xref: /openbmc/qemu/hw/net/e1000e_core.c (revision 354908ce)
1 /*
2 * Core code for QEMU e1000e emulation
3 *
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6 *
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
9 *
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
14 *
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
42 #include "sysemu/runstate.h"
43 
44 #include "net_tx_pkt.h"
45 #include "net_rx_pkt.h"
46 
47 #include "e1000x_common.h"
48 #include "e1000e_core.h"
49 
50 #include "trace.h"
51 
52 #define E1000E_MIN_XITR     (500) /* No more then 7813 interrupts per
53                                      second according to spec 10.2.4.2 */
54 #define E1000E_MAX_TX_FRAGS (64)
55 
56 static inline void
57 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
58 
59 static inline void
60 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
61 {
62     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
63         trace_e1000e_wrn_no_ts_support();
64     }
65 }
66 
67 static inline void
68 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
69 {
70     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
71         trace_e1000e_wrn_no_snap_support();
72     }
73 }
74 
75 static inline void
76 e1000e_raise_legacy_irq(E1000ECore *core)
77 {
78     trace_e1000e_irq_legacy_notify(true);
79     e1000x_inc_reg_if_not_full(core->mac, IAC);
80     pci_set_irq(core->owner, 1);
81 }
82 
83 static inline void
84 e1000e_lower_legacy_irq(E1000ECore *core)
85 {
86     trace_e1000e_irq_legacy_notify(false);
87     pci_set_irq(core->owner, 0);
88 }
89 
90 static inline void
91 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
92 {
93     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
94                                  timer->delay_resolution_ns;
95 
96     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
97 
98     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
99 
100     timer->running = true;
101 }
102 
103 static void
104 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
105 {
106     if (timer->running) {
107         e1000e_intrmgr_rearm_timer(timer);
108     }
109 }
110 
111 static void
112 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
113 {
114     if (timer->running) {
115         timer_del(timer->timer);
116     }
117 }
118 
119 static inline void
120 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
121 {
122     if (timer->running) {
123         timer_del(timer->timer);
124         timer->running = false;
125     }
126 }
127 
128 static inline void
129 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
130 {
131     trace_e1000e_irq_fire_delayed_interrupts();
132     e1000e_set_interrupt_cause(core, 0);
133 }
134 
135 static void
136 e1000e_intrmgr_on_timer(void *opaque)
137 {
138     E1000IntrDelayTimer *timer = opaque;
139 
140     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
141 
142     timer->running = false;
143     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
144 }
145 
146 static void
147 e1000e_intrmgr_on_throttling_timer(void *opaque)
148 {
149     E1000IntrDelayTimer *timer = opaque;
150 
151     assert(!msix_enabled(timer->core->owner));
152 
153     timer->running = false;
154 
155     if (!timer->core->itr_intr_pending) {
156         trace_e1000e_irq_throttling_no_pending_interrupts();
157         return;
158     }
159 
160     if (msi_enabled(timer->core->owner)) {
161         trace_e1000e_irq_msi_notify_postponed();
162         e1000e_set_interrupt_cause(timer->core, 0);
163     } else {
164         trace_e1000e_irq_legacy_notify_postponed();
165         e1000e_set_interrupt_cause(timer->core, 0);
166     }
167 }
168 
169 static void
170 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
171 {
172     E1000IntrDelayTimer *timer = opaque;
173     int idx = timer - &timer->core->eitr[0];
174 
175     assert(msix_enabled(timer->core->owner));
176 
177     timer->running = false;
178 
179     if (!timer->core->eitr_intr_pending[idx]) {
180         trace_e1000e_irq_throttling_no_pending_vec(idx);
181         return;
182     }
183 
184     trace_e1000e_irq_msix_notify_postponed_vec(idx);
185     msix_notify(timer->core->owner, idx);
186 }
187 
188 static void
189 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
190 {
191     int i;
192 
193     core->radv.delay_reg = RADV;
194     core->rdtr.delay_reg = RDTR;
195     core->raid.delay_reg = RAID;
196     core->tadv.delay_reg = TADV;
197     core->tidv.delay_reg = TIDV;
198 
199     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
200     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
201     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
202     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204 
205     core->radv.core = core;
206     core->rdtr.core = core;
207     core->raid.core = core;
208     core->tadv.core = core;
209     core->tidv.core = core;
210 
211     core->itr.core = core;
212     core->itr.delay_reg = ITR;
213     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
214 
215     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
216         core->eitr[i].core = core;
217         core->eitr[i].delay_reg = EITR + i;
218         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
219     }
220 
221     if (!create) {
222         return;
223     }
224 
225     core->radv.timer =
226         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
227     core->rdtr.timer =
228         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
229     core->raid.timer =
230         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
231 
232     core->tadv.timer =
233         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
234     core->tidv.timer =
235         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
236 
237     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
238                                    e1000e_intrmgr_on_throttling_timer,
239                                    &core->itr);
240 
241     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
242         core->eitr[i].timer =
243             timer_new_ns(QEMU_CLOCK_VIRTUAL,
244                          e1000e_intrmgr_on_msix_throttling_timer,
245                          &core->eitr[i]);
246     }
247 }
248 
249 static inline void
250 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
251 {
252     e1000e_intrmgr_stop_timer(&core->radv);
253     e1000e_intrmgr_stop_timer(&core->rdtr);
254     e1000e_intrmgr_stop_timer(&core->raid);
255     e1000e_intrmgr_stop_timer(&core->tidv);
256     e1000e_intrmgr_stop_timer(&core->tadv);
257 }
258 
259 static bool
260 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
261 {
262     uint32_t delayable_causes;
263     uint32_t rdtr = core->mac[RDTR];
264     uint32_t radv = core->mac[RADV];
265     uint32_t raid = core->mac[RAID];
266 
267     if (msix_enabled(core->owner)) {
268         return false;
269     }
270 
271     delayable_causes = E1000_ICR_RXQ0 |
272                        E1000_ICR_RXQ1 |
273                        E1000_ICR_RXT0;
274 
275     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
276         delayable_causes |= E1000_ICR_ACK;
277     }
278 
279     /* Clean up all causes that may be delayed */
280     core->delayed_causes |= *causes & delayable_causes;
281     *causes &= ~delayable_causes;
282 
283     /* Check if delayed RX interrupts disabled by client
284        or if there are causes that cannot be delayed */
285     if ((rdtr == 0) || (*causes != 0)) {
286         return false;
287     }
288 
289     /* Check if delayed RX ACK interrupts disabled by client
290        and there is an ACK packet received */
291     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
292         return false;
293     }
294 
295     /* All causes delayed */
296     e1000e_intrmgr_rearm_timer(&core->rdtr);
297 
298     if (!core->radv.running && (radv != 0)) {
299         e1000e_intrmgr_rearm_timer(&core->radv);
300     }
301 
302     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
303         e1000e_intrmgr_rearm_timer(&core->raid);
304     }
305 
306     return true;
307 }
308 
309 static bool
310 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
311 {
312     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
313                                              E1000_ICR_TXQ1 |
314                                              E1000_ICR_TXQE |
315                                              E1000_ICR_TXDW;
316 
317     if (msix_enabled(core->owner)) {
318         return false;
319     }
320 
321     /* Clean up all causes that may be delayed */
322     core->delayed_causes |= *causes & delayable_causes;
323     *causes &= ~delayable_causes;
324 
325     /* If there are causes that cannot be delayed */
326     if (*causes != 0) {
327         return false;
328     }
329 
330     /* All causes delayed */
331     e1000e_intrmgr_rearm_timer(&core->tidv);
332 
333     if (!core->tadv.running && (core->mac[TADV] != 0)) {
334         e1000e_intrmgr_rearm_timer(&core->tadv);
335     }
336 
337     return true;
338 }
339 
340 static uint32_t
341 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
342 {
343     uint32_t res;
344 
345     if (msix_enabled(core->owner)) {
346         assert(core->delayed_causes == 0);
347         return 0;
348     }
349 
350     res = core->delayed_causes;
351     core->delayed_causes = 0;
352 
353     e1000e_intrmgr_stop_delay_timers(core);
354 
355     return res;
356 }
357 
358 static void
359 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
360 {
361     int i;
362     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
363 
364     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
365     core->mac[ICR] |= val;
366 
367     if (core->itr.running) {
368         timer_del(core->itr.timer);
369         e1000e_intrmgr_on_throttling_timer(&core->itr);
370     }
371 
372     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
373         if (core->eitr[i].running) {
374             timer_del(core->eitr[i].timer);
375             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
376         }
377     }
378 }
379 
380 static void
381 e1000e_intrmgr_resume(E1000ECore *core)
382 {
383     int i;
384 
385     e1000e_intmgr_timer_resume(&core->radv);
386     e1000e_intmgr_timer_resume(&core->rdtr);
387     e1000e_intmgr_timer_resume(&core->raid);
388     e1000e_intmgr_timer_resume(&core->tidv);
389     e1000e_intmgr_timer_resume(&core->tadv);
390 
391     e1000e_intmgr_timer_resume(&core->itr);
392 
393     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
394         e1000e_intmgr_timer_resume(&core->eitr[i]);
395     }
396 }
397 
398 static void
399 e1000e_intrmgr_pause(E1000ECore *core)
400 {
401     int i;
402 
403     e1000e_intmgr_timer_pause(&core->radv);
404     e1000e_intmgr_timer_pause(&core->rdtr);
405     e1000e_intmgr_timer_pause(&core->raid);
406     e1000e_intmgr_timer_pause(&core->tidv);
407     e1000e_intmgr_timer_pause(&core->tadv);
408 
409     e1000e_intmgr_timer_pause(&core->itr);
410 
411     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
412         e1000e_intmgr_timer_pause(&core->eitr[i]);
413     }
414 }
415 
416 static void
417 e1000e_intrmgr_reset(E1000ECore *core)
418 {
419     int i;
420 
421     core->delayed_causes = 0;
422 
423     e1000e_intrmgr_stop_delay_timers(core);
424 
425     e1000e_intrmgr_stop_timer(&core->itr);
426 
427     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
428         e1000e_intrmgr_stop_timer(&core->eitr[i]);
429     }
430 }
431 
432 static void
433 e1000e_intrmgr_pci_unint(E1000ECore *core)
434 {
435     int i;
436 
437     timer_del(core->radv.timer);
438     timer_free(core->radv.timer);
439     timer_del(core->rdtr.timer);
440     timer_free(core->rdtr.timer);
441     timer_del(core->raid.timer);
442     timer_free(core->raid.timer);
443 
444     timer_del(core->tadv.timer);
445     timer_free(core->tadv.timer);
446     timer_del(core->tidv.timer);
447     timer_free(core->tidv.timer);
448 
449     timer_del(core->itr.timer);
450     timer_free(core->itr.timer);
451 
452     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
453         timer_del(core->eitr[i].timer);
454         timer_free(core->eitr[i].timer);
455     }
456 }
457 
458 static void
459 e1000e_intrmgr_pci_realize(E1000ECore *core)
460 {
461     e1000e_intrmgr_initialize_all_timers(core, true);
462 }
463 
464 static inline bool
465 e1000e_rx_csum_enabled(E1000ECore *core)
466 {
467     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
468 }
469 
470 static inline bool
471 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
472 {
473     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
474 }
475 
476 static inline bool
477 e1000e_rx_use_ps_descriptor(E1000ECore *core)
478 {
479     return !e1000e_rx_use_legacy_descriptor(core) &&
480            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
481 }
482 
483 static inline bool
484 e1000e_rss_enabled(E1000ECore *core)
485 {
486     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
487            !e1000e_rx_csum_enabled(core) &&
488            !e1000e_rx_use_legacy_descriptor(core);
489 }
490 
491 typedef struct E1000E_RSSInfo_st {
492     bool enabled;
493     uint32_t hash;
494     uint32_t queue;
495     uint32_t type;
496 } E1000E_RSSInfo;
497 
498 static uint32_t
499 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
500 {
501     bool isip4, isip6, isudp, istcp;
502 
503     assert(e1000e_rss_enabled(core));
504 
505     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
506 
507     if (isip4) {
508         bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
509 
510         trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
511                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
512                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
513 
514         if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
515             return E1000_MRQ_RSS_TYPE_IPV4TCP;
516         }
517 
518         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
519             return E1000_MRQ_RSS_TYPE_IPV4;
520         }
521     } else if (isip6) {
522         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
523 
524         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
525         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
526 
527         /*
528          * Following two traces must not be combined because resulting
529          * event will have 11 arguments totally and some trace backends
530          * (at least "ust") have limitation of maximum 10 arguments per
531          * event. Events with more arguments fail to compile for
532          * backends like these.
