1 /* 2 * Core code for QEMU e1000e emulation 3 * 4 * Software developer's manuals: 5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf 6 * 7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) 8 * Developed by Daynix Computing LTD (http://www.daynix.com) 9 * 10 * Authors: 11 * Dmitry Fleytman <dmitry@daynix.com> 12 * Leonid Bloch <leonid@daynix.com> 13 * Yan Vugenfirer <yan@daynix.com> 14 * 15 * Based on work done by: 16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 17 * Copyright (c) 2008 Qumranet 18 * Based on work done by: 19 * Copyright (c) 2007 Dan Aloni 20 * Copyright (c) 2004 Antony T Curtis 21 * 22 * This library is free software; you can redistribute it and/or 23 * modify it under the terms of the GNU Lesser General Public 24 * License as published by the Free Software Foundation; either 25 * version 2 of the License, or (at your option) any later version. 26 * 27 * This library is distributed in the hope that it will be useful, 28 * but WITHOUT ANY WARRANTY; without even the implied warranty of 29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 30 * Lesser General Public License for more details. 31 * 32 * You should have received a copy of the GNU Lesser General Public 33 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 34 */ 35 36 #include "qemu/osdep.h" 37 #include "qemu/log.h" 38 #include "net/net.h" 39 #include "net/tap.h" 40 #include "hw/pci/msi.h" 41 #include "hw/pci/msix.h" 42 #include "sysemu/runstate.h" 43 44 #include "net_tx_pkt.h" 45 #include "net_rx_pkt.h" 46 47 #include "e1000x_common.h" 48 #include "e1000e_core.h" 49 50 #include "trace.h" 51 52 #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per 53 second according to spec 10.2.4.2 */ 54 #define E1000E_MAX_TX_FRAGS (64) 55 56 static inline void 57 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val); 58 59 static inline void 60 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp) 61 { 62 if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) { 63 trace_e1000e_wrn_no_ts_support(); 64 } 65 } 66 67 static inline void 68 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length) 69 { 70 if (cmd_and_length & E1000_TXD_CMD_SNAP) { 71 trace_e1000e_wrn_no_snap_support(); 72 } 73 } 74 75 static inline void 76 e1000e_raise_legacy_irq(E1000ECore *core) 77 { 78 trace_e1000e_irq_legacy_notify(true); 79 e1000x_inc_reg_if_not_full(core->mac, IAC); 80 pci_set_irq(core->owner, 1); 81 } 82 83 static inline void 84 e1000e_lower_legacy_irq(E1000ECore *core) 85 { 86 trace_e1000e_irq_legacy_notify(false); 87 pci_set_irq(core->owner, 0); 88 } 89 90 static inline void 91 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer) 92 { 93 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] * 94 timer->delay_resolution_ns; 95 96 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns); 97 98 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns); 99 100 timer->running = true; 101 } 102 103 static void 104 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer) 105 { 106 if (timer->running) { 107 e1000e_intrmgr_rearm_timer(timer); 108 } 109 } 110 111 static void 112 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer) 113 { 114 if (timer->running) { 115 timer_del(timer->timer); 116 } 117 } 118 119 static inline void 120 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer) 121 { 122 if (timer->running) { 123 timer_del(timer->timer); 124 timer->running = false; 125 } 126 } 127 128 static inline void 129 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core) 130 { 131 trace_e1000e_irq_fire_delayed_interrupts(); 132 e1000e_set_interrupt_cause(core, 0); 133 } 134 135 static void 136 e1000e_intrmgr_on_timer(void *opaque) 137 { 138 E1000IntrDelayTimer *timer = opaque; 139 140 trace_e1000e_irq_throttling_timer(timer->delay_reg << 2); 141 142 timer->running = false; 143 e1000e_intrmgr_fire_delayed_interrupts(timer->core); 144 } 145 146 static void 147 e1000e_intrmgr_on_throttling_timer(void *opaque) 148 { 149 E1000IntrDelayTimer *timer = opaque; 150 151 assert(!msix_enabled(timer->core->owner)); 152 153 timer->running = false; 154 155 if (!timer->core->itr_intr_pending) { 156 trace_e1000e_irq_throttling_no_pending_interrupts(); 157 return; 158 } 159 160 if (msi_enabled(timer->core->owner)) { 161 trace_e1000e_irq_msi_notify_postponed(); 162 e1000e_set_interrupt_cause(timer->core, 0); 163 } else { 164 trace_e1000e_irq_legacy_notify_postponed(); 165 e1000e_set_interrupt_cause(timer->core, 0); 166 } 167 } 168 169 static void 170 e1000e_intrmgr_on_msix_throttling_timer(void *opaque) 171 { 172 E1000IntrDelayTimer *timer = opaque; 173 int idx = timer - &timer->core->eitr[0]; 174 175 assert(msix_enabled(timer->core->owner)); 176 177 timer->running = false; 178 179 if (!timer->core->eitr_intr_pending[idx]) { 180 trace_e1000e_irq_throttling_no_pending_vec(idx); 181 return; 182 } 183 184 trace_e1000e_irq_msix_notify_postponed_vec(idx); 185 msix_notify(timer->core->owner, idx); 186 } 187 188 static void 189 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create) 190 { 191 int i; 192 193 core->radv.delay_reg = RADV; 194 core->rdtr.delay_reg = RDTR; 195 core->raid.delay_reg = RAID; 196 core->tadv.delay_reg = TADV; 197 core->tidv.delay_reg = TIDV; 198 199 core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 200 core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 201 core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 202 core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 203 core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES; 204 205 core->radv.core = core; 206 core->rdtr.core = core; 207 core->raid.core = core; 208 core->tadv.core = core; 209 core->tidv.core = core; 210 211 core->itr.core = core; 212 core->itr.delay_reg = ITR; 213 core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; 214 215 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 216 core->eitr[i].core = core; 217 core->eitr[i].delay_reg = EITR + i; 218 core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES; 219 } 220 221 if (!create) { 222 return; 223 } 224 225 core->radv.timer = 226 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv); 227 core->rdtr.timer = 228 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr); 229 core->raid.timer = 230 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid); 231 232 core->tadv.timer = 233 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv); 234 core->tidv.timer = 235 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv); 236 237 core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 238 e1000e_intrmgr_on_throttling_timer, 239 &core->itr); 240 241 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 242 core->eitr[i].timer = 243 timer_new_ns(QEMU_CLOCK_VIRTUAL, 244 e1000e_intrmgr_on_msix_throttling_timer, 245 &core->eitr[i]); 246 } 247 } 248 249 static inline void 250 e1000e_intrmgr_stop_delay_timers(E1000ECore *core) 251 { 252 e1000e_intrmgr_stop_timer(&core->radv); 253 e1000e_intrmgr_stop_timer(&core->rdtr); 254 e1000e_intrmgr_stop_timer(&core->raid); 255 e1000e_intrmgr_stop_timer(&core->tidv); 256 e1000e_intrmgr_stop_timer(&core->tadv); 257 } 258 259 static bool 260 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes) 261 { 262 uint32_t delayable_causes; 263 uint32_t rdtr = core->mac[RDTR]; 264 uint32_t radv = core->mac[RADV]; 265 uint32_t raid = core->mac[RAID]; 266 267 if (msix_enabled(core->owner)) { 268 return false; 269 } 270 271 delayable_causes = E1000_ICR_RXQ0 | 272 E1000_ICR_RXQ1 | 273 E1000_ICR_RXT0; 274 275 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) { 276 delayable_causes |= E1000_ICR_ACK; 277 } 278 279 /* Clean up all causes that may be delayed */ 280 core->delayed_causes |= *causes & delayable_causes; 281 *causes &= ~delayable_causes; 282 283 /* Check if delayed RX interrupts disabled by client 284 or if there are causes that cannot be delayed */ 285 if ((rdtr == 0) || (*causes != 0)) { 286 return false; 287 } 288 289 /* Check if delayed RX ACK interrupts disabled by client 290 and there is an ACK packet received */ 291 if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) { 292 return false; 293 } 294 295 /* All causes delayed */ 296 e1000e_intrmgr_rearm_timer(&core->rdtr); 297 298 if (!core->radv.running && (radv != 0)) { 299 e1000e_intrmgr_rearm_timer(&core->radv); 300 } 301 302 if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) { 303 e1000e_intrmgr_rearm_timer(&core->raid); 304 } 305 306 return true; 307 } 308 309 static bool 310 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes) 311 { 312 static const uint32_t delayable_causes = E1000_ICR_TXQ0 | 313 E1000_ICR_TXQ1 | 314 E1000_ICR_TXQE | 315 E1000_ICR_TXDW; 316 317 if (msix_enabled(core->owner)) { 318 return false; 319 } 320 321 /* Clean up all causes that may be delayed */ 322 core->delayed_causes |= *causes & delayable_causes; 323 *causes &= ~delayable_causes; 324 325 /* If there are causes that cannot be delayed */ 326 if (*causes != 0) { 327 return false; 328 } 329 330 /* All causes delayed */ 331 e1000e_intrmgr_rearm_timer(&core->tidv); 332 333 if (!core->tadv.running && (core->mac[TADV] != 0)) { 334 e1000e_intrmgr_rearm_timer(&core->tadv); 335 } 336 337 return true; 338 } 339 340 static uint32_t 341 e1000e_intmgr_collect_delayed_causes(E1000ECore *core) 342 { 343 uint32_t res; 344 345 if (msix_enabled(core->owner)) { 346 assert(core->delayed_causes == 0); 347 return 0; 348 } 349 350 res = core->delayed_causes; 351 core->delayed_causes = 0; 352 353 e1000e_intrmgr_stop_delay_timers(core); 354 355 return res; 356 } 357 358 static void 359 e1000e_intrmgr_fire_all_timers(E1000ECore *core) 360 { 361 int i; 362 uint32_t val = e1000e_intmgr_collect_delayed_causes(core); 363 364 trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]); 365 core->mac[ICR] |= val; 366 367 if (core->itr.running) { 368 timer_del(core->itr.timer); 369 e1000e_intrmgr_on_throttling_timer(&core->itr); 370 } 371 372 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 373 if (core->eitr[i].running) { 374 timer_del(core->eitr[i].timer); 375 e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]); 376 } 377 } 378 } 379 380 static void 381 e1000e_intrmgr_resume(E1000ECore *core) 382 { 383 int i; 384 385 e1000e_intmgr_timer_resume(&core->radv); 386 e1000e_intmgr_timer_resume(&core->rdtr); 387 e1000e_intmgr_timer_resume(&core->raid); 388 e1000e_intmgr_timer_resume(&core->tidv); 389 e1000e_intmgr_timer_resume(&core->tadv); 390 391 e1000e_intmgr_timer_resume(&core->itr); 392 393 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 394 e1000e_intmgr_timer_resume(&core->eitr[i]); 395 } 396 } 397 398 static void 399 e1000e_intrmgr_pause(E1000ECore *core) 400 { 401 int i; 402 403 e1000e_intmgr_timer_pause(&core->radv); 404 e1000e_intmgr_timer_pause(&core->rdtr); 405 e1000e_intmgr_timer_pause(&core->raid); 406 e1000e_intmgr_timer_pause(&core->tidv); 407 e1000e_intmgr_timer_pause(&core->tadv); 408 409 e1000e_intmgr_timer_pause(&core->itr); 410 411 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 412 e1000e_intmgr_timer_pause(&core->eitr[i]); 413 } 414 } 415 416 static void 417 e1000e_intrmgr_reset(E1000ECore *core) 418 { 419 int i; 420 421 core->delayed_causes = 0; 422 423 e1000e_intrmgr_stop_delay_timers(core); 424 425 e1000e_intrmgr_stop_timer(&core->itr); 426 427 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 428 e1000e_intrmgr_stop_timer(&core->eitr[i]); 429 } 430 } 431 432 static void 433 e1000e_intrmgr_pci_unint(E1000ECore *core) 434 { 435 int i; 436 437 timer_del(core->radv.timer); 438 timer_free(core->radv.timer); 439 timer_del(core->rdtr.timer); 440 timer_free(core->rdtr.timer); 441 timer_del(core->raid.timer); 442 timer_free(core->raid.timer); 443 444 timer_del(core->tadv.timer); 445 timer_free(core->tadv.timer); 446 timer_del(core->tidv.timer); 447 timer_free(core->tidv.timer); 448 449 timer_del(core->itr.timer); 450 timer_free(core->itr.timer); 451 452 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 453 timer_del(core->eitr[i].timer); 454 timer_free(core->eitr[i].timer); 455 } 456 } 457 458 static void 459 e1000e_intrmgr_pci_realize(E1000ECore *core) 460 { 461 e1000e_intrmgr_initialize_all_timers(core, true); 462 } 463 464 static inline bool 465 e1000e_rx_csum_enabled(E1000ECore *core) 466 { 467 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true; 468 } 469 470 static inline bool 471 e1000e_rx_use_legacy_descriptor(E1000ECore *core) 472 { 473 return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true; 474 } 475 476 static inline bool 477 e1000e_rx_use_ps_descriptor(E1000ECore *core) 478 { 479 return !e1000e_rx_use_legacy_descriptor(core) && 480 (core->mac[RCTL] & E1000_RCTL_DTYP_PS); 481 } 482 483 static inline bool 484 e1000e_rss_enabled(E1000ECore *core) 485 { 486 return E1000_MRQC_ENABLED(core->mac[MRQC]) && 487 !e1000e_rx_csum_enabled(core) && 488 !e1000e_rx_use_legacy_descriptor(core); 489 } 490 491 typedef struct E1000E_RSSInfo_st { 492 bool enabled; 493 uint32_t hash; 494 uint32_t queue; 495 uint32_t type; 496 } E1000E_RSSInfo; 497 498 static uint32_t 499 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt) 500 { 501 bool isip4, isip6, isudp, istcp; 502 503 assert(e1000e_rss_enabled(core)); 504 505 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); 506 507 if (isip4) { 508 bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment; 509 510 trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC], 511 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]), 512 E1000_MRQC_EN_IPV4(core->mac[MRQC])); 513 514 if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) { 515 return E1000_MRQ_RSS_TYPE_IPV4TCP; 516 } 517 518 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) { 519 return E1000_MRQ_RSS_TYPE_IPV4; 520 } 521 } else if (isip6) { 522 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt); 523 524 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS; 525 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS; 526 527 /* 528 * Following two traces must not be combined because resulting 529 * event will have 11 arguments totally and some trace backends 530 * (at least "ust") have limitation of maximum 10 arguments per 531 * event. Events with more arguments fail to compile for 532 * backends like these. 