xref: /openbmc/qemu/hw/net/e1000e_core.c (revision 5c867340)
1 /*
2  * Core code for QEMU e1000e emulation
3  *
4  * Software developer's manuals:
5  * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6  *
7  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8  * Developed by Daynix Computing LTD (http://www.daynix.com)
9  *
10  * Authors:
11  * Dmitry Fleytman <dmitry@daynix.com>
12  * Leonid Bloch <leonid@daynix.com>
13  * Yan Vugenfirer <yan@daynix.com>
14  *
15  * Based on work done by:
16  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17  * Copyright (c) 2008 Qumranet
18  * Based on work done by:
19  * Copyright (c) 2007 Dan Aloni
20  * Copyright (c) 2004 Antony T Curtis
21  *
22  * This library is free software; you can redistribute it and/or
23  * modify it under the terms of the GNU Lesser General Public
24  * License as published by the Free Software Foundation; either
25  * version 2.1 of the License, or (at your option) any later version.
26  *
27  * This library is distributed in the hope that it will be useful,
28  * but WITHOUT ANY WARRANTY; without even the implied warranty of
29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30  * Lesser General Public License for more details.
31  *
32  * You should have received a copy of the GNU Lesser General Public
33  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34  */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/net/mii.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 #include "sysemu/runstate.h"
44 
45 #include "net_tx_pkt.h"
46 #include "net_rx_pkt.h"
47 
48 #include "e1000_common.h"
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
51 
52 #include "trace.h"
53 
54 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
55 #define E1000E_MIN_XITR     (500)
56 
57 #define E1000E_MAX_TX_FRAGS (64)
58 
59 union e1000_rx_desc_union {
60     struct e1000_rx_desc legacy;
61     union e1000_rx_desc_extended extended;
62     union e1000_rx_desc_packet_split packet_split;
63 };
64 
65 static ssize_t
66 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
67                         bool has_vnet);
68 
69 static inline void
70 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
71 
72 static void e1000e_reset(E1000ECore *core, bool sw);
73 
74 static inline void
75 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
76 {
77     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
78         trace_e1000e_wrn_no_ts_support();
79     }
80 }
81 
82 static inline void
83 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
84 {
85     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
86         trace_e1000e_wrn_no_snap_support();
87     }
88 }
89 
90 static inline void
91 e1000e_raise_legacy_irq(E1000ECore *core)
92 {
93     trace_e1000e_irq_legacy_notify(true);
94     e1000x_inc_reg_if_not_full(core->mac, IAC);
95     pci_set_irq(core->owner, 1);
96 }
97 
98 static inline void
99 e1000e_lower_legacy_irq(E1000ECore *core)
100 {
101     trace_e1000e_irq_legacy_notify(false);
102     pci_set_irq(core->owner, 0);
103 }
104 
105 static inline void
106 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
107 {
108     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
109                                  timer->delay_resolution_ns;
110 
111     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
112 
113     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
114 
115     timer->running = true;
116 }
117 
118 static void
119 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
120 {
121     if (timer->running) {
122         e1000e_intrmgr_rearm_timer(timer);
123     }
124 }
125 
126 static void
127 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
128 {
129     if (timer->running) {
130         timer_del(timer->timer);
131     }
132 }
133 
134 static inline void
135 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
136 {
137     if (timer->running) {
138         timer_del(timer->timer);
139         timer->running = false;
140     }
141 }
142 
143 static inline void
144 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
145 {
146     trace_e1000e_irq_fire_delayed_interrupts();
147     e1000e_set_interrupt_cause(core, 0);
148 }
149 
150 static void
151 e1000e_intrmgr_on_timer(void *opaque)
152 {
153     E1000IntrDelayTimer *timer = opaque;
154 
155     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
156 
157     timer->running = false;
158     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
159 }
160 
161 static void
162 e1000e_intrmgr_on_throttling_timer(void *opaque)
163 {
164     E1000IntrDelayTimer *timer = opaque;
165 
166     timer->running = false;
167 
168     if (msi_enabled(timer->core->owner)) {
169         trace_e1000e_irq_msi_notify_postponed();
170         /* Clear msi_causes_pending to fire MSI eventually */
171         timer->core->msi_causes_pending = 0;
172         e1000e_set_interrupt_cause(timer->core, 0);
173     } else {
174         trace_e1000e_irq_legacy_notify_postponed();
175         e1000e_set_interrupt_cause(timer->core, 0);
176     }
177 }
178 
179 static void
180 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
181 {
182     E1000IntrDelayTimer *timer = opaque;
183     int idx = timer - &timer->core->eitr[0];
184 
185     timer->running = false;
186 
187     trace_e1000e_irq_msix_notify_postponed_vec(idx);
188     msix_notify(timer->core->owner, idx);
189 }
190 
191 static void
192 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
193 {
194     int i;
195 
196     core->radv.delay_reg = RADV;
197     core->rdtr.delay_reg = RDTR;
198     core->raid.delay_reg = RAID;
199     core->tadv.delay_reg = TADV;
200     core->tidv.delay_reg = TIDV;
201 
202     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
205     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
206     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
207 
208     core->radv.core = core;
209     core->rdtr.core = core;
210     core->raid.core = core;
211     core->tadv.core = core;
212     core->tidv.core = core;
213 
214     core->itr.core = core;
215     core->itr.delay_reg = ITR;
216     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
217 
218     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
219         core->eitr[i].core = core;
220         core->eitr[i].delay_reg = EITR + i;
221         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
222     }
223 
224     if (!create) {
225         return;
226     }
227 
228     core->radv.timer =
229         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
230     core->rdtr.timer =
231         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
232     core->raid.timer =
233         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
234 
235     core->tadv.timer =
236         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
237     core->tidv.timer =
238         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
239 
240     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
241                                    e1000e_intrmgr_on_throttling_timer,
242                                    &core->itr);
243 
244     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
245         core->eitr[i].timer =
246             timer_new_ns(QEMU_CLOCK_VIRTUAL,
247                          e1000e_intrmgr_on_msix_throttling_timer,
248                          &core->eitr[i]);
249     }
250 }
251 
252 static inline void
253 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
254 {
255     e1000e_intrmgr_stop_timer(&core->radv);
256     e1000e_intrmgr_stop_timer(&core->rdtr);
257     e1000e_intrmgr_stop_timer(&core->raid);
258     e1000e_intrmgr_stop_timer(&core->tidv);
259     e1000e_intrmgr_stop_timer(&core->tadv);
260 }
261 
262 static bool
263 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
264 {
265     uint32_t delayable_causes;
266     uint32_t rdtr = core->mac[RDTR];
267     uint32_t radv = core->mac[RADV];
268     uint32_t raid = core->mac[RAID];
269 
270     if (msix_enabled(core->owner)) {
271         return false;
272     }
273 
274     delayable_causes = E1000_ICR_RXQ0 |
275                        E1000_ICR_RXQ1 |
276                        E1000_ICR_RXT0;
277 
278     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
279         delayable_causes |= E1000_ICR_ACK;
280     }
281 
282     /* Clean up all causes that may be delayed */
283     core->delayed_causes |= *causes & delayable_causes;
284     *causes &= ~delayable_causes;
285 
286     /*
287      * Check if delayed RX interrupts disabled by client
288      * or if there are causes that cannot be delayed
289      */
290     if ((rdtr == 0) || (*causes != 0)) {
291         return false;
292     }
293 
294     /*
295      * Check if delayed RX ACK interrupts disabled by client
296      * and there is an ACK packet received
297      */
298     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
299         return false;
300     }
301 
302     /* All causes delayed */
303     e1000e_intrmgr_rearm_timer(&core->rdtr);
304 
305     if (!core->radv.running && (radv != 0)) {
306         e1000e_intrmgr_rearm_timer(&core->radv);
307     }
308 
309     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
310         e1000e_intrmgr_rearm_timer(&core->raid);
311     }
312 
313     return true;
314 }
315 
316 static bool
317 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
318 {
319     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
320                                              E1000_ICR_TXQ1 |
321                                              E1000_ICR_TXQE |
322                                              E1000_ICR_TXDW;
323 
324     if (msix_enabled(core->owner)) {
325         return false;
326     }
327 
328     /* Clean up all causes that may be delayed */
329     core->delayed_causes |= *causes & delayable_causes;
330     *causes &= ~delayable_causes;
331 
332     /* If there are causes that cannot be delayed */
333     if (*causes != 0) {
334         return false;
335     }
336 
337     /* All causes delayed */
338     e1000e_intrmgr_rearm_timer(&core->tidv);
339 
340     if (!core->tadv.running && (core->mac[TADV] != 0)) {
341         e1000e_intrmgr_rearm_timer(&core->tadv);
342     }
343 
344     return true;
345 }
346 
347 static uint32_t
348 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
349 {
350     uint32_t res;
351 
352     if (msix_enabled(core->owner)) {
353         assert(core->delayed_causes == 0);
354         return 0;
355     }
356 
357     res = core->delayed_causes;
358     core->delayed_causes = 0;
359 
360     e1000e_intrmgr_stop_delay_timers(core);
361 
362     return res;
363 }
364 
365 static void
366 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
367 {
368     int i;
369     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
370 
371     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
372     core->mac[ICR] |= val;
373 
374     if (core->itr.running) {
375         timer_del(core->itr.timer);
376         e1000e_intrmgr_on_throttling_timer(&core->itr);
377     }
378 
379     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
380         if (core->eitr[i].running) {
381             timer_del(core->eitr[i].timer);
382             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
383         }
384     }
385 }
386 
387 static void
388 e1000e_intrmgr_resume(E1000ECore *core)
389 {
390     int i;
391 
392     e1000e_intmgr_timer_resume(&core->radv);
393     e1000e_intmgr_timer_resume(&core->rdtr);
394     e1000e_intmgr_timer_resume(&core->raid);
395     e1000e_intmgr_timer_resume(&core->tidv);
396     e1000e_intmgr_timer_resume(&core->tadv);
397 
398     e1000e_intmgr_timer_resume(&core->itr);
399 
400     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
401         e1000e_intmgr_timer_resume(&core->eitr[i]);
402     }
403 }
404 
405 static void
406 e1000e_intrmgr_pause(E1000ECore *core)
407 {
408     int i;
409 
410     e1000e_intmgr_timer_pause(&core->radv);
411     e1000e_intmgr_timer_pause(&core->rdtr);
412     e1000e_intmgr_timer_pause(&core->raid);
413     e1000e_intmgr_timer_pause(&core->tidv);
414     e1000e_intmgr_timer_pause(&core->tadv);
415 
416     e1000e_intmgr_timer_pause(&core->itr);
417 
418     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
419         e1000e_intmgr_timer_pause(&core->eitr[i]);
420     }
421 }
422 
423 static void
424 e1000e_intrmgr_reset(E1000ECore *core)
425 {
426     int i;
427 
428     core->delayed_causes = 0;
429 
430     e1000e_intrmgr_stop_delay_timers(core);
431 
432     e1000e_intrmgr_stop_timer(&core->itr);
433 
434     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
435         e1000e_intrmgr_stop_timer(&core->eitr[i]);
436     }
437 }
438 
439 static void
440 e1000e_intrmgr_pci_unint(E1000ECore *core)
441 {
442     int i;
443 
444     timer_free(core->radv.timer);
445     timer_free(core->rdtr.timer);
446     timer_free(core->raid.timer);
447 
448     timer_free(core->tadv.timer);
449     timer_free(core->tidv.timer);
450 
451     timer_free(core->itr.timer);
452 
453     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
454         timer_free(core->eitr[i].timer);
455     }
456 }
457 
458 static void
459 e1000e_intrmgr_pci_realize(E1000ECore *core)
460 {
461     e1000e_intrmgr_initialize_all_timers(core, true);
462 }
463 
464 static inline bool
465 e1000e_rx_csum_enabled(E1000ECore *core)
466 {
467     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
468 }
469 
470 static inline bool
471 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
472 {
473     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
474 }
475 
476 static inline bool
477 e1000e_rx_use_ps_descriptor(E1000ECore *core)
478 {
479     return !e1000e_rx_use_legacy_descriptor(core) &&
480            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
481 }
482 
483 static inline bool
484 e1000e_rss_enabled(E1000ECore *core)
485 {
486     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
487            !e1000e_rx_csum_enabled(core) &&
488            !e1000e_rx_use_legacy_descriptor(core);
489 }
490 
491 typedef struct E1000E_RSSInfo_st {
492     bool enabled;
493     uint32_t hash;
494     uint32_t queue;
495     uint32_t type;
496 } E1000E_RSSInfo;
497 
498 static uint32_t
499 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
500 {
501     bool hasip4, hasip6;
502     EthL4HdrProto l4hdr_proto;
503 
504     assert(e1000e_rss_enabled(core));
505 
506     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
507 
508     if (hasip4) {
509         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
510                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
512 
513         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
514             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
515             return E1000_MRQ_RSS_TYPE_IPV4TCP;
516         }
517 
518         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
519             return E1000_MRQ_RSS_TYPE_IPV4;
520         }
521     } else if (hasip6) {
522         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
523 
524         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
525         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
526 
527         /*
528          * Following two traces must not be combined because resulting
529          * event will have 11 arguments totally and some trace backends
530          * (at least "ust") have limitation of maximum 10 arguments per
531          * event. Events with more arguments fail to compile for
532          * backends like these.
