xref: /openbmc/qemu/hw/net/e1000e_core.c (revision 0bdb12c7)
1 /*
2 * Core code for QEMU e1000e emulation
3 *
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6 *
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
9 *
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
14 *
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
21 *
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2 of the License, or (at your option) any later version.
26 *
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30 * Lesser General Public License for more details.
31 *
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 */
35 
36 #include "qemu/osdep.h"
37 #include "sysemu/sysemu.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
42 
43 #include "net_tx_pkt.h"
44 #include "net_rx_pkt.h"
45 
46 #include "e1000x_common.h"
47 #include "e1000e_core.h"
48 
49 #include "trace.h"
50 
51 #define E1000E_MIN_XITR     (500) /* No more then 7813 interrupts per
52                                      second according to spec 10.2.4.2 */
53 #define E1000E_MAX_TX_FRAGS (64)
54 
55 static inline void
56 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
57 
58 static inline void
59 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
60 {
61     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
62         trace_e1000e_wrn_no_ts_support();
63     }
64 }
65 
66 static inline void
67 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
68 {
69     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
70         trace_e1000e_wrn_no_snap_support();
71     }
72 }
73 
74 static inline void
75 e1000e_raise_legacy_irq(E1000ECore *core)
76 {
77     trace_e1000e_irq_legacy_notify(true);
78     e1000x_inc_reg_if_not_full(core->mac, IAC);
79     pci_set_irq(core->owner, 1);
80 }
81 
82 static inline void
83 e1000e_lower_legacy_irq(E1000ECore *core)
84 {
85     trace_e1000e_irq_legacy_notify(false);
86     pci_set_irq(core->owner, 0);
87 }
88 
89 static inline void
90 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
91 {
92     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
93                                  timer->delay_resolution_ns;
94 
95     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
96 
97     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
98 
99     timer->running = true;
100 }
101 
102 static void
103 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
104 {
105     if (timer->running) {
106         e1000e_intrmgr_rearm_timer(timer);
107     }
108 }
109 
110 static void
111 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
112 {
113     if (timer->running) {
114         timer_del(timer->timer);
115     }
116 }
117 
118 static inline void
119 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
120 {
121     if (timer->running) {
122         timer_del(timer->timer);
123         timer->running = false;
124     }
125 }
126 
127 static inline void
128 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
129 {
130     trace_e1000e_irq_fire_delayed_interrupts();
131     e1000e_set_interrupt_cause(core, 0);
132 }
133 
134 static void
135 e1000e_intrmgr_on_timer(void *opaque)
136 {
137     E1000IntrDelayTimer *timer = opaque;
138 
139     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
140 
141     timer->running = false;
142     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
143 }
144 
145 static void
146 e1000e_intrmgr_on_throttling_timer(void *opaque)
147 {
148     E1000IntrDelayTimer *timer = opaque;
149 
150     assert(!msix_enabled(timer->core->owner));
151 
152     timer->running = false;
153 
154     if (!timer->core->itr_intr_pending) {
155         trace_e1000e_irq_throttling_no_pending_interrupts();
156         return;
157     }
158 
159     if (msi_enabled(timer->core->owner)) {
160         trace_e1000e_irq_msi_notify_postponed();
161         e1000e_set_interrupt_cause(timer->core, 0);
162     } else {
163         trace_e1000e_irq_legacy_notify_postponed();
164         e1000e_set_interrupt_cause(timer->core, 0);
165     }
166 }
167 
168 static void
169 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
170 {
171     E1000IntrDelayTimer *timer = opaque;
172     int idx = timer - &timer->core->eitr[0];
173 
174     assert(msix_enabled(timer->core->owner));
175 
176     timer->running = false;
177 
178     if (!timer->core->eitr_intr_pending[idx]) {