533 */ 534 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]); 535 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp, 536 ip6info->has_ext_hdrs, 537 ip6info->rss_ex_dst_valid, 538 ip6info->rss_ex_src_valid, 539 core->mac[MRQC], 540 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]), 541 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]), 542 E1000_MRQC_EN_IPV6(core->mac[MRQC])); 543 544 if ((!ex_dis || !ip6info->has_ext_hdrs) && 545 (!new_ex_dis || !(ip6info->rss_ex_dst_valid || 546 ip6info->rss_ex_src_valid))) { 547 548 if (istcp && !ip6info->fragment && 549 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) { 550 return E1000_MRQ_RSS_TYPE_IPV6TCP; 551 } 552 553 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) { 554 return E1000_MRQ_RSS_TYPE_IPV6EX; 555 } 556 557 } 558 559 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) { 560 return E1000_MRQ_RSS_TYPE_IPV6; 561 } 562 563 } 564 565 return E1000_MRQ_RSS_TYPE_NONE; 566 } 567 568 static uint32_t 569 e1000e_rss_calc_hash(E1000ECore *core, 570 struct NetRxPkt *pkt, 571 E1000E_RSSInfo *info) 572 { 573 NetRxPktRssType type; 574 575 assert(e1000e_rss_enabled(core)); 576 577 switch (info->type) { 578 case E1000_MRQ_RSS_TYPE_IPV4: 579 type = NetPktRssIpV4; 580 break; 581 case E1000_MRQ_RSS_TYPE_IPV4TCP: 582 type = NetPktRssIpV4Tcp; 583 break; 584 case E1000_MRQ_RSS_TYPE_IPV6TCP: 585 type = NetPktRssIpV6TcpEx; 586 break; 587 case E1000_MRQ_RSS_TYPE_IPV6: 588 type = NetPktRssIpV6; 589 break; 590 case E1000_MRQ_RSS_TYPE_IPV6EX: 591 type = NetPktRssIpV6Ex; 592 break; 593 default: 594 assert(false); 595 return 0; 596 } 597 598 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]); 599 } 600 601 static void 602 e1000e_rss_parse_packet(E1000ECore *core, 603 struct NetRxPkt *pkt, 604 E1000E_RSSInfo *info) 605 { 606 trace_e1000e_rx_rss_started(); 607 608 if (!e1000e_rss_enabled(core)) { 609 info->enabled = false; 610 info->hash = 0; 611 info->queue = 0; 612 info->type = 0; 613 trace_e1000e_rx_rss_disabled(); 614 return; 615 } 616 617 info->enabled = true; 618 619 info->type = e1000e_rss_get_hash_type(core, pkt); 620 621 trace_e1000e_rx_rss_type(info->type); 622 623 if (info->type == E1000_MRQ_RSS_TYPE_NONE) { 624 info->hash = 0; 625 info->queue = 0; 626 return; 627 } 628 629 info->hash = e1000e_rss_calc_hash(core, pkt, info); 630 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash); 631 } 632 633 static void 634 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx) 635 { 636 if (tx->props.tse && tx->cptse) { 637 net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss); 638 net_tx_pkt_update_ip_checksums(tx->tx_pkt); 639 e1000x_inc_reg_if_not_full(core->mac, TSCTC); 640 return; 641 } 642 643 if (tx->sum_needed & E1000_TXD_POPTS_TXSM) { 644 net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0); 645 } 646 647 if (tx->sum_needed & E1000_TXD_POPTS_IXSM) { 648 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt); 649 } 650 } 651 652 static bool 653 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index) 654 { 655 int target_queue = MIN(core->max_queue_num, queue_index); 656 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue); 657 658 e1000e_setup_tx_offloads(core, tx); 659 660 net_tx_pkt_dump(tx->tx_pkt); 661 662 if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) || 663 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) { 664 return net_tx_pkt_send_loopback(tx->tx_pkt, queue); 665 } else { 666 return net_tx_pkt_send(tx->tx_pkt, queue); 667 } 668 } 669 670 static void 671 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt) 672 { 673 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 674 PTC1023, PTC1522 }; 675 676 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt); 677 678 e1000x_increase_size_stats(core->mac, PTCregs, tot_len); 679 e1000x_inc_reg_if_not_full(core->mac, TPT); 680 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len); 681 682 switch (net_tx_pkt_get_packet_type(tx_pkt)) { 683 case ETH_PKT_BCAST: 684 e1000x_inc_reg_if_not_full(core->mac, BPTC); 685 break; 686 case ETH_PKT_MCAST: 687 e1000x_inc_reg_if_not_full(core->mac, MPTC); 688 break; 689 case ETH_PKT_UCAST: 690 break; 691 default: 692 g_assert_not_reached(); 693 } 694 695 core->mac[GPTC] = core->mac[TPT]; 696 core->mac[GOTCL] = core->mac[TOTL]; 697 core->mac[GOTCH] = core->mac[TOTH]; 698 } 699 700 static void 701 e1000e_process_tx_desc(E1000ECore *core, 702 struct e1000e_tx *tx, 703 struct e1000_tx_desc *dp, 704 int queue_index) 705 { 706 uint32_t txd_lower = le32_to_cpu(dp->lower.data); 707 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); 708 unsigned int split_size = txd_lower & 0xffff; 709 uint64_t addr; 710 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; 711 bool eop = txd_lower & E1000_TXD_CMD_EOP; 712 713 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ 714 e1000x_read_tx_ctx_descr(xp, &tx->props); 715 e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length)); 716 return; 717 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { 718 /* data descriptor */ 719 tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8; 720 tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; 721 e1000e_process_ts_option(core, dp); 722 } else { 723 /* legacy descriptor */ 724 e1000e_process_ts_option(core, dp); 725 tx->cptse = 0; 726 } 727 728 addr = le64_to_cpu(dp->buffer_addr); 729 730 if (!tx->skip_cp) { 731 if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) { 732 tx->skip_cp = true; 733 } 734 } 735 736 if (eop) { 737 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) { 738 if (e1000x_vlan_enabled(core->mac) && 739 e1000x_is_vlan_txd(txd_lower)) { 740 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt, 741 le16_to_cpu(dp->upper.fields.special), core->vet); 742 } 743 if (e1000e_tx_pkt_send(core, tx, queue_index)) { 744 e1000e_on_tx_done_update_stats(core, tx->tx_pkt); 745 } 746 } 747 748 tx->skip_cp = false; 749 net_tx_pkt_reset(tx->tx_pkt); 750 751 tx->sum_needed = 0; 752 tx->cptse = 0; 753 } 754 } 755 756 static inline uint32_t 757 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx) 758 { 759 if (!msix_enabled(core->owner)) { 760 return E1000_ICR_TXDW; 761 } 762 763 return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1; 764 } 765 766 static inline uint32_t 767 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx, 768 bool min_threshold_hit) 769 { 770 if (!msix_enabled(core->owner)) { 771 return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0); 772 } 773 774 return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1; 775 } 776 777 static uint32_t 778 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base, 779 struct e1000_tx_desc *dp, bool *ide, int queue_idx) 780 { 781 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); 782 783 if (!(txd_lower & E1000_TXD_CMD_RS) && 784 !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) { 785 return 0; 786 } 787 788 *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false; 789 790 txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD; 791 792 dp->upper.data = cpu_to_le32(txd_upper); 793 pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp), 794 &dp->upper, sizeof(dp->upper)); 795 return e1000e_tx_wb_interrupt_cause(core, queue_idx); 796 } 797 798 typedef struct E1000E_RingInfo_st { 799 int dbah; 800 int dbal; 801 int dlen; 802 int dh; 803 int dt; 804 int idx; 805 } E1000E_RingInfo; 806 807 static inline bool 808 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r) 809 { 810 return core->mac[r->dh] == core->mac[r->dt] || 811 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN; 812 } 813 814 static inline uint64_t 815 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r) 816 { 817 uint64_t bah = core->mac[r->dbah]; 818 uint64_t bal = core->mac[r->dbal]; 819 820 return (bah << 32) + bal; 821 } 822 823 static inline uint64_t 824 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r) 825 { 826 return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh]; 827 } 828 829 static inline void 830 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count) 831 { 832 core->mac[r->dh] += count; 833 834 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) { 835 core->mac[r->dh] = 0; 836 } 837 } 838 839 static inline uint32_t 840 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r) 841 { 842 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen], 843 core->mac[r->dh], core->mac[r->dt]); 844 845 if (core->mac[r->dh] <= core->mac[r->dt]) { 846 return core->mac[r->dt] - core->mac[r->dh]; 847 } 848 849 if (core->mac[r->dh] > core->mac[r->dt]) { 850 return core->mac[r->dlen] / E1000_RING_DESC_LEN + 851 core->mac[r->dt] - core->mac[r->dh]; 852 } 853 854 g_assert_not_reached(); 855 return 0; 856 } 857 858 static inline bool 859 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r) 860 { 861 return core->mac[r->dlen] > 0; 862 } 863 864 static inline uint32_t 865 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r) 866 { 867 return core->mac[r->dlen]; 868 } 869 870 typedef struct E1000E_TxRing_st { 871 const E1000E_RingInfo *i; 872 struct e1000e_tx *tx; 873 } E1000E_TxRing; 874 875 static inline int 876 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx) 877 { 878 return (reg_idx - base_reg_idx) / (0x100 >> 2); 879 } 880 881 static inline void 882 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx) 883 { 884 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = { 885 { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 }, 886 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 } 887 }; 888 889 assert(idx < ARRAY_SIZE(i)); 890 891 txr->i = &i[idx]; 892 txr->tx = &core->tx[idx]; 893 } 894 895 typedef struct E1000E_RxRing_st { 896 const E1000E_RingInfo *i; 897 } E1000E_RxRing; 898 899 static inline void 900 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx) 901 { 902 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = { 903 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 }, 904 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 } 905 }; 906 907 assert(idx < ARRAY_SIZE(i)); 908 909 rxr->i = &i[idx]; 910 } 911 912 static void 913 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr) 914 { 915 dma_addr_t base; 916 struct e1000_tx_desc desc; 917 bool ide = false; 918 const E1000E_RingInfo *txi = txr->i; 919 uint32_t cause = E1000_ICS_TXQE; 920 921 if (!