394 
2395 static void
2396 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2397 {
2398     core->mac[VET] = val & 0xffff;
2399     trace_e1000e_vlan_vet(core->mac[VET]);
2400 }
2401 
2402 static void
2403 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2404 {
2405     core->mac[index] = val & E1000_XDLEN_MASK;
2406 }
2407 
2408 static void
2409 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2410 {
2411     core->mac[index] = val & E1000_XDBAL_MASK;
2412 }
2413 
2414 static void
2415 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2416 {
2417     E1000E_TxRing txr;
2418     core->mac[index] = val;
2419 
2420     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2421         e1000e_tx_ring_init(core, &txr, 0);
2422         e1000e_start_xmit(core, &txr);
2423     }
2424 
2425     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2426         e1000e_tx_ring_init(core, &txr, 1);
2427         e1000e_start_xmit(core, &txr);
2428     }
2429 }
2430 
2431 static void
2432 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2433 {
2434     E1000E_TxRing txr;
2435     int qidx = e1000e_mq_queue_idx(TDT, index);
2436     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2437 
2438     core->mac[index] = val & 0xffff;
2439 
2440     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2441         e1000e_tx_ring_init(core, &txr, qidx);
2442         e1000e_start_xmit(core, &txr);
2443     }
2444 }
2445 
2446 static void
2447 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2448 {
2449     trace_e1000e_irq_write_ics(val);
2450     e1000e_set_interrupt_cause(core, val);
2451 }
2452 
2453 static void
2454 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2455 {
2456     uint32_t icr = 0;
2457     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2458         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2459         trace_e1000e_irq_icr_process_iame();
2460         e1000e_clear_ims_bits(core, core->mac[IAM]);
2461     }
2462 
2463     icr = core->mac[ICR] & ~val;
2464     /* Windows driver expects that the "receive overrun" bit and other
2465      * ones to be cleared when the "Other" bit (#24) is cleared.
2466      */
2467     icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2468     trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2469     core->mac[ICR] = icr;
2470     e1000e_update_interrupt_state(core);
2471 }
2472 
2473 static void
2474 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2475 {
2476     trace_e1000e_irq_ims_clear_set_imc(val);
2477     e1000e_clear_ims_bits(core, val);
2478     e1000e_update_interrupt_state(core);
2479 }
2480 
2481 static void
2482 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2483 {
2484     static const uint32_t ims_ext_mask =
2485         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2486         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2487         E1000_IMS_OTHER;
2488 
2489     static const uint32_t ims_valid_mask =
2490         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2491         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2492         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2493         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2494         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2495         E1000_IMS_OTHER;
2496 
2497     uint32_t valid_val = val & ims_valid_mask;
2498 
2499     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2500     core->mac[IMS] |= valid_val;
2501 
2502     if ((valid_val & ims_ext_mask) &&
2503         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2504         msix_enabled(core->owner)) {
2505         e1000e_msix_clear(core, valid_val);
2506     }
2507 
2508     if ((valid_val == ims_valid_mask) &&
2509         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2510         trace_e1000e_irq_fire_all_timers(val);
2511         e1000e_intrmgr_fire_all_timers(core);
2512     }
2513 
2514     e1000e_update_interrupt_state(core);
2515 }
2516 
2517 static void
2518 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2519 {
2520     e1000e_set_16bit(core, index, val);
2521 
2522     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2523         trace_e1000e_irq_rdtr_fpd_running();
2524         e1000e_intrmgr_fire_delayed_interrupts(core);
2525     } else {
2526         trace_e1000e_irq_rdtr_fpd_not_running();
2527     }
2528 }
2529 
2530 static void
2531 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2532 {
2533     e1000e_set_16bit(core, index, val);
2534 
2535     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2536         trace_e1000e_irq_tidv_fpd_running();
2537         e1000e_intrmgr_fire_delayed_interrupts(core);
2538     } else {
2539         trace_e1000e_irq_tidv_fpd_not_running();
2540     }
2541 }
2542 
2543 static uint32_t
2544 e1000e_mac_readreg(E1000ECore *core, int index)