533          */
534         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
535         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
536                                 ip6info->has_ext_hdrs,
537                                 ip6info->rss_ex_dst_valid,
538                                 ip6info->rss_ex_src_valid,
539                                 core->mac[MRQC],
540                                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC]),
541                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
542                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
543 
544         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
545             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
546                               ip6info->rss_ex_src_valid))) {
547 
548             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
549                 E1000_MRQC_EN_TCPIPV6EX(core->mac[MRQC])) {
550                 return E1000_MRQ_RSS_TYPE_IPV6TCPEX;
551             }
552 
553             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
554                 return E1000_MRQ_RSS_TYPE_IPV6EX;
555             }
556 
557         }
558 
559         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
560             return E1000_MRQ_RSS_TYPE_IPV6;
561         }
562 
563     }
564 
565     return E1000_MRQ_RSS_TYPE_NONE;
566 }
567 
568 static uint32_t
569 e1000e_rss_calc_hash(E1000ECore *core,
570                      struct NetRxPkt *pkt,
571                      E1000E_RSSInfo *info)
572 {
573     NetRxPktRssType type;
574 
575     assert(e1000e_rss_enabled(core));
576 
577     switch (info->type) {
578     case E1000_MRQ_RSS_TYPE_IPV4:
579         type = NetPktRssIpV4;
580         break;
581     case E1000_MRQ_RSS_TYPE_IPV4TCP:
582         type = NetPktRssIpV4Tcp;
583         break;
584     case E1000_MRQ_RSS_TYPE_IPV6TCPEX:
585         type = NetPktRssIpV6TcpEx;
586         break;
587     case E1000_MRQ_RSS_TYPE_IPV6:
588         type = NetPktRssIpV6;
589         break;
590     case E1000_MRQ_RSS_TYPE_IPV6EX:
591         type = NetPktRssIpV6Ex;
592         break;
593     default:
594         assert(false);
595         return 0;
596     }
597 
598     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
599 }
600 
601 static void
602 e1000e_rss_parse_packet(E1000ECore *core,
603                         struct NetRxPkt *pkt,
604                         E1000E_RSSInfo *info)
605 {
606     trace_e1000e_rx_rss_started();
607 
608     if (!e1000e_rss_enabled(core)) {
609         info->enabled = false;
610         info->hash = 0;
611         info->queue = 0;
612         info->type = 0;
613         trace_e1000e_rx_rss_disabled();
614         return;
615     }
616 
617     info->enabled = true;
618 
619     info->type = e1000e_rss_get_hash_type(core, pkt);
620 
621     trace_e1000e_rx_rss_type(info->type);
622 
623     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
624         info->hash = 0;
625         info->queue = 0;
626         return;
627     }
628 
629     info->hash = e1000e_rss_calc_hash(core, pkt, info);
630     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
631 }
632 
633 static bool
634 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
635 {
636     if (tx->props.tse && tx->cptse) {
637         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
638             return false;
639         }
640 
641         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
642         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
643         return true;
644     }
645 
646     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
647         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
648             return false;
649         }
650     }
651 
652     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
653         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
654     }
655 
656     return true;
657 }
658 
659 static void e1000e_tx_pkt_callback(void *core,
660                                    const struct iovec *iov,
661                                    int iovcnt,
662                                    const struct iovec *virt_iov,
663                                    int virt_iovcnt)
664 {
665     e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
666 }
667 
668 static bool
669 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
670 {
671     int target_queue = MIN(core->max_queue_num, queue_index);
672     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
673 
674     if (!e1000e_setup_tx_offloads(core, tx)) {
675         return false;
676     }
677 
678     net_tx_pkt_dump(tx->tx_pkt);
679 
680     if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
681         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
682         return net_tx_pkt_send_custom(tx->tx_pkt, false,
683                                       e1000e_tx_pkt_callback, core);
684     } else {
685         return net_tx_pkt_send(tx->tx_pkt, queue);
686     }
687 }
688 
689 static void
690 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
691 {
692     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
693                                     PTC1023, PTC1522 };
694 
695     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
696 
697     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
698     e1000x_inc_reg_if_not_full(core->mac, TPT);
699     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
700 
701     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
702     case ETH_PKT_BCAST:
703         e1000x_inc_reg_if_not_full(core->mac, BPTC);
704         break;
705     case ETH_PKT_MCAST:
706         e1000x_inc_reg_if_not_full(core->mac, MPTC);
707         break;
708     case ETH_PKT_UCAST:
709         break;
710     default:
711         g_assert_not_reached();
712     }
713 
714     e1000x_inc_reg_if_not_full(core->mac, GPTC);
715     e1000x_grow_8reg_if_not_full(core->mac, GOTCL, tot_len);
716 }
717 
718 static void
719 e1000e_process_tx_desc(E1000ECore *core,
720                        struct e1000e_tx *tx,
721                        struct e1000_tx_desc *dp,
722                        int queue_index)
723 {
724     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
725     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
726     unsigned int split_size = txd_lower & 0xffff;
727     uint64_t addr;
728     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
729     bool eop = txd_lower & E1000_TXD_CMD_EOP;
730 
731     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
732         e1000x_read_tx_ctx_descr(xp, &tx->props);
733         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
734         return;
735     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
736         /* data descriptor */
737         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
738         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
739         e1000e_process_ts_option(core, dp);
740     } else {
741         /* legacy descriptor */
742         e1000e_process_ts_option(core, dp);
743         tx->cptse = 0;
744     }
745 
746     addr = le64_to_cpu(dp->buffer_addr);
747 
748     if (!tx->skip_cp) {
749         if (!net_tx_pkt_add_raw_fragment_pci(tx->tx_pkt, core->owner,
750                                              addr, split_size)) {
751             tx->skip_cp = true;
752         }
753     }
754 
755     if (eop) {
756         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
757             if (e1000x_vlan_enabled(core->mac) &&
758                 e1000x_is_vlan_txd(txd_lower)) {
759                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
760                     le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
761             }
762             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
763                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
764             }
765         }
766 
767         tx->skip_cp = false;
768         net_tx_pkt_reset(tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
769 
770         tx->sum_needed = 0;
771         tx->cptse = 0;
772     }
773 }
774 
775 static inline uint32_t
776 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
777 {
778     if (!msix_enabled(core->owner)) {
779         return E1000_ICR_TXDW;
780     }
781 
782     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
783 }
784 
785 static inline uint32_t
786 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
787                              bool min_threshold_hit)
788 {
789     if (!msix_enabled(core->owner)) {
790         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
791     }
792 
793     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
794 }
795 
796 static uint32_t
797 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
798                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
799 {
800     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
801 
802     if (!(txd_lower & E1000_TXD_CMD_RS) &&
803         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
804         return 0;
805     }
806 
807     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
808 
809     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
810 
811     dp->upper.data = cpu_to_le32(txd_upper);
812     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
813                   &dp->upper, sizeof(dp->upper));
814     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
815 }
816 
817 typedef struct E1000E_RingInfo_st {
818     int dbah;
819     int dbal;
820     int dlen;
821     int dh;
822     int dt;
823     int idx;
824 } E1000E_RingInfo;
825 
826 static inline bool
827 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
828 {
829     return core->mac[r->dh] == core->mac[r->dt] ||
830                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
831 }
832 
833 static inline uint64_t
834 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
835 {
836     uint64_t bah = core->mac[r->dbah];
837     uint64_t bal = core->mac[r->dbal];
838 
839     return (bah << 32) + bal;
840 }
841 
842 static inline uint64_t
843 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
844 {
845     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
846 }
847 
848 static inline void
849 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
850 {
851     core->mac[r->dh] += count;
852 
853     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
854         core->mac[r->dh] = 0;
855     }
856 }
857 
858 static inline uint32_t
859 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
860 {
861     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
862                                  core->mac[r->dh],  core->mac[r->dt]);
863 
864     if (core->mac[r->dh] <= core->mac[r->dt]) {
865         return core->mac[r->dt] - core->mac[r->dh];
866     }
867 
868     if (core->mac[r->dh] > core->mac[r->dt]) {
869         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
870                core->mac[r->dt] - core->mac[r->dh];
871     }
872 
873     g_assert_not_reached();
874     return 0;
875 }
876 
877 static inline bool
878 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
879 {
880     return core->mac[r->dlen] > 0;
881 }
882 
883 static inline uint32_t
884 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
885 {
886     return core->mac[r->dlen];
887 }
888 
889 typedef struct E1000E_TxRing_st {
890     const E1000E_RingInfo *i;
891     struct e1000e_tx *tx;
892 } E1000E_TxRing;
893 
894 static inline int
895 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
896 {
897     return (reg_idx - base_reg_idx) / (0x100 >> 2);
898 }
899 
900 static inline void
901 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
902 {
903     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
904         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
905         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
906     };
907 
908     assert(idx < ARRAY_SIZE(i));
909 
910     txr->i     = &i[idx];
911     txr->tx    = &core->tx[idx];
912 }
913 
914 typedef struct E1000E_RxRing_st {
915     const E1000E_RingInfo *i;
916 } E1000E_RxRing;
917 
918 static inline void
919 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
920 {
921     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
922         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
923         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
924     };
925 
926     assert(idx < ARRAY_SIZE(i));
927 
928     rxr->i      = &i[idx];
929 }
930 
931 static void
932 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
933 {
934     dma_addr_t base;
935     struct e1000_tx_desc desc;
936     bool ide = false;
937     const E1000E_RingInfo *txi = txr->i;
938     uint32_t cause = E1000_ICS_TXQE;
939 
940     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
941         trace_e1000e_tx_disabled();
942         return;
943     }
944 
945     while (!e1000e_ring_empty(core, txi)) {
946         base = e1000e_ring_head_descr(core, txi);
947 
948         pci_dma_read(core->owner, base, &desc, sizeof(desc));
949 
950         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
951                               desc.lower.data, desc.upper.data);
952 
953         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
954         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
955 
956         e1000e_ring_advance(core, txi, 1);
957     }
958 
959     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
960         e1000e_set_interrupt_cause(core, cause);
961     }
962 
963     net_tx_pkt_reset(txr->tx->tx_pkt, net_tx_pkt_unmap_frag_pci, core->owner);
964 }
965 
966 static bool
967 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
968                   size_t total_size)
969 {
970     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
971 
972     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
973                                 core->rx_desc_buf_size);
974 
975     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
976                          core->rx_desc_buf_size;
977 }
978 
979 void
980 e1000e_start_recv(E1000ECore *core)
981 {
982     int i;
983 
984     trace_e1000e_rx_start_recv();
985 
986     for (i = 0; i <= core->max_queue_num; i++) {
987         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
988     }
989 }
990 
991 bool
992 e1000e_can_receive(E1000ECore *core)
993 {
994     int i;
995 
996     if (!e1000x_rx_ready(core->owner, core->mac)) {
997         return false;
998     }
999 
1000     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
1001         E1000E_RxRing rxr;
1002 
1003         e1000e_rx_ring_init(core, &rxr, i);
1004         if (e1000e_ring_enabled(core, rxr.i) &&
1005             e1000e_has_rxbufs(core, rxr.i, 1)) {
1006             trace_e1000e_rx_can_recv();
1007             return true;
1008         }
1009     }
1010 
1011     trace_e1000e_rx_can_recv_rings_full();
1012     return false;
1013 }
1014 
1015 ssize_t
1016 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
1017 {
1018     const struct iovec iov = {
1019         .iov_base = (uint8_t *)buf,
1020         .iov_len = size
1021     };
1022 
1023     return e1000e_receive_iov(core, &iov, 1);
1024 }
1025 
1026 static inline bool
1027 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1028 {
1029     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1030 }
1031 
1032 static inline bool
1033 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1034 {
1035     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1036 }
1037 
1038 static bool
1039 e1000e_receive_filter(E1000ECore *core, const void *buf)
1040 {
1041     return (!e1000x_is_vlan_packet(buf, core->mac[VET]) ||
1042             e1000x_rx_vlan_filter(core->mac, PKT_GET_VLAN_HDR(buf))) &&
1043            e1000x_rx_group_filter(core->mac, buf);
1044 }
1045 
1046 static inline void
1047 e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1048                           hwaddr *buff_addr)
1049 {
1050     *buff_addr = le64_to_cpu(desc->buffer_addr);
1051 }
1052 
1053 static inline void
1054 e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1055                          hwaddr *buff_addr)
1056 {
1057     *buff_addr = le64_to_cpu(desc->read.buffer_addr);
1058 }
1059 
1060 static inline void
1061 e1000e_read_ps_rx_descr(E1000ECore *core,
1062                         union e1000_rx_desc_packet_split *desc,
1063                         hwaddr buff_addr[MAX_PS_BUFFERS])
1064 {
1065     int i;