(core->mac[TCTL] & E1000_TCTL_EN)) { 922 trace_e1000e_tx_disabled(); 923 return; 924 } 925 926 while (!e1000e_ring_empty(core, txi)) { 927 base = e1000e_ring_head_descr(core, txi); 928 929 pci_dma_read(core->owner, base, &desc, sizeof(desc)); 930 931 trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr, 932 desc.lower.data, desc.upper.data); 933 934 e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx); 935 cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx); 936 937 e1000e_ring_advance(core, txi, 1); 938 } 939 940 if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) { 941 e1000e_set_interrupt_cause(core, cause); 942 } 943 } 944 945 static bool 946 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r, 947 size_t total_size) 948 { 949 uint32_t bufs = e1000e_ring_free_descr_num(core, r); 950 951 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size, 952 core->rx_desc_buf_size); 953 954 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) * 955 core->rx_desc_buf_size; 956 } 957 958 void 959 e1000e_start_recv(E1000ECore *core) 960 { 961 int i; 962 963 trace_e1000e_rx_start_recv(); 964 965 for (i = 0; i <= core->max_queue_num; i++) { 966 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i)); 967 } 968 } 969 970 bool 971 e1000e_can_receive(E1000ECore *core) 972 { 973 int i; 974 975 if (!e1000x_rx_ready(core->owner, core->mac)) { 976 return false; 977 } 978 979 for (i = 0; i < E1000E_NUM_QUEUES; i++) { 980 E1000E_RxRing rxr; 981 982 e1000e_rx_ring_init(core, &rxr, i); 983 if (e1000e_ring_enabled(core, rxr.i) && 984 e1000e_has_rxbufs(core, rxr.i, 1)) { 985 trace_e1000e_rx_can_recv(); 986 return true; 987 } 988 } 989 990 trace_e1000e_rx_can_recv_rings_full(); 991 return false; 992 } 993 994 ssize_t 995 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size) 996 { 997 const struct iovec iov = { 998 .iov_base = (uint8_t *)buf, 999 .iov_len = size 1000 }; 1001 1002 return e1000e_receive_iov(core, &iov, 1); 1003 } 1004 1005 static inline bool 1006 e1000e_rx_l3_cso_enabled(E1000ECore *core) 1007 { 1008 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD); 1009 } 1010 1011 static inline bool 1012 e1000e_rx_l4_cso_enabled(E1000ECore *core) 1013 { 1014 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD); 1015 } 1016 1017 static bool 1018 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size) 1019 { 1020 uint32_t rctl = core->mac[RCTL]; 1021 1022 if (e1000x_is_vlan_packet(buf, core->vet) && 1023 e1000x_vlan_rx_filter_enabled(core->mac)) { 1024 uint16_t vid = lduw_be_p(buf + 14); 1025 uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) + 1026 ((vid >> 5) & 0x7f)); 1027 if ((vfta & (1 << (vid & 0x1f))) == 0) { 1028 trace_e1000e_rx_flt_vlan_mismatch(vid); 1029 return false; 1030 } else { 1031 trace_e1000e_rx_flt_vlan_match(vid); 1032 } 1033 } 1034 1035 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { 1036 case ETH_PKT_UCAST: 1037 if (rctl & E1000_RCTL_UPE) { 1038 return true; /* promiscuous ucast */ 1039 } 1040 break; 1041 1042 case ETH_PKT_BCAST: 1043 if (rctl & E1000_RCTL_BAM) { 1044 return true; /* broadcast enabled */ 1045 } 1046 break; 1047 1048 case ETH_PKT_MCAST: 1049 if (rctl & E1000_RCTL_MPE) { 1050 return true; /* promiscuous mcast */ 1051 } 1052 break; 1053 1054 default: 1055 g_assert_not_reached(); 1056 } 1057 1058 return e1000x_rx_group_filter(core->mac, buf); 1059 } 1060 1061 static inline void 1062 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr) 1063 { 1064 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc; 1065 *buff_addr = le64_to_cpu(d->buffer_addr); 1066 } 1067 1068 static inline void 1069 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr) 1070 { 1071 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc; 1072 *buff_addr = le64_to_cpu(d->read.buffer_addr); 1073 } 1074 1075 static inline void 1076 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc, 1077 hwaddr (*buff_addr)[MAX_PS_BUFFERS]) 1078 { 1079 int i; 1080 union e1000_rx_desc_packet_split *d = 1081 (union e1000_rx_desc_packet_split *) desc; 1082 1083 for (i = 0; i < MAX_PS_BUFFERS; i++) { 1084 (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]); 1085 } 1086 1087 trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1], 1088 (*buff_addr)[2], (*buff_addr)[3]); 1089 } 1090 1091 static inline void 1092 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc, 1093 hwaddr (*buff_addr)[MAX_PS_BUFFERS]) 1094 { 1095 if (e1000e_rx_use_legacy_descriptor(core)) { 1096 e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]); 1097 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0; 1098 } else { 1099 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { 1100 e1000e_read_ps_rx_descr(core, desc, buff_addr); 1101 } else { 1102 e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]); 1103 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0; 1104 } 1105 } 1106 } 1107 1108 static void 1109 e1000e_verify_csum_in_sw(E1000ECore *core, 1110 struct NetRxPkt *pkt, 1111 uint32_t *status_flags, 1112 bool istcp, bool isudp) 1113 { 1114 bool csum_valid; 1115 uint32_t csum_error; 1116 1117 if (e1000e_rx_l3_cso_enabled(core)) { 1118 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) { 1119 trace_e1000e_rx_metadata_l3_csum_validation_failed(); 1120 } else { 1121 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE; 1122 *status_flags |= E1000_RXD_STAT_IPCS | csum_error; 1123 } 1124 } else { 1125 trace_e1000e_rx_metadata_l3_cso_disabled(); 1126 } 1127 1128 if (!e1000e_rx_l4_cso_enabled(core)) { 1129 trace_e1000e_rx_metadata_l4_cso_disabled(); 1130 return; 1131 } 1132 1133 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) { 1134 trace_e1000e_rx_metadata_l4_csum_validation_failed(); 1135 return; 1136 } 1137 1138 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE; 1139 1140 if (istcp) { 1141 *status_flags |= E1000_RXD_STAT_TCPCS | 1142 csum_error; 1143 } else if (isudp) { 1144 *status_flags |= E1000_RXD_STAT_TCPCS | 1145 E1000_RXD_STAT_UDPCS | 1146 csum_error; 1147 } 1148 } 1149 1150 static inline bool 1151 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt) 1152 { 1153 if (!net_rx_pkt_is_tcp_ack(rx_pkt)) { 1154 return false; 1155 } 1156 1157 if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) { 1158 return !net_rx_pkt_has_tcp_data(rx_pkt); 1159 } 1160 1161 return true; 1162 } 1163 1164 static void 1165 e1000e_build_rx_metadata(E1000ECore *core, 1166 struct NetRxPkt *pkt, 1167 bool is_eop, 1168 const E1000E_RSSInfo *rss_info, 1169 uint32_t *rss, uint32_t *mrq, 1170 uint32_t *status_flags, 1171 uint16_t *ip_id, 1172 uint16_t *vlan_tag) 1173 { 1174 struct virtio_net_hdr *vhdr; 1175 bool isip4, isip6, istcp, isudp; 1176 uint32_t pkt_type; 1177 1178 *status_flags = E1000_RXD_STAT_DD; 1179 1180 /* No additional metadata needed for non-EOP descriptors */ 1181 if (!is_eop) { 1182 goto func_exit; 1183 } 1184 1185 *status_flags |= E1000_RXD_STAT_EOP; 1186 1187 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); 1188 trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp); 1189 1190 /* VLAN state */ 1191 if (net_rx_pkt_is_vlan_stripped(pkt)) { 1192 *status_flags |= E1000_RXD_STAT_VP; 1193 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt)); 1194 trace_e1000e_rx_metadata_vlan(*vlan_tag); 1195 } 1196 1197 /* Packet parsing results */ 1198 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) { 1199 if (rss_info->enabled) { 1200 *rss = cpu_to_le32(rss_info->hash); 1201 *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8)); 1202 trace_e1000e_rx_metadata_rss(*rss, *mrq); 1203 } 1204 } else if (isip4) { 1205 *status_flags |= E1000_RXD_STAT_IPIDV; 1206 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt)); 1207 trace_e1000e_rx_metadata_ip_id(*ip_id); 1208 } 1209 1210 if (istcp && e1000e_is_tcp_ack(core, pkt)) { 1211 *status_flags |= E1000_RXD_STAT_ACK; 1212 trace_e1000e_rx_metadata_ack(); 1213 } 1214 1215 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) { 1216 trace_e1000e_rx_metadata_ipv6_filtering_disabled(); 1217 pkt_type = E1000_RXD_PKT_MAC; 1218 } else if (istcp || isudp) { 1219 pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP; 1220 } else if (isip4 || isip6) { 1221 pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6; 1222 } else { 1223 pkt_type = E1000_RXD_PKT_MAC; 1224 } 1225 1226 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type); 1227 trace_e1000e_rx_metadata_pkt_type(pkt_type); 1228 1229 /* RX CSO information */ 1230 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) { 1231 trace_e1000e_rx_metadata_ipv6_sum_disabled(); 1232 goto func_exit; 1233 } 1234 1235 if (!net_rx_pkt_has_virt_hdr(pkt)) { 1236 trace_e1000e_rx_metadata_no_virthdr(); 1237 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp); 1238 goto func_exit; 1239 } 1240 1241 vhdr = net_rx_pkt_get_vhdr(pkt); 1242 1243 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) && 1244 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) { 1245 trace_e1000e_rx_metadata_virthdr_no_csum_info(); 1246 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp); 1247 goto func_exit; 1248 } 1249 1250 if (e1000e_rx_l3_cso_enabled(core)) { 1251 *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0; 1252 } else { 1253 trace_e1000e_rx_metadata_l3_cso_disabled(); 1254 } 1255 1256 if (e1000e_rx_l4_cso_enabled(core)) { 1257 if (istcp) { 1258 *status_flags |= E1000_RXD_STAT_TCPCS; 1259 } else if (isudp) { 1260 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS; 1261 } 1262 } else { 1263 trace_e1000e_rx_metadata_l4_cso_disabled(); 1264 } 1265 1266 trace_e1000e_rx_metadata_status_flags(*status_flags); 1267 1268 func_exit: 1269 *status_flags = cpu_to_le32(*status_flags); 1270 } 1271 1272 static inline void 1273 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, 1274 struct NetRxPkt *pkt, 1275 const E1000E_RSSInfo *rss_info, 1276 uint16_t length) 1277 { 1278 uint32_t status_flags, rss, mrq; 1279 uint16_t ip_id; 1280 1281 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc; 1282 1283 assert(!rss_info->enabled); 1284 1285 d->length = cpu_to_le16(length); 1286 d->csum = 0; 1287 1288 e1000e_build_rx_metadata(core, pkt, pkt != NULL, 1289 rss_info, 1290 &rss, &mrq, 1291 &status_flags, &ip_id, 1292 &d->special); 1293 d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24); 1294 d->status = (uint8_t) le32_to_cpu(status_flags); 1295 d->special = 0; 1296 } 1297 1298 static inline void 1299 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc, 1300 struct NetRxPkt *pkt, 1301 const E1000E_RSSInfo *rss_info, 1302 uint16_t length) 1303 { 1304 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc; 1305 1306 memset(&d->wb, 0, sizeof(d->wb)); 1307 1308 d->wb.upper.length = cpu_to_le16(length); 1309 1310 e1000e_build_rx_metadata(core, pkt, pkt != NULL, 1311 rss_info, 1312 &d->wb.lower.hi_dword.rss, 1313 &d->wb.lower.mrq, 1314 &d->wb.upper.status_error, 1315 &d->wb.lower.hi_dword.csum_ip.ip_id, 1316 &d->wb.upper.vlan); 1317 } 1318 1319 static inline void 1320 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc, 1321 struct NetRxPkt *pkt, 1322 const E1000E_RSSInfo *rss_info, 1323 size_t ps_hdr_len, 1324 uint16_t(*written)[MAX_PS_BUFFERS]) 1325 { 1326 int i; 1327 union e1000_rx_desc_packet_split *d = 1328 (union e1000_rx_desc_packet_split *) desc; 1329 1330 memset(&d->wb, 0, sizeof(d->wb)); 1331 1332 d->wb.middle.length0 = cpu_to_le16((*written)[0]); 1333 1334 for (i = 0; i < PS_PAGE_BUFFERS; i++) { 1335 d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]); 1336 } 1337 1338 e1000e_build_rx_metadata(core, pkt, pkt != NULL, 1339 rss_info, 1340 &d->wb.lower.hi_dword.rss, 1341 &d->wb.lower.mrq, 1342 &d->wb.middle.status_error, 1343 &d->wb.lower.hi_dword.csum_ip.ip_id, 1344 &d->wb.middle.vlan); 1345 1346 d->wb.upper.header_status = 1347 cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0)); 1348 1349 trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1], 1350 (*written)[2], (*written)[3]); 1351 } 1352 1353 static inline void 1354 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc, 1355 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info, 1356 size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS]) 1357 { 1358 if (e1000e_rx_use_legacy_descriptor(core)) { 1359 assert(ps_hdr_len == 0); 1360 e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]); 1361 } else { 1362 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { 1363 e1000e_write_ps_rx_descr(core, desc, pkt, rss_info, 1364 ps_hdr_len, written); 1365 } else { 1366 assert(ps_hdr_len == 0); 1367 e1000e_write_ext_rx_descr(core, desc, pkt, rss_info, 1368 (*written)[0]); 1369 } 1370 } 1371 } 1372 1373 typedef struct e1000e_ba_state_st { 1374 uint16_t written[MAX_PS_BUFFERS]; 1375 uint8_t cur_idx; 1376 } e1000e_ba_state; 1377 1378 static inline void 1379 e1000e_write_hdr_to_rx_buffers(E1000ECore *core, 1380 hwaddr (*ba)[MAX_PS_BUFFERS], 1381 e1000e_ba_state *bastate, 1382 const