2545 {
2546     return core->mac[index];
2547 }
2548 
2549 static uint32_t
2550 e1000e_mac_ics_read(E1000ECore *core, int index)
2551 {
2552     trace_e1000e_irq_read_ics(core->mac[ICS]);
2553     return core->mac[ICS];
2554 }
2555 
2556 static uint32_t
2557 e1000e_mac_ims_read(E1000ECore *core, int index)
2558 {
2559     trace_e1000e_irq_read_ims(core->mac[IMS]);
2560     return core->mac[IMS];
2561 }
2562 
2563 #define E1000E_LOW_BITS_READ_FUNC(num)                      \
2564     static uint32_t                                         \
2565     e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2566     {                                                       \
2567         return core->mac[index] & (BIT(num) - 1);           \
2568     }                                                       \
2569 
2570 #define E1000E_LOW_BITS_READ(num)                           \
2571     e1000e_mac_low##num##_read
2572 
2573 E1000E_LOW_BITS_READ_FUNC(4);
2574 E1000E_LOW_BITS_READ_FUNC(6);
2575 E1000E_LOW_BITS_READ_FUNC(11);
2576 E1000E_LOW_BITS_READ_FUNC(13);
2577 E1000E_LOW_BITS_READ_FUNC(16);
2578 
2579 static uint32_t
2580 e1000e_mac_swsm_read(E1000ECore *core, int index)
2581 {
2582     uint32_t val = core->mac[SWSM];
2583     core->mac[SWSM] = val | 1;
2584     return val;
2585 }
2586 
2587 static uint32_t
2588 e1000e_mac_itr_read(E1000ECore *core, int index)
2589 {
2590     return core->itr_guest_value;
2591 }
2592 
2593 static uint32_t
2594 e1000e_mac_eitr_read(E1000ECore *core, int index)
2595 {
2596     return core->eitr_guest_value[index - EITR];
2597 }
2598 
2599 static uint32_t
2600 e1000e_mac_icr_read(E1000ECore *core, int index)
2601 {
2602     uint32_t ret = core->mac[ICR];
2603     trace_e1000e_irq_icr_read_entry(ret);
2604 
2605     if (core->mac[IMS] == 0) {
2606         trace_e1000e_irq_icr_clear_zero_ims();
2607         core->mac[ICR] = 0;
2608     }
2609 
2610     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2611         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2612         trace_e1000e_irq_icr_clear_iame();
2613         core->mac[ICR] = 0;
2614         trace_e1000e_irq_icr_process_iame();
2615         e1000e_clear_ims_bits(core, core->mac[IAM]);
2616     }
2617 
2618     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2619     e1000e_update_interrupt_state(core);
2620     return ret;
2621 }
2622 
2623 static uint32_t
2624 e1000e_mac_read_clr4(E1000ECore *core, int index)
2625 {
2626     uint32_t ret = core->mac[index];
2627 
2628     core->mac[index] = 0;
2629     return ret;
2630 }
2631 
2632 static uint32_t
2633 e1000e_mac_read_clr8(E1000ECore *core, int index)
2634 {
2635     uint32_t ret = core->mac[index];
2636 
2637     core->mac[index] = 0;
2638     core->mac[index - 1] = 0;
2639     return ret;
2640 }
2641 
2642 static uint32_t
2643 e1000e_get_ctrl(E1000ECore *core, int index)
2644 {
2645     uint32_t val = core->mac[CTRL];
2646 
2647     trace_e1000e_link_read_params(
2648         !!(val & E1000_CTRL_ASDE),
2649         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2650         !!(val & E1000_CTRL_FRCSPD),
2651         !!(val & E1000_CTRL_FRCDPX),
2652         !!(val & E1000_CTRL_RFCE),
2653         !!(val & E1000_CTRL_TFCE));
2654 
2655     return val;
2656 }
2657 
2658 static uint32_t
2659 e1000e_get_status(E1000ECore *core, int index)
2660 {
2661     uint32_t res = core->mac[STATUS];
2662 
2663     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2664         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2665     }
2666 
2667     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2668         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2669     } else {
2670         res |= E1000_STATUS_FD;
2671     }
2672 
2673     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2674         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2675         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2676         case E1000_CTRL_SPD_10:
2677             res |= E1000_STATUS_SPEED_10;
2678             break;
2679         case E1000_CTRL_SPD_100:
2680             res |= E1000_STATUS_SPEED_100;
2681             break;
2682         case E1000_CTRL_SPD_1000:
2683         default:
2684             res |= E1000_STATUS_SPEED_1000;
2685             break;
2686         }
2687     } else {
2688         res |= E1000_STATUS_SPEED_1000;
2689     }
2690 
2691     trace_e1000e_link_status(
2692         !!(res & E1000_STATUS_LU),
2693         !!(res & E1000_STATUS_FD),
2694         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2695         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2696 
2697     return res;
2698 }
2699 
2700 static uint32_t
2701 e1000e_get_tarc(E1000ECore *core, int index)
2702 {
2703     return core->mac[index] & ((BIT(11) - 1) |
2704                                 BIT(27)      |