533          */
534         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
535         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
536                                 ip6info->has_ext_hdrs,
537                                 ip6info->rss_ex_dst_valid,
538                                 ip6info->rss_ex_src_valid,
539                                 core->mac[MRQC],
540                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
541                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
542                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
543 
544         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
545             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
546                               ip6info->rss_ex_src_valid))) {
547 
548             if (istcp && !ip6info->fragment &&
549                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
550                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
551             }
552 
553             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
554                 return E1000_MRQ_RSS_TYPE_IPV6EX;
555             }
556 
557         }
558 
559         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
560             return E1000_MRQ_RSS_TYPE_IPV6;
561         }
562 
563     }
564 
565     return E1000_MRQ_RSS_TYPE_NONE;
566 }
567 
568 static uint32_t
569 e1000e_rss_calc_hash(E1000ECore *core,
570                      struct NetRxPkt *pkt,
571                      E1000E_RSSInfo *info)
572 {
573     NetRxPktRssType type;
574 
575     assert(e1000e_rss_enabled(core));
576 
577     switch (info->type) {
578     case E1000_MRQ_RSS_TYPE_IPV4:
579         type = NetPktRssIpV4;
580         break;
581     case E1000_MRQ_RSS_TYPE_IPV4TCP:
582         type = NetPktRssIpV4Tcp;
583         break;
584     case E1000_MRQ_RSS_TYPE_IPV6TCP:
585         type = NetPktRssIpV6TcpEx;
586         break;
587     case E1000_MRQ_RSS_TYPE_IPV6:
588         type = NetPktRssIpV6;
589         break;
590     case E1000_MRQ_RSS_TYPE_IPV6EX:
591         type = NetPktRssIpV6Ex;
592         break;
593     default:
594         assert(false);
595         return 0;
596     }
597 
598     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
599 }
600 
601 static void
602 e1000e_rss_parse_packet(E1000ECore *core,
603                         struct NetRxPkt *pkt,
604                         E1000E_RSSInfo *info)
605 {
606     trace_e1000e_rx_rss_started();
607 
608     if (!e1000e_rss_enabled(core)) {
609         info->enabled = false;
610         info->hash = 0;
611         info->queue = 0;
612         info->type = 0;
613         trace_e1000e_rx_rss_disabled();
614         return;
615     }
616 
617     info->enabled = true;
618 
619     info->type = e1000e_rss_get_hash_type(core, pkt);
620 
621     trace_e1000e_rx_rss_type(info->type);
622 
623     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
624         info->hash = 0;
625         info->queue = 0;
626         return;
627     }
628 
629     info->hash = e1000e_rss_calc_hash(core, pkt, info);
630     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
631 }
632 
633 static void
634 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
635 {
636     if (tx->props.tse && tx->cptse) {
637         net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
638         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
639         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
640         return;
641     }
642 
643     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
644         net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
645     }
646 
647     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
648         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
649     }
650 }
651 
652 static bool
653 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
654 {
655     int target_queue = MIN(core->max_queue_num, queue_index);
656     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
657 
658     e1000e_setup_tx_offloads(core, tx);
659 
660     net_tx_pkt_dump(tx->tx_pkt);
661 
662     if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
663         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
664         return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
665     } else {
666         return net_tx_pkt_send(tx->tx_pkt, queue);
667     }
668 }
669 
670 static void
671 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
672 {
673     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
674                                     PTC1023, PTC1522 };
675 
676     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
677 
678     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
679     e1000x_inc_reg_if_not_full(core->mac, TPT);
680     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
681 
682     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
683     case ETH_PKT_BCAST:
684         e1000x_inc_reg_if_not_full(core->mac, BPTC);
685         break;
686     case ETH_PKT_MCAST:
687         e1000x_inc_reg_if_not_full(core->mac, MPTC);
688         break;
689     case ETH_PKT_UCAST:
690         break;
691     default:
692         g_assert_not_reached();
693     }
694 
695     core->mac[GPTC] = core->mac[TPT];
696     core->mac[GOTCL] = core->mac[TOTL];
697     core->mac[GOTCH] = core->mac[TOTH];
698 }
699 
700 static void
701 e1000e_process_tx_desc(E1000ECore *core,
702                        struct e1000e_tx *tx,
703                        struct e1000_tx_desc *dp,
704                        int queue_index)
705 {
706     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
707     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
708     unsigned int split_size = txd_lower & 0xffff;
709     uint64_t addr;
710     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
711     bool eop = txd_lower & E1000_TXD_CMD_EOP;
712 
713     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
714         e1000x_read_tx_ctx_descr(xp, &tx->props);
715         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
716         return;
717     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
718         /* data descriptor */
719         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
720         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
721         e1000e_process_ts_option(core, dp);
722     } else {
723         /* legacy descriptor */
724         e1000e_process_ts_option(core, dp);
725         tx->cptse = 0;
726     }
727 
728     addr = le64_to_cpu(dp->buffer_addr);
729 
730     if (!tx->skip_cp) {
731         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
732             tx->skip_cp = true;
733         }
734     }
735 
736     if (eop) {
737         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
738             if (e1000x_vlan_enabled(core->mac) &&
739                 e1000x_is_vlan_txd(txd_lower)) {
740                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
741                     le16_to_cpu(dp->upper.fields.special), core->vet);
742             }
743             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
744                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
745             }
746         }
747 
748         tx->skip_cp = false;
749         net_tx_pkt_reset(tx->tx_pkt);
750 
751         tx->sum_needed = 0;
752         tx->cptse = 0;
753     }
754 }
755 
756 static inline uint32_t
757 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
758 {
759     if (!msix_enabled(core->owner)) {
760         return E1000_ICR_TXDW;
761     }
762 
763     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
764 }
765 
766 static inline uint32_t
767 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
768                              bool min_threshold_hit)
769 {
770     if (!msix_enabled(core->owner)) {
771         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
772     }
773 
774     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
775 }
776 
777 static uint32_t
778 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
779                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
780 {
781     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
782 
783     if (!(txd_lower & E1000_TXD_CMD_RS) &&
784         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
785         return 0;
786     }
787 
788     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
789 
790     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
791 
792     dp->upper.data = cpu_to_le32(txd_upper);
793     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
794                   &dp->upper, sizeof(dp->upper));
795     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
796 }
797 
798 typedef struct E1000E_RingInfo_st {
799     int dbah;
800     int dbal;
801     int dlen;
802     int dh;
803     int dt;
804     int idx;
805 } E1000E_RingInfo;
806 
807 static inline bool
808 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
809 {
810     return core->mac[r->dh] == core->mac[r->dt] ||
811                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
812 }
813 
814 static inline uint64_t
815 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
816 {
817     uint64_t bah = core->mac[r->dbah];
818     uint64_t bal = core->mac[r->dbal];
819 
820     return (bah << 32) + bal;
821 }
822 
823 static inline uint64_t
824 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
825 {
826     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
827 }
828 
829 static inline void
830 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
831 {
832     core->mac[r->dh] += count;
833 
834     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
835         core->mac[r->dh] = 0;
836     }
837 }
838 
839 static inline uint32_t
840 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
841 {
842     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
843                                  core->mac[r->dh],  core->mac[r->dt]);
844 
845     if (core->mac[r->dh] <= core->mac[r->dt]) {
846         return core->mac[r->dt] - core->mac[r->dh];
847     }
848 
849     if (core->mac[r->dh] > core->mac[r->dt]) {
850         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
851                core->mac[r->dt] - core->mac[r->dh];
852     }
853 
854     g_assert_not_reached();
855     return 0;
856 }
857 
858 static inline bool
859 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
860 {
861     return core->mac[r->dlen] > 0;
862 }
863 
864 static inline uint32_t
865 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
866 {
867     return core->mac[r->dlen];
868 }
869 
870 typedef struct E1000E_TxRing_st {
871     const E1000E_RingInfo *i;
872     struct e1000e_tx *tx;
873 } E1000E_TxRing;
874 
875 static inline int
876 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
877 {
878     return (reg_idx - base_reg_idx) / (0x100 >> 2);
879 }
880 
881 static inline void
882 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
883 {
884     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
885         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
886         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
887     };
888 
889     assert(idx < ARRAY_SIZE(i));
890 
891     txr->i     = &i[idx];
892     txr->tx    = &core->tx[idx];
893 }
894 
895 typedef struct E1000E_RxRing_st {
896     const E1000E_RingInfo *i;
897 } E1000E_RxRing;
898 
899 static inline void
900 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
901 {
902     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
903         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
904         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
905     };
906 
907     assert(idx < ARRAY_SIZE(i));
908 
909     rxr->i      = &i[idx];
910 }
911 
912 static void
913 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
914 {
915     dma_addr_t base;
916     struct e1000_tx_desc desc;
917     bool ide = false;
918     const E1000E_RingInfo *txi = txr->i;
919     uint32_t cause = E1000_ICS_TXQE;
920 
921     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
922         trace_e1000e_tx_disabled();
923         return;
924     }
925 
926     while (!e1000e_ring_empty(core, txi)) {
927         base = e1000e_ring_head_descr(core, txi);
928 
929         pci_dma_read(core->owner, base, &desc, sizeof(desc));
930 
931         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
932                               desc.lower.data, desc.upper.data);
933 
934         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
935         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
936 
937         e1000e_ring_advance(core, txi, 1);
938     }
939 
940     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
941         e1000e_set_interrupt_cause(core, cause);
942     }
943 }
944 
945 static bool
946 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
947                   size_t total_size)
948 {
949     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
950 
951     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
952                                 core->rx_desc_buf_size);
953 
954     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
955                          core->rx_desc_buf_size;
956 }
957 
958 void
959 e1000e_start_recv(E1000ECore *core)
960 {
961     int i;
962 
963     trace_e1000e_rx_start_recv();
964 
965     for (i = 0; i <= core->max_queue_num; i++) {
966         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
967     }
968 }
969 
970 bool
971 e1000e_can_receive(E1000ECore *core)
972 {
973     int i;
974 
975     if (!e1000x_rx_ready(core->owner, core->mac)) {
976         return false;
977     }
978 
979     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
980         E1000E_RxRing rxr;
981 
982         e1000e_rx_ring_init(core, &rxr, i);
983         if (e1000e_ring_enabled(core, rxr.i) &&
984             e1000e_has_rxbufs(core, rxr.i, 1)) {
985             trace_e1000e_rx_can_recv();
986             return true;
987         }
988     }
989 
990     trace_e1000e_rx_can_recv_rings_full();
991     return false;
992 }
993 
994 ssize_t
995 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
996 {
997     const struct iovec iov = {
998         .iov_base = (uint8_t *)buf,
999         .iov_len = size
1000     };
1001 
1002     return e1000e_receive_iov(core, &iov, 1);
1003 }
1004 
1005 static inline bool
1006 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1007 {
1008     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1009 }
1010 
1011 static inline bool
1012 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1013 {
1014     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1015 }
1016 
1017 static bool
1018 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1019 {
1020     uint32_t rctl = core->mac[RCTL];
1021 
1022     if (e1000x_is_vlan_packet(buf, core->vet) &&
1023         e1000x_vlan_rx_filter_enabled(core->mac)) {
1024         uint16_t vid = lduw_be_p(buf + 14);
1025         uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1026                                  ((vid >> 5) & 0x7f));
1027         if ((vfta & (1 << (vid & 0x1f))) == 0) {
1028             trace_e1000e_rx_flt_vlan_mismatch(vid);
1029             return false;
1030         } else {
1031             trace_e1000e_rx_flt_vlan_match(vid);
1032         }
1033     }
1034 
1035     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1036     case ETH_PKT_UCAST:
1037         if (rctl & E1000_RCTL_UPE) {
1038             return true; /* promiscuous ucast */
1039         }
1040         break;
1041 
1042     case ETH_PKT_BCAST:
1043         if (rctl & E1000_RCTL_BAM) {
1044             return true; /* broadcast enabled */
1045         }
1046         break;
1047 
1048     case ETH_PKT_MCAST:
1049         if (rctl & E1000_RCTL_MPE) {
1050             return true; /* promiscuous mcast */
1051         }
1052         break;
1053 
1054     default:
1055         g_assert_not_reached();
1056     }
1057 
1058     return e1000x_rx_group_filter(core->mac, buf);
1059 }
1060 
1061 static inline void
1062 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1063 {
1064     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1065     *buff_addr = le64_to_cpu(d->buffer_addr);
1066 }
1067 
1068 static inline void
1069 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1070 {
1071     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1072     *buff_addr = le64_to_cpu(d->read.buffer_addr);
1073 }
1074 
1075 static inline void
1076 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1077                         hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1078 {
1079     int i;
1080     union e1000_rx_desc_packet_split *d =
1081         (union e1000_rx_desc_packet_split *) desc;
1082 
1083     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1084         (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1085     }
1086 
1087     trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1088                                  (*buff_addr)[2], (*buff_addr)[3]);
1089 }
1090 
1091 static inline void
1092 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1093                      hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1094 {
1095     if (e1000e_rx_use_legacy_descriptor(core)) {
1096         e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1097         (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1098     } else {
1099         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1100             e1000e_read_ps_rx_descr(core, desc, buff_addr);
1101         } else {
1102             e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1103             (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1104         }
1105     }
1106 }
1107 
1108 static void
1109 e1000e_verify_csum_in_sw(E1000ECore *core,
1110                          struct NetRxPkt *pkt,
1111                          uint32_t *status_flags,
1112                          bool istcp, bool isudp)
1113 {
1114     bool csum_valid;
1115     uint32_t csum_error;
1116 
1117     if (e1000e_rx_l3_cso_enabled(core)) {