char *data, 1383 dma_addr_t data_len) 1384 { 1385 assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]); 1386 1387 pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len); 1388 bastate->written[0] += data_len; 1389 1390 bastate->cur_idx = 1; 1391 } 1392 1393 static void 1394 e1000e_write_to_rx_buffers(E1000ECore *core, 1395 hwaddr (*ba)[MAX_PS_BUFFERS], 1396 e1000e_ba_state *bastate, 1397 const char *data, 1398 dma_addr_t data_len) 1399 { 1400 while (data_len > 0) { 1401 uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx]; 1402 uint32_t cur_buf_bytes_left = cur_buf_len - 1403 bastate->written[bastate->cur_idx]; 1404 uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left); 1405 1406 trace_e1000e_rx_desc_buff_write(bastate->cur_idx, 1407 (*ba)[bastate->cur_idx], 1408 bastate->written[bastate->cur_idx], 1409 data, 1410 bytes_to_write); 1411 1412 pci_dma_write(core->owner, 1413 (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx], 1414 data, bytes_to_write); 1415 1416 bastate->written[bastate->cur_idx] += bytes_to_write; 1417 data += bytes_to_write; 1418 data_len -= bytes_to_write; 1419 1420 if (bastate->written[bastate->cur_idx] == cur_buf_len) { 1421 bastate->cur_idx++; 1422 } 1423 1424 assert(bastate->cur_idx < MAX_PS_BUFFERS); 1425 } 1426 } 1427 1428 static void 1429 e1000e_update_rx_stats(E1000ECore *core, 1430 size_t data_size, 1431 size_t data_fcs_size) 1432 { 1433 e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size); 1434 1435 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) { 1436 case ETH_PKT_BCAST: 1437 e1000x_inc_reg_if_not_full(core->mac, BPRC); 1438 break; 1439 1440 case ETH_PKT_MCAST: 1441 e1000x_inc_reg_if_not_full(core->mac, MPRC); 1442 break; 1443 1444 default: 1445 break; 1446 } 1447 } 1448 1449 static inline bool 1450 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi) 1451 { 1452 return e1000e_ring_free_descr_num(core, rxi) == 1453 e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift; 1454 } 1455 1456 static bool 1457 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len) 1458 { 1459 bool isip4, isip6, isudp, istcp; 1460 bool fragment; 1461 1462 if (!e1000e_rx_use_ps_descriptor(core)) { 1463 return false; 1464 } 1465 1466 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp); 1467 1468 if (isip4) { 1469 fragment = net_rx_pkt_get_ip4_info(pkt)->fragment; 1470 } else if (isip6) { 1471 fragment = net_rx_pkt_get_ip6_info(pkt)->fragment; 1472 } else { 1473 return false; 1474 } 1475 1476 if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) { 1477 return false; 1478 } 1479 1480 if (!fragment && (isudp || istcp)) { 1481 *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt); 1482 } else { 1483 *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt); 1484 } 1485 1486 if ((*hdr_len > core->rxbuf_sizes[0]) || 1487 (*hdr_len > net_rx_pkt_get_total_len(pkt))) { 1488 return false; 1489 } 1490 1491 return true; 1492 } 1493 1494 static void 1495 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt, 1496 const E1000E_RxRing *rxr, 1497 const E1000E_RSSInfo *rss_info) 1498 { 1499 PCIDevice *d = core->owner; 1500 dma_addr_t base; 1501 uint8_t desc[E1000_MAX_RX_DESC_LEN]; 1502 size_t desc_size; 1503 size_t desc_offset = 0; 1504 size_t iov_ofs = 0; 1505 1506 struct iovec *iov = net_rx_pkt_get_iovec(pkt); 1507 size_t size = net_rx_pkt_get_total_len(pkt); 1508 size_t total_size = size + e1000x_fcs_len(core->mac); 1509 const E1000E_RingInfo *rxi; 1510 size_t ps_hdr_len = 0; 1511 bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len); 1512 bool is_first = true; 1513 1514 rxi = rxr->i; 1515 1516 do { 1517 hwaddr ba[MAX_PS_BUFFERS]; 1518 e1000e_ba_state bastate = { { 0 } }; 1519 bool is_last = false; 1520 1521 desc_size = total_size - desc_offset; 1522 1523 if (desc_size > core->rx_desc_buf_size) { 1524 desc_size = core->rx_desc_buf_size; 1525 } 1526 1527 if (e1000e_ring_empty(core, rxi)) { 1528 return; 1529 } 1530 1531 base = e1000e_ring_head_descr(core, rxi); 1532 1533 pci_dma_read(d, base, &desc, core->rx_desc_len); 1534 1535 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len); 1536 1537 e1000e_read_rx_descr(core, desc, &ba); 1538 1539 if (ba[0]) { 1540 if (desc_offset < size) { 1541 static const uint32_t fcs_pad; 1542 size_t iov_copy; 1543 size_t copy_size = size - desc_offset; 1544 if (copy_size > core->rx_desc_buf_size) { 1545 copy_size = core->rx_desc_buf_size; 1546 } 1547 1548 /* For PS mode copy the packet header first */ 1549 if (do_ps) { 1550 if (is_first) { 1551 size_t ps_hdr_copied = 0; 1552 do { 1553 iov_copy = MIN(ps_hdr_len - ps_hdr_copied, 1554 iov->iov_len - iov_ofs); 1555 1556 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate, 1557 iov->iov_base, iov_copy); 1558 1559 copy_size -= iov_copy; 1560 ps_hdr_copied += iov_copy; 1561 1562 iov_ofs += iov_copy; 1563 if (iov_ofs == iov->iov_len) { 1564 iov++; 1565 iov_ofs = 0; 1566 } 1567 } while (ps_hdr_copied < ps_hdr_len); 1568 1569 is_first = false; 1570 } else { 1571 /* Leave buffer 0 of each descriptor except first */ 1572 /* empty as per spec 7.1.5.1 */ 1573 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate, 1574 NULL, 0); 1575 } 1576 } 1577 1578 /* Copy packet payload */ 1579 while (copy_size) { 1580 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 1581 1582 e1000e_write_to_rx_buffers(core, &ba, &bastate, 1583 iov->iov_base + iov_ofs, iov_copy); 1584 1585 copy_size -= iov_copy; 1586 iov_ofs += iov_copy; 1587 if (iov_ofs == iov->iov_len) { 1588 iov++; 1589 iov_ofs = 0; 1590 } 1591 } 1592 1593 if (desc_offset + desc_size >= total_size) { 1594 /* Simulate FCS checksum presence in the last descriptor */ 1595 e1000e_write_to_rx_buffers(core, &ba, &bastate, 1596 (const char *) &fcs_pad, e1000x_fcs_len(core->mac)); 1597 } 1598 } 1599 desc_offset += desc_size; 1600 if (desc_offset >= total_size) { 1601 is_last = true; 1602 } 1603 } else { /* as per intel docs; skip descriptors with null buf addr */ 1604 trace_e1000e_rx_null_descriptor(); 1605 } 1606 1607 e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL, 1608 rss_info, do_ps ? ps_hdr_len : 0, &bastate.written); 1609 pci_dma_write(d, base, &desc, core->rx_desc_len); 1610 1611 e1000e_ring_advance(core, rxi, 1612 core->rx_desc_len / E1000_MIN_RX_DESC_LEN); 1613 1614 } while (desc_offset < total_size); 1615 1616 e1000e_update_rx_stats(core, size, total_size); 1617 } 1618 1619 static inline void 1620 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt) 1621 { 1622 if (net_rx_pkt_has_virt_hdr(pkt)) { 1623 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt); 1624 1625 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 1626 net_rx_pkt_fix_l4_csum(pkt); 1627 } 1628 } 1629 } 1630 1631 ssize_t 1632 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt) 1633 { 1634 static const int maximum_ethernet_hdr_len = (14 + 4); 1635 /* Min. octets in an ethernet frame sans FCS */ 1636 static const int min_buf_size = 60; 1637 1638 uint32_t n = 0; 1639 uint8_t min_buf[min_buf_size]; 1640 struct iovec min_iov; 1641 uint8_t *filter_buf; 1642 size_t size, orig_size; 1643 size_t iov_ofs = 0; 1644 E1000E_RxRing rxr; 1645 E1000E_RSSInfo rss_info; 1646 size_t total_size; 1647 ssize_t retval; 1648 bool rdmts_hit; 1649 1650 trace_e1000e_rx_receive_iov(iovcnt); 1651 1652 if (!e1000x_hw_rx_enabled(core->mac)) { 1653 return -1; 1654 } 1655 1656 /* Pull virtio header in */ 1657 if (core->has_vnet) { 1658 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt); 1659 iov_ofs = sizeof(struct virtio_net_hdr); 1660 } 1661 1662 filter_buf = iov->iov_base + iov_ofs; 1663 orig_size = iov_size(iov, iovcnt); 1664 size = orig_size - iov_ofs; 1665 1666 /* Pad to minimum Ethernet frame length */ 1667 if (size < sizeof(min_buf)) { 1668 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size); 1669 memset(&min_buf[size], 0, sizeof(min_buf) - size); 1670 e1000x_inc_reg_if_not_full(core->mac, RUC); 1671 min_iov.iov_base = filter_buf = min_buf; 1672 min_iov.iov_len = size = sizeof(min_buf); 1673 iovcnt = 1; 1674 iov = &min_iov; 1675 iov_ofs = 0; 1676 } else if (iov->iov_len < maximum_ethernet_hdr_len) { 1677 /* This is very unlikely, but may happen. */ 1678 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len); 1679 filter_buf = min_buf; 1680 } 1681 1682 /* Discard oversized packets if !LPE and !SBP. */ 1683 if (e1000x_is_oversized(core->mac, size)) { 1684 return orig_size; 1685 } 1686 1687 net_rx_pkt_set_packet_type(core->rx_pkt, 1688 get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf))); 1689 1690 if (!e1000e_receive_filter(core, filter_buf, size)) { 1691 trace_e1000e_rx_flt_dropped(); 1692 return orig_size; 1693 } 1694 1695 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs, 1696 e1000x_vlan_enabled(core->mac), core->vet); 1697 1698 e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info); 1699 e1000e_rx_ring_init(core, &rxr, rss_info.queue); 1700 1701 trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx); 1702 1703 total_size = net_rx_pkt_get_total_len(core->rx_pkt) + 1704 e1000x_fcs_len(core->mac); 1705 1706 if (e1000e_has_rxbufs(core, rxr.i, total_size)) { 1707 e1000e_rx_fix_l4_csum(core, core->rx_pkt); 1708 1709 e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info); 1710 1711 retval = orig_size; 1712 1713 /* Perform small receive detection (RSRPD) */ 1714 if (total_size < core->mac[RSRPD]) { 1715 n |= E1000_ICS_SRPD; 1716 } 1717 1718 /* Perform ACK receive detection */ 1719 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) && 1720 (e1000e_is_tcp_ack(core, core->rx_pkt))) { 1721 n |= E1000_ICS_ACK; 1722 } 1723 1724 /* Check if receive descriptor minimum threshold hit */ 1725 rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i); 1726 n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit); 1727 1728 trace_e1000e_rx_written_to_guest(n); 1729 } else { 1730 n |= E1000_ICS_RXO; 1731 retval = 0; 1732 1733 trace_e1000e_rx_not_written_to_guest(n); 1734 } 1735 1736 if (!e1000e_intrmgr_delay_rx_causes(core, &n)) { 1737 trace_e1000e_rx_interrupt_set(n); 1738 e1000e_set_interrupt_cause(core, n); 1739 } else { 1740 trace_e1000e_rx_interrupt_delayed(n); 1741 } 1742 1743 return retval; 1744 } 1745 1746 static inline bool 1747 e1000e_have_autoneg(E1000ECore *core) 1748 { 1749 return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN; 1750 } 1751 1752 static void e1000e_update_flowctl_status(E1000ECore *core) 1753 { 1754 if (e1000e_have_autoneg(core) && 1755 core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) { 1756 trace_e1000e_link_autoneg_flowctl(true); 1757 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE; 1758 } else { 1759 trace_e1000e_link_autoneg_flowctl(false); 1760 } 1761 } 1762 1763 static inline void 1764 e1000e_link_down(E1000ECore *core) 1765 { 1766 e1000x_update_regs_on_link_down(core->mac, core->phy[0]); 1767 e1000e_update_flowctl_status(core); 1768 } 1769 1770 static inline void 1771 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val) 1772 { 1773 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ 1774 core->phy[0][PHY_CTRL] = val & ~(0x3f | 1775 MII_CR_RESET | 1776 MII_CR_RESTART_AUTO_NEG); 1777 1778 if ((val & MII_CR_RESTART_AUTO_NEG) && 1779 e1000e_have_autoneg(core)) { 1780 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); 1781 } 1782 } 1783 1784 static void 1785 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val) 1786 { 1787 core->phy[0][PHY_OEM_BITS] = val & ~BIT(10); 1788 1789 if (val & BIT(10)) { 1790 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer); 1791 } 1792 } 1793 1794 static void 1795 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val) 1796 { 1797 core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK; 1798 } 1799 1800 void 1801 e1000e_core_set_link_status(E1000ECore *core) 1802 { 1803 NetClientState *nc = qemu_get_queue(core->owner_nic); 1804 uint32_t old_status = core->mac[STATUS]; 1805 1806 trace_e1000e_link_status_changed(nc->link_down ? false : true); 1807 1808 if (nc->link_down) { 1809 e1000x_update_regs_on_link_down(core->mac, core->phy[0]); 1810 } else { 1811 if (e1000e_have_autoneg(core) && 1812 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 1813 e1000x_restart_autoneg(core->mac, core->phy[0], 1814 core->autoneg_timer); 1815 } else { 1816 e1000x_update_regs_on_link_up(core->mac, core->phy[0]); 1817 e1000e_start_recv(core); 1818 } 1819 } 1820 1821 if (core->mac[STATUS] != old_status) { 1822 e1000e_set_interrupt_cause(core, E1000_ICR_LSC); 1823 } 1824 } 1825 1826 static void 1827 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val) 1828 { 1829 trace_e1000e_core_ctrl_write(index, val); 1830 1831 /* RST is self clearing */ 1832 core->mac[CTRL] = val & ~E1000_CTRL_RST; 1833 core->mac[CTRL_DUP] = core->mac[CTRL]; 1834 1835 trace_e1000e_link_set_params( 1836 !!