2705                                 BIT(28)      |
2706                                 BIT(29)      |
2707                                 BIT(30));
2708 }
2709 
2710 static void
2711 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2712 {
2713     core->mac[index] = val;
2714 }
2715 
2716 static void
2717 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2718 {
2719     uint32_t macaddr[2];
2720 
2721     core->mac[index] = val;
2722 
2723     macaddr[0] = cpu_to_le32(core->mac[RA]);
2724     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2725     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2726         (uint8_t *) macaddr);
2727 
2728     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2729 }
2730 
2731 static void
2732 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2733 {
2734     static const uint32_t ro_bits = E1000_EECD_PRES          |
2735                                     E1000_EECD_AUTO_RD       |
2736                                     E1000_EECD_SIZE_EX_MASK;
2737 
2738     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2739 }
2740 
2741 static void
2742 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2743 {
2744     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2745     uint32_t flags = 0;
2746     uint32_t data = 0;
2747 
2748     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2749         data = core->eeprom[addr];
2750         flags = E1000_EERW_DONE;
2751     }
2752 
2753     core->mac[EERD] = flags                           |
2754                       (addr << E1000_EERW_ADDR_SHIFT) |
2755                       (data << E1000_EERW_DATA_SHIFT);
2756 }
2757 
2758 static void
2759 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2760 {
2761     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2762     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2763     uint32_t flags = 0;
2764 
2765     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2766         core->eeprom[addr] = data;
2767         flags = E1000_EERW_DONE;
2768     }
2769 
2770     core->mac[EERD] = flags                           |
2771                       (addr << E1000_EERW_ADDR_SHIFT) |
2772                       (data << E1000_EERW_DATA_SHIFT);
2773 }
2774 
2775 static void
2776 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2777 {
2778     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2779 }
2780 
2781 static void
2782 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2783 {
2784     uint32_t interval = val & 0xffff;
2785 
2786     trace_e1000e_irq_itr_set(val);
2787 
2788     core->itr_guest_value = interval;
2789     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2790 }
2791 
2792 static void
2793 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2794 {
2795     uint32_t interval = val & 0xffff;
2796     uint32_t eitr_num = index - EITR;
2797 
2798     trace_e1000e_irq_eitr_set(eitr_num, val);
2799 
2800     core->eitr_guest_value[eitr_num] = interval;
2801     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2802 }
2803 
2804 static void
2805 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2806 {
2807     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2808 
2809         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2810             qemu_log_mask(LOG_GUEST_ERROR,
2811                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2812             return;
2813         }
2814 
2815         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2816             qemu_log_mask(LOG_GUEST_ERROR,
2817                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2818             return;
2819         }
2820     }
2821 
2822     core->mac[PSRCTL] = val;
2823 }
2824 
2825 static void
2826 e1000e_update_rx_offloads(E1000ECore *core)
2827 {
2828     int cso_state = e1000e_rx_l4_cso_enabled(core);
2829 
2830     trace_e1000e_rx_set_cso(cso_state);
2831 
2832     if (core->has_vnet) {
2833         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2834                          cso_state, 0, 0, 0, 0);
2835     }
2836 }
2837 
2838 static void
2839 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2840 {
2841     core->mac[RXCSUM] = val;
2842     e1000e_update_rx_offloads(core);
2843 }
2844 
2845 static void
2846 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2847 {
2848     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2849     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2850 }
2851 
2852 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2853 typedef uint32_t (*readops)(E1000ECore *, int);
2854 static const readops e1000e_macreg_readops[] = {
2855     e1000e_getreg(PBA),
2856     e1000e_getreg(WUFC),
2857     e1000e_getreg(MANC),
2858     e1000e_getreg(TOTL),
2859     e1000e_getreg(RDT0),
2860     e1000e_getreg(RDBAH0),
2861     e1000e_getreg(TDBAL1),