1118         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1119             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1120         } else {
1121             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1122             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1123         }
1124     } else {
1125         trace_e1000e_rx_metadata_l3_cso_disabled();
1126     }
1127 
1128     if (!e1000e_rx_l4_cso_enabled(core)) {
1129         trace_e1000e_rx_metadata_l4_cso_disabled();
1130         return;
1131     }
1132 
1133     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1134         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1135         return;
1136     }
1137 
1138     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1139 
1140     if (istcp) {
1141         *status_flags |= E1000_RXD_STAT_TCPCS |
1142                          csum_error;
1143     } else if (isudp) {
1144         *status_flags |= E1000_RXD_STAT_TCPCS |
1145                          E1000_RXD_STAT_UDPCS |
1146                          csum_error;
1147     }
1148 }
1149 
1150 static inline bool
1151 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1152 {
1153     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1154         return false;
1155     }
1156 
1157     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1158         return !net_rx_pkt_has_tcp_data(rx_pkt);
1159     }
1160 
1161     return true;
1162 }
1163 
1164 static void
1165 e1000e_build_rx_metadata(E1000ECore *core,
1166                          struct NetRxPkt *pkt,
1167                          bool is_eop,
1168                          const E1000E_RSSInfo *rss_info,
1169                          uint32_t *rss, uint32_t *mrq,
1170                          uint32_t *status_flags,
1171                          uint16_t *ip_id,
1172                          uint16_t *vlan_tag)
1173 {
1174     struct virtio_net_hdr *vhdr;
1175     bool isip4, isip6, istcp, isudp;
1176     uint32_t pkt_type;
1177 
1178     *status_flags = E1000_RXD_STAT_DD;
1179 
1180     /* No additional metadata needed for non-EOP descriptors */
1181     if (!is_eop) {
1182         goto func_exit;
1183     }
1184 
1185     *status_flags |= E1000_RXD_STAT_EOP;
1186 
1187     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1188     trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1189 
1190     /* VLAN state */
1191     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1192         *status_flags |= E1000_RXD_STAT_VP;
1193         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1194         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1195     }
1196 
1197     /* Packet parsing results */
1198     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1199         if (rss_info->enabled) {
1200             *rss = cpu_to_le32(rss_info->hash);
1201             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1202             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1203         }
1204     } else if (isip4) {
1205             *status_flags |= E1000_RXD_STAT_IPIDV;
1206             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1207             trace_e1000e_rx_metadata_ip_id(*ip_id);
1208     }
1209 
1210     if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1211         *status_flags |= E1000_RXD_STAT_ACK;
1212         trace_e1000e_rx_metadata_ack();
1213     }
1214 
1215     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1216         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1217         pkt_type = E1000_RXD_PKT_MAC;
1218     } else if (istcp || isudp) {
1219         pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1220     } else if (isip4 || isip6) {
1221         pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1222     } else {
1223         pkt_type = E1000_RXD_PKT_MAC;
1224     }
1225 
1226     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1227     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1228 
1229     /* RX CSO information */
1230     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1231         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1232         goto func_exit;
1233     }
1234 
1235     if (!net_rx_pkt_has_virt_hdr(pkt)) {
1236         trace_e1000e_rx_metadata_no_virthdr();
1237         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1238         goto func_exit;
1239     }
1240 
1241     vhdr = net_rx_pkt_get_vhdr(pkt);
1242 
1243     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1244         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1245         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1246         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1247         goto func_exit;
1248     }
1249 
1250     if (e1000e_rx_l3_cso_enabled(core)) {
1251         *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1252     } else {
1253         trace_e1000e_rx_metadata_l3_cso_disabled();
1254     }
1255 
1256     if (e1000e_rx_l4_cso_enabled(core)) {
1257         if (istcp) {
1258             *status_flags |= E1000_RXD_STAT_TCPCS;
1259         } else if (isudp) {
1260             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1261         }
1262     } else {
1263         trace_e1000e_rx_metadata_l4_cso_disabled();
1264     }
1265 
1266     trace_e1000e_rx_metadata_status_flags(*status_flags);
1267 
1268 func_exit:
1269     *status_flags = cpu_to_le32(*status_flags);
1270 }
1271 
1272 static inline void
1273 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1274                            struct NetRxPkt *pkt,
1275                            const E1000E_RSSInfo *rss_info,
1276                            uint16_t length)
1277 {
1278     uint32_t status_flags, rss, mrq;
1279     uint16_t ip_id;
1280 
1281     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1282 
1283     assert(!rss_info->enabled);
1284 
1285     d->length = cpu_to_le16(length);
1286     d->csum = 0;
1287 
1288     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1289                              rss_info,
1290                              &rss, &mrq,
1291                              &status_flags, &ip_id,
1292                              &d->special);
1293     d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1294     d->status = (uint8_t) le32_to_cpu(status_flags);
1295     d->special = 0;
1296 }
1297 
1298 static inline void
1299 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1300                           struct NetRxPkt *pkt,
1301                           const E1000E_RSSInfo *rss_info,
1302                           uint16_t length)
1303 {
1304     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1305 
1306     memset(&d->wb, 0, sizeof(d->wb));
1307 
1308     d->wb.upper.length = cpu_to_le16(length);
1309 
1310     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1311                              rss_info,
1312                              &d->wb.lower.hi_dword.rss,
1313                              &d->wb.lower.mrq,
1314                              &d->wb.upper.status_error,
1315                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1316                              &d->wb.upper.vlan);
1317 }
1318 
1319 static inline void
1320 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1321                          struct NetRxPkt *pkt,
1322                          const E1000E_RSSInfo *rss_info,
1323                          size_t ps_hdr_len,
1324                          uint16_t(*written)[MAX_PS_BUFFERS])
1325 {
1326     int i;
1327     union e1000_rx_desc_packet_split *d =
1328         (union e1000_rx_desc_packet_split *) desc;
1329 
1330     memset(&d->wb, 0, sizeof(d->wb));
1331 
1332     d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1333 
1334     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1335         d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1336     }
1337 
1338     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1339                              rss_info,
1340                              &d->wb.lower.hi_dword.rss,
1341                              &d->wb.lower.mrq,
1342                              &d->wb.middle.status_error,
1343                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1344                              &d->wb.middle.vlan);
1345 
1346     d->wb.upper.header_status =
1347         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1348 
1349     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1350                                   (*written)[2], (*written)[3]);
1351 }
1352 
1353 static inline void
1354 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1355 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1356     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1357 {
1358     if (e1000e_rx_use_legacy_descriptor(core)) {
1359         assert(ps_hdr_len == 0);
1360         e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1361     } else {
1362         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1363             e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1364                                       ps_hdr_len, written);
1365         } else {
1366             assert(ps_hdr_len == 0);
1367             e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1368                                        (*written)[0]);
1369         }
1370     }
1371 }
1372 
1373 typedef struct e1000e_ba_state_st {
1374     uint16_t written[MAX_PS_BUFFERS];
1375     uint8_t cur_idx;
1376 } e1000e_ba_state;
1377 
1378 static inline void
1379 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1380                                hwaddr (*ba)[MAX_PS_BUFFERS],
1381                                e1000e_ba_state *bastate,
1382                                const char *data,
1383                                dma_addr_t data_len)
1384 {
1385     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1386 
1387     pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1388     bastate->written[0] += data_len;
1389 
1390     bastate->cur_idx = 1;
1391 }
1392 
1393 static void
1394 e1000e_write_to_rx_buffers(E1000ECore *core,
1395                            hwaddr (*ba)[MAX_PS_BUFFERS],
1396                            e1000e_ba_state *bastate,
1397                            const char *data,
1398                            dma_addr_t data_len)
1399 {
1400     while (data_len > 0) {
1401         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1402         uint32_t cur_buf_bytes_left = cur_buf_len -
1403                                       bastate->written[bastate->cur_idx];
1404         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1405 
1406         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1407                                         (*ba)[bastate->cur_idx],
1408                                         bastate->written[bastate->cur_idx],
1409                                         data,
1410                                         bytes_to_write);
1411 
1412         pci_dma_write(core->owner,
1413             (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1414             data, bytes_to_write);
1415 
1416         bastate->written[bastate->cur_idx] += bytes_to_write;
1417         data += bytes_to_write;
1418         data_len -= bytes_to_write;
1419 
1420         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1421             bastate->cur_idx++;
1422         }
1423 
1424         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1425     }
1426 }
1427 
1428 static void
1429 e1000e_update_rx_stats(E1000ECore *core,
1430                        size_t data_size,
1431                        size_t data_fcs_size)
1432 {
1433     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1434 
1435     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1436     case ETH_PKT_BCAST:
1437         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1438         break;
1439 
1440     case ETH_PKT_MCAST:
1441         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1442         break;
1443 
1444     default:
1445         break;
1446     }
1447 }
1448 
1449 static inline bool
1450 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1451 {
1452     return e1000e_ring_free_descr_num(core, rxi) ==
1453            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1454 }
1455 
1456 static bool
1457 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1458 {
1459     bool isip4, isip6, isudp, istcp;
1460     bool fragment;
1461 
1462     if (!e1000e_rx_use_ps_descriptor(core)) {
1463         return false;
1464     }
1465 
1466     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1467 
1468     if (isip4) {
1469         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1470     } else if (isip6) {
1471         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1472     } else {
1473         return false;
1474     }
1475 
1476     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1477         return false;
1478     }
1479 
1480     if (!fragment && (isudp || istcp)) {
1481         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1482     } else {
1483         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1484     }
1485 
1486     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1487         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1488         return false;
1489     }
1490 
1491     return true;
1492 }
1493 
1494 static void
1495 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1496                              const E1000E_RxRing *rxr,
1497                              const E1000E_RSSInfo *rss_info)
1498 {
1499     PCIDevice *d = core->owner;
1500     dma_addr_t base;
1501     uint8_t desc[E1000_MAX_RX_DESC_LEN];
1502     size_t desc_size;
1503     size_t desc_offset = 0;
1504     size_t iov_ofs = 0;
1505 
1506     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1507     size_t size = net_rx_pkt_get_total_len(pkt);
1508     size_t total_size = size + e1000x_fcs_len(core->mac);
1509     const E1000E_RingInfo *rxi;
1510     size_t ps_hdr_len = 0;
1511     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1512     bool is_first = true;
1513 
1514     rxi = rxr->i;
1515 
1516     do {
1517         hwaddr ba[MAX_PS_BUFFERS];
1518         e1000e_ba_state bastate = { { 0 } };
1519         bool is_last = false;
1520 
1521         desc_size = total_size - desc_offset;
1522 
1523         if (desc_size > core->rx_desc_buf_size) {
1524             desc_size = core->rx_desc_buf_size;
1525         }
1526 
1527         if (e1000e_ring_empty(core, rxi)) {
1528             return;
1529         }
1530 
1531         base = e1000e_ring_head_descr(core, rxi);
1532 
1533         pci_dma_read(d, base, &desc, core->rx_desc_len);
1534 
1535         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1536 
1537         e1000e_read_rx_descr(core, desc, &ba);
1538 
1539         if (ba[0]) {
1540             if (desc_offset < size) {
1541                 static const uint32_t fcs_pad;
1542                 size_t iov_copy;
1543                 size_t copy_size = size - desc_offset;
1544                 if (copy_size > core->rx_desc_buf_size) {
1545                     copy_size = core->rx_desc_buf_size;
1546                 }
1547 
1548                 /* For PS mode copy the packet header first */
1549                 if (do_ps) {
1550                     if (is_first) {
1551                         size_t ps_hdr_copied = 0;
1552                         do {
1553                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1554                                            iov->iov_len - iov_ofs);
1555 
1556                             e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1557                                                       iov->iov_base, iov_copy);
1558 
1559                             copy_size -= iov_copy;
1560                             ps_hdr_copied += iov_copy;
1561 
1562                             iov_ofs += iov_copy;
1563                             if (iov_ofs == iov->iov_len) {
1564                                 iov++;
1565                                 iov_ofs = 0;
1566                             }
1567                         } while (ps_hdr_copied < ps_hdr_len);
1568 
1569                         is_first = false;
1570                     } else {
1571                         /* Leave buffer 0 of each descriptor except first */
1572                         /* empty as per spec 7.1.5.1                      */
1573                         e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1574                                                        NULL, 0);
1575                     }
1576                 }
1577 
1578                 /* Copy packet payload */
1579                 while (copy_size) {
1580                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1581 
1582                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1583                                             iov->iov_base + iov_ofs, iov_copy);
1584 
1585                     copy_size -= iov_copy;
1586                     iov_ofs += iov_copy;
1587                     if (iov_ofs == iov->iov_len) {
1588                         iov++;
1589                         iov_ofs = 0;
1590                     }
1591                 }
1592 
1593                 if (desc_offset + desc_size >= total_size) {
1594                     /* Simulate FCS checksum presence in the last descriptor */
1595                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1596                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1597                 }
1598             }
1599             desc_offset += desc_size;
1600             if (desc_offset >= total_size) {
1601                 is_last = true;
1602             }
1603         } else { /* as per intel docs; skip descriptors with null buf addr */
1604             trace_e1000e_rx_null_descriptor();
1605         }
1606 
1607         e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1608                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1609         pci_dma_write(d, base, &desc, core->rx_desc_len);