1066 
1067     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1068         buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
1069     }
1070 
1071     trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
1072                                  buff_addr[2], buff_addr[3]);
1073 }
1074 
1075 static inline void
1076 e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1077                      hwaddr buff_addr[MAX_PS_BUFFERS])
1078 {
1079     if (e1000e_rx_use_legacy_descriptor(core)) {
1080         e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
1081         buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1082     } else {
1083         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1084             e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
1085         } else {
1086             e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
1087             buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1088         }
1089     }
1090 }
1091 
1092 static void
1093 e1000e_verify_csum_in_sw(E1000ECore *core,
1094                          struct NetRxPkt *pkt,
1095                          uint32_t *status_flags,
1096                          EthL4HdrProto l4hdr_proto)
1097 {
1098     bool csum_valid;
1099     uint32_t csum_error;
1100 
1101     if (e1000e_rx_l3_cso_enabled(core)) {
1102         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1103             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1104         } else {
1105             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1106             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1107         }
1108     } else {
1109         trace_e1000e_rx_metadata_l3_cso_disabled();
1110     }
1111 
1112     if (!e1000e_rx_l4_cso_enabled(core)) {
1113         trace_e1000e_rx_metadata_l4_cso_disabled();
1114         return;
1115     }
1116 
1117     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1118         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1119         return;
1120     }
1121 
1122     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1123     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1124 
1125     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1126         *status_flags |= E1000_RXD_STAT_UDPCS;
1127     }
1128 }
1129 
1130 static inline bool
1131 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1132 {
1133     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1134         return false;
1135     }
1136 
1137     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1138         return !net_rx_pkt_has_tcp_data(rx_pkt);
1139     }
1140 
1141     return true;
1142 }
1143 
1144 static void
1145 e1000e_build_rx_metadata(E1000ECore *core,
1146                          struct NetRxPkt *pkt,
1147                          bool is_eop,
1148                          const E1000E_RSSInfo *rss_info,
1149                          uint32_t *rss, uint32_t *mrq,
1150                          uint32_t *status_flags,
1151                          uint16_t *ip_id,
1152                          uint16_t *vlan_tag)
1153 {
1154     struct virtio_net_hdr *vhdr;
1155     bool hasip4, hasip6;
1156     EthL4HdrProto l4hdr_proto;
1157     uint32_t pkt_type;
1158 
1159     *status_flags = E1000_RXD_STAT_DD;
1160 
1161     /* No additional metadata needed for non-EOP descriptors */
1162     if (!is_eop) {
1163         goto func_exit;
1164     }
1165 
1166     *status_flags |= E1000_RXD_STAT_EOP;
1167 
1168     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1169     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1170 
1171     /* VLAN state */
1172     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1173         *status_flags |= E1000_RXD_STAT_VP;
1174         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1175         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1176     }
1177 
1178     /* Packet parsing results */
1179     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1180         if (rss_info->enabled) {
1181             *rss = cpu_to_le32(rss_info->hash);
1182             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1183             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1184         }
1185     } else if (hasip4) {
1186             *status_flags |= E1000_RXD_STAT_IPIDV;
1187             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1188             trace_e1000e_rx_metadata_ip_id(*ip_id);
1189     }
1190 
1191     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
1192         *status_flags |= E1000_RXD_STAT_ACK;
1193         trace_e1000e_rx_metadata_ack();
1194     }
1195 
1196     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1197         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1198         pkt_type = E1000_RXD_PKT_MAC;
1199     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1200                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1201         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1202     } else if (hasip4 || hasip6) {
1203         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1204     } else {
1205         pkt_type = E1000_RXD_PKT_MAC;
1206     }
1207 
1208     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1209     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1210 
1211     /* RX CSO information */
1212     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1213         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1214         goto func_exit;
1215     }
1216 
1217     vhdr = net_rx_pkt_get_vhdr(pkt);
1218 
1219     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1220         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1221         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1222         e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1223         goto func_exit;
1224     }
1225 
1226     if (e1000e_rx_l3_cso_enabled(core)) {
1227         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1228     } else {
1229         trace_e1000e_rx_metadata_l3_cso_disabled();
1230     }
1231 
1232     if (e1000e_rx_l4_cso_enabled(core)) {
1233         switch (l4hdr_proto) {
1234         case ETH_L4_HDR_PROTO_TCP:
1235             *status_flags |= E1000_RXD_STAT_TCPCS;
1236             break;
1237 
1238         case ETH_L4_HDR_PROTO_UDP:
1239             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1240             break;
1241 
1242         default:
1243             break;
1244         }
1245     } else {
1246         trace_e1000e_rx_metadata_l4_cso_disabled();
1247     }
1248 
1249 func_exit:
1250     trace_e1000e_rx_metadata_status_flags(*status_flags);
1251     *status_flags = cpu_to_le32(*status_flags);
1252 }
1253 
1254 static inline void
1255 e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1256                            struct NetRxPkt *pkt,
1257                            const E1000E_RSSInfo *rss_info,
1258                            uint16_t length)
1259 {
1260     uint32_t status_flags, rss, mrq;
1261     uint16_t ip_id;
1262 
1263     assert(!rss_info->enabled);
1264 
1265     desc->length = cpu_to_le16(length);
1266     desc->csum = 0;
1267 
1268     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1269                              rss_info,
1270                              &rss, &mrq,
1271                              &status_flags, &ip_id,
1272                              &desc->special);
1273     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1274     desc->status = (uint8_t) le32_to_cpu(status_flags);
1275 }
1276 
1277 static inline void
1278 e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1279                           struct NetRxPkt *pkt,
1280                           const E1000E_RSSInfo *rss_info,
1281                           uint16_t length)
1282 {
1283     memset(&desc->wb, 0, sizeof(desc->wb));
1284 
1285     desc->wb.upper.length = cpu_to_le16(length);
1286 
1287     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1288                              rss_info,
1289                              &desc->wb.lower.hi_dword.rss,
1290                              &desc->wb.lower.mrq,
1291                              &desc->wb.upper.status_error,
1292                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1293                              &desc->wb.upper.vlan);
1294 }
1295 
1296 static inline void
1297 e1000e_write_ps_rx_descr(E1000ECore *core,
1298                          union e1000_rx_desc_packet_split *desc,
1299                          struct NetRxPkt *pkt,
1300                          const E1000E_RSSInfo *rss_info,
1301                          size_t ps_hdr_len,
1302                          uint16_t(*written)[MAX_PS_BUFFERS])
1303 {
1304     int i;
1305 
1306     memset(&desc->wb, 0, sizeof(desc->wb));
1307 
1308     desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
1309 
1310     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1311         desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1312     }
1313 
1314     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1315                              rss_info,
1316                              &desc->wb.lower.hi_dword.rss,
1317                              &desc->wb.lower.mrq,
1318                              &desc->wb.middle.status_error,
1319                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1320                              &desc->wb.middle.vlan);
1321 
1322     desc->wb.upper.header_status =
1323         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1324 
1325     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1326                                   (*written)[2], (*written)[3]);
1327 }
1328 
1329 static inline void
1330 e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1331 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1332     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1333 {
1334     if (e1000e_rx_use_legacy_descriptor(core)) {
1335         assert(ps_hdr_len == 0);
1336         e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1337                                    (*written)[0]);
1338     } else {
1339         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1340             e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
1341                                       ps_hdr_len, written);
1342         } else {
1343             assert(ps_hdr_len == 0);
1344             e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
1345                                        (*written)[0]);
1346         }
1347     }
1348 }
1349 
1350 static inline void
1351 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1352                              union e1000_rx_desc_union *desc, dma_addr_t len)
1353 {
1354     PCIDevice *dev = core->owner;
1355 
1356     if (e1000e_rx_use_legacy_descriptor(core)) {
1357         struct e1000_rx_desc *d = &desc->legacy;
1358         size_t offset = offsetof(struct e1000_rx_desc, status);
1359         uint8_t status = d->status;
1360 
1361         d->status &= ~E1000_RXD_STAT_DD;
1362         pci_dma_write(dev, addr, desc, len);
1363 
1364         if (status & E1000_RXD_STAT_DD) {
1365             d->status = status;
1366             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1367         }
1368     } else {
1369         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1370             union e1000_rx_desc_packet_split *d = &desc->packet_split;
1371             size_t offset = offsetof(union e1000_rx_desc_packet_split,
1372                 wb.middle.status_error);
1373             uint32_t status = d->wb.middle.status_error;
1374 
1375             d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1376             pci_dma_write(dev, addr, desc, len);
1377 
1378             if (status & E1000_RXD_STAT_DD) {
1379                 d->wb.middle.status_error = status;
1380                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1381             }
1382         } else {
1383             union e1000_rx_desc_extended *d = &desc->extended;
1384             size_t offset = offsetof(union e1000_rx_desc_extended,
1385                 wb.upper.status_error);
1386             uint32_t status = d->wb.upper.status_error;
1387 
1388             d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1389             pci_dma_write(dev, addr, desc, len);
1390 
1391             if (status & E1000_RXD_STAT_DD) {
1392                 d->wb.upper.status_error = status;
1393                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1394             }
1395         }
1396     }
1397 }
1398 
1399 typedef struct e1000e_ba_state_st {
1400     uint16_t written[MAX_PS_BUFFERS];
1401     uint8_t cur_idx;
1402 } e1000e_ba_state;
1403 
1404 static inline void
1405 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1406                                hwaddr ba[MAX_PS_BUFFERS],
1407                                e1000e_ba_state *bastate,
1408                                const char *data,
1409                                dma_addr_t data_len)
1410 {
1411     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1412 
1413     pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
1414     bastate->written[0] += data_len;
1415 
1416     bastate->cur_idx = 1;
1417 }
1418 
1419 static void
1420 e1000e_write_to_rx_buffers(E1000ECore *core,
1421                            hwaddr ba[MAX_PS_BUFFERS],
1422                            e1000e_ba_state *bastate,
1423                            const char *data,
1424                            dma_addr_t data_len)
1425 {
1426     while (data_len > 0) {
1427         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1428         uint32_t cur_buf_bytes_left = cur_buf_len -
1429                                       bastate->written[bastate->cur_idx];
1430         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1431 
1432         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1433                                         ba[bastate->cur_idx],
1434                                         bastate->written[bastate->cur_idx],
1435                                         data,
1436                                         bytes_to_write);
1437 
1438         pci_dma_write(core->owner,
1439             ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1440             data, bytes_to_write);
1441 
1442         bastate->written[bastate->cur_idx] += bytes_to_write;
1443         data += bytes_to_write;
1444         data_len -= bytes_to_write;
1445 
1446         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1447             bastate->cur_idx++;
1448         }
1449 
1450         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1451     }
1452 }
1453 
1454 static void
1455 e1000e_update_rx_stats(E1000ECore *core, size_t pkt_size, size_t pkt_fcs_size)
1456 {
1457     eth_pkt_types_e pkt_type = net_rx_pkt_get_packet_type(core->rx_pkt);
1458     e1000x_update_rx_total_stats(core->mac, pkt_type, pkt_size, pkt_fcs_size);
1459 }
1460 
1461 static inline bool
1462 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1463 {
1464     return e1000e_ring_free_descr_num(core, rxi) ==
1465            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1466 }
1467 
1468 static bool
1469 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1470 {
1471     bool hasip4, hasip6;
1472     EthL4HdrProto l4hdr_proto;
1473     bool fragment;
1474 
1475     if (!e1000e_rx_use_ps_descriptor(core)) {
1476         return false;
1477     }
1478 
1479     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1480 
1481     if (hasip4) {
1482         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1483     } else if (hasip6) {
1484         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1485     } else {
1486         return false;
1487     }
1488 
1489     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1490         return false;
1491     }
1492 
1493     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1494         l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1495         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1496     } else {
1497         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1498     }
1499 
1500     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1501         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1502         return false;
1503     }
1504 
1505     return true;
1506 }
1507 
1508 static void
1509 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1510                              const E1000E_RxRing *rxr,