(val & E1000_CTRL_ASDE), 1837 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 1838 !!(val & E1000_CTRL_FRCSPD), 1839 !!(val & E1000_CTRL_FRCDPX), 1840 !!(val & E1000_CTRL_RFCE), 1841 !!(val & E1000_CTRL_TFCE)); 1842 1843 if (val & E1000_CTRL_RST) { 1844 trace_e1000e_core_ctrl_sw_reset(); 1845 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); 1846 } 1847 1848 if (val & E1000_CTRL_PHY_RST) { 1849 trace_e1000e_core_ctrl_phy_reset(); 1850 core->mac[STATUS] |= E1000_STATUS_PHYRA; 1851 } 1852 } 1853 1854 static void 1855 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val) 1856 { 1857 trace_e1000e_rx_set_rfctl(val); 1858 1859 if (!(val & E1000_RFCTL_ISCSI_DIS)) { 1860 trace_e1000e_wrn_iscsi_filtering_not_supported(); 1861 } 1862 1863 if (!(val & E1000_RFCTL_NFSW_DIS)) { 1864 trace_e1000e_wrn_nfsw_filtering_not_supported(); 1865 } 1866 1867 if (!(val & E1000_RFCTL_NFSR_DIS)) { 1868 trace_e1000e_wrn_nfsr_filtering_not_supported(); 1869 } 1870 1871 core->mac[RFCTL] = val; 1872 } 1873 1874 static void 1875 e1000e_calc_per_desc_buf_size(E1000ECore *core) 1876 { 1877 int i; 1878 core->rx_desc_buf_size = 0; 1879 1880 for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) { 1881 core->rx_desc_buf_size += core->rxbuf_sizes[i]; 1882 } 1883 } 1884 1885 static void 1886 e1000e_parse_rxbufsize(E1000ECore *core) 1887 { 1888 uint32_t rctl = core->mac[RCTL]; 1889 1890 memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes)); 1891 1892 if (rctl & E1000_RCTL_DTYP_MASK) { 1893 uint32_t bsize; 1894 1895 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK; 1896 core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128; 1897 1898 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK; 1899 core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024; 1900 1901 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK; 1902 core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024; 1903 1904 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK; 1905 core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024; 1906 } else if (rctl & E1000_RCTL_FLXBUF_MASK) { 1907 int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK; 1908 core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024; 1909 } else { 1910 core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl); 1911 } 1912 1913 trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1], 1914 core->rxbuf_sizes[2], core->rxbuf_sizes[3]); 1915 1916 e1000e_calc_per_desc_buf_size(core); 1917 } 1918 1919 static void 1920 e1000e_calc_rxdesclen(E1000ECore *core) 1921 { 1922 if (e1000e_rx_use_legacy_descriptor(core)) { 1923 core->rx_desc_len = sizeof(struct e1000_rx_desc); 1924 } else { 1925 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) { 1926 core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split); 1927 } else { 1928 core->rx_desc_len = sizeof(union e1000_rx_desc_extended); 1929 } 1930 } 1931 trace_e1000e_rx_desc_len(core->rx_desc_len); 1932 } 1933 1934 static void 1935 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val) 1936 { 1937 core->mac[RCTL] = val; 1938 trace_e1000e_rx_set_rctl(core->mac[RCTL]); 1939 1940 if (val & E1000_RCTL_EN) { 1941 e1000e_parse_rxbufsize(core); 1942 e1000e_calc_rxdesclen(core); 1943 core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 + 1944 E1000_RING_DESC_LEN_SHIFT; 1945 1946 e1000e_start_recv(core); 1947 } 1948 } 1949 1950 static 1951 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE]) 1952 (E1000ECore *, int, uint16_t) = { 1953 [0] = { 1954 [PHY_CTRL] = e1000e_set_phy_ctrl, 1955 [PHY_PAGE] = e1000e_set_phy_page, 1956 [PHY_OEM_BITS] = e1000e_set_phy_oem_bits 1957 } 1958 }; 1959 1960 static inline void 1961 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits) 1962 { 1963 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits); 1964 core->mac[IMS] &= ~bits; 1965 } 1966 1967 static inline bool 1968 e1000e_postpone_interrupt(bool *interrupt_pending, 1969 E1000IntrDelayTimer *timer) 1970 { 1971 if (timer->running) { 1972 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2); 1973 1974 *interrupt_pending = true; 1975 return true; 1976 } 1977 1978 if (timer->core->mac[timer->delay_reg] != 0) { 1979 e1000e_intrmgr_rearm_timer(timer); 1980 } 1981 1982 return false; 1983 } 1984 1985 static inline bool 1986 e1000e_itr_should_postpone(E1000ECore *core) 1987 { 1988 return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr); 1989 } 1990 1991 static inline bool 1992 e1000e_eitr_should_postpone(E1000ECore *core, int idx) 1993 { 1994 return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx], 1995 &core->eitr[idx]); 1996 } 1997 1998 static void 1999 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) 2000 { 2001 uint32_t effective_eiac; 2002 2003 if (E1000_IVAR_ENTRY_VALID(int_cfg)) { 2004 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); 2005 if (vec < E1000E_MSIX_VEC_NUM) { 2006 if (!e1000e_eitr_should_postpone(core, vec)) { 2007 trace_e1000e_irq_msix_notify_vec(vec); 2008 msix_notify(core->owner, vec); 2009 } 2010 } else { 2011 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); 2012 } 2013 } else { 2014 trace_e1000e_wrn_msix_invalid(cause, int_cfg); 2015 } 2016 2017 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) { 2018 trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause); 2019 core->mac[IAM] &= ~cause; 2020 } 2021 2022 trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]); 2023 2024 effective_eiac = core->mac[EIAC] & cause; 2025 2026 core->mac[ICR] &= ~effective_eiac; 2027 core->msi_causes_pending &= ~effective_eiac; 2028 2029 if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { 2030 core->mac[IMS] &= ~effective_eiac; 2031 } 2032 } 2033 2034 static void 2035 e1000e_msix_notify(E1000ECore *core, uint32_t causes) 2036 { 2037 if (causes & E1000_ICR_RXQ0) { 2038 e1000e_msix_notify_one(core, E1000_ICR_RXQ0, 2039 E1000_IVAR_RXQ0(core->mac[IVAR])); 2040 } 2041 2042 if (causes & E1000_ICR_RXQ1) { 2043 e1000e_msix_notify_one(core, E1000_ICR_RXQ1, 2044 E1000_IVAR_RXQ1(core->mac[IVAR])); 2045 } 2046 2047 if (causes & E1000_ICR_TXQ0) { 2048 e1000e_msix_notify_one(core, E1000_ICR_TXQ0, 2049 E1000_IVAR_TXQ0(core->mac[IVAR])); 2050 } 2051 2052 if (causes & E1000_ICR_TXQ1) { 2053 e1000e_msix_notify_one(core, E1000_ICR_TXQ1, 2054 E1000_IVAR_TXQ1(core->mac[IVAR])); 2055 } 2056 2057 if (causes & E1000_ICR_OTHER) { 2058 e1000e_msix_notify_one(core, E1000_ICR_OTHER, 2059 E1000_IVAR_OTHER(core->mac[IVAR])); 2060 } 2061 } 2062 2063 static void 2064 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg) 2065 { 2066 if (E1000_IVAR_ENTRY_VALID(int_cfg)) { 2067 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg); 2068 if (vec < E1000E_MSIX_VEC_NUM) { 2069 trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec); 2070 msix_clr_pending(core->owner, vec); 2071 } else { 2072 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg); 2073 } 2074 } else { 2075 trace_e1000e_wrn_msix_invalid(cause, int_cfg); 2076 } 2077 } 2078 2079 static void 2080 e1000e_msix_clear(E1000ECore *core, uint32_t causes) 2081 { 2082 if (causes & E1000_ICR_RXQ0) { 2083 e1000e_msix_clear_one(core, E1000_ICR_RXQ0, 2084 E1000_IVAR_RXQ0(core->mac[IVAR])); 2085 } 2086 2087 if (causes & E1000_ICR_RXQ1) { 2088 e1000e_msix_clear_one(core, E1000_ICR_RXQ1, 2089 E1000_IVAR_RXQ1(core->mac[IVAR])); 2090 } 2091 2092 if (causes & E1000_ICR_TXQ0) { 2093 e1000e_msix_clear_one(core, E1000_ICR_TXQ0, 2094 E1000_IVAR_TXQ0(core->mac[IVAR])); 2095 } 2096 2097 if (causes & E1000_ICR_TXQ1) { 2098 e1000e_msix_clear_one(core, E1000_ICR_TXQ1, 2099 E1000_IVAR_TXQ1(core->mac[IVAR])); 2100 } 2101 2102 if (causes & E1000_ICR_OTHER) { 2103 e1000e_msix_clear_one(core, E1000_ICR_OTHER, 2104 E1000_IVAR_OTHER(core->mac[IVAR])); 2105 } 2106 } 2107 2108 static inline void 2109 e1000e_fix_icr_asserted(E1000ECore *core) 2110 { 2111 core->mac[ICR] &= ~E1000_ICR_ASSERTED; 2112 if (core->mac[ICR]) { 2113 core->mac[ICR] |= E1000_ICR_ASSERTED; 2114 } 2115 2116 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]); 2117 } 2118 2119 static void 2120 e1000e_send_msi(E1000ECore *core, bool msix) 2121 { 2122 uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED; 2123 2124 core->msi_causes_pending &= causes; 2125 causes ^= core->msi_causes_pending; 2126 if (causes == 0) { 2127 return; 2128 } 2129 core->msi_causes_pending |= causes; 2130 2131 if (msix) { 2132 e1000e_msix_notify(core, causes); 2133 } else { 2134 if (!e1000e_itr_should_postpone(core)) { 2135 trace_e1000e_irq_msi_notify(causes); 2136 msi_notify(core->owner, 0); 2137 } 2138 } 2139 } 2140 2141 static void 2142 e1000e_update_interrupt_state(E1000ECore *core) 2143 { 2144 bool interrupts_pending; 2145 bool is_msix = msix_enabled(core->owner); 2146 2147 /* Set ICR[OTHER] for MSI-X */ 2148 if (is_msix) { 2149 if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) { 2150 core->mac[ICR] |= E1000_ICR_OTHER; 2151 trace_e1000e_irq_add_msi_other(core->mac[ICR]); 2152 } 2153 } 2154 2155 e1000e_fix_icr_asserted(core); 2156 2157 /* 2158 * Make sure ICR and ICS registers have the same value. 2159 * The spec says that the ICS register is write-only. However in practice, 2160 * on real hardware ICS is readable, and for reads it has the same value as 2161 * ICR (except that ICS does not have the clear on read behaviour of ICR). 2162 * 2163 * The VxWorks PRO/1000 driver uses this behaviour. 2164 */ 2165 core->mac[ICS] = core->mac[ICR]; 2166 2167 interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false; 2168 if (!interrupts_pending) { 2169 core->msi_causes_pending = 0; 2170 } 2171 2172 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS], 2173 core->mac[ICR], core->mac[IMS]); 2174 2175 if (is_msix || msi_enabled(core->owner)) { 2176 if (interrupts_pending) { 2177 e1000e_send_msi(core, is_msix); 2178 } 2179 } else { 2180 if (interrupts_pending) { 2181 if (!e1000e_itr_should_postpone(core)) { 2182 e1000e_raise_legacy_irq(core); 2183 } 2184 } else { 2185 e1000e_lower_legacy_irq(core); 2186 } 2187 } 2188 } 2189 2190 static void 2191 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val) 2192 { 2193 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]); 2194 2195 val |= e1000e_intmgr_collect_delayed_causes(core); 2196 core->mac[ICR] |= val; 2197 2198 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]); 2199 2200 e1000e_update_interrupt_state(core); 2201 } 2202 2203 static inline void 2204 e1000e_autoneg_timer(void *opaque) 2205 { 2206 E1000ECore *core = opaque; 2207 if (!qemu_get_queue(core->owner_nic)->link_down) { 2208 e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]); 2209 e1000e_start_recv(core); 2210 2211 e1000e_update_flowctl_status(core); 2212 /* signal link status change to the guest */ 2213 e1000e_set_interrupt_cause(core, E1000_ICR_LSC); 2214 } 2215 } 2216 2217 static inline uint16_t 2218 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr) 2219 { 2220 uint16_t index = (addr & 0x1ffff) >> 2; 2221 return index + (mac_reg_access[index] & 0xfffe); 2222 } 2223 2224 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = { 2225 [0] = { 2226 [PHY_CTRL] = PHY_ANYPAGE | PHY_RW, 2227 [PHY_STATUS] = PHY_ANYPAGE | PHY_R, 2228 [PHY_ID1] = PHY_ANYPAGE | PHY_R, 2229 [PHY_ID2] = PHY_ANYPAGE | PHY_R, 2230 [PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW, 2231 [PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R, 2232 [PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R, 2233 [PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW, 2234 [PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R, 2235 [PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW, 2236 [PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R, 2237 [PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R, 2238 [PHY_PAGE] = PHY_ANYPAGE | PHY_RW, 2239 2240 [PHY_COPPER_CTRL1] = PHY_RW, 2241 [PHY_COPPER_STAT1] = PHY_R, 2242 [PHY_COPPER_CTRL3] = PHY_RW, 2243 [PHY_RX_ERR_CNTR] = PHY_R, 2244 [PHY_OEM_BITS] = PHY_RW, 2245 [PHY_BIAS_1] = PHY_RW, 2246 [PHY_BIAS_2] = PHY_RW, 2247 [PHY_COPPER_INT_ENABLE] = PHY_RW, 2248 [PHY_COPPER_STAT2] = PHY_R, 2249 [PHY_COPPER_CTRL2] = PHY_RW 2250 }, 2251 [2] = { 2252 [PHY_MAC_CTRL1] = PHY_RW, 2253 [PHY_MAC_INT_ENABLE] = PHY_RW, 2254 [PHY_MAC_STAT] = PHY_R, 2255 [PHY_MAC_CTRL2] = PHY_RW 2256 }, 2257 [3] = { 2258 [PHY_LED_03_FUNC_CTRL1] = PHY_RW, 2259 [PHY_LED_03_POL_CTRL] = PHY_RW, 2260 [PHY_LED_TIMER_CTRL] = PHY_RW, 2261 [PHY_LED_45_CTRL] = PHY_RW 2262 }, 2263 [5] = { 2264 [PHY_1000T_SKEW] = PHY_R, 2265 [PHY_1000T_SWAP] = PHY_R 2266 }, 2267 [6] = { 2268 [PHY_CRC_COUNTERS] = PHY_R 2269 } 2270 }; 2271 2272 static bool 2273 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr, 2274 char cap, uint8_t *page) 2275 { 2276 *page = 2277 (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0 2278 : core->phy[0][PHY_PAGE]; 2279 2280 if (*page >= E1000E_PHY_PAGES) { 2281 return false; 2282 } 2283 2284 return e1000e_phy_regcap[*page][addr] & cap; 2285 } 2286 2287 static void 2288 e1000e_phy_reg_write(E1000ECore *core, uint8_t page, 2289 uint32_t addr, uint16_t data) 2290 { 2291 assert(page < E1000E_PHY_PAGES); 2292 assert(addr < E1000E_PHY_PAGE_SIZE); 2293 2294 if (e1000e_phyreg_writeops[page][addr]) { 2295 e1000e_phyreg_writeops[page][addr](core, addr, data); 2296 } else { 2297 core->phy[page][addr] = data; 2298 } 2299 } 2300 2301 static void 2302 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val) 2303 { 2304 uint32_t data = val & E1000_MDIC_DATA_MASK; 2305 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 2306 uint8_t page; 2307 2308 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */ 2309 val = core->mac[MDIC] | E1000_MDIC_ERROR; 2310 } else if (val & E1000_MDIC_OP_READ) { 2311 if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) { 2312 trace_e1000e_core_mdic_read_unhandled(page, addr); 2313 val |= E1000_MDIC_ERROR; 2314 } else { 2315 val = (val ^ data) | core->phy[page][addr]; 2316 trace_e1000e_core_mdic_read(page, addr, val); 2317 } 2318 } else if (val & E1000_MDIC_OP_WRITE) { 2319 if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) { 2320 trace_e1000e_core_mdic_write_unhandled(page, addr); 2321 val |= E1000_MDIC_ERROR; 2322 } else { 2323 trace_e1000e_core_mdic_write(page, addr, data); 2324 e1000e_phy_reg_write(core, page, addr, data); 2325 } 2326 } 2327 core->mac[MDIC] = val | E1000_MDIC_READY; 2328 2329 if (val & E1000_MDIC_INT_EN) { 2330 e1000e_set_interrupt_cause(core, E1000_ICR_MDAC); 2331 } 2332 } 2333 2334 static void 2335 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val) 2336 { 2337 core->mac[index] = val & 0xffff; 2338 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val); 2339 e1000e_start_recv(core); 2340 } 2341 2342 static void 2343 e1000e_set_status(E1000ECore *core, int index, uint32_t val) 2344 { 2345 if ((val & E1000_STATUS_PHYRA) == 0) { 2346 core->mac[index] &= ~E1000_STATUS_PHYRA; 2347 } 2348 } 2349 2350 static void 2351 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val) 2352 { 2353 trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK), 2354 !!(val & E1000_CTRL_EXT_SPD_BYPS)); 2355 2356 /* Zero self-clearing bits */ 2357 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST); 2358 core->mac[CTRL_EXT] = val; 2359 } 2360 2361 static void 2362 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val) 2363 { 2364 int i; 2365 2366 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK; 2367 2368 if (!msix_enabled(core->owner)) { 2369 return; 2370 } 2371 2372 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) { 2373 if (core->mac[PBACLR] & BIT(i)) { 2374 msix_clr_pending(core->owner, i); 2375 } 2376 } 2377 } 2378 2379 static void 2380 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val) 2381 { 2382 core->mac[FCRTH] = val & 0xFFF8; 2383 } 2384 2385 static void 2386 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val) 2387 { 2388 core->mac[FCRTL] = val & 0x8000FFF8; 2389 } 2390 2391 static inline void 2392 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val) 2393 { 2394 core->mac[index] = val & 0xffff; 2395 } 2396 2397 static void 2398 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val) 2399 { 2400 core->mac[index] = val & 0xfff; 2401 } 2402 2403 static void 2404 e1000e_set_vet(E1000ECore *core, int index, uint32_t val) 2405 { 2406 core->mac[VET] = val & 0xffff; 2407 core->vet = le16_to_cpu(core->mac[VET]); 2408 trace_e1000e_vlan_vet(core->vet); 2409 } 2410 2411 static void 2412 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val) 2413 { 2414 core->mac[index] = val & E1000_XDLEN_MASK; 2415 } 2416 2417 static void 2418 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val) 2419 { 2420 core->mac[index] = val & E1000_XDBAL_MASK; 2421 } 2422 2423 static void 2424 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val) 2425 { 2426 E1000E_TxRing txr; 2427 core->mac[index] = val; 2428 2429 if (core->mac[TARC0] & E1000_TARC_ENABLE) { 2430 e1000e_tx_ring_init(core, &txr, 0); 2431 e1000e_start_xmit(core, &txr); 2432 } 2433 2434 if (core->mac[TARC1] & E1000_TARC_ENABLE) { 2435 e1000e_tx_ring_init(core, &txr, 1); 2436 e1000e_start_xmit(core, &txr); 2437 } 2438 } 2439 2440 static void 2441 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val) 2442 { 2443 E1000E_TxRing txr; 2444 int qidx = e1000e_mq_queue_idx(TDT, index); 2445 uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1; 2446 2447 core->mac[index] = val & 0xffff; 2448 2449 if (core->mac[tarc_reg] & E1000_TARC_ENABLE) { 2450 e1000e_tx_ring_init(core, &txr, qidx); 2451 e1000e_start_xmit(core, &txr); 2452 } 2453 } 2454 2455 static void 2456 e1000e_set_ics(E1000ECore *core, int index, uint32_t val) 2457 { 2458 trace_e1000e_irq_write_ics(val); 2459 e1000e_set_interrupt_cause(core, val); 2460 } 2461 2462 static void 2463 e1000e_set_icr(E1000ECore *core, int index, uint32_t val) 2464 { 2465 uint32_t icr = 0; 2466 if ((core->mac[ICR] & E1000_ICR_ASSERTED) && 2467 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { 2468 trace_e1000e_irq_icr_process_iame(); 2469 e1000e_clear_ims_bits(core, core->mac[IAM]); 2470 } 2471 2472 icr = core->mac[ICR] & ~val; 2473 /* Windows driver expects that the "receive overrun" bit and other 2474 * ones to be cleared when the "Other" bit (#24) is cleared. 2475 */ 2476 icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr; 2477 trace_e1000e_irq_icr_write(val, core->mac[ICR], icr); 2478 core->mac[ICR] = icr; 2479 e1000e_update_interrupt_state(core); 2480 } 2481 2482 static void 2483 e1000e_set_imc(E1000ECore *core, int index, uint32_t val) 2484 { 2485 trace_e1000e_irq_ims_clear_set_imc(val); 2486 e1000e_clear_ims_bits(core, val); 2487 e1000e_update_interrupt_state(core); 2488 } 2489 2490 static void 2491 e1000e_set_ims(E1000ECore *core, int index, uint32_t val) 2492 { 2493 static const uint32_t ims_ext_mask = 2494 E1000_IMS_RXQ0 | E1000_IMS_RXQ1 | 2495 E1000_IMS_TXQ0 | E1000_IMS_TXQ1 | 2496 E1000_IMS_OTHER; 2497 2498 static const uint32_t ims_valid_mask = 2499 E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC | 2500 E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 | 2501 E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD | 2502 E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 | 2503 E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 | 2504 E1000_IMS_OTHER; 2505 2506 uint32_t valid_val = val & ims_valid_mask; 2507 2508 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val); 2509 core->mac[IMS] |= valid_val; 2510 2511 if ((valid_val & ims_ext_mask) && 2512 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) && 2513 msix_enabled(core->owner)) { 2514 e1000e_msix_clear(core, valid_val); 2515 } 2516 2517 if ((valid_val == ims_valid_mask) && 2518 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) { 2519 trace_e1000e_irq_fire_all_timers(val); 2520 e1000e_intrmgr_fire_all_timers(core); 2521 } 2522 2523 e1000e_update_interrupt_state(core); 2524 } 2525 2526 static void 2527 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val) 2528 { 2529 e1000e_set_16bit(core, index, val); 2530 2531 if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) { 2532 trace_e1000e_irq_rdtr_fpd_running(); 2533 e1000e_intrmgr_fire_delayed_interrupts(core); 2534 } else { 2535 trace_e1000e_irq_rdtr_fpd_not_running(); 2536 } 2537 } 2538 2539 static void 2540 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val) 2541 { 2542 e1000e_set_16bit(core, index, val); 2543 2544 if ((val & E1000_TIDV_FPD) && (core->tidv.running)) { 2545 trace_e1000e_irq_tidv_fpd_running(); 2546 e1000e_intrmgr_fire_delayed_interrupts(core); 2547 } else { 2548 trace_e1000e_irq_tidv_fpd_not_running(); 2549 } 2550 } 2551 2552 static uint32_t 2553 e1000e_mac_readreg(E1000ECore *core, int index) 2554 { 2555 return core->mac[index]; 2556 } 2557 2558 static uint32_t 2559 e1000e_mac_ics_read(E1000ECore *core, int index) 2560 { 2561 trace_e1000e_irq_read_ics(core->mac[ICS]); 2562 return core->mac[ICS]; 2563 } 2564 2565 static uint32_t 2566 e1000e_mac_ims_read(E1000ECore *core, int index) 2567 { 2568 trace_e1000e_irq_read_ims(core->mac[IMS]); 2569 return core->mac[IMS]; 2570 } 2571 2572 #define E1000E_LOW_BITS_READ_FUNC(num) \ 2573 static uint32_t \ 2574 e1000e_mac_low##num##_read(E1000ECore *core, int index) \ 2575 { \ 2576 return core->mac[index] & (BIT(num) - 1); \ 2577 } \ 2578 2579 #define E1000E_LOW_BITS_READ(num) \ 2580 e1000e_mac_low##num##_read 2581 2582 E1000E_LOW_BITS_READ_FUNC(4); 2583 E1000E_LOW_BITS_READ_FUNC(6); 2584 E1000E_LOW_BITS_READ_FUNC(11); 2585 E1000E_LOW_BITS_READ_FUNC(13); 2586 E1000E_LOW_BITS_READ_FUNC(16); 2587 2588 static uint32_t 2589 e1000e_mac_swsm_read(E1000ECore *core, int index) 2590 { 2591 uint32_t val = core->mac[SWSM]; 2592 core->mac[SWSM] = val | 1; 2593 return val; 2594 } 2595 2596 static uint32_t 2597 e1000e_mac_itr_read(E1000ECore *core, int index) 2598 { 2599 return core->itr_guest_value; 2600 } 2601 2602 static uint32_t 2603 e1000e_mac_eitr_read(E1000ECore *core, int index) 2604 { 2605 return core->eitr_guest_value[index - EITR]; 2606 } 2607 2608 static uint32_t 2609 e1000e_mac_icr_read(E1000ECore *core, int index) 2610 { 2611 uint32_t ret = core->mac[ICR]; 2612 trace_e1000e_irq_icr_read_entry(ret); 2613 2614 if (core->mac[IMS] == 0) { 2615 trace_e1000e_irq_icr_clear_zero_ims(); 2616 core->mac[ICR] = 0; 2617 } 2618 2619 if ((core->mac[ICR] & E1000_ICR_ASSERTED) && 2620 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) { 2621 trace_e1000e_irq_icr_clear_iame(); 2622 core->mac[ICR] = 0; 2623 trace_e1000e_irq_icr_process_iame(); 2624 e1000e_clear_ims_bits(core, core->mac[IAM]); 2625 } 2626 2627 trace_e1000e_irq_icr_read_exit(core->mac[ICR]); 2628 e1000e_update_interrupt_state(core); 2629 return ret; 2630 } 2631 2632 static uint32_t 2633 e1000e_mac_read_clr4(E1000ECore *core, int index) 2634 { 2635 uint32_t ret = core->mac[index]; 2636 2637 core->mac[index] = 0; 2638 return ret; 2639 } 2640 2641 static uint32_t 2642 e1000e_mac_read_clr8(E1000ECore *core, int index) 2643 { 2644 uint32_t ret = core->mac[index]; 2645 2646 core->mac[index] = 0; 2647 core->mac[index - 1] = 0; 2648 return ret; 2649 } 2650 2651 static uint32_t 2652 e1000e_get_ctrl(E1000ECore *core, int index) 2653 { 2654 uint32_t val = core->mac[CTRL]; 2655 2656 trace_e1000e_link_read_params( 2657 !!(val & E1000_CTRL_ASDE), 2658 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT, 2659 !!(val & E1000_CTRL_FRCSPD), 2660 !!(val & E1000_CTRL_FRCDPX), 2661 !!(val & E1000_CTRL_RFCE), 2662 !!(val & E1000_CTRL_TFCE)); 2663 2664 return val; 2665 } 2666 2667 static uint32_t 2668 e1000e_get_status(E1000ECore *core, int index) 2669 { 2670 uint32_t res = core->mac[STATUS]; 2671 2672 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) { 2673 res |= E1000_STATUS_GIO_MASTER_ENABLE; 2674 } 2675 2676 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) { 2677 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0; 2678 } else { 2679 res |= E1000_STATUS_FD; 2680 } 2681 2682 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) || 2683 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) { 2684 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) { 2685 case E1000_CTRL_SPD_10: 2686 res |= E1000_STATUS_SPEED_10; 2687 break; 2688 case E1000_CTRL_SPD_100: 2689 res |= E1000_STATUS_SPEED_100; 2690 break; 2691 case E1000_CTRL_SPD_1000: 2692 default: 2693 res |= E1000_STATUS_SPEED_1000; 2694 break; 2695 } 2696 } else { 2697 res |= E1000_STATUS_SPEED_1000; 2698 } 2699 2700 trace_e1000e_link_status( 2701 !!(res & E1000_STATUS_LU), 2702 !!