2862     e1000e_getreg(RDLEN0),
2863     e1000e_getreg(RDH1),
2864     e1000e_getreg(LATECOL),
2865     e1000e_getreg(SEQEC),
2866     e1000e_getreg(XONTXC),
2867     e1000e_getreg(WUS),
2868     e1000e_getreg(GORCL),
2869     e1000e_getreg(MGTPRC),
2870     e1000e_getreg(EERD),
2871     e1000e_getreg(EIAC),
2872     e1000e_getreg(PSRCTL),
2873     e1000e_getreg(MANC2H),
2874     e1000e_getreg(RXCSUM),
2875     e1000e_getreg(GSCL_3),
2876     e1000e_getreg(GSCN_2),
2877     e1000e_getreg(RSRPD),
2878     e1000e_getreg(RDBAL1),
2879     e1000e_getreg(FCAH),
2880     e1000e_getreg(FCRTH),
2881     e1000e_getreg(FLOP),
2882     e1000e_getreg(FLASHT),
2883     e1000e_getreg(RXSTMPH),
2884     e1000e_getreg(TXSTMPL),
2885     e1000e_getreg(TIMADJL),
2886     e1000e_getreg(TXDCTL),
2887     e1000e_getreg(RDH0),
2888     e1000e_getreg(TDT1),
2889     e1000e_getreg(TNCRS),
2890     e1000e_getreg(RJC),
2891     e1000e_getreg(IAM),
2892     e1000e_getreg(GSCL_2),
2893     e1000e_getreg(RDBAH1),
2894     e1000e_getreg(FLSWDATA),
2895     e1000e_getreg(RXSATRH),
2896     e1000e_getreg(TIPG),
2897     e1000e_getreg(FLMNGCTL),
2898     e1000e_getreg(FLMNGCNT),
2899     e1000e_getreg(TSYNCTXCTL),
2900     e1000e_getreg(EXTCNF_SIZE),
2901     e1000e_getreg(EXTCNF_CTRL),
2902     e1000e_getreg(EEMNGDATA),
2903     e1000e_getreg(CTRL_EXT),
2904     e1000e_getreg(SYSTIMH),
2905     e1000e_getreg(EEMNGCTL),
2906     e1000e_getreg(FLMNGDATA),
2907     e1000e_getreg(TSYNCRXCTL),
2908     e1000e_getreg(TDH),
2909     e1000e_getreg(LEDCTL),
2910     e1000e_getreg(TCTL),
2911     e1000e_getreg(TDBAL),
2912     e1000e_getreg(TDLEN),
2913     e1000e_getreg(TDH1),
2914     e1000e_getreg(RADV),
2915     e1000e_getreg(ECOL),
2916     e1000e_getreg(DC),
2917     e1000e_getreg(RLEC),
2918     e1000e_getreg(XOFFTXC),
2919     e1000e_getreg(RFC),
2920     e1000e_getreg(RNBC),
2921     e1000e_getreg(MGTPTC),
2922     e1000e_getreg(TIMINCA),
2923     e1000e_getreg(RXCFGL),
2924     e1000e_getreg(MFUTP01),
2925     e1000e_getreg(FACTPS),
2926     e1000e_getreg(GSCL_1),
2927     e1000e_getreg(GSCN_0),
2928     e1000e_getreg(GCR2),
2929     e1000e_getreg(RDT1),
2930     e1000e_getreg(PBACLR),
2931     e1000e_getreg(FCTTV),
2932     e1000e_getreg(EEWR),
2933     e1000e_getreg(FLSWCTL),
2934     e1000e_getreg(RXDCTL1),
2935     e1000e_getreg(RXSATRL),
2936     e1000e_getreg(SYSTIML),
2937     e1000e_getreg(RXUDP),
2938     e1000e_getreg(TORL),
2939     e1000e_getreg(TDLEN1),
2940     e1000e_getreg(MCC),
2941     e1000e_getreg(WUC),
2942     e1000e_getreg(EECD),
2943     e1000e_getreg(MFUTP23),
2944     e1000e_getreg(RAID),
2945     e1000e_getreg(FCRTV),
2946     e1000e_getreg(TXDCTL1),
2947     e1000e_getreg(RCTL),
2948     e1000e_getreg(TDT),
2949     e1000e_getreg(MDIC),
2950     e1000e_getreg(FCRUC),
2951     e1000e_getreg(VET),
2952     e1000e_getreg(RDBAL0),
2953     e1000e_getreg(TDBAH1),
2954     e1000e_getreg(RDTR),
2955     e1000e_getreg(SCC),
2956     e1000e_getreg(COLC),
2957     e1000e_getreg(CEXTERR),
2958     e1000e_getreg(XOFFRXC),
2959     e1000e_getreg(IPAV),
2960     e1000e_getreg(GOTCL),
2961     e1000e_getreg(MGTPDC),
2962     e1000e_getreg(GCR),
2963     e1000e_getreg(IVAR),
2964     e1000e_getreg(POEMB),
2965     e1000e_getreg(MFVAL),
2966     e1000e_getreg(FUNCTAG),
2967     e1000e_getreg(GSCL_4),
2968     e1000e_getreg(GSCN_3),
2969     e1000e_getreg(MRQC),
2970     e1000e_getreg(RDLEN1),
2971     e1000e_getreg(FCT),
2972     e1000e_getreg(FLA),
2973     e1000e_getreg(FLOL),
2974     e1000e_getreg(RXDCTL),
2975     e1000e_getreg(RXSTMPL),
2976     e1000e_getreg(TXSTMPH),
2977     e1000e_getreg(TIMADJH),
2978     e1000e_getreg(FCRTL),
2979     e1000e_getreg(TDBAH),
2980     e1000e_getreg(TADV),
2981     e1000e_getreg(XONRXC),
2982     e1000e_getreg(TSCTFC),
2983     e1000e_getreg(RFCTL),
2984     e1000e_getreg(GSCN_1),
2985     e1000e_getreg(FCAL),
2986     e1000e_getreg(FLSWCNT),
2987 
2988     [TOTH]    = e1000e_mac_read_clr8,
2989     [GOTCH]   = e1000e_mac_read_clr8,
2990     [PRC64]   = e1000e_mac_read_clr4,
2991     [PRC255]  = e1000e_mac_read_clr4,
2992     [PRC1023] = e1000e_mac_read_clr4,
2993     [PTC64]   = e1000e_mac_read_clr4,
2994     [PTC255]  = e1000e_mac_read_clr4,
2995     [PTC1023] = e1000e_mac_read_clr4,
2996     [GPRC]    = e1000e_mac_read_clr4,
2997     [TPT]     = e1000e_mac_read_clr4,
2998     [RUC]     = e1000e_mac_read_clr4,
2999     [BPRC]    = e1000e_mac_read_clr4,
3000     [MPTC]    = e1000e_mac_read_clr4,
3001     [IAC]     = e1000e_mac_read_clr4,
3002     [ICR]     = e1000e_mac_icr_read,
3003     [RDFH]    = E1000E_LOW_BITS_READ(13),
3004     [RDFHS]   = E1000E_LOW_BITS_READ(13),
3005     [RDFPC]   = E1000E_LOW_BITS_READ(13),
3006     [TDFH]    = E1000E_LOW_BITS_READ(13),
3007     [TDFHS]   = E1000E_LOW_BITS_READ(13),
3008     [STATUS]  = e1000e_get_status,
3009     [TARC0]   = e1000e_get_tarc,