179         trace_e1000e_irq_throttling_no_pending_vec(idx);
180         return;
181     }
182 
183     trace_e1000e_irq_msix_notify_postponed_vec(idx);
184     msix_notify(timer->core->owner, idx);
185 }
186 
187 static void
188 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
189 {
190     int i;
191 
192     core->radv.delay_reg = RADV;
193     core->rdtr.delay_reg = RDTR;
194     core->raid.delay_reg = RAID;
195     core->tadv.delay_reg = TADV;
196     core->tidv.delay_reg = TIDV;
197 
198     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
199     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
200     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
201     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
202     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203 
204     core->radv.core = core;
205     core->rdtr.core = core;
206     core->raid.core = core;
207     core->tadv.core = core;
208     core->tidv.core = core;
209 
210     core->itr.core = core;
211     core->itr.delay_reg = ITR;
212     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
213 
214     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
215         core->eitr[i].core = core;
216         core->eitr[i].delay_reg = EITR + i;
217         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
218     }
219 
220     if (!create) {
221         return;
222     }
223 
224     core->radv.timer =
225         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
226     core->rdtr.timer =
227         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
228     core->raid.timer =
229         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
230 
231     core->tadv.timer =
232         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
233     core->tidv.timer =
234         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
235 
236     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
237                                    e1000e_intrmgr_on_throttling_timer,
238                                    &core->itr);
239 
240     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
241         core->eitr[i].timer =
242             timer_new_ns(QEMU_CLOCK_VIRTUAL,
243                          e1000e_intrmgr_on_msix_throttling_timer,
244                          &core->eitr[i]);
245     }
246 }
247 
248 static inline void
249 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
250 {
251     e1000e_intrmgr_stop_timer(&core->radv);
252     e1000e_intrmgr_stop_timer(&core->rdtr);
253     e1000e_intrmgr_stop_timer(&core->raid);
254     e1000e_intrmgr_stop_timer(&core->tidv);
255     e1000e_intrmgr_stop_timer(&core->tadv);
256 }
257 
258 static bool
259 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
260 {
261     uint32_t delayable_causes;
262     uint32_t rdtr = core->mac[RDTR];
263     uint32_t radv = core->mac[RADV];
264     uint32_t raid = core->mac[RAID];
265 
266     if (msix_enabled(core->owner)) {
267         return false;
268     }
269 
270     delayable_causes = E1000_ICR_RXQ0 |
271                        E1000_ICR_RXQ1 |
272                        E1000_ICR_RXT0;
273 
274     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
275         delayable_causes |= E1000_ICR_ACK;
276     }
277 
278     /* Clean up all causes that may be delayed */
279     core->delayed_causes |= *causes & delayable_causes;
280     *causes &= ~delayable_causes;
281 
282     /* Check if delayed RX interrupts disabled by client
283        or if there are causes that cannot be delayed */
284     if ((rdtr == 0) || (*causes != 0)) {
285         return false;
286     }
287 
288     /* Check if delayed RX ACK interrupts disabled by client
289        and there is an ACK packet received */
290     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
291         return false;
292     }
293 
294     /* All causes delayed */
295     e1000e_intrmgr_rearm_timer(&core->rdtr);
296 
297     if (!core->radv.running && (radv != 0)) {
298         e1000e_intrmgr_rearm_timer(&core->radv);
299     }
300 
301     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
302         e1000e_intrmgr_rearm_timer(&core->raid);
303     }
304 
305     return true;
306 }
307 
308 static bool
309 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
310 {
311     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
312                                              E1000_ICR_TXQ1 |