1610 
1611         e1000e_ring_advance(core, rxi,
1612                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1613 
1614     } while (desc_offset < total_size);
1615 
1616     e1000e_update_rx_stats(core, size, total_size);
1617 }
1618 
1619 static inline void
1620 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1621 {
1622     if (net_rx_pkt_has_virt_hdr(pkt)) {
1623         struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1624 
1625         if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1626             net_rx_pkt_fix_l4_csum(pkt);
1627         }
1628     }
1629 }
1630 
1631 ssize_t
1632 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1633 {
1634     static const int maximum_ethernet_hdr_len = (14 + 4);
1635     /* Min. octets in an ethernet frame sans FCS */
1636     static const int min_buf_size = 60;
1637 
1638     uint32_t n = 0;
1639     uint8_t min_buf[min_buf_size];
1640     struct iovec min_iov;
1641     uint8_t *filter_buf;
1642     size_t size, orig_size;
1643     size_t iov_ofs = 0;
1644     E1000E_RxRing rxr;
1645     E1000E_RSSInfo rss_info;
1646     size_t total_size;
1647     ssize_t retval;
1648     bool rdmts_hit;
1649 
1650     trace_e1000e_rx_receive_iov(iovcnt);
1651 
1652     if (!e1000x_hw_rx_enabled(core->mac)) {
1653         return -1;
1654     }
1655 
1656     /* Pull virtio header in */
1657     if (core->has_vnet) {
1658         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1659         iov_ofs = sizeof(struct virtio_net_hdr);
1660     }
1661 
1662     filter_buf = iov->iov_base + iov_ofs;
1663     orig_size = iov_size(iov, iovcnt);
1664     size = orig_size - iov_ofs;
1665 
1666     /* Pad to minimum Ethernet frame length */
1667     if (size < sizeof(min_buf)) {
1668         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1669         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1670         e1000x_inc_reg_if_not_full(core->mac, RUC);
1671         min_iov.iov_base = filter_buf = min_buf;
1672         min_iov.iov_len = size = sizeof(min_buf);
1673         iovcnt = 1;
1674         iov = &min_iov;
1675         iov_ofs = 0;
1676     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1677         /* This is very unlikely, but may happen. */
1678         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1679         filter_buf = min_buf;
1680     }
1681 
1682     /* Discard oversized packets if !LPE and !SBP. */
1683     if (e1000x_is_oversized(core->mac, size)) {
1684         return orig_size;
1685     }
1686 
1687     net_rx_pkt_set_packet_type(core->rx_pkt,
1688         get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1689 
1690     if (!e1000e_receive_filter(core, filter_buf, size)) {
1691         trace_e1000e_rx_flt_dropped();
1692         return orig_size;
1693     }
1694 
1695     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1696                                e1000x_vlan_enabled(core->mac), core->vet);
1697 
1698     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1699     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1700 
1701     trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1702 
1703     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1704         e1000x_fcs_len(core->mac);
1705 
1706     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1707         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1708 
1709         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1710 
1711         retval = orig_size;
1712 
1713         /* Perform small receive detection (RSRPD) */
1714         if (total_size < core->mac[RSRPD]) {
1715             n |= E1000_ICS_SRPD;
1716         }
1717 
1718         /* Perform ACK receive detection */
1719         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1720              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1721             n |= E1000_ICS_ACK;
1722         }
1723 
1724         /* Check if receive descriptor minimum threshold hit */
1725         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1726         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1727 
1728         trace_e1000e_rx_written_to_guest(n);
1729     } else {
1730         n |= E1000_ICS_RXO;
1731         retval = 0;
1732 
1733         trace_e1000e_rx_not_written_to_guest(n);
1734     }
1735 
1736     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1737         trace_e1000e_rx_interrupt_set(n);
1738         e1000e_set_interrupt_cause(core, n);
1739     } else {
1740         trace_e1000e_rx_interrupt_delayed(n);
1741     }
1742 
1743     return retval;
1744 }
1745 
1746 static inline bool
1747 e1000e_have_autoneg(E1000ECore *core)
1748 {
1749     return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1750 }
1751 
1752 static void e1000e_update_flowctl_status(E1000ECore *core)
1753 {
1754     if (e1000e_have_autoneg(core) &&
1755         core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1756         trace_e1000e_link_autoneg_flowctl(true);
1757         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1758     } else {
1759         trace_e1000e_link_autoneg_flowctl(false);
1760     }
1761 }
1762 
1763 static inline void
1764 e1000e_link_down(E1000ECore *core)
1765 {
1766     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1767     e1000e_update_flowctl_status(core);
1768 }
1769 
1770 static inline void
1771 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1772 {
1773     /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1774     core->phy[0][PHY_CTRL] = val & ~(0x3f |
1775                                      MII_CR_RESET |
1776                                      MII_CR_RESTART_AUTO_NEG);
1777 
1778     if ((val & MII_CR_RESTART_AUTO_NEG) &&
1779         e1000e_have_autoneg(core)) {
1780         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1781     }
1782 }
1783 
1784 static void
1785 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1786 {
1787     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1788 
1789     if (val & BIT(10)) {
1790         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1791     }
1792 }
1793 
1794 static void
1795 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1796 {
1797     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1798 }
1799 
1800 void
1801 e1000e_core_set_link_status(E1000ECore *core)
1802 {
1803     NetClientState *nc = qemu_get_queue(core->owner_nic);
1804     uint32_t old_status = core->mac[STATUS];
1805 
1806     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1807 
1808     if (nc->link_down) {
1809         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1810     } else {
1811         if (e1000e_have_autoneg(core) &&
1812             !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1813             e1000x_restart_autoneg(core->mac, core->phy[0],
1814                                    core->autoneg_timer);
1815         } else {
1816             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1817             e1000e_start_recv(core);
1818         }
1819     }
1820 
1821     if (core->mac[STATUS] != old_status) {
1822         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1823     }
1824 }
1825 
1826 static void
1827 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1828 {
1829     trace_e1000e_core_ctrl_write(index, val);
1830 
1831     /* RST is self clearing */
1832     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1833     core->mac[CTRL_DUP] = core->mac[CTRL];
1834 
1835     trace_e1000e_link_set_params(
1836         !!(val & E1000_CTRL_ASDE),
1837         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1838         !!(val & E1000_CTRL_FRCSPD),
1839         !!(val & E1000_CTRL_FRCDPX),
1840         !!(val & E1000_CTRL_RFCE),
1841         !!(val & E1000_CTRL_TFCE));
1842 
1843     if (val & E1000_CTRL_RST) {
1844         trace_e1000e_core_ctrl_sw_reset();
1845         e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1846     }
1847 
1848     if (val & E1000_CTRL_PHY_RST) {
1849         trace_e1000e_core_ctrl_phy_reset();
1850         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1851     }
1852 }
1853 
1854 static void
1855 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1856 {
1857     trace_e1000e_rx_set_rfctl(val);
1858 
1859     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1860         trace_e1000e_wrn_iscsi_filtering_not_supported();
1861     }
1862 
1863     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1864         trace_e1000e_wrn_nfsw_filtering_not_supported();
1865     }
1866 
1867     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1868         trace_e1000e_wrn_nfsr_filtering_not_supported();
1869     }
1870 
1871     core->mac[RFCTL] = val;
1872 }
1873 
1874 static void
1875 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1876 {
1877     int i;
1878     core->rx_desc_buf_size = 0;
1879 
1880     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1881         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1882     }
1883 }
1884 
1885 static void
1886 e1000e_parse_rxbufsize(E1000ECore *core)
1887 {
1888     uint32_t rctl = core->mac[RCTL];
1889 
1890     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1891 
1892     if (rctl & E1000_RCTL_DTYP_MASK) {
1893         uint32_t bsize;
1894 
1895         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1896         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1897 
1898         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1899         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1900 
1901         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1902         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1903 
1904         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1905         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1906     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1907         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1908         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1909     } else {
1910         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1911     }
1912 
1913     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1914                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1915 
1916     e1000e_calc_per_desc_buf_size(core);
1917 }
1918 
1919 static void
1920 e1000e_calc_rxdesclen(E1000ECore *core)
1921 {
1922     if (e1000e_rx_use_legacy_descriptor(core)) {
1923         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1924     } else {
1925         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1926             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1927         } else {
1928             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1929         }
1930     }
1931     trace_e1000e_rx_desc_len(core->rx_desc_len);
1932 }
1933 
1934 static void
1935 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1936 {
1937     core->mac[RCTL] = val;
1938     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1939 
1940     if (val & E1000_RCTL_EN) {
1941         e1000e_parse_rxbufsize(core);
1942         e1000e_calc_rxdesclen(core);
1943         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1944                                 E1000_RING_DESC_LEN_SHIFT;
1945 
1946         e1000e_start_recv(core);
1947     }
1948 }
1949 
1950 static
1951 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1952 (E1000ECore *, int, uint16_t) = {
1953     [0] = {
1954         [PHY_CTRL]     = e1000e_set_phy_ctrl,
1955         [PHY_PAGE]     = e1000e_set_phy_page,
1956         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1957     }
1958 };
1959 
1960 static inline void
1961 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1962 {
1963     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1964     core->mac[IMS] &= ~bits;
1965 }
1966 
1967 static inline bool
1968 e1000e_postpone_interrupt(bool *interrupt_pending,
1969                            E1000IntrDelayTimer *timer)
1970 {
1971     if (timer->running) {
1972         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1973 
1974         *interrupt_pending = true;
1975         return true;
1976     }
1977 
1978     if (timer->core->mac[timer->delay_reg] != 0) {
1979         e1000e_intrmgr_rearm_timer(timer);
1980     }
1981 
1982     return false;
1983 }
1984 
1985 static inline bool
1986 e1000e_itr_should_postpone(E1000ECore *core)
1987 {
1988     return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1989 }
1990 
1991 static inline bool
1992 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1993 {
1994     return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1995                                      &core->eitr[idx]);
1996 }
1997 
1998 static void
1999 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2000 {
2001     uint32_t effective_eiac;
2002 
2003     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2004         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2005         if (vec < E1000E_MSIX_VEC_NUM) {
2006             if (!e1000e_eitr_should_postpone(core, vec)) {
2007                 trace_e1000e_irq_msix_notify_vec(vec);
2008                 msix_notify(core->owner, vec);
2009             }
2010         } else {
2011             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2012         }
2013     } else {
2014         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2015     }
2016 
2017     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2018         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2019         core->mac[IAM] &= ~cause;
2020     }
2021 
2022     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2023 
2024     effective_eiac = core->mac[EIAC] & cause;
2025 
2026     core->mac[ICR] &= ~effective_eiac;
2027     core->msi_causes_pending &= ~effective_eiac;
2028 
2029     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2030         core->mac[IMS] &= ~effective_eiac;
2031     }
2032 }
2033 
2034 static void
2035 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2036 {
2037     if (causes & E1000_ICR_RXQ0) {
2038         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2039                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2040     }
2041 
2042     if (causes & E1000_ICR_RXQ1) {
2043         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2044                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2045     }
2046 
2047     if (causes & E1000_ICR_TXQ0) {
2048         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2049                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2050     }
2051 
2052     if (causes & E1000_ICR_TXQ1) {
2053         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2054                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2055     }
2056 
2057     if (causes & E1000_ICR_OTHER) {
2058         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2059                                E1000_IVAR_OTHER(core->mac[IVAR]));
2060     }
2061 }
2062 
2063 static void
2064 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2065 {
2066     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2067         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2068         if (vec < E1000E_MSIX_VEC_NUM) {
2069             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2070             msix_clr_pending(core->owner, vec);
2071         } else {
2072             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2073         }
2074     } else {
2075         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2076     }
2077 }
2078 
2079 static void
2080 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2081 {
2082     if (causes & E1000_ICR_RXQ0) {
2083         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2084                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2085     }
2086 
2087     if (causes & E1000_ICR_RXQ1) {
2088         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2089                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2090     }
2091 
2092     if (causes & E1000_ICR_TXQ0) {
2093         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2094                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2095     }
2096 
2097     if (causes & E1000_ICR_TXQ1) {
2098         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2099                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2100     }
2101 
2102     if (causes & E1000_ICR_OTHER) {
2103         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2104                               E1000_IVAR_OTHER(core->mac[IVAR]));
2105     }
2106 }
2107 
2108 static inline void
2109 e1000e_fix_icr_asserted(E1000ECore *core)
2110 {
2111     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2112     if (core->mac[ICR]) {
2113         core->mac[ICR] |= E1000_ICR_ASSERTED;
2114     }
2115 
2116     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2117 }
2118 
2119 static void
2120 e1000e_send_msi(E1000ECore *core, bool msix)
2121 {
2122     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2123 
2124     core->msi_causes_pending &= causes;
2125     causes ^= core->msi_causes_pending;
2126     if (causes == 0) {
2127         return;
2128     }
2129     core->msi_causes_pending |= causes;
2130 
2131     if (msix) {
2132         e1000e_msix_notify(core, causes);
2133     } else {
2134         if (!e1000e_itr_should_postpone(core)) {
2135             trace_e1000e_irq_msi_notify(causes);
2136             msi_notify(core->owner, 0);
2137         }
2138     }
2139 }
2140 
2141 static void
2142 e1000e_update_interrupt_state(E1000ECore *core)
2143 {
2144     bool interrupts_pending;
2145     bool is_msix = msix_enabled(core->owner);
2146 
2147     /* Set ICR[OTHER] for MSI-X */
2148     if (is_msix) {
2149         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2150             core->mac[ICR] |= E1000_ICR_OTHER;
2151             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2152         }
2153     }
2154 
2155     e1000e_fix_icr_asserted(core);
2156 
2157     /*
2158      * Make sure ICR and ICS registers have the same value.