3010     [PBS]     = E1000E_LOW_BITS_READ(6),
3011     [ICS]     = e1000e_mac_ics_read,
3012     [AIT]     = E1000E_LOW_BITS_READ(16),
3013     [TORH]    = e1000e_mac_read_clr8,
3014     [GORCH]   = e1000e_mac_read_clr8,
3015     [PRC127]  = e1000e_mac_read_clr4,
3016     [PRC511]  = e1000e_mac_read_clr4,
3017     [PRC1522] = e1000e_mac_read_clr4,
3018     [PTC127]  = e1000e_mac_read_clr4,
3019     [PTC511]  = e1000e_mac_read_clr4,
3020     [PTC1522] = e1000e_mac_read_clr4,
3021     [GPTC]    = e1000e_mac_read_clr4,
3022     [TPR]     = e1000e_mac_read_clr4,
3023     [ROC]     = e1000e_mac_read_clr4,
3024     [MPRC]    = e1000e_mac_read_clr4,
3025     [BPTC]    = e1000e_mac_read_clr4,
3026     [TSCTC]   = e1000e_mac_read_clr4,
3027     [ITR]     = e1000e_mac_itr_read,
3028     [RDFT]    = E1000E_LOW_BITS_READ(13),
3029     [RDFTS]   = E1000E_LOW_BITS_READ(13),
3030     [TDFPC]   = E1000E_LOW_BITS_READ(13),
3031     [TDFT]    = E1000E_LOW_BITS_READ(13),
3032     [TDFTS]   = E1000E_LOW_BITS_READ(13),
3033     [CTRL]    = e1000e_get_ctrl,
3034     [TARC1]   = e1000e_get_tarc,
3035     [SWSM]    = e1000e_mac_swsm_read,
3036     [IMS]     = e1000e_mac_ims_read,
3037 
3038     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3039     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3040     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3041     [RA ... RA + 31]       = e1000e_mac_readreg,
3042     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3043     [MTA ... MTA + 127]    = e1000e_mac_readreg,
3044     [VFTA ... VFTA + 127]  = e1000e_mac_readreg,
3045     [FFMT ... FFMT + 254]  = E1000E_LOW_BITS_READ(4),
3046     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3047     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3048     [FFLT ... FFLT + 10]   = E1000E_LOW_BITS_READ(11),
3049     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3050     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3051     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3052     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3053     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3054     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3055 };
3056 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3057 
3058 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3059 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3060 static const writeops e1000e_macreg_writeops[] = {
3061     e1000e_putreg(PBA),
3062     e1000e_putreg(SWSM),
3063     e1000e_putreg(WUFC),
3064     e1000e_putreg(RDBAH1),
3065     e1000e_putreg(TDBAH),
3066     e1000e_putreg(TXDCTL),
3067     e1000e_putreg(RDBAH0),
3068     e1000e_putreg(LEDCTL),
3069     e1000e_putreg(FCAL),
3070     e1000e_putreg(FCRUC),
3071     e1000e_putreg(AIT),
3072     e1000e_putreg(TDFH),
3073     e1000e_putreg(TDFT),
3074     e1000e_putreg(TDFHS),
3075     e1000e_putreg(TDFTS),
3076     e1000e_putreg(TDFPC),
3077     e1000e_putreg(WUC),
3078     e1000e_putreg(WUS),
3079     e1000e_putreg(RDFH),
3080     e1000e_putreg(RDFT),
3081     e1000e_putreg(RDFHS),
3082     e1000e_putreg(RDFTS),
3083     e1000e_putreg(RDFPC),
3084     e1000e_putreg(IPAV),
3085     e1000e_putreg(TDBAH1),
3086     e1000e_putreg(TIMINCA),
3087     e1000e_putreg(IAM),
3088     e1000e_putreg(EIAC),
3089     e1000e_putreg(IVAR),
3090     e1000e_putreg(TARC0),
3091     e1000e_putreg(TARC1),
3092     e1000e_putreg(FLSWDATA),
3093     e1000e_putreg(POEMB),
3094     e1000e_putreg(PBS),
3095     e1000e_putreg(MFUTP01),
3096     e1000e_putreg(MFUTP23),
3097     e1000e_putreg(MANC),
3098     e1000e_putreg(MANC2H),
3099     e1000e_putreg(MFVAL),
3100     e1000e_putreg(EXTCNF_CTRL),
3101     e1000e_putreg(FACTPS),
3102     e1000e_putreg(FUNCTAG),
3103     e1000e_putreg(GSCL_1),
3104     e1000e_putreg(GSCL_2),
3105     e1000e_putreg(GSCL_3),
3106     e1000e_putreg(GSCL_4),
3107     e1000e_putreg(GSCN_0),
3108     e1000e_putreg(GSCN_1),
3109     e1000e_putreg(GSCN_2),
3110     e1000e_putreg(GSCN_3),
3111     e1000e_putreg(GCR2),
3112     e1000e_putreg(MRQC),
3113     e1000e_putreg(FLOP),
3114     e1000e_putreg(FLOL),
3115     e1000e_putreg(FLSWCTL),
3116     e1000e_putreg(FLSWCNT),
3117     e1000e_putreg(FLA),
3118     e1000e_putreg(RXDCTL1),
3119     e1000e_putreg(TXDCTL1),
3120     e1000e_putreg(TIPG),
3121     e1000e_putreg(RXSTMPH),
3122     e1000e_putreg(RXSTMPL),
3123     e1000e_putreg(RXSATRL),
3124     e1000e_putreg(RXSATRH),
3125     e1000e_putreg(TXSTMPL),
3126     e1000e_putreg(TXSTMPH),
3127     e1000e_putreg(SYSTIML),
3128     e1000e_putreg(SYSTIMH),
3129     e1000e_putreg(TIMADJL),
3130     e1000e_putreg(TIMADJH),
3131     e1000e_putreg(RXUDP),
3132     e1000e_putreg(RXCFGL),
3133     e1000e_putreg(TSYNCRXCTL),
3134     e1000e_putreg(TSYNCTXCTL),
3135     e1000e_putreg(EXTCNF_SIZE),
3136     e1000e_putreg(EEMNGCTL),