(res & E1000_STATUS_FD), 2703 (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT, 2704 (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT); 2705 2706 return res; 2707 } 2708 2709 static uint32_t 2710 e1000e_get_tarc(E1000ECore *core, int index) 2711 { 2712 return core->mac[index] & ((BIT(11) - 1) | 2713 BIT(27) | 2714 BIT(28) | 2715 BIT(29) | 2716 BIT(30)); 2717 } 2718 2719 static void 2720 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val) 2721 { 2722 core->mac[index] = val; 2723 } 2724 2725 static void 2726 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val) 2727 { 2728 uint32_t macaddr[2]; 2729 2730 core->mac[index] = val; 2731 2732 macaddr[0] = cpu_to_le32(core->mac[RA]); 2733 macaddr[1] = cpu_to_le32(core->mac[RA + 1]); 2734 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic), 2735 (uint8_t *) macaddr); 2736 2737 trace_e1000e_mac_set_sw(MAC_ARG(macaddr)); 2738 } 2739 2740 static void 2741 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val) 2742 { 2743 static const uint32_t ro_bits = E1000_EECD_PRES | 2744 E1000_EECD_AUTO_RD | 2745 E1000_EECD_SIZE_EX_MASK; 2746 2747 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits); 2748 } 2749 2750 static void 2751 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val) 2752 { 2753 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; 2754 uint32_t flags = 0; 2755 uint32_t data = 0; 2756 2757 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { 2758 data = core->eeprom[addr]; 2759 flags = E1000_EERW_DONE; 2760 } 2761 2762 core->mac[EERD] = flags | 2763 (addr << E1000_EERW_ADDR_SHIFT) | 2764 (data << E1000_EERW_DATA_SHIFT); 2765 } 2766 2767 static void 2768 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val) 2769 { 2770 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK; 2771 uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK; 2772 uint32_t flags = 0; 2773 2774 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) { 2775 core->eeprom[addr] = data; 2776 flags = E1000_EERW_DONE; 2777 } 2778 2779 core->mac[EERD] = flags | 2780 (addr << E1000_EERW_ADDR_SHIFT) | 2781 (data << E1000_EERW_DATA_SHIFT); 2782 } 2783 2784 static void 2785 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val) 2786 { 2787 core->mac[RXDCTL] = core->mac[RXDCTL1] = val; 2788 } 2789 2790 static void 2791 e1000e_set_itr(E1000ECore *core, int index, uint32_t val) 2792 { 2793 uint32_t interval = val & 0xffff; 2794 2795 trace_e1000e_irq_itr_set(val); 2796 2797 core->itr_guest_value = interval; 2798 core->mac[index] = MAX(interval, E1000E_MIN_XITR); 2799 } 2800 2801 static void 2802 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val) 2803 { 2804 uint32_t interval = val & 0xffff; 2805 uint32_t eitr_num = index - EITR; 2806 2807 trace_e1000e_irq_eitr_set(eitr_num, val); 2808 2809 core->eitr_guest_value[eitr_num] = interval; 2810 core->mac[index] = MAX(interval, E1000E_MIN_XITR); 2811 } 2812 2813 static void 2814 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val) 2815 { 2816 if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) { 2817 2818 if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) { 2819 qemu_log_mask(LOG_GUEST_ERROR, 2820 "e1000e: PSRCTL.BSIZE0 cannot be zero"); 2821 return; 2822 } 2823 2824 if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) { 2825 qemu_log_mask(LOG_GUEST_ERROR, 2826 "e1000e: PSRCTL.BSIZE1 cannot be zero"); 2827 return; 2828 } 2829 } 2830 2831 core->mac[PSRCTL] = val; 2832 } 2833 2834 static void 2835 e1000e_update_rx_offloads(E1000ECore *core) 2836 { 2837 int cso_state = e1000e_rx_l4_cso_enabled(core); 2838 2839 trace_e1000e_rx_set_cso(cso_state); 2840 2841 if (core->has_vnet) { 2842 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer, 2843 cso_state, 0, 0, 0, 0); 2844 } 2845 } 2846 2847 static void 2848 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val) 2849 { 2850 core->mac[RXCSUM] = val; 2851 e1000e_update_rx_offloads(core); 2852 } 2853 2854 static void 2855 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val) 2856 { 2857 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS; 2858 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits; 2859 } 2860 2861 #define e1000e_getreg(x) [x] = e1000e_mac_readreg 2862 typedef uint32_t (*readops)(E1000ECore *, int); 2863 static const readops e1000e_macreg_readops[] = { 2864 e1000e_getreg(PBA), 2865 e1000e_getreg(WUFC), 2866 e1000e_getreg(MANC), 2867 e1000e_getreg(TOTL), 2868 e1000e_getreg(RDT0), 2869 e1000e_getreg(RDBAH0), 2870 e1000e_getreg(TDBAL1), 2871 e1000e_getreg(RDLEN0), 2872 e1000e_getreg(RDH1), 2873 e1000e_getreg(LATECOL), 2874 e1000e_getreg(SEQEC), 2875 e1000e_getreg(XONTXC), 2876 e1000e_getreg(WUS), 2877 e1000e_getreg(GORCL), 2878 e1000e_getreg(MGTPRC), 2879 e1000e_getreg(EERD), 2880 e1000e_getreg(EIAC), 2881 e1000e_getreg(PSRCTL), 2882 e1000e_getreg(MANC2H), 2883 e1000e_getreg(RXCSUM), 2884 e1000e_getreg(GSCL_3), 2885 e1000e_getreg(GSCN_2), 2886 e1000e_getreg(RSRPD), 2887 e1000e_getreg(RDBAL1), 2888 e1000e_getreg(FCAH), 2889 e1000e_getreg(FCRTH), 2890 e1000e_getreg(FLOP), 2891 e1000e_getreg(FLASHT), 2892 e1000e_getreg(RXSTMPH), 2893 e1000e_getreg(TXSTMPL), 2894 e1000e_getreg(TIMADJL), 2895 e1000e_getreg(TXDCTL), 2896 e1000e_getreg(RDH0), 2897 e1000e_getreg(TDT1), 2898 e1000e_getreg(TNCRS), 2899 e1000e_getreg(RJC), 2900 e1000e_getreg(IAM), 2901 e1000e_getreg(GSCL_2), 2902 e1000e_getreg(RDBAH1), 2903 e1000e_getreg(FLSWDATA), 2904 e1000e_getreg(RXSATRH), 2905 e1000e_getreg(TIPG), 2906 e1000e_getreg(FLMNGCTL), 2907 e1000e_getreg(FLMNGCNT), 2908 e1000e_getreg(TSYNCTXCTL), 2909 e1000e_getreg(EXTCNF_SIZE), 2910 e1000e_getreg(EXTCNF_CTRL), 2911 e1000e_getreg(EEMNGDATA), 2912 e1000e_getreg(CTRL_EXT), 2913 e1000e_getreg(SYSTIMH), 2914 e1000e_getreg(EEMNGCTL), 2915 e1000e_getreg(FLMNGDATA), 2916 e1000e_getreg(TSYNCRXCTL), 2917 e1000e_getreg(TDH), 2918 e1000e_getreg(LEDCTL), 2919 e1000e_getreg(STATUS), 2920 e1000e_getreg(TCTL), 2921 e1000e_getreg(TDBAL), 2922 e1000e_getreg(TDLEN), 2923 e1000e_getreg(TDH1), 2924 e1000e_getreg(RADV), 2925 e1000e_getreg(ECOL), 2926 e1000e_getreg(DC), 2927 e1000e_getreg(RLEC), 2928 e1000e_getreg(XOFFTXC), 2929 e1000e_getreg(RFC), 2930 e1000e_getreg(RNBC), 2931 e1000e_getreg(MGTPTC), 2932 e1000e_getreg(TIMINCA), 2933 e1000e_getreg(RXCFGL), 2934 e1000e_getreg(MFUTP01), 2935 e1000e_getreg(FACTPS), 2936 e1000e_getreg(GSCL_1), 2937 e1000e_getreg(GSCN_0), 2938 e1000e_getreg(GCR2), 2939 e1000e_getreg(RDT1), 2940 e1000e_getreg(PBACLR), 2941 e1000e_getreg(FCTTV), 2942 e1000e_getreg(EEWR), 2943 e1000e_getreg(FLSWCTL), 2944 e1000e_getreg(RXDCTL1), 2945 e1000e_getreg(RXSATRL), 2946 e1000e_getreg(SYSTIML), 2947 e1000e_getreg(RXUDP), 2948 e1000e_getreg(TORL), 2949 e1000e_getreg(TDLEN1), 2950 e1000e_getreg(MCC), 2951 e1000e_getreg(WUC), 2952 e1000e_getreg(EECD), 2953 e1000e_getreg(MFUTP23), 2954 e1000e_getreg(RAID), 2955 e1000e_getreg(FCRTV), 2956 e1000e_getreg(TXDCTL1), 2957 e1000e_getreg(RCTL), 2958 e1000e_getreg(TDT), 2959 e1000e_getreg(MDIC), 2960 e1000e_getreg(FCRUC), 2961 e1000e_getreg(VET), 2962 e1000e_getreg(RDBAL0), 2963 e1000e_getreg(TDBAH1), 2964 e1000e_getreg(RDTR), 2965 e1000e_getreg(SCC), 2966 e1000e_getreg(COLC), 2967 e1000e_getreg(CEXTERR), 2968 e1000e_getreg(XOFFRXC), 2969 e1000e_getreg(IPAV), 2970 e1000e_getreg(GOTCL), 2971 e1000e_getreg(MGTPDC), 2972 e1000e_getreg(GCR), 2973 e1000e_getreg(IVAR), 2974 e1000e_getreg(POEMB), 2975 e1000e_getreg(MFVAL), 2976 e1000e_getreg(FUNCTAG), 2977 e1000e_getreg(GSCL_4), 2978 e1000e_getreg(GSCN_3), 2979 e1000e_getreg(MRQC), 2980 e1000e_getreg(RDLEN1), 2981 e1000e_getreg(FCT), 2982 e1000e_getreg(FLA), 2983 e1000e_getreg(FLOL), 2984 e1000e_getreg(RXDCTL), 2985 e1000e_getreg(RXSTMPL), 2986 e1000e_getreg(TXSTMPH), 2987 e1000e_getreg(TIMADJH), 2988 e1000e_getreg(FCRTL), 2989 e1000e_getreg(TDBAH), 2990 e1000e_getreg(TADV), 2991 e1000e_getreg(XONRXC), 2992 e1000e_getreg(TSCTFC), 2993 e1000e_getreg(RFCTL), 2994 e1000e_getreg(GSCN_1), 2995 e1000e_getreg(FCAL), 2996 e1000e_getreg(FLSWCNT), 2997 2998 [TOTH] = e1000e_mac_read_clr8, 2999 [GOTCH] = e1000e_mac_read_clr8, 3000 [PRC64] = e1000e_mac_read_clr4, 3001 [PRC255] = e1000e_mac_read_clr4, 3002 [PRC1023] = e1000e_mac_read_clr4, 3003 [PTC64] = e1000e_mac_read_clr4, 3004 [PTC255] = e1000e_mac_read_clr4, 3005 [PTC1023] = e1000e_mac_read_clr4, 3006 [GPRC] = e1000e_mac_read_clr4, 3007 [TPT] = e1000e_mac_read_clr4, 3008 [RUC] = e1000e_mac_read_clr4, 3009 [BPRC] = e1000e_mac_read_clr4, 3010 [MPTC] = e1000e_mac_read_clr4, 3011 [IAC] = e1000e_mac_read_clr4, 3012 [ICR] = e1000e_mac_icr_read, 3013 [RDFH] = E1000E_LOW_BITS_READ(13), 3014 [RDFHS] = E1000E_LOW_BITS_READ(13), 3015 [RDFPC] = E1000E_LOW_BITS_READ(13), 3016 [TDFH] = E1000E_LOW_BITS_READ(13), 3017 [TDFHS] = E1000E_LOW_BITS_READ(13), 3018 [STATUS] = e1000e_get_status, 3019 [TARC0] = e1000e_get_tarc, 3020 [PBS] = E1000E_LOW_BITS_READ(6), 3021 [ICS] = e1000e_mac_ics_read, 3022 [AIT] = E1000E_LOW_BITS_READ(16), 3023 [TORH] = e1000e_mac_read_clr8, 3024 [GORCH] = e1000e_mac_read_clr8, 3025 [PRC127] = e1000e_mac_read_clr4, 3026 [PRC511] = e1000e_mac_read_clr4, 3027 [PRC1522] = e1000e_mac_read_clr4, 3028 [PTC127] = e1000e_mac_read_clr4, 3029 [PTC511] = e1000e_mac_read_clr4, 3030 [PTC1522] = e1000e_mac_read_clr4, 3031 [GPTC] = e1000e_mac_read_clr4, 3032 [TPR] = e1000e_mac_read_clr4, 3033 [ROC] = e1000e_mac_read_clr4, 3034 [MPRC] = e1000e_mac_read_clr4, 3035 [BPTC] = e1000e_mac_read_clr4, 3036 [TSCTC] = e1000e_mac_read_clr4, 3037 [ITR] = e1000e_mac_itr_read, 3038 [RDFT] = E1000E_LOW_BITS_READ(13), 3039 [RDFTS] = E1000E_LOW_BITS_READ(13), 3040 [TDFPC] = E1000E_LOW_BITS_READ(13), 3041 [TDFT] = E1000E_LOW_BITS_READ(13), 3042 [TDFTS] = E1000E_LOW_BITS_READ(13), 3043 [CTRL] = e1000e_get_ctrl, 3044 [TARC1] = e1000e_get_tarc, 3045 [SWSM] = e1000e_mac_swsm_read, 3046 [IMS] = e1000e_mac_ims_read, 3047 3048 [CRCERRS ... MPC] = e1000e_mac_readreg, 3049 [IP6AT ... IP6AT + 3] = e1000e_mac_readreg, 3050 [IP4AT ... IP4AT + 6] = e1000e_mac_readreg, 3051 [RA ... RA + 31] = e1000e_mac_readreg, 3052 [WUPM ... WUPM + 31] = e1000e_mac_readreg, 3053 [MTA ... MTA + 127] = e1000e_mac_readreg, 3054 [VFTA ... VFTA + 127] = e1000e_mac_readreg, 3055 [FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4), 3056 [FFVT ... FFVT + 254] = e1000e_mac_readreg, 3057 [MDEF ... MDEF + 7] = e1000e_mac_readreg, 3058 [FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11), 3059 [FTFT ... FTFT + 254] = e1000e_mac_readreg, 3060 [PBM ... PBM + 10239] = e1000e_mac_readreg, 3061 [RETA ... RETA + 31] = e1000e_mac_readreg, 3062 [RSSRK ... RSSRK + 31] = e1000e_mac_readreg, 3063 [MAVTV0 ... MAVTV3] = e1000e_mac_readreg, 3064 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read 3065 }; 3066 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) }; 3067 3068 #define e1000e_putreg(x) [x] = e1000e_mac_writereg 3069 typedef void (*writeops)(E1000ECore *, int, uint32_t); 3070 static const writeops e1000e_macreg_writeops[] = { 3071 e1000e_putreg(PBA), 3072 e1000e_putreg(SWSM), 3073 e1000e_putreg(WUFC), 3074 e1000e_putreg(RDBAH1), 3075 e1000e_putreg(TDBAH), 3076 e1000e_putreg(TXDCTL), 3077 e1000e_putreg(RDBAH0), 3078 e1000e_putreg(LEDCTL), 3079 e1000e_putreg(FCAL), 3080 e1000e_putreg(FCRUC), 3081 e1000e_putreg(AIT), 3082 e1000e_putreg(TDFH), 3083 e1000e_putreg(TDFT), 3084 e1000e_putreg(TDFHS), 3085 e1000e_putreg(TDFTS), 3086 e1000e_putreg(TDFPC), 3087 e1000e_putreg(WUC), 3088 e1000e_putreg(WUS), 3089 e1000e_putreg(RDFH), 3090 e1000e_putreg(RDFT), 3091 e1000e_putreg(RDFHS), 3092 e1000e_putreg(RDFTS), 3093 e1000e_putreg(RDFPC), 3094 e1000e_putreg(IPAV), 3095 e1000e_putreg(TDBAH1), 3096 e1000e_putreg(TIMINCA), 3097 e1000e_putreg(IAM), 3098 e1000e_putreg(EIAC), 3099 e1000e_putreg(IVAR), 3100 e1000e_putreg(TARC0), 3101 e1000e_putreg(TARC1), 3102 e1000e_putreg(FLSWDATA), 3103 e1000e_putreg(POEMB), 3104 e1000e_putreg(PBS), 3105 e1000e_putreg(MFUTP01), 3106 e1000e_putreg(MFUTP23), 3107 e1000e_putreg(MANC), 3108 e1000e_putreg(MANC2H), 3109 e1000e_putreg(MFVAL), 3110 e1000e_putreg(EXTCNF_CTRL), 3111 e1000e_putreg(FACTPS), 3112 e1000e_putreg(FUNCTAG), 3113 e1000e_putreg(GSCL_1), 3114 e1000e_putreg(GSCL_2), 3115 e1000e_putreg(GSCL_3), 3116 e1000e_putreg(GSCL_4), 3117 e1000e_putreg(GSCN_0), 3118 e1000e_putreg(GSCN_1), 3119 e1000e_putreg(GSCN_2), 3120 e1000e_putreg(GSCN_3), 3121 e1000e_putreg(GCR2), 3122 e1000e_putreg(MRQC), 3123 e1000e_putreg(FLOP), 3124 e1000e_putreg(FLOL), 3125 e1000e_putreg(FLSWCTL), 3126 e1000e_putreg(FLSWCNT), 3127 e1000e_putreg(FLA), 3128 e1000e_putreg(RXDCTL1), 3129 e1000e_putreg(TXDCTL1), 3130 e1000e_putreg(TIPG), 3131 e1000e_putreg(RXSTMPH), 3132 e1000e_putreg(RXSTMPL), 3133 e1000e_putreg(RXSATRL), 3134 e1000e_putreg(RXSATRH), 3135 e1000e_putreg(TXSTMPL), 3136 e1000e_putreg(TXSTMPH), 3137 e1000e_putreg(SYSTIML), 3138 e1000e_putreg(SYSTIMH), 3139 