1511                              const E1000E_RSSInfo *rss_info)
1512 {
1513     PCIDevice *d = core->owner;
1514     dma_addr_t base;
1515     union e1000_rx_desc_union desc;
1516     size_t desc_size;
1517     size_t desc_offset = 0;
1518     size_t iov_ofs = 0;
1519 
1520     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1521     size_t size = net_rx_pkt_get_total_len(pkt);
1522     size_t total_size = size + e1000x_fcs_len(core->mac);
1523     const E1000E_RingInfo *rxi;
1524     size_t ps_hdr_len = 0;
1525     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1526     bool is_first = true;
1527 
1528     rxi = rxr->i;
1529 
1530     do {
1531         hwaddr ba[MAX_PS_BUFFERS];
1532         e1000e_ba_state bastate = { { 0 } };
1533         bool is_last = false;
1534 
1535         desc_size = total_size - desc_offset;
1536 
1537         if (desc_size > core->rx_desc_buf_size) {
1538             desc_size = core->rx_desc_buf_size;
1539         }
1540 
1541         if (e1000e_ring_empty(core, rxi)) {
1542             return;
1543         }
1544 
1545         base = e1000e_ring_head_descr(core, rxi);
1546 
1547         pci_dma_read(d, base, &desc, core->rx_desc_len);
1548 
1549         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1550 
1551         e1000e_read_rx_descr(core, &desc, ba);
1552 
1553         if (ba[0]) {
1554             if (desc_offset < size) {
1555                 static const uint32_t fcs_pad;
1556                 size_t iov_copy;
1557                 size_t copy_size = size - desc_offset;
1558                 if (copy_size > core->rx_desc_buf_size) {
1559                     copy_size = core->rx_desc_buf_size;
1560                 }
1561 
1562                 /* For PS mode copy the packet header first */
1563                 if (do_ps) {
1564                     if (is_first) {
1565                         size_t ps_hdr_copied = 0;
1566                         do {
1567                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1568                                            iov->iov_len - iov_ofs);
1569 
1570                             e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1571                                                       iov->iov_base, iov_copy);
1572 
1573                             copy_size -= iov_copy;
1574                             ps_hdr_copied += iov_copy;
1575 
1576                             iov_ofs += iov_copy;
1577                             if (iov_ofs == iov->iov_len) {
1578                                 iov++;
1579                                 iov_ofs = 0;
1580                             }
1581                         } while (ps_hdr_copied < ps_hdr_len);
1582 
1583                         is_first = false;
1584                     } else {
1585                         /* Leave buffer 0 of each descriptor except first */
1586                         /* empty as per spec 7.1.5.1                      */
1587                         e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1588                                                        NULL, 0);
1589                     }
1590                 }
1591 
1592                 /* Copy packet payload */
1593                 while (copy_size) {
1594                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1595 
1596                     e1000e_write_to_rx_buffers(core, ba, &bastate,
1597                                             iov->iov_base + iov_ofs, iov_copy);
1598 
1599                     copy_size -= iov_copy;
1600                     iov_ofs += iov_copy;
1601                     if (iov_ofs == iov->iov_len) {
1602                         iov++;
1603                         iov_ofs = 0;
1604                     }
1605                 }
1606 
1607                 if (desc_offset + desc_size >= total_size) {
1608                     /* Simulate FCS checksum presence in the last descriptor */
1609                     e1000e_write_to_rx_buffers(core, ba, &bastate,
1610                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1611                 }
1612             }
1613         } else { /* as per intel docs; skip descriptors with null buf addr */
1614             trace_e1000e_rx_null_descriptor();
1615         }
1616         desc_offset += desc_size;
1617         if (desc_offset >= total_size) {
1618             is_last = true;
1619         }
1620 
1621         e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1622                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1623         e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
1624 
1625         e1000e_ring_advance(core, rxi,
1626                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1627 
1628     } while (desc_offset < total_size);
1629 
1630     e1000e_update_rx_stats(core, size, total_size);
1631 }
1632 
1633 static inline void
1634 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1635 {
1636     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1637 
1638     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1639         net_rx_pkt_fix_l4_csum(pkt);
1640     }
1641 }
1642 
1643 ssize_t
1644 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1645 {
1646     return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
1647 }
1648 
1649 static ssize_t
1650 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
1651                         bool has_vnet)
1652 {
1653     uint32_t n = 0;
1654     uint8_t buf[ETH_ZLEN];
1655     struct iovec min_iov;
1656     size_t size, orig_size;
1657     size_t iov_ofs = 0;
1658     E1000E_RxRing rxr;
1659     E1000E_RSSInfo rss_info;
1660     size_t total_size;
1661     ssize_t retval;
1662     bool rdmts_hit;
1663 
1664     trace_e1000e_rx_receive_iov(iovcnt);
1665 
1666     if (!e1000x_hw_rx_enabled(core->mac)) {
1667         return -1;
1668     }
1669 
1670     /* Pull virtio header in */
1671     if (has_vnet) {
1672         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1673         iov_ofs = sizeof(struct virtio_net_hdr);
1674     } else {
1675         net_rx_pkt_unset_vhdr(core->rx_pkt);
1676     }
1677 
1678     orig_size = iov_size(iov, iovcnt);
1679     size = orig_size - iov_ofs;
1680 
1681     /* Pad to minimum Ethernet frame length */
1682     if (size < sizeof(buf)) {
1683         iov_to_buf(iov, iovcnt, iov_ofs, buf, size);
1684         memset(&buf[size], 0, sizeof(buf) - size);
1685         e1000x_inc_reg_if_not_full(core->mac, RUC);
1686         min_iov.iov_base = buf;
1687         min_iov.iov_len = size = sizeof(buf);
1688         iovcnt = 1;
1689         iov = &min_iov;
1690         iov_ofs = 0;
1691     } else {
1692         iov_to_buf(iov, iovcnt, iov_ofs, buf, ETH_HLEN + 4);
1693     }
1694 
1695     /* Discard oversized packets if !LPE and !SBP. */
1696     if (e1000x_is_oversized(core->mac, size)) {
1697         return orig_size;
1698     }
1699 
1700     net_rx_pkt_set_packet_type(core->rx_pkt,
1701         get_eth_packet_type(PKT_GET_ETH_HDR(buf)));
1702 
1703     if (!e1000e_receive_filter(core, buf)) {
1704         trace_e1000e_rx_flt_dropped();
1705         return orig_size;
1706     }
1707 
1708     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1709                                e1000x_vlan_enabled(core->mac), core->mac[VET]);
1710 
1711     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1712     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1713 
1714     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1715         e1000x_fcs_len(core->mac);
1716 
1717     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1718         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1719 
1720         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1721 
1722         retval = orig_size;
1723 
1724         /* Perform small receive detection (RSRPD) */
1725         if (total_size < core->mac[RSRPD]) {
1726             n |= E1000_ICS_SRPD;
1727         }
1728 
1729         /* Perform ACK receive detection */
1730         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1731              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1732             n |= E1000_ICS_ACK;
1733         }
1734 
1735         /* Check if receive descriptor minimum threshold hit */
1736         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1737         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1738 
1739         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1740     } else {
1741         n |= E1000_ICS_RXO;
1742         retval = 0;
1743 
1744         trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1745     }
1746 
1747     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1748         trace_e1000e_rx_interrupt_set(n);
1749         e1000e_set_interrupt_cause(core, n);
1750     } else {
1751         trace_e1000e_rx_interrupt_delayed(n);
1752     }
1753 
1754     return retval;
1755 }
1756 
1757 static inline bool
1758 e1000e_have_autoneg(E1000ECore *core)
1759 {
1760     return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
1761 }
1762 
1763 static void e1000e_update_flowctl_status(E1000ECore *core)
1764 {
1765     if (e1000e_have_autoneg(core) &&
1766         core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
1767         trace_e1000e_link_autoneg_flowctl(true);
1768         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1769     } else {
1770         trace_e1000e_link_autoneg_flowctl(false);
1771     }
1772 }
1773 
1774 static inline void
1775 e1000e_link_down(E1000ECore *core)
1776 {
1777     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1778     e1000e_update_flowctl_status(core);
1779 }
1780 
1781 static inline void
1782 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1783 {
1784     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1785     core->phy[0][MII_BMCR] = val & ~(0x3f |
1786                                      MII_BMCR_RESET |
1787                                      MII_BMCR_ANRESTART);
1788 
1789     if ((val & MII_BMCR_ANRESTART) &&
1790         e1000e_have_autoneg(core)) {
1791         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1792     }
1793 }
1794 
1795 static void
1796 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1797 {
1798     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1799 
1800     if (val & BIT(10)) {
1801         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1802     }
1803 }
1804 
1805 static void
1806 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1807 {
1808     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1809 }
1810 
1811 void
1812 e1000e_core_set_link_status(E1000ECore *core)
1813 {
1814     NetClientState *nc = qemu_get_queue(core->owner_nic);
1815     uint32_t old_status = core->mac[STATUS];
1816 
1817     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1818 
1819     if (nc->link_down) {
1820         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1821     } else {
1822         if (e1000e_have_autoneg(core) &&
1823             !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
1824             e1000x_restart_autoneg(core->mac, core->phy[0],
1825                                    core->autoneg_timer);
1826         } else {
1827             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1828             e1000e_start_recv(core);
1829         }
1830     }
1831 
1832     if (core->mac[STATUS] != old_status) {
1833         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1834     }
1835 }
1836 
1837 static void
1838 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1839 {
1840     trace_e1000e_core_ctrl_write(index, val);
1841 
1842     /* RST is self clearing */
1843     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1844     core->mac[CTRL_DUP] = core->mac[CTRL];
1845 
1846     trace_e1000e_link_set_params(
1847         !!(val & E1000_CTRL_ASDE),
1848         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1849         !!(val & E1000_CTRL_FRCSPD),
1850         !!(val & E1000_CTRL_FRCDPX),
1851         !!(val & E1000_CTRL_RFCE),
1852         !!(val & E1000_CTRL_TFCE));
1853 
1854     if (val & E1000_CTRL_RST) {
1855         trace_e1000e_core_ctrl_sw_reset();
1856         e1000e_reset(core, true);
1857     }
1858 
1859     if (val & E1000_CTRL_PHY_RST) {
1860         trace_e1000e_core_ctrl_phy_reset();
1861         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1862     }
1863 }
1864 
1865 static void
1866 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1867 {
1868     trace_e1000e_rx_set_rfctl(val);
1869 
1870     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1871         trace_e1000e_wrn_iscsi_filtering_not_supported();
1872     }
1873 
1874     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1875         trace_e1000e_wrn_nfsw_filtering_not_supported();
1876     }
1877 
1878     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1879         trace_e1000e_wrn_nfsr_filtering_not_supported();
1880     }
1881 
1882     core->mac[RFCTL] = val;
1883 }
1884 
1885 static void
1886 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1887 {
1888     int i;
1889     core->rx_desc_buf_size = 0;
1890 
1891     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1892         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1893     }
1894 }
1895 
1896 static void
1897 e1000e_parse_rxbufsize(E1000ECore *core)
1898 {
1899     uint32_t rctl = core->mac[RCTL];
1900 
1901     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1902 
1903     if (rctl & E1000_RCTL_DTYP_MASK) {
1904         uint32_t bsize;
1905 
1906         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1907         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1908 
1909         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1910         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1911 
1912         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1913         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1914 
1915         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1916         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1917     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1918         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1919         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1920     } else {
1921         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1922     }
1923 
1924     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1925                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1926 
1927     e1000e_calc_per_desc_buf_size(core);
1928 }
1929 
1930 static void
1931 e1000e_calc_rxdesclen(E1000ECore *core)
1932 {
1933     if (e1000e_rx_use_legacy_descriptor(core)) {
1934         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1935     } else {
1936         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1937             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1938         } else {
1939             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1940         }
1941     }
1942     trace_e1000e_rx_desc_len(core->rx_desc_len);
1943 }
1944 
1945 static void
1946 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1947 {
1948     core->mac[RCTL] = val;
1949     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1950 
1951     if (val & E1000_RCTL_EN) {
1952         e1000e_parse_rxbufsize(core);
1953         e1000e_calc_rxdesclen(core);
1954         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1955                                 E1000_RING_DESC_LEN_SHIFT;
1956 
1957         e1000e_start_recv(core);
1958     }
1959 }
1960 
1961 static
1962 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1963 (E1000ECore *, int, uint16_t) = {
1964     [0] = {
1965         [MII_BMCR]     = e1000e_set_phy_ctrl,
1966         [PHY_PAGE]     = e1000e_set_phy_page,
1967         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1968     }
1969 };
1970 
1971 static inline void
1972 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1973 {
1974     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1975     core->mac[IMS] &= ~bits;
1976 }
1977 
1978 static inline bool
1979 e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
1980 {
1981     if (timer->running) {
1982         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1983 
1984         return true;
1985     }
1986 
1987     if (timer->core->mac[timer->delay_reg] != 0) {
1988         e1000e_intrmgr_rearm_timer(timer);
1989     }
1990 