3137     e1000e_putreg(RA),
3138 
3139     [TDH1]     = e1000e_set_16bit,
3140     [TDT1]     = e1000e_set_tdt,
3141     [TCTL]     = e1000e_set_tctl,
3142     [TDT]      = e1000e_set_tdt,
3143     [MDIC]     = e1000e_set_mdic,
3144     [ICS]      = e1000e_set_ics,
3145     [TDH]      = e1000e_set_16bit,
3146     [RDH0]     = e1000e_set_16bit,
3147     [RDT0]     = e1000e_set_rdt,
3148     [IMC]      = e1000e_set_imc,
3149     [IMS]      = e1000e_set_ims,
3150     [ICR]      = e1000e_set_icr,
3151     [EECD]     = e1000e_set_eecd,
3152     [RCTL]     = e1000e_set_rx_control,
3153     [CTRL]     = e1000e_set_ctrl,
3154     [RDTR]     = e1000e_set_rdtr,
3155     [RADV]     = e1000e_set_16bit,
3156     [TADV]     = e1000e_set_16bit,
3157     [ITR]      = e1000e_set_itr,
3158     [EERD]     = e1000e_set_eerd,
3159     [GCR]      = e1000e_set_gcr,
3160     [PSRCTL]   = e1000e_set_psrctl,
3161     [RXCSUM]   = e1000e_set_rxcsum,
3162     [RAID]     = e1000e_set_16bit,
3163     [RSRPD]    = e1000e_set_12bit,
3164     [TIDV]     = e1000e_set_tidv,
3165     [TDLEN1]   = e1000e_set_dlen,
3166     [TDLEN]    = e1000e_set_dlen,
3167     [RDLEN0]   = e1000e_set_dlen,
3168     [RDLEN1]   = e1000e_set_dlen,
3169     [TDBAL]    = e1000e_set_dbal,
3170     [TDBAL1]   = e1000e_set_dbal,
3171     [RDBAL0]   = e1000e_set_dbal,
3172     [RDBAL1]   = e1000e_set_dbal,
3173     [RDH1]     = e1000e_set_16bit,
3174     [RDT1]     = e1000e_set_rdt,
3175     [STATUS]   = e1000e_set_status,
3176     [PBACLR]   = e1000e_set_pbaclr,
3177     [CTRL_EXT] = e1000e_set_ctrlext,
3178     [FCAH]     = e1000e_set_16bit,
3179     [FCT]      = e1000e_set_16bit,
3180     [FCTTV]    = e1000e_set_16bit,
3181     [FCRTV]    = e1000e_set_16bit,
3182     [FCRTH]    = e1000e_set_fcrth,
3183     [FCRTL]    = e1000e_set_fcrtl,
3184     [VET]      = e1000e_set_vet,
3185     [RXDCTL]   = e1000e_set_rxdctl,
3186     [FLASHT]   = e1000e_set_16bit,
3187     [EEWR]     = e1000e_set_eewr,
3188     [CTRL_DUP] = e1000e_set_ctrl,
3189     [RFCTL]    = e1000e_set_rfctl,
3190     [RA + 1]   = e1000e_mac_setmacaddr,
3191 
3192     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3193     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3194     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3195     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3196     [MTA ... MTA + 127]      = e1000e_mac_writereg,
3197     [VFTA ... VFTA + 127]    = e1000e_mac_writereg,
3198     [FFMT ... FFMT + 254]    = e1000e_mac_writereg,
3199     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3200     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3201     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3202     [FFLT ... FFLT + 10]     = e1000e_mac_writereg,
3203     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3204     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3205     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3206     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3207     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3208 };
3209 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3210 
3211 enum { MAC_ACCESS_PARTIAL = 1 };
3212 
3213 /* The array below combines alias offsets of the index values for the
3214  * MAC registers that have aliases, with the indication of not fully
3215  * implemented registers (lowest bit). This combination is possible
3216  * because all of the offsets are even. */
3217 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3218     /* Alias index offsets */
3219     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3220     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3221     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3222     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3223     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3224     [RA_A ... RA_A + 31]      = 0x14f0,
3225     [VFTA_A ... VFTA_A + 127] = 0x1400,
3226     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3227     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3228     /* Access options */
3229     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3230     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3231     [RDFPC] = MAC_ACCESS_PARTIAL,
3232     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3233     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3234     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3235     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3236     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3237     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3238     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3239     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3240     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3241     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3242 };