2159      * The spec says that the ICS register is write-only.  However in practice,
2160      * on real hardware ICS is readable, and for reads it has the same value as
2161      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2162      *
2163      * The VxWorks PRO/1000 driver uses this behaviour.
2164      */
2165     core->mac[ICS] = core->mac[ICR];
2166 
2167     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2168     if (!interrupts_pending) {
2169         core->msi_causes_pending = 0;
2170     }
2171 
2172     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2173                                         core->mac[ICR], core->mac[IMS]);
2174 
2175     if (is_msix || msi_enabled(core->owner)) {
2176         if (interrupts_pending) {
2177             e1000e_send_msi(core, is_msix);
2178         }
2179     } else {
2180         if (interrupts_pending) {
2181             if (!e1000e_itr_should_postpone(core)) {
2182                 e1000e_raise_legacy_irq(core);
2183             }
2184         } else {
2185             e1000e_lower_legacy_irq(core);
2186         }
2187     }
2188 }
2189 
2190 static void
2191 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2192 {
2193     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2194 
2195     val |= e1000e_intmgr_collect_delayed_causes(core);
2196     core->mac[ICR] |= val;
2197 
2198     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2199 
2200     e1000e_update_interrupt_state(core);
2201 }
2202 
2203 static inline void
2204 e1000e_autoneg_timer(void *opaque)
2205 {
2206     E1000ECore *core = opaque;
2207     if (!qemu_get_queue(core->owner_nic)->link_down) {
2208         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2209         e1000e_start_recv(core);
2210 
2211         e1000e_update_flowctl_status(core);
2212         /* signal link status change to the guest */
2213         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2214     }
2215 }
2216 
2217 static inline uint16_t
2218 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2219 {
2220     uint16_t index = (addr & 0x1ffff) >> 2;
2221     return index + (mac_reg_access[index] & 0xfffe);
2222 }
2223 
2224 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2225     [0] = {
2226         [PHY_CTRL]          = PHY_ANYPAGE | PHY_RW,
2227         [PHY_STATUS]        = PHY_ANYPAGE | PHY_R,
2228         [PHY_ID1]           = PHY_ANYPAGE | PHY_R,
2229         [PHY_ID2]           = PHY_ANYPAGE | PHY_R,
2230         [PHY_AUTONEG_ADV]   = PHY_ANYPAGE | PHY_RW,
2231         [PHY_LP_ABILITY]    = PHY_ANYPAGE | PHY_R,
2232         [PHY_AUTONEG_EXP]   = PHY_ANYPAGE | PHY_R,
2233         [PHY_NEXT_PAGE_TX]  = PHY_ANYPAGE | PHY_RW,
2234         [PHY_LP_NEXT_PAGE]  = PHY_ANYPAGE | PHY_R,
2235         [PHY_1000T_CTRL]    = PHY_ANYPAGE | PHY_RW,
2236         [PHY_1000T_STATUS]  = PHY_ANYPAGE | PHY_R,
2237         [PHY_EXT_STATUS]    = PHY_ANYPAGE | PHY_R,
2238         [PHY_PAGE]          = PHY_ANYPAGE | PHY_RW,
2239 
2240         [PHY_COPPER_CTRL1]      = PHY_RW,
2241         [PHY_COPPER_STAT1]      = PHY_R,
2242         [PHY_COPPER_CTRL3]      = PHY_RW,
2243         [PHY_RX_ERR_CNTR]       = PHY_R,
2244         [PHY_OEM_BITS]          = PHY_RW,
2245         [PHY_BIAS_1]            = PHY_RW,
2246         [PHY_BIAS_2]            = PHY_RW,
2247         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2248         [PHY_COPPER_STAT2]      = PHY_R,
2249         [PHY_COPPER_CTRL2]      = PHY_RW
2250     },
2251     [2] = {
2252         [PHY_MAC_CTRL1]         = PHY_RW,
2253         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2254         [PHY_MAC_STAT]          = PHY_R,
2255         [PHY_MAC_CTRL2]         = PHY_RW
2256     },
2257     [3] = {
2258         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2259         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2260         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2261         [PHY_LED_45_CTRL]       = PHY_RW
2262     },
2263     [5] = {
2264         [PHY_1000T_SKEW]        = PHY_R,
2265         [PHY_1000T_SWAP]        = PHY_R
2266     },
2267     [6] = {
2268         [PHY_CRC_COUNTERS]      = PHY_R
2269     }
2270 };
2271 
2272 static bool
2273 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2274                          char cap, uint8_t *page)
2275 {
2276     *page =
2277         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2278                                                     : core->phy[0][PHY_PAGE];
2279 
2280     if (*page >= E1000E_PHY_PAGES) {
2281         return false;
2282     }
2283 
2284     return e1000e_phy_regcap[*page][addr] & cap;
2285 }
2286 
2287 static void
2288 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2289                      uint32_t addr, uint16_t data)
2290 {
2291     assert(page < E1000E_PHY_PAGES);
2292     assert(addr < E1000E_PHY_PAGE_SIZE);
2293 
2294     if (e1000e_phyreg_writeops[page][addr]) {
2295         e1000e_phyreg_writeops[page][addr](core, addr, data);
2296     } else {
2297         core->phy[page][addr] = data;
2298     }
2299 }
2300 
2301 static void
2302 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2303 {
2304     uint32_t data = val & E1000_MDIC_DATA_MASK;
2305     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2306     uint8_t page;
2307 
2308     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2309         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2310     } else if (val & E1000_MDIC_OP_READ) {
2311         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2312             trace_e1000e_core_mdic_read_unhandled(page, addr);
2313             val |= E1000_MDIC_ERROR;
2314         } else {
2315             val = (val ^ data) | core->phy[page][addr];
2316             trace_e1000e_core_mdic_read(page, addr, val);
2317         }
2318     } else if (val & E1000_MDIC_OP_WRITE) {
2319         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2320             trace_e1000e_core_mdic_write_unhandled(page, addr);
2321             val |= E1000_MDIC_ERROR;
2322         } else {
2323             trace_e1000e_core_mdic_write(page, addr, data);
2324             e1000e_phy_reg_write(core, page, addr, data);
2325         }
2326     }
2327     core->mac[MDIC] = val | E1000_MDIC_READY;
2328 
2329     if (val & E1000_MDIC_INT_EN) {
2330         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2331     }
2332 }
2333 
2334 static void
2335 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2336 {
2337     core->mac[index] = val & 0xffff;
2338     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2339     e1000e_start_recv(core);
2340 }
2341 
2342 static void
2343 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2344 {
2345     if ((val & E1000_STATUS_PHYRA) == 0) {
2346         core->mac[index] &= ~E1000_STATUS_PHYRA;
2347     }
2348 }
2349 
2350 static void
2351 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2352 {
2353     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2354                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2355 
2356     /* Zero self-clearing bits */
2357     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2358     core->mac[CTRL_EXT] = val;
2359 }
2360 
2361 static void
2362 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2363 {
2364     int i;
2365 
2366     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2367 
2368     if (!msix_enabled(core->owner)) {
2369         return;
2370     }
2371 
2372     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2373         if (core->mac[PBACLR] & BIT(i)) {
2374             msix_clr_pending(core->owner, i);
2375         }
2376     }
2377 }
2378 
2379 static void
2380 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2381 {
2382     core->mac[FCRTH] = val & 0xFFF8;
2383 }
2384 
2385 static void
2386 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2387 {
2388     core->mac[FCRTL] = val & 0x8000FFF8;
2389 }
2390 
2391 static inline void
2392 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2393 {
2394     core->mac[index] = val & 0xffff;
2395 }
2396 
2397 static void
2398 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2399 {
2400     core->mac[index] = val & 0xfff;
2401 }
2402 
2403 static void
2404 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2405 {
2406     core->mac[VET] = val & 0xffff;
2407     core->vet = le16_to_cpu(core->mac[VET]);
2408     trace_e1000e_vlan_vet(core->vet);
2409 }
2410 
2411 static void
2412 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2413 {
2414     core->mac[index] = val & E1000_XDLEN_MASK;
2415 }
2416 
2417 static void
2418 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2419 {
2420     core->mac[index] = val & E1000_XDBAL_MASK;
2421 }
2422 
2423 static void
2424 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2425 {
2426     E1000E_TxRing txr;
2427     core->mac[index] = val;
2428 
2429     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2430         e1000e_tx_ring_init(core, &txr, 0);
2431         e1000e_start_xmit(core, &txr);
2432     }
2433 
2434     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2435         e1000e_tx_ring_init(core, &txr, 1);
2436         e1000e_start_xmit(core, &txr);
2437     }
2438 }
2439 
2440 static void
2441 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2442 {
2443     E1000E_TxRing txr;
2444     int qidx = e1000e_mq_queue_idx(TDT, index);
2445     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2446 
2447     core->mac[index] = val & 0xffff;
2448 
2449     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2450         e1000e_tx_ring_init(core, &txr, qidx);
2451         e1000e_start_xmit(core, &txr);
2452     }
2453 }
2454 
2455 static void
2456 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2457 {
2458     trace_e1000e_irq_write_ics(val);
2459     e1000e_set_interrupt_cause(core, val);
2460 }
2461 
2462 static void
2463 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2464 {
2465     uint32_t icr = 0;
2466     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2467         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2468         trace_e1000e_irq_icr_process_iame();
2469         e1000e_clear_ims_bits(core, core->mac[IAM]);
2470     }
2471 
2472     icr = core->mac[ICR] & ~val;
2473     /* Windows driver expects that the "receive overrun" bit and other
2474      * ones to be cleared when the "Other" bit (#24) is cleared.