e1000e_putreg(TIMADJL), 3140 e1000e_putreg(TIMADJH), 3141 e1000e_putreg(RXUDP), 3142 e1000e_putreg(RXCFGL), 3143 e1000e_putreg(TSYNCRXCTL), 3144 e1000e_putreg(TSYNCTXCTL), 3145 e1000e_putreg(FLSWDATA), 3146 e1000e_putreg(EXTCNF_SIZE), 3147 e1000e_putreg(EEMNGCTL), 3148 e1000e_putreg(RA), 3149 3150 [TDH1] = e1000e_set_16bit, 3151 [TDT1] = e1000e_set_tdt, 3152 [TCTL] = e1000e_set_tctl, 3153 [TDT] = e1000e_set_tdt, 3154 [MDIC] = e1000e_set_mdic, 3155 [ICS] = e1000e_set_ics, 3156 [TDH] = e1000e_set_16bit, 3157 [RDH0] = e1000e_set_16bit, 3158 [RDT0] = e1000e_set_rdt, 3159 [IMC] = e1000e_set_imc, 3160 [IMS] = e1000e_set_ims, 3161 [ICR] = e1000e_set_icr, 3162 [EECD] = e1000e_set_eecd, 3163 [RCTL] = e1000e_set_rx_control, 3164 [CTRL] = e1000e_set_ctrl, 3165 [RDTR] = e1000e_set_rdtr, 3166 [RADV] = e1000e_set_16bit, 3167 [TADV] = e1000e_set_16bit, 3168 [ITR] = e1000e_set_itr, 3169 [EERD] = e1000e_set_eerd, 3170 [GCR] = e1000e_set_gcr, 3171 [PSRCTL] = e1000e_set_psrctl, 3172 [RXCSUM] = e1000e_set_rxcsum, 3173 [RAID] = e1000e_set_16bit, 3174 [RSRPD] = e1000e_set_12bit, 3175 [TIDV] = e1000e_set_tidv, 3176 [TDLEN1] = e1000e_set_dlen, 3177 [TDLEN] = e1000e_set_dlen, 3178 [RDLEN0] = e1000e_set_dlen, 3179 [RDLEN1] = e1000e_set_dlen, 3180 [TDBAL] = e1000e_set_dbal, 3181 [TDBAL1] = e1000e_set_dbal, 3182 [RDBAL0] = e1000e_set_dbal, 3183 [RDBAL1] = e1000e_set_dbal, 3184 [RDH1] = e1000e_set_16bit, 3185 [RDT1] = e1000e_set_rdt, 3186 [STATUS] = e1000e_set_status, 3187 [PBACLR] = e1000e_set_pbaclr, 3188 [CTRL_EXT] = e1000e_set_ctrlext, 3189 [FCAH] = e1000e_set_16bit, 3190 [FCT] = e1000e_set_16bit, 3191 [FCTTV] = e1000e_set_16bit, 3192 [FCRTV] = e1000e_set_16bit, 3193 [FCRTH] = e1000e_set_fcrth, 3194 [FCRTL] = e1000e_set_fcrtl, 3195 [VET] = e1000e_set_vet, 3196 [RXDCTL] = e1000e_set_rxdctl, 3197 [FLASHT] = e1000e_set_16bit, 3198 [EEWR] = e1000e_set_eewr, 3199 [CTRL_DUP] = e1000e_set_ctrl, 3200 [RFCTL] = e1000e_set_rfctl, 3201 [RA + 1] = e1000e_mac_setmacaddr, 3202 3203 [IP6AT ... IP6AT + 3] = e1000e_mac_writereg, 3204 [IP4AT ... IP4AT + 6] = e1000e_mac_writereg, 3205 [RA + 2 ... RA + 31] = e1000e_mac_writereg, 3206 [WUPM ... WUPM + 31] = e1000e_mac_writereg, 3207 [MTA ... MTA + 127] = e1000e_mac_writereg, 3208 [VFTA ... VFTA + 127] = e1000e_mac_writereg, 3209 [FFMT ... FFMT + 254] = e1000e_mac_writereg, 3210 [FFVT ... FFVT + 254] = e1000e_mac_writereg, 3211 [PBM ... PBM + 10239] = e1000e_mac_writereg, 3212 [MDEF ... MDEF + 7] = e1000e_mac_writereg, 3213 [FFLT ... FFLT + 10] = e1000e_mac_writereg, 3214 [FTFT ... FTFT + 254] = e1000e_mac_writereg, 3215 [RETA ... RETA + 31] = e1000e_mac_writereg, 3216 [RSSRK ... RSSRK + 31] = e1000e_mac_writereg, 3217 [MAVTV0 ... MAVTV3] = e1000e_mac_writereg, 3218 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr 3219 }; 3220 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) }; 3221 3222 enum { MAC_ACCESS_PARTIAL = 1 }; 3223 3224 /* The array below combines alias offsets of the index values for the 3225 * MAC registers that have aliases, with the indication of not fully 3226 * implemented registers (lowest bit). This combination is possible 3227 * because all of the offsets are even. */ 3228 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = { 3229 /* Alias index offsets */ 3230 [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802, 3231 [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6, 3232 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904, 3233 [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8, 3234 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00, 3235 [RA_A ... RA_A + 31] = 0x14f0, 3236 [VFTA_A ... VFTA_A + 127] = 0x1400, 3237 [RDBAL0_A ... RDLEN0_A] = 0x09bc, 3238 [TDBAL_A ... TDLEN_A] = 0x0cf8, 3239 /* Access options */ 3240 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL, 3241 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL, 3242 [RDFPC] = MAC_ACCESS_PARTIAL, 3243 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL, 3244 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL, 3245 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL, 3246 [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL, 3247 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL, 3248 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL, 3249 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL, 3250 [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL, 3251 [TXDCTL1] = MAC_ACCESS_PARTIAL, 3252 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL 3253 }; 3254 3255 void 3256 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size) 3257 { 3258 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); 3259 3260 if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) { 3261 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3262 trace_e1000e_wrn_regs_write_trivial(index << 2); 3263 } 3264 trace_e1000e_core_write(index << 2, size, val); 3265 e1000e_macreg_writeops[index](core, index, val); 3266 } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { 3267 trace_e1000e_wrn_regs_write_ro(index << 2, size, val); 3268 } else { 3269 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val); 3270 } 3271 } 3272 3273 uint64_t 3274 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size) 3275 { 3276 uint64_t val; 3277 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr); 3278 3279 if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) { 3280 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 3281 trace_e1000e_wrn_regs_read_trivial(index << 2); 3282 } 3283 val = e1000e_macreg_readops[index](core, index); 3284 trace_e1000e_core_read(index << 2, size, val); 3285 return val; 3286 } else { 3287 trace_e1000e_wrn_regs_read_unknown(index << 2, size); 3288 } 3289 return 0; 3290 } 3291 3292 static inline void 3293 e1000e_autoneg_pause(E1000ECore *core) 3294 { 3295 timer_del(core->autoneg_timer); 3296 } 3297 3298 static void 3299 e1000e_autoneg_resume(E1000ECore *core) 3300 { 3301 if (e1000e_have_autoneg(core) && 3302 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 3303 qemu_get_queue(core->owner_nic)->link_down = false; 3304 timer_mod(core->autoneg_timer, 3305 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 3306 } 3307 } 3308 3309 static void 3310 e1000e_vm_state_change(void *opaque, int running, RunState state) 3311 { 3312 E1000ECore *core = opaque; 3313 3314 if (running) { 3315 trace_e1000e_vm_state_running(); 3316 e1000e_intrmgr_resume(core); 3317 e1000e_autoneg_resume(core); 3318 } else { 3319 trace_e1000e_vm_state_stopped(); 3320 e1000e_autoneg_pause(core); 3321 e1000e_intrmgr_pause(core); 3322 } 3323 } 3324 3325 void 3326 e1000e_core_pci_realize(E1000ECore *core, 3327 const uint16_t *eeprom_templ, 3328 uint32_t eeprom_size, 3329 const uint8_t *macaddr) 3330 { 3331 int i; 3332 3333 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 3334 e1000e_autoneg_timer, core); 3335 e1000e_intrmgr_pci_realize(core); 3336 3337 core->vmstate = 3338 qemu_add_vm_change_state_handler(e1000e_vm_state_change, core); 3339 3340 for (i = 0; i < E1000E_NUM_QUEUES; i++) { 3341 net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner, 3342 E1000E_MAX_TX_FRAGS, core->has_vnet); 3343 } 3344 3345 net_rx_pkt_init(&core->rx_pkt, core->has_vnet); 3346 3347 e1000x_core_prepare_eeprom(core->eeprom, 3348 eeprom_templ, 3349 eeprom_size, 3350 PCI_DEVICE_GET_CLASS(core->owner)->device_id, 3351 macaddr); 3352 e1000e_update_rx_offloads(core); 3353 } 3354 3355 void 3356 e1000e_core_pci_uninit(E1000ECore *core) 3357 { 3358 int i; 3359 3360 timer_del(core->autoneg_timer); 3361 timer_free(core->autoneg_timer); 3362 3363 e1000e_intrmgr_pci_unint(core); 3364 3365 qemu_del_vm_change_state_handler(core->vmstate); 3366 3367 for (i = 0; i < E1000E_NUM_QUEUES; i++) { 3368 net_tx_pkt_reset(core->tx[i].tx_pkt); 3369 net_tx_pkt_uninit(core->tx[i].tx_pkt); 3370 } 3371 3372 net_rx_pkt_uninit(core->rx_pkt); 3373 } 3374 3375 static const uint16_t 3376 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = { 3377 [0] = { 3378 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | 3379 MII_CR_FULL_DUPLEX | 3380 MII_CR_AUTO_NEG_EN, 3381 3382 [PHY_STATUS] = MII_SR_EXTENDED_CAPS | 3383 MII_SR_LINK_STATUS | 3384 MII_SR_AUTONEG_CAPS | 3385 MII_SR_PREAMBLE_SUPPRESS | 3386 MII_SR_EXTENDED_STATUS | 3387 MII_SR_10T_HD_CAPS | 3388 MII_SR_10T_FD_CAPS | 3389 MII_SR_100X_HD_CAPS | 3390 MII_SR_100X_FD_CAPS, 3391 3392 [PHY_ID1] = 0x141, 3393 [PHY_ID2] = E1000_PHY_ID2_82574x, 3394 [PHY_AUTONEG_ADV] = 0xde1, 3395 [PHY_LP_ABILITY] = 0x7e0, 3396 [PHY_AUTONEG_EXP] = BIT(2), 3397 [PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13), 3398 [PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11), 3399 [PHY_1000T_STATUS] = 0x3c00, 3400 [PHY_EXT_STATUS] = BIT(12) | BIT(13), 3401 3402 [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) | 3403 BIT(12) | BIT(13), 3404 [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15) 3405 }, 3406 [2] = { 3407 [PHY_MAC_CTRL1] = BIT(3) | BIT(7), 3408 [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12) 3409 }, 3410 [3] = { 3411 [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14) 3412 } 3413 }; 3414 3415 static const uint32_t e1000e_mac_reg_init[] = { 3416 [PBA] = 0x00140014, 3417 [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18), 3418 [EXTCNF_CTRL] = BIT(3), 3419 [EEMNGCTL] = BIT(31), 3420 [FLASHT] = 0x2, 3421 [FLSWCTL] = BIT(30) | BIT(31), 3422 [FLOL] = BIT(0), 3423 [RXDCTL] = BIT(16), 3424 [RXDCTL1] = BIT(16), 3425 [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20), 3426 [RXCFGL] = 0x88F7, 3427 [RXUDP] = 0x319, 3428 [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | 3429 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU | 3430 E1000_CTRL_ADVD3WUC, 3431 [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU, 3432 [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) | 3433 (4 << E1000_PSRCTL_BSIZE1_SHIFT) | 3434 (4 << E1000_PSRCTL_BSIZE2_SHIFT), 3435 [TARC0] = 0x3 | E1000_TARC_ENABLE, 3436 [TARC1] = 0x3 | E1000_TARC_ENABLE, 3437 [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES, 3438 [EERD] = E1000_EERW_DONE, 3439 [EEWR] = E1000_EERW_DONE, 3440 [GCR] = E1000_L0S_ADJUST | 3441 E1000_L1_ENTRY_LATENCY_MSB | 3442 E1000_L1_ENTRY_LATENCY_LSB, 3443 [TDFH] = 0x600, 3444 [TDFT] = 0x600, 3445 [TDFHS] = 0x600, 3446 [TDFTS] = 0x600, 3447 [POEMB] = 0x30D, 3448 [PBS] = 0x028, 3449 [MANC] = E1000_MANC_DIS_IP_CHK_ARP, 3450 [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000, 3451 [SWSM] = 1, 3452 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD, 3453 [ITR] = E1000E_MIN_XITR, 3454 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR, 3455 }; 3456 3457 void 3458 e1000e_core_reset(E1000ECore *core) 3459 { 3460 int i; 3461 3462 timer_del(core->autoneg_timer); 3463 3464 e1000e_intrmgr_reset(core); 3465 3466 memset(core->phy, 0, sizeof core->phy); 3467 memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init); 3468 memset(core->mac, 0, sizeof core->mac); 3469 memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init); 3470 3471 core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT; 3472 3473 if (qemu_get_queue(core->owner_nic)->link_down) { 3474 e1000e_link_down(core); 3475 } 3476 3477 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac); 3478 3479 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 3480 net_tx_pkt_reset(core->tx[i].tx_pkt); 3481 memset(&core->tx[i].props, 0, sizeof(core->tx[i].props)); 3482 core->tx[i].skip_cp = false; 3483 } 3484 } 3485 3486 void e1000e_core_pre_save(E1000ECore *core) 3487 { 3488 int i; 3489 NetClientState *nc = qemu_get_queue(core->owner_nic); 3490 3491 /* 3492 * If link is down and auto-negotiation is supported and ongoing, 3493 * complete auto-negotiation immediately. This allows us to look 3494 * at MII_SR_AUTONEG_COMPLETE to infer link status on load. 3495 */ 3496 if (nc->link_down && e1000e_have_autoneg(core)) { 3497 core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; 3498 e1000e_update_flowctl_status(core); 3499 } 3500 3501 for (i = 0; i < ARRAY_SIZE(core->tx); i++) { 3502 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) { 3503 core->tx[i].skip_cp = true; 3504 } 3505 } 3506 } 3507 3508 int 3509 e1000e_core_post_load(E1000ECore *core) 3510 { 3511 NetClientState *nc = qemu_get_queue(core->owner_nic); 3512 3513 /* nc.link_down can't be migrated, so infer link_down according 3514 * to link status bit in core.mac[STATUS]. 3515 */ 3516 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0; 3517 3518 return 0; 3519 } 3520