3243 
3244 void
3245 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3246 {
3247     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3248 
3249     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3250         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3251             trace_e1000e_wrn_regs_write_trivial(index << 2);
3252         }
3253         trace_e1000e_core_write(index << 2, size, val);
3254         e1000e_macreg_writeops[index](core, index, val);
3255     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3256         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3257     } else {
3258         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3259     }
3260 }
3261 
3262 uint64_t
3263 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3264 {
3265     uint64_t val;
3266     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3267 
3268     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3269         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3270             trace_e1000e_wrn_regs_read_trivial(index << 2);
3271         }
3272         val = e1000e_macreg_readops[index](core, index);
3273         trace_e1000e_core_read(index << 2, size, val);
3274         return val;
3275     } else {
3276         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3277     }
3278     return 0;
3279 }
3280 
3281 static inline void
3282 e1000e_autoneg_pause(E1000ECore *core)
3283 {
3284     timer_del(core->autoneg_timer);
3285 }
3286 
3287 static void
3288 e1000e_autoneg_resume(E1000ECore *core)
3289 {
3290     if (e1000e_have_autoneg(core) &&
3291         !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3292         qemu_get_queue(core->owner_nic)->link_down = false;
3293         timer_mod(core->autoneg_timer,
3294                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3295     }
3296 }
3297 
3298 static void
3299 e1000e_vm_state_change(void *opaque, bool running, RunState state)
3300 {
3301     E1000ECore *core = opaque;
3302 
3303     if (running) {
3304         trace_e1000e_vm_state_running();
3305         e1000e_intrmgr_resume(core);
3306         e1000e_autoneg_resume(core);
3307     } else {
3308         trace_e1000e_vm_state_stopped();
3309         e1000e_autoneg_pause(core);
3310         e1000e_intrmgr_pause(core);
3311     }
3312 }
3313 
3314 void
3315 e1000e_core_pci_realize(E1000ECore     *core,
3316                         const uint16_t *eeprom_templ,
3317                         uint32_t        eeprom_size,
3318                         const uint8_t  *macaddr)
3319 {
3320     int i;
3321 
3322     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3323                                        e1000e_autoneg_timer, core);
3324     e1000e_intrmgr_pci_realize(core);
3325 
3326     core->vmstate =
3327         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3328 
3329     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3330         net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3331                         E1000E_MAX_TX_FRAGS, core->has_vnet);
3332     }
3333 
3334     net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3335 
3336     e1000x_core_prepare_eeprom(core->eeprom,
3337                                eeprom_templ,
3338                                eeprom_size,
3339                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3340                                macaddr);
3341     e1000e_update_rx_offloads(core);
3342 }
3343 
3344 void
3345 e1000e_core_pci_uninit(E1000ECore *core)
3346 {
3347     int i;
3348 
3349     timer_free(core->autoneg_timer);
3350 
3351     e1000e_intrmgr_pci_unint(core);
3352 
3353     qemu_del_vm_change_state_handler(core->vmstate);
3354 
3355     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3356         net_tx_pkt_reset(core->tx[i].tx_pkt);
3357         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3358     }
3359 
3360     net_rx_pkt_uninit(core->rx_pkt);
3361 }
3362 
3363 static const uint16_t
3364 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3365     [0] = {
3366         [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB  |
3367                        MII_CR_FULL_DUPLEX       |
3368                        MII_CR_AUTO_NEG_EN,
3369 
3370         [PHY_STATUS] = MII_SR_EXTENDED_CAPS     |
3371                        MII_SR_LINK_STATUS       |
3372                        MII_SR_AUTONEG_CAPS      |
3373                        MII_SR_PREAMBLE_SUPPRESS |
3374                        MII_SR_EXTENDED_STATUS   |
3375                        MII_SR_10T_HD_CAPS       |
3376                        MII_SR_10T_FD_CAPS       |
3377                        MII_SR_100X_HD_CAPS      |
3378                        MII_SR_100X_FD_CAPS,
3379 
3380         [PHY_ID1]               = 0x141,
3381         [PHY_ID2]               = E1000_PHY_ID2_82574x,