2475      */
2476     icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2477     trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2478     core->mac[ICR] = icr;
2479     e1000e_update_interrupt_state(core);
2480 }
2481 
2482 static void
2483 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2484 {
2485     trace_e1000e_irq_ims_clear_set_imc(val);
2486     e1000e_clear_ims_bits(core, val);
2487     e1000e_update_interrupt_state(core);
2488 }
2489 
2490 static void
2491 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2492 {
2493     static const uint32_t ims_ext_mask =
2494         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2495         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2496         E1000_IMS_OTHER;
2497 
2498     static const uint32_t ims_valid_mask =
2499         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2500         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2501         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2502         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2503         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2504         E1000_IMS_OTHER;
2505 
2506     uint32_t valid_val = val & ims_valid_mask;
2507 
2508     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2509     core->mac[IMS] |= valid_val;
2510 
2511     if ((valid_val & ims_ext_mask) &&
2512         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2513         msix_enabled(core->owner)) {
2514         e1000e_msix_clear(core, valid_val);
2515     }
2516 
2517     if ((valid_val == ims_valid_mask) &&
2518         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2519         trace_e1000e_irq_fire_all_timers(val);
2520         e1000e_intrmgr_fire_all_timers(core);
2521     }
2522 
2523     e1000e_update_interrupt_state(core);
2524 }
2525 
2526 static void
2527 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2528 {
2529     e1000e_set_16bit(core, index, val);
2530 
2531     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2532         trace_e1000e_irq_rdtr_fpd_running();
2533         e1000e_intrmgr_fire_delayed_interrupts(core);
2534     } else {
2535         trace_e1000e_irq_rdtr_fpd_not_running();
2536     }
2537 }
2538 
2539 static void
2540 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2541 {
2542     e1000e_set_16bit(core, index, val);
2543 
2544     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2545         trace_e1000e_irq_tidv_fpd_running();
2546         e1000e_intrmgr_fire_delayed_interrupts(core);
2547     } else {
2548         trace_e1000e_irq_tidv_fpd_not_running();
2549     }
2550 }
2551 
2552 static uint32_t
2553 e1000e_mac_readreg(E1000ECore *core, int index)
2554 {
2555     return core->mac[index];
2556 }
2557 
2558 static uint32_t
2559 e1000e_mac_ics_read(E1000ECore *core, int index)
2560 {
2561     trace_e1000e_irq_read_ics(core->mac[ICS]);
2562     return core->mac[ICS];
2563 }
2564 
2565 static uint32_t
2566 e1000e_mac_ims_read(E1000ECore *core, int index)
2567 {
2568     trace_e1000e_irq_read_ims(core->mac[IMS]);
2569     return core->mac[IMS];
2570 }
2571 
2572 #define E1000E_LOW_BITS_READ_FUNC(num)                      \
2573     static uint32_t                                         \
2574     e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2575     {                                                       \
2576         return core->mac[index] & (BIT(num) - 1);           \
2577     }                                                       \
2578 
2579 #define E1000E_LOW_BITS_READ(num)                           \
2580     e1000e_mac_low##num##_read
2581 
2582 E1000E_LOW_BITS_READ_FUNC(4);
2583 E1000E_LOW_BITS_READ_FUNC(6);
2584 E1000E_LOW_BITS_READ_FUNC(11);
2585 E1000E_LOW_BITS_READ_FUNC(13);
2586 E1000E_LOW_BITS_READ_FUNC(16);
2587 
2588 static uint32_t
2589 e1000e_mac_swsm_read(E1000ECore *core, int index)
2590 {
2591     uint32_t val = core->mac[SWSM];
2592     core->mac[SWSM] = val | 1;
2593     return val;
2594 }
2595 
2596 static uint32_t
2597 e1000e_mac_itr_read(E1000ECore *core, int index)
2598 {
2599     return core->itr_guest_value;
2600 }
2601 
2602 static uint32_t
2603 e1000e_mac_eitr_read(E1000ECore *core, int index)
2604 {
2605     return core->eitr_guest_value[index - EITR];
2606 }
2607 
2608 static uint32_t
2609 e1000e_mac_icr_read(E1000ECore *core, int index)
2610 {
2611     uint32_t ret = core->mac[ICR];
2612     trace_e1000e_irq_icr_read_entry(ret);
2613 
2614     if (core->mac[IMS] == 0) {
2615         trace_e1000e_irq_icr_clear_zero_ims();
2616         core->mac[ICR] = 0;
2617     }
2618 
2619     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2620         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2621         trace_e1000e_irq_icr_clear_iame();
2622         core->mac[ICR] = 0;
2623         trace_e1000e_irq_icr_process_iame();
2624         e1000e_clear_ims_bits(core, core->mac[IAM]);
2625     }
2626 
2627     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2628     e1000e_update_interrupt_state(core);
2629     return ret;
2630 }
2631 
2632 static uint32_t
2633 e1000e_mac_read_clr4(E1000ECore *core, int index)
2634 {
2635     uint32_t ret = core->mac[index];
2636 
2637     core->mac[index] = 0;
2638     return ret;
2639 }
2640 
2641 static uint32_t
2642 e1000e_mac_read_clr8(E1000ECore *core, int index)
2643 {
2644     uint32_t ret = core->mac[index];
2645 
2646     core->mac[index] = 0;
2647     core->mac[index - 1] = 0;
2648     return ret;
2649 }
2650 
2651 static uint32_t
2652 e1000e_get_ctrl(E1000ECore *core, int index)
2653 {
2654     uint32_t val = core->mac[CTRL];
2655 
2656     trace_e1000e_link_read_params(
2657         !!(val & E1000_CTRL_ASDE),
2658         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2659         !!(val & E1000_CTRL_FRCSPD),
2660         !!(val & E1000_CTRL_FRCDPX),
2661         !!(val & E1000_CTRL_RFCE),
2662         !!(val & E1000_CTRL_TFCE));
2663 
2664     return val;
2665 }
2666 
2667 static uint32_t
2668 e1000e_get_status(E1000ECore *core, int index)
2669 {
2670     uint32_t res = core->mac[STATUS];
2671 
2672     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2673         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2674     }
2675 
2676     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2677         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2678     } else {
2679         res |= E1000_STATUS_FD;
2680     }
2681 
2682     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2683         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2684         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2685         case E1000_CTRL_SPD_10:
2686             res |= E1000_STATUS_SPEED_10;
2687             break;
2688         case E1000_CTRL_SPD_100:
2689             res |= E1000_STATUS_SPEED_100;
2690             break;
2691         case E1000_CTRL_SPD_1000:
2692         default:
2693             res |= E1000_STATUS_SPEED_1000;
2694             break;
2695         }
2696     } else {
2697         res |= E1000_STATUS_SPEED_1000;
2698     }
2699 
2700     trace_e1000e_link_status(
2701         !!(res & E1000_STATUS_LU),
2702         !!(res & E1000_STATUS_FD),
2703         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2704         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2705 
2706     return res;
2707 }
2708 
2709 static uint32_t
2710 e1000e_get_tarc(E1000ECore *core, int index)
2711 {
2712     return core->mac[index] & ((BIT(11) - 1) |
2713                                 BIT(27)      |
2714                                 BIT(28)      |
2715                                 BIT(29)      |
2716                                 BIT(30));
2717 }
2718 
2719 static void
2720 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2721 {
2722     core->mac[index] = val;
2723 }
2724 
2725 static void
2726 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2727 {
2728     uint32_t macaddr[2];
2729 
2730     core->mac[index] = val;
2731 
2732     macaddr[0] = cpu_to_le32(core->mac[RA]);
2733     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2734     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2735         (uint8_t *) macaddr);
2736 
2737     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2738 }
2739 
2740 static void
2741 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2742 {
2743     static const uint32_t ro_bits = E1000_EECD_PRES          |
2744                                     E1000_EECD_AUTO_RD       |
2745                                     E1000_EECD_SIZE_EX_MASK;
2746 
2747     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2748 }
2749 
2750 static void
2751 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2752 {
2753     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2754     uint32_t flags = 0;
2755     uint32_t data = 0;
2756 
2757     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2758         data = core->eeprom[addr];
2759         flags = E1000_EERW_DONE;
2760     }
2761 
2762     core->mac[EERD] = flags                           |
2763                       (addr << E1000_EERW_ADDR_SHIFT) |
2764                       (data << E1000_EERW_DATA_SHIFT);
2765 }
2766 
2767 static void
2768 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2769 {
2770     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2771     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2772     uint32_t flags = 0;
2773 
2774     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2775         core->eeprom[addr] = data;
2776         flags = E1000_EERW_DONE;
2777     }
2778 
2779     core->mac[EERD] = flags                           |
2780                       (addr << E1000_EERW_ADDR_SHIFT) |
2781                       (data << E1000_EERW_DATA_SHIFT);
2782 }
2783 
2784 static void
2785 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2786 {
2787     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2788 }
2789 
2790 static void
2791 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2792 {
2793     uint32_t interval = val & 0xffff;
2794 
2795     trace_e1000e_irq_itr_set(val);
2796 
2797     core->itr_guest_value = interval;
2798     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2799 }
2800 
2801 static void
2802 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2803 {
2804     uint32_t interval = val & 0xffff;
2805     uint32_t eitr_num = index - EITR;
2806 
2807     trace_e1000e_irq_eitr_set(eitr_num, val);
2808 
2809     core->eitr_guest_value[eitr_num] = interval;
2810     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2811 }
2812 
2813 static void
2814 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2815 {
2816     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2817 
2818         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2819             qemu_log_mask(LOG_GUEST_ERROR,
2820                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2821             return;
2822         }
2823 
2824         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2825             qemu_log_mask(LOG_GUEST_ERROR,
2826                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2827             return;
2828         }
2829     }
2830 
2831     core->mac[PSRCTL] = val;
2832 }
2833 
2834 static void
2835 e1000e_update_rx_offloads(E1000ECore *core)
2836 {
2837     int cso_state = e1000e_rx_l4_cso_enabled(core);
2838 
2839     trace_e1000e_rx_set_cso(cso_state);
2840 
2841     if (core->has_vnet) {
2842         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2843                          cso_state, 0, 0, 0, 0);
2844     }
2845 }
2846 
2847 static void
2848 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2849 {
2850     core->mac[RXCSUM] = val;
2851     e1000e_update_rx_offloads(core);
2852 }
2853 
2854 static void
2855 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2856 {
2857     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2858     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2859 }
2860 
2861 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2862 typedef uint32_t (*readops)(E1000ECore *, int);
2863 static const readops e1000e_macreg_readops[] = {
2864     e1000e_getreg(PBA),
2865     e1000e_getreg(WUFC),
2866     e1000e_getreg(MANC),