1991     return false;
1992 }
1993 
1994 static inline bool
1995 e1000e_itr_should_postpone(E1000ECore *core)
1996 {
1997     return e1000e_postpone_interrupt(&core->itr);
1998 }
1999 
2000 static inline bool
2001 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
2002 {
2003     return e1000e_postpone_interrupt(&core->eitr[idx]);
2004 }
2005 
2006 static void
2007 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2008 {
2009     uint32_t effective_eiac;
2010 
2011     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2012         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2013         if (vec < E1000E_MSIX_VEC_NUM) {
2014             if (!e1000e_eitr_should_postpone(core, vec)) {
2015                 trace_e1000e_irq_msix_notify_vec(vec);
2016                 msix_notify(core->owner, vec);
2017             }
2018         } else {
2019             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2020         }
2021     } else {
2022         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2023     }
2024 
2025     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2026         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2027         core->mac[IAM] &= ~cause;
2028     }
2029 
2030     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2031 
2032     effective_eiac = core->mac[EIAC] & cause;
2033 
2034     core->mac[ICR] &= ~effective_eiac;
2035     core->msi_causes_pending &= ~effective_eiac;
2036 
2037     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2038         core->mac[IMS] &= ~effective_eiac;
2039     }
2040 }
2041 
2042 static void
2043 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2044 {
2045     if (causes & E1000_ICR_RXQ0) {
2046         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2047                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2048     }
2049 
2050     if (causes & E1000_ICR_RXQ1) {
2051         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2052                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2053     }
2054 
2055     if (causes & E1000_ICR_TXQ0) {
2056         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2057                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2058     }
2059 
2060     if (causes & E1000_ICR_TXQ1) {
2061         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2062                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2063     }
2064 
2065     if (causes & E1000_ICR_OTHER) {
2066         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2067                                E1000_IVAR_OTHER(core->mac[IVAR]));
2068     }
2069 }
2070 
2071 static void
2072 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2073 {
2074     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2075         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2076         if (vec < E1000E_MSIX_VEC_NUM) {
2077             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2078             msix_clr_pending(core->owner, vec);
2079         } else {
2080             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2081         }
2082     } else {
2083         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2084     }
2085 }
2086 
2087 static void
2088 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2089 {
2090     if (causes & E1000_ICR_RXQ0) {
2091         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2092                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2093     }
2094 
2095     if (causes & E1000_ICR_RXQ1) {
2096         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2097                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2098     }
2099 
2100     if (causes & E1000_ICR_TXQ0) {
2101         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2102                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2103     }
2104 
2105     if (causes & E1000_ICR_TXQ1) {
2106         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2107                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2108     }
2109 
2110     if (causes & E1000_ICR_OTHER) {
2111         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2112                               E1000_IVAR_OTHER(core->mac[IVAR]));
2113     }
2114 }
2115 
2116 static inline void
2117 e1000e_fix_icr_asserted(E1000ECore *core)
2118 {
2119     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2120     if (core->mac[ICR]) {
2121         core->mac[ICR] |= E1000_ICR_ASSERTED;
2122     }
2123 
2124     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2125 }
2126 
2127 static void
2128 e1000e_send_msi(E1000ECore *core, bool msix)
2129 {
2130     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2131 
2132     core->msi_causes_pending &= causes;
2133     causes ^= core->msi_causes_pending;
2134     if (causes == 0) {
2135         return;
2136     }
2137     core->msi_causes_pending |= causes;
2138 
2139     if (msix) {
2140         e1000e_msix_notify(core, causes);
2141     } else {
2142         if (!e1000e_itr_should_postpone(core)) {
2143             trace_e1000e_irq_msi_notify(causes);
2144             msi_notify(core->owner, 0);
2145         }
2146     }
2147 }
2148 
2149 static void
2150 e1000e_update_interrupt_state(E1000ECore *core)
2151 {
2152     bool interrupts_pending;
2153     bool is_msix = msix_enabled(core->owner);
2154 
2155     /* Set ICR[OTHER] for MSI-X */
2156     if (is_msix) {
2157         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2158             core->mac[ICR] |= E1000_ICR_OTHER;
2159             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2160         }
2161     }
2162 
2163     e1000e_fix_icr_asserted(core);
2164 
2165     /*
2166      * Make sure ICR and ICS registers have the same value.
2167      * The spec says that the ICS register is write-only.  However in practice,
2168      * on real hardware ICS is readable, and for reads it has the same value as
2169      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2170      *
2171      * The VxWorks PRO/1000 driver uses this behaviour.
2172      */
2173     core->mac[ICS] = core->mac[ICR];
2174 
2175     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2176     if (!interrupts_pending) {
2177         core->msi_causes_pending = 0;
2178     }
2179 
2180     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2181                                         core->mac[ICR], core->mac[IMS]);
2182 
2183     if (is_msix || msi_enabled(core->owner)) {
2184         if (interrupts_pending) {
2185             e1000e_send_msi(core, is_msix);
2186         }
2187     } else {
2188         if (interrupts_pending) {
2189             if (!e1000e_itr_should_postpone(core)) {
2190                 e1000e_raise_legacy_irq(core);
2191             }
2192         } else {
2193             e1000e_lower_legacy_irq(core);
2194         }
2195     }
2196 }
2197 
2198 static void
2199 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2200 {
2201     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2202 
2203     val |= e1000e_intmgr_collect_delayed_causes(core);
2204     core->mac[ICR] |= val;
2205 
2206     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2207 
2208     e1000e_update_interrupt_state(core);
2209 }
2210 
2211 static inline void
2212 e1000e_autoneg_timer(void *opaque)
2213 {
2214     E1000ECore *core = opaque;
2215     if (!qemu_get_queue(core->owner_nic)->link_down) {
2216         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2217         e1000e_start_recv(core);
2218 
2219         e1000e_update_flowctl_status(core);
2220         /* signal link status change to the guest */
2221         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2222     }
2223 }
2224 
2225 static inline uint16_t
2226 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2227 {
2228     uint16_t index = (addr & 0x1ffff) >> 2;
2229     return index + (mac_reg_access[index] & 0xfffe);
2230 }
2231 
2232 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2233     [0] = {
2234         [MII_BMCR]              = PHY_ANYPAGE | PHY_RW,
2235         [MII_BMSR]              = PHY_ANYPAGE | PHY_R,
2236         [MII_PHYID1]            = PHY_ANYPAGE | PHY_R,
2237         [MII_PHYID2]            = PHY_ANYPAGE | PHY_R,
2238         [MII_ANAR]              = PHY_ANYPAGE | PHY_RW,
2239         [MII_ANLPAR]            = PHY_ANYPAGE | PHY_R,
2240         [MII_ANER]              = PHY_ANYPAGE | PHY_R,
2241         [MII_ANNP]              = PHY_ANYPAGE | PHY_RW,
2242         [MII_ANLPRNP]           = PHY_ANYPAGE | PHY_R,
2243         [MII_CTRL1000]          = PHY_ANYPAGE | PHY_RW,
2244         [MII_STAT1000]          = PHY_ANYPAGE | PHY_R,
2245         [MII_EXTSTAT]           = PHY_ANYPAGE | PHY_R,
2246         [PHY_PAGE]              = PHY_ANYPAGE | PHY_RW,
2247 
2248         [PHY_COPPER_CTRL1]      = PHY_RW,
2249         [PHY_COPPER_STAT1]      = PHY_R,
2250         [PHY_COPPER_CTRL3]      = PHY_RW,
2251         [PHY_RX_ERR_CNTR]       = PHY_R,
2252         [PHY_OEM_BITS]          = PHY_RW,
2253         [PHY_BIAS_1]            = PHY_RW,
2254         [PHY_BIAS_2]            = PHY_RW,
2255         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2256         [PHY_COPPER_STAT2]      = PHY_R,
2257         [PHY_COPPER_CTRL2]      = PHY_RW
2258     },
2259     [2] = {
2260         [PHY_MAC_CTRL1]         = PHY_RW,
2261         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2262         [PHY_MAC_STAT]          = PHY_R,
2263         [PHY_MAC_CTRL2]         = PHY_RW
2264     },
2265     [3] = {
2266         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2267         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2268         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2269         [PHY_LED_45_CTRL]       = PHY_RW
2270     },
2271     [5] = {
2272         [PHY_1000T_SKEW]        = PHY_R,
2273         [PHY_1000T_SWAP]        = PHY_R
2274     },
2275     [6] = {
2276         [PHY_CRC_COUNTERS]      = PHY_R
2277     }
2278 };
2279 
2280 static bool
2281 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2282                          char cap, uint8_t *page)
2283 {
2284     *page =
2285         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2286                                                     : core->phy[0][PHY_PAGE];
2287 
2288     if (*page >= E1000E_PHY_PAGES) {
2289         return false;
2290     }
2291 
2292     return e1000e_phy_regcap[*page][addr] & cap;
2293 }
2294 
2295 static void
2296 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2297                      uint32_t addr, uint16_t data)
2298 {
2299     assert(page < E1000E_PHY_PAGES);
2300     assert(addr < E1000E_PHY_PAGE_SIZE);
2301 
2302     if (e1000e_phyreg_writeops[page][addr]) {
2303         e1000e_phyreg_writeops[page][addr](core, addr, data);
2304     } else {
2305         core->phy[page][addr] = data;
2306     }
2307 }
2308 
2309 static void
2310 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2311 {
2312     uint32_t data = val & E1000_MDIC_DATA_MASK;
2313     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2314     uint8_t page;
2315 
2316     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2317         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2318     } else if (val & E1000_MDIC_OP_READ) {
2319         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2320             trace_e1000e_core_mdic_read_unhandled(page, addr);
2321             val |= E1000_MDIC_ERROR;
2322         } else {
2323             val = (val ^ data) | core->phy[page][addr];
2324             trace_e1000e_core_mdic_read(page, addr, val);
2325         }
2326     } else if (val & E1000_MDIC_OP_WRITE) {
2327         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2328             trace_e1000e_core_mdic_write_unhandled(page, addr);
2329             val |= E1000_MDIC_ERROR;
2330         } else {
2331             trace_e1000e_core_mdic_write(page, addr, data);
2332             e1000e_phy_reg_write(core, page, addr, data);
2333         }
2334     }
2335     core->mac[MDIC] = val | E1000_MDIC_READY;
2336 
2337     if (val & E1000_MDIC_INT_EN) {
2338         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2339     }
2340 }
2341 
2342 static void
2343 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2344 {
2345     core->mac[index] = val & 0xffff;
2346     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2347     e1000e_start_recv(core);
2348 }
2349 
2350 static void
2351 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2352 {
2353     if ((val & E1000_STATUS_PHYRA) == 0) {
2354         core->mac[index] &= ~E1000_STATUS_PHYRA;
2355     }
2356 }
2357 
2358 static void
2359 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2360 {
2361     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2362                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2363 
2364     /* Zero self-clearing bits */
2365     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2366     core->mac[CTRL_EXT] = val;
2367 }
2368 
2369 static void
2370 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2371 {
2372     int i;
2373 
2374     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2375 
2376     if (!msix_enabled(core->owner)) {
2377         return;
2378     }
2379 
2380     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2381         if (core->mac[PBACLR] & BIT(i)) {
2382             msix_clr_pending(core->owner, i);
2383         }
2384     }
2385 }
2386 
2387 static void
2388 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2389 {
2390     core->mac[FCRTH] = val & 0xFFF8;
2391 }
2392 
2393 static void
2394 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2395 {
2396     core->mac[FCRTL] = val & 0x8000FFF8;
2397 }
2398 
2399 #define E1000E_LOW_BITS_SET_FUNC(num)                                \
2400     static void                                                      \
2401     e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
2402     {                                                                \
2403         core->mac[index] = val & (BIT(num) - 1);                     \
2404     }
2405 
2406 E1000E_LOW_BITS_SET_FUNC(4)
2407 E1000E_LOW_BITS_SET_FUNC(6)
2408 E1000E_LOW_BITS_SET_FUNC(11)
2409 E1000E_LOW_BITS_SET_FUNC(12)
2410 E1000E_LOW_BITS_SET_FUNC(13)
2411 E1000E_LOW_BITS_SET_FUNC(16)
2412 
2413 static void
2414 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2415 {
2416     core->mac[VET] = val & 0xffff;
2417     trace_e1000e_vlan_vet(core->mac[VET]);
2418 }
2419 
2420 static void
2421 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2422 {
2423     core->mac[index] = val & E1000_XDLEN_MASK;
2424 }
2425 
2426 static void
2427 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2428 {
2429     core->mac[index] = val & E1000_XDBAL_MASK;
2430 }
2431 
2432 static void
2433 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2434 {
2435     E1000E_TxRing txr;
2436     core->mac[index] = val;
2437 
2438     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2439         e1000e_tx_ring_init(core, &txr, 0);
2440         e1000e_start_xmit(core, &txr);
2441     }
2442 
2443     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2444         e1000e_tx_ring_init(core, &txr, 1);
2445         e1000e_start_xmit(core, &txr);
2446     }
2447 }
2448 
2449 static void
2450 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2451 {
2452     E1000E_TxRing txr;
2453     int qidx = e1000e_mq_queue_idx(TDT, index);
2454     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2455 
2456     core->mac[index] = val & 0xffff;
2457 
2458     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2459         e1000e_tx_ring_init(core, &txr, qidx);
2460         e1000e_start_xmit(core, &txr);
2461     }
2462 }
2463 
2464 static void
2465 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2466 {
2467     trace_e1000e_irq_write_ics(val);
2468     e1000e_set_interrupt_cause(core, val);
2469 }
2470 
2471 static void
2472 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2473 {
2474     uint32_t icr = 0;
2475     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2476         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2477         trace_e1000e_irq_icr_process_iame();
2478         e1000e_clear_ims_bits(core, core->mac[IAM]);
2479     }
2480 
2481     icr = core->mac[ICR] & ~val;
2482     /*
2483      * Windows driver expects that the "receive overrun" bit and other
2484      * ones to be cleared when the "Other" bit (#24) is cleared.