3382         [PHY_AUTONEG_ADV]       = 0xde1,
3383         [PHY_LP_ABILITY]        = 0x7e0,
3384         [PHY_AUTONEG_EXP]       = BIT(2),
3385         [PHY_NEXT_PAGE_TX]      = BIT(0) | BIT(13),
3386         [PHY_1000T_CTRL]        = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3387         [PHY_1000T_STATUS]      = 0x3c00,
3388         [PHY_EXT_STATUS]        = BIT(12) | BIT(13),
3389 
3390         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3391                                   BIT(12) | BIT(13),
3392         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3393     },
3394     [2] = {
3395         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3396         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3397     },
3398     [3] = {
3399         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3400     }
3401 };
3402 
3403 static const uint32_t e1000e_mac_reg_init[] = {
3404     [PBA]           =     0x00140014,
3405     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3406     [EXTCNF_CTRL]   = BIT(3),
3407     [EEMNGCTL]      = BIT(31),
3408     [FLASHT]        = 0x2,
3409     [FLSWCTL]       = BIT(30) | BIT(31),
3410     [FLOL]          = BIT(0),
3411     [RXDCTL]        = BIT(16),
3412     [RXDCTL1]       = BIT(16),
3413     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3414     [RXCFGL]        = 0x88F7,
3415     [RXUDP]         = 0x319,
3416     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3417                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3418                       E1000_CTRL_ADVD3WUC,
3419     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3420     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3421                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3422                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3423     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3424     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3425     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3426     [EERD]          = E1000_EERW_DONE,
3427     [EEWR]          = E1000_EERW_DONE,
3428     [GCR]           = E1000_L0S_ADJUST |
3429                       E1000_L1_ENTRY_LATENCY_MSB |
3430                       E1000_L1_ENTRY_LATENCY_LSB,
3431     [TDFH]          = 0x600,
3432     [TDFT]          = 0x600,
3433     [TDFHS]         = 0x600,
3434     [TDFTS]         = 0x600,
3435     [POEMB]         = 0x30D,
3436     [PBS]           = 0x028,
3437     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3438     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3439     [SWSM]          = 1,
3440     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3441     [ITR]           = E1000E_MIN_XITR,
3442     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3443 };
3444 
3445 void
3446 e1000e_core_reset(E1000ECore *core)
3447 {
3448     int i;
3449 
3450     timer_del(core->autoneg_timer);
3451 
3452     e1000e_intrmgr_reset(core);
3453 
3454     memset(core->phy, 0, sizeof core->phy);
3455     memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3456     memset(core->mac, 0, sizeof core->mac);
3457     memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3458 
3459     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3460 
3461     if (qemu_get_queue(core->owner_nic)->link_down) {
3462         e1000e_link_down(core);
3463     }
3464 
3465     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3466 
3467     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3468         net_tx_pkt_reset(core->tx[i].tx_pkt);
3469         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3470         core->tx[i].skip_cp = false;
3471     }
3472 }
3473 
3474 void e1000e_core_pre_save(E1000ECore *core)
3475 {
3476     int i;
3477     NetClientState *nc = qemu_get_queue(core->owner_nic);
3478 
3479     /*
3480     * If link is down and auto-negotiation is supported and ongoing,
3481     * complete auto-negotiation immediately. This allows us to look
3482     * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3483     */
3484     if (nc->link_down && e1000e_have_autoneg(core)) {
3485         core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3486         e1000e_update_flowctl_status(core);
3487     }
3488 
3489     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3490         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3491             core->tx[i].skip_cp = true;
3492         }
3493     }
3494 }
3495 
3496 int
3497 e1000e_core_post_load(E1000ECore *core)
3498 {
3499     NetClientState *nc = qemu_get_queue(core->owner_nic);
3500 
3501     /* nc.link_down can't be migrated, so infer link_down according
3502      * to link status bit in core.mac[STATUS].
3503      */
3504     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3505 
3506     return 0;
3507 }
3508