2867     e1000e_getreg(TOTL),
2868     e1000e_getreg(RDT0),
2869     e1000e_getreg(RDBAH0),
2870     e1000e_getreg(TDBAL1),
2871     e1000e_getreg(RDLEN0),
2872     e1000e_getreg(RDH1),
2873     e1000e_getreg(LATECOL),
2874     e1000e_getreg(SEQEC),
2875     e1000e_getreg(XONTXC),
2876     e1000e_getreg(WUS),
2877     e1000e_getreg(GORCL),
2878     e1000e_getreg(MGTPRC),
2879     e1000e_getreg(EERD),
2880     e1000e_getreg(EIAC),
2881     e1000e_getreg(PSRCTL),
2882     e1000e_getreg(MANC2H),
2883     e1000e_getreg(RXCSUM),
2884     e1000e_getreg(GSCL_3),
2885     e1000e_getreg(GSCN_2),
2886     e1000e_getreg(RSRPD),
2887     e1000e_getreg(RDBAL1),
2888     e1000e_getreg(FCAH),
2889     e1000e_getreg(FCRTH),
2890     e1000e_getreg(FLOP),
2891     e1000e_getreg(FLASHT),
2892     e1000e_getreg(RXSTMPH),
2893     e1000e_getreg(TXSTMPL),
2894     e1000e_getreg(TIMADJL),
2895     e1000e_getreg(TXDCTL),
2896     e1000e_getreg(RDH0),
2897     e1000e_getreg(TDT1),
2898     e1000e_getreg(TNCRS),
2899     e1000e_getreg(RJC),
2900     e1000e_getreg(IAM),
2901     e1000e_getreg(GSCL_2),
2902     e1000e_getreg(RDBAH1),
2903     e1000e_getreg(FLSWDATA),
2904     e1000e_getreg(RXSATRH),
2905     e1000e_getreg(TIPG),
2906     e1000e_getreg(FLMNGCTL),
2907     e1000e_getreg(FLMNGCNT),
2908     e1000e_getreg(TSYNCTXCTL),
2909     e1000e_getreg(EXTCNF_SIZE),
2910     e1000e_getreg(EXTCNF_CTRL),
2911     e1000e_getreg(EEMNGDATA),
2912     e1000e_getreg(CTRL_EXT),
2913     e1000e_getreg(SYSTIMH),
2914     e1000e_getreg(EEMNGCTL),
2915     e1000e_getreg(FLMNGDATA),
2916     e1000e_getreg(TSYNCRXCTL),
2917     e1000e_getreg(TDH),
2918     e1000e_getreg(LEDCTL),
2919     e1000e_getreg(STATUS),
2920     e1000e_getreg(TCTL),
2921     e1000e_getreg(TDBAL),
2922     e1000e_getreg(TDLEN),
2923     e1000e_getreg(TDH1),
2924     e1000e_getreg(RADV),
2925     e1000e_getreg(ECOL),
2926     e1000e_getreg(DC),
2927     e1000e_getreg(RLEC),
2928     e1000e_getreg(XOFFTXC),
2929     e1000e_getreg(RFC),
2930     e1000e_getreg(RNBC),
2931     e1000e_getreg(MGTPTC),
2932     e1000e_getreg(TIMINCA),
2933     e1000e_getreg(RXCFGL),
2934     e1000e_getreg(MFUTP01),
2935     e1000e_getreg(FACTPS),
2936     e1000e_getreg(GSCL_1),
2937     e1000e_getreg(GSCN_0),
2938     e1000e_getreg(GCR2),
2939     e1000e_getreg(RDT1),
2940     e1000e_getreg(PBACLR),
2941     e1000e_getreg(FCTTV),
2942     e1000e_getreg(EEWR),
2943     e1000e_getreg(FLSWCTL),
2944     e1000e_getreg(RXDCTL1),
2945     e1000e_getreg(RXSATRL),
2946     e1000e_getreg(SYSTIML),
2947     e1000e_getreg(RXUDP),
2948     e1000e_getreg(TORL),
2949     e1000e_getreg(TDLEN1),
2950     e1000e_getreg(MCC),
2951     e1000e_getreg(WUC),
2952     e1000e_getreg(EECD),
2953     e1000e_getreg(MFUTP23),
2954     e1000e_getreg(RAID),
2955     e1000e_getreg(FCRTV),
2956     e1000e_getreg(TXDCTL1),
2957     e1000e_getreg(RCTL),
2958     e1000e_getreg(TDT),
2959     e1000e_getreg(MDIC),
2960     e1000e_getreg(FCRUC),
2961     e1000e_getreg(VET),
2962     e1000e_getreg(RDBAL0),
2963     e1000e_getreg(TDBAH1),
2964     e1000e_getreg(RDTR),
2965     e1000e_getreg(SCC),
2966     e1000e_getreg(COLC),
2967     e1000e_getreg(CEXTERR),
2968     e1000e_getreg(XOFFRXC),
2969     e1000e_getreg(IPAV),
2970     e1000e_getreg(GOTCL),
2971     e1000e_getreg(MGTPDC),
2972     e1000e_getreg(GCR),
2973     e1000e_getreg(IVAR),
2974     e1000e_getreg(POEMB),
2975     e1000e_getreg(MFVAL),
2976     e1000e_getreg(FUNCTAG),
2977     e1000e_getreg(GSCL_4),
2978     e1000e_getreg(GSCN_3),
2979     e1000e_getreg(MRQC),
2980     e1000e_getreg(RDLEN1),
2981     e1000e_getreg(FCT),
2982     e1000e_getreg(FLA),
2983     e1000e_getreg(FLOL),
2984     e1000e_getreg(RXDCTL),
2985     e1000e_getreg(RXSTMPL),
2986     e1000e_getreg(TXSTMPH),
2987     e1000e_getreg(TIMADJH),
2988     e1000e_getreg(FCRTL),
2989     e1000e_getreg(TDBAH),
2990     e1000e_getreg(TADV),
2991     e1000e_getreg(XONRXC),
2992     e1000e_getreg(TSCTFC),
2993     e1000e_getreg(RFCTL),
2994     e1000e_getreg(GSCN_1),
2995     e1000e_getreg(FCAL),
2996     e1000e_getreg(FLSWCNT),
2997 
2998     [TOTH]    = e1000e_mac_read_clr8,
2999     [GOTCH]   = e1000e_mac_read_clr8,
3000     [PRC64]   = e1000e_mac_read_clr4,
3001     [PRC255]  = e1000e_mac_read_clr4,
3002     [PRC1023] = e1000e_mac_read_clr4,
3003     [PTC64]   = e1000e_mac_read_clr4,
3004     [PTC255]  = e1000e_mac_read_clr4,
3005     [PTC1023] = e1000e_mac_read_clr4,
3006     [GPRC]    = e1000e_mac_read_clr4,
3007     [TPT]     = e1000e_mac_read_clr4,
3008     [RUC]     = e1000e_mac_read_clr4,
3009     [BPRC]    = e1000e_mac_read_clr4,
3010     [MPTC]    = e1000e_mac_read_clr4,
3011     [IAC]     = e1000e_mac_read_clr4,
3012     [ICR]     = e1000e_mac_icr_read,
3013     [RDFH]    = E1000E_LOW_BITS_READ(13),
3014     [RDFHS]   = E1000E_LOW_BITS_READ(13),
3015     [RDFPC]   = E1000E_LOW_BITS_READ(13),
3016     [TDFH]    = E1000E_LOW_BITS_READ(13),
3017     [TDFHS]   = E1000E_LOW_BITS_READ(13),
3018     [STATUS]  = e1000e_get_status,
3019     [TARC0]   = e1000e_get_tarc,
3020     [PBS]     = E1000E_LOW_BITS_READ(6),
3021     [ICS]     = e1000e_mac_ics_read,
3022     [AIT]     = E1000E_LOW_BITS_READ(16),
3023     [TORH]    = e1000e_mac_read_clr8,
3024     [GORCH]   = e1000e_mac_read_clr8,
3025     [PRC127]  = e1000e_mac_read_clr4,
3026     [PRC511]  = e1000e_mac_read_clr4,
3027     [PRC1522] = e1000e_mac_read_clr4,
3028     [PTC127]  = e1000e_mac_read_clr4,
3029     [PTC511]  = e1000e_mac_read_clr4,
3030     [PTC1522] = e1000e_mac_read_clr4,
3031     [GPTC]    = e1000e_mac_read_clr4,
3032     [TPR]     = e1000e_mac_read_clr4,
3033     [ROC]     = e1000e_mac_read_clr4,
3034     [MPRC]    = e1000e_mac_read_clr4,
3035     [BPTC]    = e1000e_mac_read_clr4,
3036     [TSCTC]   = e1000e_mac_read_clr4,
3037     [ITR]     = e1000e_mac_itr_read,
3038     [RDFT]    = E1000E_LOW_BITS_READ(13),
3039     [RDFTS]   = E1000E_LOW_BITS_READ(13),
3040     [TDFPC]   = E1000E_LOW_BITS_READ(13),
3041     [TDFT]    = E1000E_LOW_BITS_READ(13),
3042     [TDFTS]   = E1000E_LOW_BITS_READ(13),
3043     [CTRL]    = e1000e_get_ctrl,
3044     [TARC1]   = e1000e_get_tarc,
3045     [SWSM]    = e1000e_mac_swsm_read,
3046     [IMS]     = e1000e_mac_ims_read,
3047 
3048     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3049     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3050     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3051     [RA ... RA + 31]       = e1000e_mac_readreg,
3052     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3053     [MTA ... MTA + 127]    = e1000e_mac_readreg,
3054     [VFTA ... VFTA + 127]  = e1000e_mac_readreg,
3055     [FFMT ... FFMT + 254]  = E1000E_LOW_BITS_READ(4),
3056     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3057     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3058     [FFLT ... FFLT + 10]   = E1000E_LOW_BITS_READ(11),
3059     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3060     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3061     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3062     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3063     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3064     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3065 };
3066 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3067 
3068 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3069 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3070 static const writeops e1000e_macreg_writeops[] = {
3071     e1000e_putreg(PBA),
3072     e1000e_putreg(SWSM),
3073     e1000e_putreg(WUFC),
3074     e1000e_putreg(RDBAH1),
3075     e1000e_putreg(TDBAH),
3076     e1000e_putreg(TXDCTL),
3077     e1000e_putreg(RDBAH0),
3078     e1000e_putreg(LEDCTL),
3079     e1000e_putreg(FCAL),
3080     e1000e_putreg(FCRUC),
3081     e1000e_putreg(AIT),
3082     e1000e_putreg(TDFH),
3083     e1000e_putreg(TDFT),
3084     e1000e_putreg(TDFHS),
3085     e1000e_putreg(TDFTS),
3086     e1000e_putreg(TDFPC),
3087     e1000e_putreg(WUC),
3088     e1000e_putreg(WUS),
3089     e1000e_putreg(RDFH),
3090     e1000e_putreg(RDFT),
3091     e1000e_putreg(RDFHS),
3092     e1000e_putreg(RDFTS),
3093     e1000e_putreg(RDFPC),
3094     e1000e_putreg(IPAV),
3095     e1000e_putreg(TDBAH1),
3096     e1000e_putreg(TIMINCA),
3097     e1000e_putreg(IAM),
3098     e1000e_putreg(EIAC),
3099     e1000e_putreg(IVAR),
3100     e1000e_putreg(TARC0),
3101     e1000e_putreg(TARC1),
3102     e1000e_putreg(FLSWDATA),
3103     e1000e_putreg(POEMB),
3104     e1000e_putreg(PBS),
3105     e1000e_putreg(MFUTP01),
3106     e1000e_putreg(MFUTP23),
3107     e1000e_putreg(MANC),
3108     e1000e_putreg(MANC2H),
3109     e1000e_putreg(MFVAL),
3110     e1000e_putreg(EXTCNF_CTRL),
3111     e1000e_putreg(FACTPS),
3112     e1000e_putreg(FUNCTAG),
3113     e1000e_putreg(GSCL_1),
3114     e1000e_putreg(GSCL_2),
3115     e1000e_putreg(GSCL_3),
3116     e1000e_putreg(GSCL_4),
3117     e1000e_putreg(GSCN_0),
3118     e1000e_putreg(GSCN_1),
3119     e1000e_putreg(GSCN_2),
3120     e1000e_putreg(GSCN_3),
3121     e1000e_putreg(GCR2),
3122     e1000e_putreg(MRQC),
3123     e1000e_putreg(FLOP),
3124     e1000e_putreg(FLOL),
3125     e1000e_putreg(FLSWCTL),
3126     e1000e_putreg(FLSWCNT),
3127     e1000e_putreg(FLA),
3128     e1000e_putreg(RXDCTL1),
3129     e1000e_putreg(TXDCTL1),
3130     e1000e_putreg(TIPG),
3131     e1000e_putreg(RXSTMPH),
3132     e1000e_putreg(RXSTMPL),
3133     e1000e_putreg(RXSATRL),
3134     e1000e_putreg(RXSATRH),
3135     e1000e_putreg(TXSTMPL),
3136     e1000e_putreg(TXSTMPH),
3137     e1000e_putreg(SYSTIML),
3138     e1000e_putreg(SYSTIMH),
3139     e1000e_putreg(TIMADJL),
3140     e1000e_putreg(TIMADJH),
3141     e1000e_putreg(RXUDP),
3142     e1000e_putreg(RXCFGL),
3143     e1000e_putreg(TSYNCRXCTL),
3144     e1000e_putreg(TSYNCTXCTL),
3145     e1000e_putreg(FLSWDATA),
3146     e1000e_putreg(EXTCNF_SIZE),
3147     e1000e_putreg(EEMNGCTL),
3148     e1000e_putreg(RA),
3149 
3150     [TDH1]     = e1000e_set_16bit,
3151     [TDT1]     = e1000e_set_tdt,
3152     [TCTL]     = e1000e_set_tctl,
3153     [TDT]      = e1000e_set_tdt,
3154     [MDIC]     = e1000e_set_mdic,
3155     [ICS]      = e1000e_set_ics,
3156     [TDH]      = e1000e_set_16bit,
3157     [RDH0]     = e1000e_set_16bit,
3158     [RDT0]     = e1000e_set_rdt,
3159     [IMC]      = e1000e_set_imc,
3160     [IMS]      = e1000e_set_ims,
3161     [ICR]      = e1000e_set_icr,
3162     [EECD]     = e1000e_set_eecd,
3163     [RCTL]     = e1000e_set_rx_control,
3164     [CTRL]     = e1000e_set_ctrl,
3165     [RDTR]     = e1000e_set_rdtr,
3166     [RADV]     = e1000e_set_16bit,
3167     [TADV]     = e1000e_set_16bit,
3168     [ITR]      = e1000e_set_itr,
3169     [EERD]     = e1000e_set_eerd,
3170     [GCR]      = e1000e_set_gcr,
3171     [PSRCTL]   = e1000e_set_psrctl,
3172     [RXCSUM]   = e1000e_set_rxcsum,
3173     [RAID]     = e1000e_set_16bit,
3174     [RSRPD]    = e1000e_set_12bit,
3175     [TIDV]     = e1000e_set_tidv,
3176     [TDLEN1]   = e1000e_set_dlen,
3177     [TDLEN]    = e1000e_set_dlen,
3178     [RDLEN0]   = e1000e_set_dlen,
3179     [RDLEN1]   = e1000e_set_dlen,
3180     [TDBAL]    = e1000e_set_dbal,
3181     [TDBAL1]   = e1000e_set_dbal,
3182     [RDBAL0]   = e1000e_set_dbal,
3183     [RDBAL1]   = e1000e_set_dbal,
3184     [RDH1]     = e1000e_set_16bit,
3185     [RDT1]     = e1000e_set_rdt,
3186     [STATUS]   = e1000e_set_status,
3187     [PBACLR]   = e1000e_set_pbaclr,
3188     [CTRL_EXT] = e1000e_set_ctrlext,
3189     [FCAH]     = e1000e_set_16bit,
3190     [FCT]      = e1000e_set_16bit,
3191     [FCTTV]    = e1000e_set_16bit,
3192     [FCRTV]    = e1000e_set_16bit,
3193     [FCRTH]    = e1000e_set_fcrth,
3194     [FCRTL]    = e1000e_set_fcrtl,
3195     [VET]      = e1000e_set_vet,
3196     [RXDCTL]   = e1000e_set_rxdctl,
3197     [FLASHT]   = e1000e_set_16bit,
3198     [EEWR]     = e1000e_set_eewr,
3199     [CTRL_DUP] = e1000e_set_ctrl,
3200     [RFCTL]    = e1000e_set_rfctl,
3201     [RA + 1]   = e1000e_mac_setmacaddr,
3202 
3203     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3204     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3205     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3206     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3207     [MTA ... MTA + 127]      = e1000e_mac_writereg,