2485      */
2486     icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2487     trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2488     core->mac[ICR] = icr;
2489     e1000e_update_interrupt_state(core);
2490 }
2491 
2492 static void
2493 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2494 {
2495     trace_e1000e_irq_ims_clear_set_imc(val);
2496     e1000e_clear_ims_bits(core, val);
2497     e1000e_update_interrupt_state(core);
2498 }
2499 
2500 static void
2501 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2502 {
2503     static const uint32_t ims_ext_mask =
2504         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2505         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2506         E1000_IMS_OTHER;
2507 
2508     static const uint32_t ims_valid_mask =
2509         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2510         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2511         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2512         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2513         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2514         E1000_IMS_OTHER;
2515 
2516     uint32_t valid_val = val & ims_valid_mask;
2517 
2518     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2519     core->mac[IMS] |= valid_val;
2520 
2521     if ((valid_val & ims_ext_mask) &&
2522         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2523         msix_enabled(core->owner)) {
2524         e1000e_msix_clear(core, valid_val);
2525     }
2526 
2527     if ((valid_val == ims_valid_mask) &&
2528         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2529         trace_e1000e_irq_fire_all_timers(val);
2530         e1000e_intrmgr_fire_all_timers(core);
2531     }
2532 
2533     e1000e_update_interrupt_state(core);
2534 }
2535 
2536 static void
2537 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2538 {
2539     e1000e_set_16bit(core, index, val);
2540 
2541     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2542         trace_e1000e_irq_rdtr_fpd_running();
2543         e1000e_intrmgr_fire_delayed_interrupts(core);
2544     } else {
2545         trace_e1000e_irq_rdtr_fpd_not_running();
2546     }
2547 }
2548 
2549 static void
2550 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2551 {
2552     e1000e_set_16bit(core, index, val);
2553 
2554     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2555         trace_e1000e_irq_tidv_fpd_running();
2556         e1000e_intrmgr_fire_delayed_interrupts(core);
2557     } else {
2558         trace_e1000e_irq_tidv_fpd_not_running();
2559     }
2560 }
2561 
2562 static uint32_t
2563 e1000e_mac_readreg(E1000ECore *core, int index)
2564 {
2565     return core->mac[index];
2566 }
2567 
2568 static uint32_t
2569 e1000e_mac_ics_read(E1000ECore *core, int index)
2570 {
2571     trace_e1000e_irq_read_ics(core->mac[ICS]);
2572     return core->mac[ICS];
2573 }
2574 
2575 static uint32_t
2576 e1000e_mac_ims_read(E1000ECore *core, int index)
2577 {
2578     trace_e1000e_irq_read_ims(core->mac[IMS]);
2579     return core->mac[IMS];
2580 }
2581 
2582 static uint32_t
2583 e1000e_mac_swsm_read(E1000ECore *core, int index)
2584 {
2585     uint32_t val = core->mac[SWSM];
2586     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2587     return val;
2588 }
2589 
2590 static uint32_t
2591 e1000e_mac_itr_read(E1000ECore *core, int index)
2592 {
2593     return core->itr_guest_value;
2594 }
2595 
2596 static uint32_t
2597 e1000e_mac_eitr_read(E1000ECore *core, int index)
2598 {
2599     return core->eitr_guest_value[index - EITR];
2600 }
2601 
2602 static uint32_t
2603 e1000e_mac_icr_read(E1000ECore *core, int index)
2604 {
2605     uint32_t ret = core->mac[ICR];
2606     trace_e1000e_irq_icr_read_entry(ret);
2607 
2608     if (core->mac[IMS] == 0) {
2609         trace_e1000e_irq_icr_clear_zero_ims();
2610         core->mac[ICR] = 0;
2611     }
2612 
2613     if (!msix_enabled(core->owner)) {
2614         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2615         core->mac[ICR] = 0;
2616     }
2617 
2618     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2619         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2620         trace_e1000e_irq_icr_clear_iame();
2621         core->mac[ICR] = 0;
2622         trace_e1000e_irq_icr_process_iame();
2623         e1000e_clear_ims_bits(core, core->mac[IAM]);
2624     }
2625 
2626     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2627     e1000e_update_interrupt_state(core);
2628     return ret;
2629 }
2630 
2631 static uint32_t
2632 e1000e_mac_read_clr4(E1000ECore *core, int index)
2633 {
2634     uint32_t ret = core->mac[index];
2635 
2636     core->mac[index] = 0;
2637     return ret;
2638 }
2639 
2640 static uint32_t
2641 e1000e_mac_read_clr8(E1000ECore *core, int index)
2642 {
2643     uint32_t ret = core->mac[index];
2644 
2645     core->mac[index] = 0;
2646     core->mac[index - 1] = 0;
2647     return ret;
2648 }
2649 
2650 static uint32_t
2651 e1000e_get_ctrl(E1000ECore *core, int index)
2652 {
2653     uint32_t val = core->mac[CTRL];
2654 
2655     trace_e1000e_link_read_params(
2656         !!(val & E1000_CTRL_ASDE),
2657         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2658         !!(val & E1000_CTRL_FRCSPD),
2659         !!(val & E1000_CTRL_FRCDPX),
2660         !!(val & E1000_CTRL_RFCE),
2661         !!(val & E1000_CTRL_TFCE));
2662 
2663     return val;
2664 }
2665 
2666 static uint32_t
2667 e1000e_get_status(E1000ECore *core, int index)
2668 {
2669     uint32_t res = core->mac[STATUS];
2670 
2671     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2672         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2673     }
2674 
2675     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2676         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2677     } else {
2678         res |= E1000_STATUS_FD;
2679     }
2680 
2681     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2682         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2683         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2684         case E1000_CTRL_SPD_10:
2685             res |= E1000_STATUS_SPEED_10;
2686             break;
2687         case E1000_CTRL_SPD_100:
2688             res |= E1000_STATUS_SPEED_100;
2689             break;
2690         case E1000_CTRL_SPD_1000:
2691         default:
2692             res |= E1000_STATUS_SPEED_1000;
2693             break;
2694         }
2695     } else {
2696         res |= E1000_STATUS_SPEED_1000;
2697     }
2698 
2699     trace_e1000e_link_status(
2700         !!(res & E1000_STATUS_LU),
2701         !!(res & E1000_STATUS_FD),
2702         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2703         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2704 
2705     return res;
2706 }
2707 
2708 static uint32_t
2709 e1000e_get_tarc(E1000ECore *core, int index)
2710 {
2711     return core->mac[index] & ((BIT(11) - 1) |
2712                                 BIT(27)      |
2713                                 BIT(28)      |
2714                                 BIT(29)      |
2715                                 BIT(30));
2716 }
2717 
2718 static void
2719 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2720 {
2721     core->mac[index] = val;
2722 }
2723 
2724 static void
2725 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2726 {
2727     uint32_t macaddr[2];
2728 
2729     core->mac[index] = val;
2730 
2731     macaddr[0] = cpu_to_le32(core->mac[RA]);
2732     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2733     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2734         (uint8_t *) macaddr);
2735 
2736     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2737 }
2738 
2739 static void
2740 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2741 {
2742     static const uint32_t ro_bits = E1000_EECD_PRES          |
2743                                     E1000_EECD_AUTO_RD       |
2744                                     E1000_EECD_SIZE_EX_MASK;
2745 
2746     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2747 }
2748 
2749 static void
2750 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2751 {
2752     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2753     uint32_t flags = 0;
2754     uint32_t data = 0;
2755 
2756     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2757         data = core->eeprom[addr];
2758         flags = E1000_EERW_DONE;
2759     }
2760 
2761     core->mac[EERD] = flags                           |
2762                       (addr << E1000_EERW_ADDR_SHIFT) |
2763                       (data << E1000_EERW_DATA_SHIFT);
2764 }
2765 
2766 static void
2767 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2768 {
2769     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2770     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2771     uint32_t flags = 0;
2772 
2773     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2774         core->eeprom[addr] = data;
2775         flags = E1000_EERW_DONE;
2776     }
2777 
2778     core->mac[EERD] = flags                           |
2779                       (addr << E1000_EERW_ADDR_SHIFT) |
2780                       (data << E1000_EERW_DATA_SHIFT);
2781 }
2782 
2783 static void
2784 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2785 {
2786     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2787 }
2788 
2789 static void
2790 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2791 {
2792     uint32_t interval = val & 0xffff;
2793 
2794     trace_e1000e_irq_itr_set(val);
2795 
2796     core->itr_guest_value = interval;
2797     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2798 }
2799 
2800 static void
2801 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2802 {
2803     uint32_t interval = val & 0xffff;
2804     uint32_t eitr_num = index - EITR;
2805 
2806     trace_e1000e_irq_eitr_set(eitr_num, val);
2807 
2808     core->eitr_guest_value[eitr_num] = interval;
2809     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2810 }
2811 
2812 static void
2813 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2814 {
2815     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2816 
2817         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2818             qemu_log_mask(LOG_GUEST_ERROR,
2819                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2820             return;
2821         }
2822 
2823         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2824             qemu_log_mask(LOG_GUEST_ERROR,
2825                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2826             return;
2827         }
2828     }
2829 
2830     core->mac[PSRCTL] = val;
2831 }
2832 
2833 static void
2834 e1000e_update_rx_offloads(E1000ECore *core)
2835 {
2836     int cso_state = e1000e_rx_l4_cso_enabled(core);
2837 
2838     trace_e1000e_rx_set_cso(cso_state);
2839 
2840     if (core->has_vnet) {
2841         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2842                          cso_state, 0, 0, 0, 0);
2843     }
2844 }
2845 
2846 static void
2847 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2848 {
2849     core->mac[RXCSUM] = val;
2850     e1000e_update_rx_offloads(core);
2851 }
2852 
2853 static void
2854 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2855 {
2856     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2857     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2858 }
2859 
2860 static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
2861 {
2862     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2863     return core->mac[SYSTIML];
2864 }
2865 
2866 static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
2867 {
2868     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2869     return core->mac[RXSATRH];
2870 }
2871 
2872 static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
2873 {
2874     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2875     return core->mac[TXSTMPH];
2876 }
2877 
2878 static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
2879 {
2880     e1000x_set_timinca(core->mac, &core->timadj, val);
2881 }
2882 
2883 static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
2884 {
2885     core->mac[TIMADJH] = val;
2886     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2887 }
2888 
2889 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2890 typedef uint32_t (*readops)(E1000ECore *, int);
2891 static const readops e1000e_macreg_readops[] = {
2892     e1000e_getreg(PBA),
2893     e1000e_getreg(WUFC),
2894     e1000e_getreg(MANC),
2895     e1000e_getreg(TOTL),
2896     e1000e_getreg(RDT0),
2897     e1000e_getreg(RDBAH0),
2898     e1000e_getreg(TDBAL1),
2899     e1000e_getreg(RDLEN0),
2900     e1000e_getreg(RDH1),
2901     e1000e_getreg(LATECOL),
2902     e1000e_getreg(SEQEC),
2903     e1000e_getreg(XONTXC),
2904     e1000e_getreg(AIT),
2905     e1000e_getreg(TDFH),
2906     e1000e_getreg(TDFT),
2907     e1000e_getreg(TDFHS),
2908     e1000e_getreg(TDFTS),
2909     e1000e_getreg(TDFPC),
2910     e1000e_getreg(WUS),
2911     e1000e_getreg(PBS),
2912     e1000e_getreg(RDFH),
2913     e1000e_getreg(RDFT),
2914     e1000e_getreg(RDFHS),
2915     e1000e_getreg(RDFTS),
2916     e1000e_getreg(RDFPC),
2917     e1000e_getreg(GORCL),
2918     e1000e_getreg(MGTPRC),
2919     e1000e_getreg(EERD),
2920     e1000e_getreg(EIAC),
2921     e1000e_getreg(PSRCTL),
2922     e1000e_getreg(MANC2H),
2923     e1000e_getreg(RXCSUM),
2924     e1000e_getreg(GSCL_3),
2925     e1000e_getreg(GSCN_2),
2926     e1000e_getreg(RSRPD),
2927     e1000e_getreg(RDBAL1),
2928     e1000e_getreg(FCAH),
2929     e1000e_getreg(FCRTH),
2930     e1000e_getreg(FLOP),
2931     e1000e_getreg(FLASHT),
2932     e1000e_getreg(RXSTMPH),
2933     e1000e_getreg(TXSTMPL),
2934     e1000e_getreg(TIMADJL),
2935     e1000e_getreg(TXDCTL),
2936     e1000e_getreg(RDH0),
2937     e1000e_getreg(TDT1),
2938     e1000e_getreg(TNCRS),
2939     e1000e_getreg(RJC),
2940     e1000e_getreg(IAM),
2941     e1000e_getreg(GSCL_2),
2942     e1000e_getreg(RDBAH1),
2943     e1000e_getreg(FLSWDATA),
2944     e1000e_getreg(TIPG),
2945     e1000e_getreg(FLMNGCTL),
2946     e1000e_getreg(FLMNGCNT),
2947     e1000e_getreg(TSYNCTXCTL),
2948     e1000e_getreg(EXTCNF_SIZE),
2949     e1000e_getreg(EXTCNF_CTRL),
2950     e1000e_getreg(EEMNGDATA),
2951     e1000e_getreg(CTRL_EXT),
2952     e1000e_getreg(SYSTIMH),
2953     e1000e_getreg(EEMNGCTL),
2954     e1000e_getreg(FLMNGDATA),
2955     e1000e_getreg(TSYNCRXCTL),
2956     e1000e_getreg(TDH),
2957     e1000e_getreg(LEDCTL),
2958     e1000e_getreg(TCTL),
2959     e1000e_getreg(TDBAL),
2960     e1000e_getreg(TDLEN),
2961     e1000e_getreg(TDH1),
2962     e1000e_getreg(RADV),
2963     e1000e_getreg(ECOL),
2964     e1000e_getreg(DC),
2965     e1000e_getreg(RLEC),
2966     e1000e_getreg(XOFFTXC),
2967     e1000e_getreg(RFC),
2968     e1000e_getreg(RNBC),
2969     e1000e_getreg(MGTPTC),
2970     e1000e_getreg(TIMINCA),
2971     e1000e_getreg(RXCFGL),
2972     e1000e_getreg(MFUTP01),
2973     e1000e_getreg(FACTPS),
2974     e1000e_getreg(GSCL_1),
2975     e1000e_getreg(GSCN_0),
2976     e1000e_getreg(GCR2),
2977     e1000e_getreg(RDT1),
2978     e1000e_getreg(PBACLR),
2979     e1000e_getreg(FCTTV),
2980     e1000e_getreg(EEWR),
2981     e1000e_getreg(FLSWCTL),
2982     e1000e_getreg(RXDCTL1),
2983     e1000e_getreg(RXSATRL),
2984     e1000e_getreg(RXUDP),
2985     e1000e_getreg(TORL),
2986     e1000e_getreg(TDLEN1),
2987     e1000e_getreg(MCC),
2988     e1000e_getreg(WUC),
2989     e1000e_getreg(EECD),
2990     e1000e_getreg(MFUTP23),
2991     e1000e_getreg(RAID),
2992     e1000e_getreg(FCRTV),
2993     e1000e_getreg(TXDCTL1),
2994     e1000e_getreg(RCTL),
2995     e1000e_getreg(TDT),
2996     e1000e_getreg(MDIC),
2997     e1000e_getreg(FCRUC),
2998     e1000e_getreg(VET),
2999     e1000e_getreg(RDBAL0),
3000     e1000e_getreg(TDBAH1),
3001     e1000e_getreg(RDTR),
3002     e1000e_getreg(SCC),
3003     e1000e_getreg(COLC),
3004     e1000e_getreg(CEXTERR),
3005     e1000e_getreg(XOFFRXC),
3006     e1000e_getreg(IPAV),
3007     e1000e_getreg(GOTCL),
3008     e1000e_getreg(MGTPDC),
3009     e1000e_getreg(GCR),
3010     e1000e_getreg(IVAR),
3011     e1000e_getreg(POEMB),
3012     e1000e_getreg(MFVAL),
3013     e1000e_getreg(FUNCTAG),
3014     e1000e_getreg(GSCL_4),
3015     e1000e_getreg(GSCN_3),
3016     e1000e_getreg(MRQC),
3017     e1000e_getreg(RDLEN1),
3018     e1000e_getreg(FCT),
3019     e1000e_getreg(FLA),
3020     e1000e_getreg(FLOL),
3021     e1000e_getreg(RXDCTL),
3022     e1000e_getreg(RXSTMPL),
3023     e1000e_getreg(TIMADJH),
3024     e1000e_getreg(FCRTL),
3025     e1000e_getreg(TDBAH),
3026     e1000e_getreg(TADV),
3027     e1000e_getreg(XONRXC),
3028     e1000e_getreg(TSCTFC),
3029     e1000e_getreg(RFCTL),
3030     e1000e_getreg(GSCN_1),
3031     e1000e_getreg(FCAL),
3032     e1000e_getreg(FLSWCNT),
3033 
3034     [TOTH]    = e1000e_mac_read_clr8,
3035     [GOTCH]   = e1000e_mac_read_clr8,
3036     [PRC64]   = e1000e_mac_read_clr4,
3037     [PRC255]  = e1000e_mac_read_clr4,
3038     [PRC1023] = e1000e_mac_read_clr4,
3039     [PTC64]   = e1000e_mac_read_clr4,
3040     [PTC255]  = e1000e_mac_read_clr4,
3041     [PTC1023] = e1000e_mac_read_clr4,
3042     [GPRC]    = e1000e_mac_read_clr4,
3043     [TPT]     = e1000e_mac_read_clr4,
3044     [RUC]     = e1000e_mac_read_clr4,
3045     [BPRC]    = e1000e_mac_read_clr4,
3046     [MPTC]    = e1000e_mac_read_clr4,
3047     [IAC]     = e1000e_mac_read_clr4,
3048     [ICR]     = e1000e_mac_icr_read,
3049     [STATUS]  = e1000e_get_status,
3050     [TARC0]   = e1000e_get_tarc,
3051     [ICS]     = e1000e_mac_ics_read,
3052     [TORH]    = e1000e_mac_read_clr8,
3053     [GORCH]   = e1000e_mac_read_clr8,
3054     [PRC127]  = e1000e_mac_read_clr4,
3055     [PRC511]  = e1000e_mac_read_clr4,
3056     [PRC1522] = e1000e_mac_read_clr4,
3057     [PTC127]  = e1000e_mac_read_clr4,
3058     [PTC511]  = e1000e_mac_read_clr4,
3059     [PTC1522] = e1000e_mac_read_clr4,
3060     [GPTC]    = e1000e_mac_read_clr4,
3061     [TPR]     = e1000e_mac_read_clr4,
3062     [ROC]     = e1000e_mac_read_clr4,
3063     [MPRC]    = e1000e_mac_read_clr4,
3064     [BPTC]    = e1000e_mac_read_clr4,
3065     [TSCTC]   = e1000e_mac_read_clr4,
3066     [ITR]     = e1000e_mac_itr_read,
3067     [CTRL]    = e1000e_get_ctrl,
3068     [TARC1]   = e1000e_get_tarc,
3069     [SWSM]    = e1000e_mac_swsm_read,
3070     [IMS]     = e1000e_mac_ims_read,
3071     [SYSTIML] = e1000e_get_systiml,
3072     [RXSATRH] = e1000e_get_rxsatrh,
3073     [TXSTMPH] = e1000e_get_txstmph,
3074 
3075     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3076     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3077     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3078     [RA ... RA + 31]       = e1000e_mac_readreg,
3079     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3080     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
3081     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = e1000e_mac_readreg,
3082     [FFMT ... FFMT + 254]  = e1000e_mac_readreg,
3083     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3084     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3085     [FFLT ... FFLT + 10]   = e1000e_mac_readreg,
3086     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3087     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3088     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3089     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3090     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3091     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3092 };
3093 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3094 
3095 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3096 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3097 static const writeops e1000e_macreg_writeops[] = {
3098     e1000e_putreg(PBA),
3099     e1000e_putreg(SWSM),
3100     e1000e_putreg(WUFC),
3101     e1000e_putreg(RDBAH1),
3102     e1000e_putreg(TDBAH),
3103     e1000e_putreg(TXDCTL),
3104     e1000e_putreg(RDBAH0),
3105     e1000e_putreg(LEDCTL),
3106     e1000e_putreg(FCAL),
3107     e1000e_putreg(FCRUC),
3108     e1000e_putreg(WUC),
3109     e1000e_putreg(WUS),
3110     e1000e_putreg(IPAV),
3111     e1000e_putreg(TDBAH1),
3112     e1000e_putreg(IAM),
3113     e1000e_putreg(EIAC),
3114     e1000e_putreg(IVAR),
3115     e1000e_putreg(TARC0),
3116     e1000e_putreg(TARC1),
3117     e1000e_putreg(FLSWDATA),
3118     e1000e_putreg(POEMB),
3119     e1000e_putreg(MFUTP01),
3120     e1000e_putreg(MFUTP23),
3121     e1000e_putreg(MANC),
3122     e1000e_putreg(MANC2H),
3123     e1000e_putreg(MFVAL),
3124     e1000e_putreg(EXTCNF_CTRL),
3125     e1000e_putreg(FACTPS),
3126     e1000e_putreg(FUNCTAG),
3127     e1000e_putreg(GSCL_1),
3128     e1000e_putreg(GSCL_2),
3129     e1000e_putreg(GSCL_3),
3130     e1000e_putreg(GSCL_4),
3131     e1000e_putreg(GSCN_0),
3132     e1000e_putreg(GSCN_1),
3133     e1000e_putreg(GSCN_2),
3134     e1000e_putreg(GSCN_3),
3135     e1000e_putreg(GCR2),
3136     e1000e_putreg(MRQC),
3137     e1000e_putreg(FLOP),
3138     e1000e_putreg(FLOL),
3139     e1000e_putreg(FLSWCTL),
3140     e1000e_putreg(FLSWCNT),
3141     e1000e_putreg(FLA),
3142     e1000e_putreg(RXDCTL1),
3143     e1000e_putreg(TXDCTL1),
3144     e1000e_putreg(TIPG),
3145     e1000e_putreg(RXSTMPH),
3146     e1000e_putreg(RXSTMPL),
3147     e1000e_putreg(RXSATRL),
3148     e1000e_putreg(RXSATRH),
3149     e1000e_putreg(TXSTMPL),
3150     e1000e_putreg(TXSTMPH),
3151     e1000e_putreg(SYSTIML),
3152     e1000e_putreg(SYSTIMH),
3153     e1000e_putreg(TIMADJL),
3154     e1000e_putreg(RXUDP),
3155     e1000e_putreg(RXCFGL),
3156     e1000e_putreg(TSYNCRXCTL),
3157     e1000e_putreg(TSYNCTXCTL),
3158     e1000e_putreg(EXTCNF_SIZE),
3159     e1000e_putreg(EEMNGCTL),
3160     e1000e_putreg(RA),
3161 
3162     [TDH1]     = e1000e_set_16bit,
3163     [TDT1]     = e1000e_set_tdt,
3164     [TCTL]     = e1000e_set_tctl,
3165     [TDT]      = e1000e_set_tdt,
3166     [MDIC]     = e1000e_set_mdic,
3167     [ICS]      = e1000e_set_ics,
3168     [TDH]      = e1000e_set_16bit,
3169     [RDH0]     = e1000e_set_16bit,
3170     [RDT0]     = e1000e_set_rdt,
3171     [IMC]      = e1000e_set_imc,
3172     [IMS]      = e1000e_set_ims,
3173     [ICR]      = e1000e_set_icr,
3174     [EECD]     = e1000e_set_eecd,
3175     [RCTL]     = e1000e_set_rx_control,
3176     [CTRL]     = e1000e_set_ctrl,
3177     [RDTR]     = e1000e_set_rdtr,
3178     [RADV]     = e1000e_set_16bit,
3179     [TADV]     = e1000e_set_16bit,
3180     [ITR]      = e1000e_set_itr,
3181     [EERD]     = e1000e_set_eerd,
3182     [AIT]      = e1000e_set_16bit,
3183     [TDFH]     = e1000e_set_13bit,
3184     [TDFT]     = e1000e_set_13bit,
3185     [TDFHS]    = e1000e_set_13bit,
3186     [TDFTS]    = e1000e_set_13bit,
3187     [TDFPC]    = e1000e_set_13bit,
3188     [RDFH]     = e1000e_set_13bit,
3189     [RDFHS]    = e1000e_set_13bit,
3190     [RDFT]     = e1000e_set_13bit,
3191     [RDFTS]    = e1000e_set_13bit,
3192     [RDFPC]    = e1000e_set_13bit,
3193     [PBS]      = e1000e_set_6bit,
3194     [GCR]      = e1000e_set_gcr,
3195     [PSRCTL]   = e1000e_set_psrctl,
3196     [RXCSUM]   = e1000e_set_rxcsum,
3197     [RAID]     = e1000e_set_16bit,
3198     [RSRPD]    = e1000e_set_12bit,
3199     [TIDV]     = e1000e_set_tidv,
3200     [TDLEN1]   = e1000e_set_dlen,
3201     [TDLEN]    = e1000e_set_dlen,
3202     [RDLEN0]   = e1000e_set_dlen,
3203     [RDLEN1]   = e1000e_set_dlen,
3204     [TDBAL]    = e1000e_set_dbal,
3205     [TDBAL1]   = e1000e_set_dbal,
3206     [RDBAL0]   = e1000e_set_dbal,
3207     [RDBAL1]   = e1000e_set_dbal,
3208     [RDH1]     = e1000e_set_16bit,
3209     [RDT1]     = e1000e_set_rdt,
3210     [STATUS]   = e1000e_set_status,
3211     [PBACLR]   = e1000e_set_pbaclr,
3212     [CTRL_EXT] = e1000e_set_ctrlext,
3213     [FCAH]     = e1000e_set_16bit,
3214     [FCT]      = e1000e_set_16bit,
3215     [FCTTV]    = e1000e_set_16bit,
3216     [FCRTV]    = e1000e_set_16bit,
3217     [FCRTH]    = e1000e_set_fcrth,
3218     [FCRTL]    = e1000e_set_fcrtl,
3219     [VET]      = e1000e_set_vet,
3220     [RXDCTL]   = e1000e_set_rxdctl,
3221     [FLASHT]   = e1000e_set_16bit,
3222     [EEWR]     = e1000e_set_eewr,
3223     [CTRL_DUP] = e1000e_set_ctrl,
3224     [RFCTL]    = e1000e_set_rfctl,
3225     [RA + 1]   = e1000e_mac_setmacaddr,
3226     [TIMINCA]  = e1000e_set_timinca,
3227     [TIMADJH]  = e1000e_set_timadjh,
3228 
3229     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3230     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3231     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3232     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3233     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
3234     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]    = e1000e_mac_writereg,
3235     [FFMT ... FFMT + 254]    = e1000e_set_4bit,
3236     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3237     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3238     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3239     [FFLT ... FFLT + 10]     = e1000e_set_11bit,