3208     [VFTA ... VFTA + 127]    = e1000e_mac_writereg,
3209     [FFMT ... FFMT + 254]    = e1000e_mac_writereg,
3210     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3211     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3212     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3213     [FFLT ... FFLT + 10]     = e1000e_mac_writereg,
3214     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3215     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3216     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3217     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3218     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3219 };
3220 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3221 
3222 enum { MAC_ACCESS_PARTIAL = 1 };
3223 
3224 /* The array below combines alias offsets of the index values for the
3225  * MAC registers that have aliases, with the indication of not fully
3226  * implemented registers (lowest bit). This combination is possible
3227  * because all of the offsets are even. */
3228 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3229     /* Alias index offsets */
3230     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3231     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3232     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3233     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3234     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3235     [RA_A ... RA_A + 31]      = 0x14f0,
3236     [VFTA_A ... VFTA_A + 127] = 0x1400,
3237     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3238     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3239     /* Access options */
3240     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3241     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3242     [RDFPC] = MAC_ACCESS_PARTIAL,
3243     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3244     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3245     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3246     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3247     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3248     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3249     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3250     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3251     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3252     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3253 };
3254 
3255 void
3256 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3257 {
3258     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3259 
3260     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3261         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3262             trace_e1000e_wrn_regs_write_trivial(index << 2);
3263         }
3264         trace_e1000e_core_write(index << 2, size, val);
3265         e1000e_macreg_writeops[index](core, index, val);
3266     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3267         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3268     } else {
3269         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3270     }
3271 }
3272 
3273 uint64_t
3274 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3275 {
3276     uint64_t val;
3277     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3278 
3279     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3280         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3281             trace_e1000e_wrn_regs_read_trivial(index << 2);
3282         }
3283         val = e1000e_macreg_readops[index](core, index);
3284         trace_e1000e_core_read(index << 2, size, val);
3285         return val;
3286     } else {
3287         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3288     }
3289     return 0;
3290 }
3291 
3292 static inline void
3293 e1000e_autoneg_pause(E1000ECore *core)
3294 {
3295     timer_del(core->autoneg_timer);
3296 }
3297 
3298 static void
3299 e1000e_autoneg_resume(E1000ECore *core)
3300 {
3301     if (e1000e_have_autoneg(core) &&
3302         !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3303         qemu_get_queue(core->owner_nic)->link_down = false;
3304         timer_mod(core->autoneg_timer,
3305                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3306     }
3307 }
3308 
3309 static void
3310 e1000e_vm_state_change(void *opaque, int running, RunState state)
3311 {
3312     E1000ECore *core = opaque;
3313 
3314     if (running) {
3315         trace_e1000e_vm_state_running();
3316         e1000e_intrmgr_resume(core);
3317         e1000e_autoneg_resume(core);
3318     } else {
3319         trace_e1000e_vm_state_stopped();
3320         e1000e_autoneg_pause(core);
3321         e1000e_intrmgr_pause(core);
3322     }
3323 }
3324 
3325 void
3326 e1000e_core_pci_realize(E1000ECore     *core,
3327                         const uint16_t *eeprom_templ,
3328                         uint32_t        eeprom_size,
3329                         const uint8_t  *macaddr)
3330 {
3331     int i;
3332 
3333     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3334                                        e1000e_autoneg_timer, core);
3335     e1000e_intrmgr_pci_realize(core);
3336 
3337     core->vmstate =
3338         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3339 
3340     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3341         net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3342                         E1000E_MAX_TX_FRAGS, core->has_vnet);
3343     }
3344 
3345     net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3346 
3347     e1000x_core_prepare_eeprom(core->eeprom,
3348                                eeprom_templ,
3349                                eeprom_size,
3350                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3351                                macaddr);
3352     e1000e_update_rx_offloads(core);
3353 }
3354 
3355 void
3356 e1000e_core_pci_uninit(E1000ECore *core)
3357 {
3358     int i;
3359 
3360     timer_del(core->autoneg_timer);
3361     timer_free(core->autoneg_timer);
3362 
3363     e1000e_intrmgr_pci_unint(core);
3364 
3365     qemu_del_vm_change_state_handler(core->vmstate);
3366 
3367     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3368         net_tx_pkt_reset(core->tx[i].tx_pkt);
3369         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3370     }
3371 
3372     net_rx_pkt_uninit(core->rx_pkt);
3373 }
3374 
3375 static const uint16_t
3376 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3377     [0] = {
3378         [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB  |
3379                        MII_CR_FULL_DUPLEX       |
3380                        MII_CR_AUTO_NEG_EN,
3381 
3382         [PHY_STATUS] = MII_SR_EXTENDED_CAPS     |
3383                        MII_SR_LINK_STATUS       |
3384                        MII_SR_AUTONEG_CAPS      |
3385                        MII_SR_PREAMBLE_SUPPRESS |
3386                        MII_SR_EXTENDED_STATUS   |
3387                        MII_SR_10T_HD_CAPS       |
3388                        MII_SR_10T_FD_CAPS       |
3389                        MII_SR_100X_HD_CAPS      |
3390                        MII_SR_100X_FD_CAPS,
3391 
3392         [PHY_ID1]               = 0x141,
3393         [PHY_ID2]               = E1000_PHY_ID2_82574x,
3394         [PHY_AUTONEG_ADV]       = 0xde1,
3395         [PHY_LP_ABILITY]        = 0x7e0,
3396         [PHY_AUTONEG_EXP]       = BIT(2),
3397         [PHY_NEXT_PAGE_TX]      = BIT(0) | BIT(13),
3398         [PHY_1000T_CTRL]        = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3399         [PHY_1000T_STATUS]      = 0x3c00,
3400         [PHY_EXT_STATUS]        = BIT(12) | BIT(13),
3401 
3402         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3403                                   BIT(12) | BIT(13),
3404         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3405     },
3406     [2] = {
3407         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3408         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3409     },
3410     [3] = {
3411         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3412     }
3413 };
3414 
3415 static const uint32_t e1000e_mac_reg_init[] = {
3416     [PBA]           =     0x00140014,
3417     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3418     [EXTCNF_CTRL]   = BIT(3),
3419     [EEMNGCTL]      = BIT(31),
3420     [FLASHT]        = 0x2,
3421     [FLSWCTL]       = BIT(30) | BIT(31),
3422     [FLOL]          = BIT(0),
3423     [RXDCTL]        = BIT(16),
3424     [RXDCTL1]       = BIT(16),
3425     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3426     [RXCFGL]        = 0x88F7,
3427     [RXUDP]         = 0x319,
3428     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3429                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3430                       E1000_CTRL_ADVD3WUC,
3431     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3432     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3433                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3434                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3435     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3436     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3437     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3438     [EERD]          = E1000_EERW_DONE,
3439     [EEWR]          = E1000_EERW_DONE,
3440     [GCR]           = E1000_L0S_ADJUST |
3441                       E1000_L1_ENTRY_LATENCY_MSB |
3442                       E1000_L1_ENTRY_LATENCY_LSB,
3443     [TDFH]          = 0x600,
3444     [TDFT]          = 0x600,
3445     [TDFHS]         = 0x600,
3446     [TDFTS]         = 0x600,
3447     [POEMB]         = 0x30D,
3448     [PBS]           = 0x028,
3449     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3450     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3451     [SWSM]          = 1,
3452     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3453     [ITR]           = E1000E_MIN_XITR,
3454     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3455 };
3456 
3457 void
3458 e1000e_core_reset(E1000ECore *core)
3459 {
3460     int i;
3461 
3462     timer_del(core->autoneg_timer);
3463 
3464     e1000e_intrmgr_reset(core);
3465 
3466     memset(core->phy, 0, sizeof core->phy);
3467     memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3468     memset(core->mac, 0, sizeof core->mac);
3469     memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3470 
3471     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3472 
3473     if (qemu_get_queue(core->owner_nic)->link_down) {
3474         e1000e_link_down(core);
3475     }
3476 
3477     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3478 
3479     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3480         net_tx_pkt_reset(core->tx[i].tx_pkt);
3481         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3482         core->tx[i].skip_cp = false;
3483     }
3484 }
3485 
3486 void e1000e_core_pre_save(E1000ECore *core)
3487 {
3488     int i;
3489     NetClientState *nc = qemu_get_queue(core->owner_nic);
3490 
3491     /*
3492     * If link is down and auto-negotiation is supported and ongoing,
3493     * complete auto-negotiation immediately. This allows us to look
3494     * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3495     */
3496     if (nc->link_down && e1000e_have_autoneg(core)) {
3497         core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3498         e1000e_update_flowctl_status(core);
3499     }
3500 
3501     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3502         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3503             core->tx[i].skip_cp = true;
3504         }
3505     }
3506 }
3507 
3508 int
3509 e1000e_core_post_load(E1000ECore *core)
3510 {
3511     NetClientState *nc = qemu_get_queue(core->owner_nic);
3512 
3513     /* nc.link_down can't be migrated, so infer link_down according
3514      * to link status bit in core.mac[STATUS].
3515      */
3516     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3517 
3518     return 0;
3519 }
3520