3240     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3241     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3242     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3243     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3244     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3245 };
3246 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3247 
3248 enum { MAC_ACCESS_PARTIAL = 1 };
3249 
3250 /*
3251  * The array below combines alias offsets of the index values for the
3252  * MAC registers that have aliases, with the indication of not fully
3253  * implemented registers (lowest bit). This combination is possible
3254  * because all of the offsets are even.
3255  */
3256 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3257     /* Alias index offsets */
3258     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3259     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3260     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3261     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3262     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3263     [RA_A ... RA_A + 31]      = 0x14f0,
3264     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3265     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3266     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3267     /* Access options */
3268     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3269     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3270     [RDFPC] = MAC_ACCESS_PARTIAL,
3271     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3272     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3273     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3274     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3275     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3276     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3277     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3278     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3279     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3280     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3281 };
3282 
3283 void
3284 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3285 {
3286     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3287 
3288     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3289         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3290             trace_e1000e_wrn_regs_write_trivial(index << 2);
3291         }
3292         trace_e1000e_core_write(index << 2, size, val);
3293         e1000e_macreg_writeops[index](core, index, val);
3294     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3295         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3296     } else {
3297         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3298     }
3299 }
3300 
3301 uint64_t
3302 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3303 {
3304     uint64_t val;
3305     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3306 
3307     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3308         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3309             trace_e1000e_wrn_regs_read_trivial(index << 2);
3310         }
3311         val = e1000e_macreg_readops[index](core, index);
3312         trace_e1000e_core_read(index << 2, size, val);
3313         return val;
3314     } else {
3315         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3316     }
3317     return 0;
3318 }
3319 
3320 static inline void
3321 e1000e_autoneg_pause(E1000ECore *core)
3322 {
3323     timer_del(core->autoneg_timer);
3324 }
3325 
3326 static void
3327 e1000e_autoneg_resume(E1000ECore *core)
3328 {
3329     if (e1000e_have_autoneg(core) &&
3330         !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
3331         qemu_get_queue(core->owner_nic)->link_down = false;
3332         timer_mod(core->autoneg_timer,
3333                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3334     }
3335 }
3336 
3337 static void
3338 e1000e_vm_state_change(void *opaque, bool running, RunState state)
3339 {
3340     E1000ECore *core = opaque;
3341 
3342     if (running) {
3343         trace_e1000e_vm_state_running();
3344         e1000e_intrmgr_resume(core);
3345         e1000e_autoneg_resume(core);
3346     } else {
3347         trace_e1000e_vm_state_stopped();
3348         e1000e_autoneg_pause(core);
3349         e1000e_intrmgr_pause(core);
3350     }
3351 }
3352 
3353 void
3354 e1000e_core_pci_realize(E1000ECore     *core,
3355                         const uint16_t *eeprom_templ,
3356                         uint32_t        eeprom_size,
3357                         const uint8_t  *macaddr)
3358 {
3359     int i;
3360 
3361     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3362                                        e1000e_autoneg_timer, core);
3363     e1000e_intrmgr_pci_realize(core);
3364 
3365     core->vmstate =
3366         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3367 
3368     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3369         net_tx_pkt_init(&core->tx[i].tx_pkt, E1000E_MAX_TX_FRAGS);
3370     }
3371 
3372     net_rx_pkt_init(&core->rx_pkt);
3373 
3374     e1000x_core_prepare_eeprom(core->eeprom,
3375                                eeprom_templ,
3376                                eeprom_size,
3377                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3378                                macaddr);
3379     e1000e_update_rx_offloads(core);
3380 }
3381 
3382 void
3383 e1000e_core_pci_uninit(E1000ECore *core)
3384 {
3385     int i;
3386 
3387     timer_free(core->autoneg_timer);
3388 
3389     e1000e_intrmgr_pci_unint(core);
3390 
3391     qemu_del_vm_change_state_handler(core->vmstate);
3392 
3393     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3394         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3395     }
3396 
3397     net_rx_pkt_uninit(core->rx_pkt);
3398 }
3399 
3400 static const uint16_t
3401 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3402     [0] = {
3403         [MII_BMCR] = MII_BMCR_SPEED1000 |
3404                      MII_BMCR_FD        |
3405                      MII_BMCR_AUTOEN,
3406 
3407         [MII_BMSR] = MII_BMSR_EXTCAP    |
3408                      MII_BMSR_LINK_ST   |
3409                      MII_BMSR_AUTONEG   |
3410                      MII_BMSR_MFPS      |
3411                      MII_BMSR_EXTSTAT   |
3412                      MII_BMSR_10T_HD    |
3413                      MII_BMSR_10T_FD    |
3414                      MII_BMSR_100TX_HD  |
3415                      MII_BMSR_100TX_FD,
3416 
3417         [MII_PHYID1]            = 0x141,
3418         [MII_PHYID2]            = E1000_PHY_ID2_82574x,
3419         [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3420                                   MII_ANAR_10FD | MII_ANAR_TX |
3421                                   MII_ANAR_TXFD | MII_ANAR_PAUSE |
3422                                   MII_ANAR_PAUSE_ASYM,
3423         [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3424                                   MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3425                                   MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3426         [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3427         [MII_ANNP]              = 1 | MII_ANNP_MP,
3428         [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3429                                   MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3430         [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3431                                   MII_STAT1000_ROK | MII_STAT1000_LOK,
3432         [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3433 
3434         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3435                                   BIT(12) | BIT(13),
3436         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3437     },
3438     [2] = {
3439         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3440         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3441     },
3442     [3] = {
3443         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3444     }
3445 };
3446 
3447 static const uint32_t e1000e_mac_reg_init[] = {
3448     [PBA]           =     0x00140014,
3449     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3450     [EXTCNF_CTRL]   = BIT(3),
3451     [EEMNGCTL]      = BIT(31),
3452     [FLASHT]        = 0x2,
3453     [FLSWCTL]       = BIT(30) | BIT(31),
3454     [FLOL]          = BIT(0),
3455     [RXDCTL]        = BIT(16),
3456     [RXDCTL1]       = BIT(16),
3457     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3458     [RXCFGL]        = 0x88F7,
3459     [RXUDP]         = 0x319,
3460     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3461                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3462                       E1000_CTRL_ADVD3WUC,
3463     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3464     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3465                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3466                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3467     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3468     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3469     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3470     [EERD]          = E1000_EERW_DONE,
3471     [EEWR]          = E1000_EERW_DONE,
3472     [GCR]           = E1000_L0S_ADJUST |
3473                       E1000_L1_ENTRY_LATENCY_MSB |
3474                       E1000_L1_ENTRY_LATENCY_LSB,
3475     [TDFH]          = 0x600,
3476     [TDFT]          = 0x600,
3477     [TDFHS]         = 0x600,
3478     [TDFTS]         = 0x600,
3479     [POEMB]         = 0x30D,
3480     [PBS]           = 0x028,
3481     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3482     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3483     [SWSM]          = 1,
3484     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3485     [ITR]           = E1000E_MIN_XITR,
3486     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3487 };
3488 
3489 static void e1000e_reset(E1000ECore *core, bool sw)
3490 {
3491     int i;
3492 
3493     timer_del(core->autoneg_timer);
3494 
3495     e1000e_intrmgr_reset(core);
3496 
3497     memset(core->phy, 0, sizeof core->phy);
3498     memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3499 
3500     for (i = 0; i < E1000E_MAC_SIZE; i++) {
3501         if (sw && (i == PBA || i == PBS || i == FLA)) {
3502             continue;
3503         }
3504 
3505         core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
3506                        e1000e_mac_reg_init[i] : 0;
3507     }
3508 
3509     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3510 
3511     if (qemu_get_queue(core->owner_nic)->link_down) {
3512         e1000e_link_down(core);
3513     }
3514 
3515     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3516 
3517     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3518         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3519         core->tx[i].skip_cp = false;
3520     }
3521 }
3522 
3523 void
3524 e1000e_core_reset(E1000ECore *core)
3525 {
3526     e1000e_reset(core, false);
3527 }
3528 
3529 void e1000e_core_pre_save(E1000ECore *core)
3530 {
3531     int i;
3532     NetClientState *nc = qemu_get_queue(core->owner_nic);
3533 
3534     /*
3535      * If link is down and auto-negotiation is supported and ongoing,
3536      * complete auto-negotiation immediately. This allows us to look
3537      * at MII_BMSR_AN_COMP to infer link status on load.
3538      */
3539     if (nc->link_down && e1000e_have_autoneg(core)) {
3540         core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
3541         e1000e_update_flowctl_status(core);
3542     }
3543 
3544     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3545         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3546             core->tx[i].skip_cp = true;
3547         }
3548     }
3549 }
3550 
3551 int
3552 e1000e_core_post_load(E1000ECore *core)
3553 {
3554     NetClientState *nc = qemu_get_queue(core->owner_nic);
3555 
3556     /*
3557      * nc.link_down can't be migrated, so infer link_down according
3558      * to link status bit in core.mac[STATUS].
3559      */
3560     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3561 
3562     return 0;
3563 }
3564