313                                              E1000_ICR_TXQE |
314                                              E1000_ICR_TXDW;
315 
316     if (msix_enabled(core->owner)) {
317         return false;
318     }
319 
320     /* Clean up all causes that may be delayed */
321     core->delayed_causes |= *causes & delayable_causes;
322     *causes &= ~delayable_causes;
323 
324     /* If there are causes that cannot be delayed */
325     if (*causes != 0) {
326         return false;
327     }
328 
329     /* All causes delayed */
330     e1000e_intrmgr_rearm_timer(&core->tidv);
331 
332     if (!core->tadv.running && (core->mac[TADV] != 0)) {
333         e1000e_intrmgr_rearm_timer(&core->tadv);
334     }
335 
336     return true;
337 }
338 
339 static uint32_t
340 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
341 {
342     uint32_t res;
343 
344     if (msix_enabled(core->owner)) {
345         assert(core->delayed_causes == 0);
346         return 0;
347     }
348 
349     res = core->delayed_causes;
350     core->delayed_causes = 0;
351 
352     e1000e_intrmgr_stop_delay_timers(core);
353 
354     return res;
355 }
356 
357 static void
358 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
359 {
360     int i;
361     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
362 
363     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
364     core->mac[ICR] |= val;
365 
366     if (core->itr.running) {
367         timer_del(core->itr.timer);
368         e1000e_intrmgr_on_throttling_timer(&core->itr);
369     }
370 
371     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
372         if (core->eitr[i].running) {
373             timer_del(core->eitr[i].timer);
374             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
375         }
376     }
377 }
378 
379 static void
380 e1000e_intrmgr_resume(E1000ECore *core)
381 {
382     int i;
383 
384     e1000e_intmgr_timer_resume(&core->radv);
385     e1000e_intmgr_timer_resume(&core->rdtr);
386     e1000e_intmgr_timer_resume(&core->raid);
387     e1000e_intmgr_timer_resume(&core->tidv);
388     e1000e_intmgr_timer_resume(&core->tadv);
389 
390     e1000e_intmgr_timer_resume(&core->itr);
391 
392     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
393         e1000e_intmgr_timer_resume(&core->eitr[i]);
394     }
395 }
396 
397 static void
398 e1000e_intrmgr_pause(E1000ECore *core)
399 {
400     int i;
401 
402     e1000e_intmgr_timer_pause(&core->radv);
403     e1000e_intmgr_timer_pause(&core->rdtr);
404     e1000e_intmgr_timer_pause(&core->raid);
405     e1000e_intmgr_timer_pause(&core->tidv);
406     e1000e_intmgr_timer_pause(&core->tadv);
407 
408     e1000e_intmgr_timer_pause(&core->itr);
409 
410     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
411         e1000e_intmgr_timer_pause(&core->eitr[i]);
412     }
413 }
414 
415 static void
416 e1000e_intrmgr_reset(E1000ECore *core)
417 {
418     int i;
419 
420     core->delayed_causes = 0;
421 
422     e1000e_intrmgr_stop_delay_timers(core);
423 
424     e1000e_intrmgr_stop_timer(&core->itr);
425 
426     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
427         e1000e_intrmgr_stop_timer(&core->eitr[i]);
428     }
429 }
430 
431 static void
432 e1000e_intrmgr_pci_unint(E1000ECore *core)
433 {
434     int i;
435 
436     timer_del(core->radv.timer);
437     timer_free(core->radv.timer);
438     timer_del(core->rdtr.timer);
439     timer_free(core->rdtr.timer);
440     timer_del(core->raid.timer);
441     timer_free(core->raid.timer);
442 
443     timer_del(core->tadv.timer);
444     timer_free(core->tadv.timer);
445     timer_del(core->tidv.timer);
446     timer_free(core->tidv.timer);
447 
448     timer_del(core->itr.timer);
449     timer_free(core->itr.timer);
450 
451     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
452         timer_del(core->eitr[i].timer);
453         timer_free(core->eitr[i].timer);
454     }
455 }
456 
457 static void
458 e1000e_intrmgr_pci_realize(E1000ECore *core)
459 {
460     e1000e_intrmgr_initialize_all_timers(core, true);
461 }
462 
463 static inline bool
464 e1000e_rx_csum_enabled(E1000ECore *core)
465 {
466     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
467 }
468 
469 static inline bool
470 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
471 {
472     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
473 }
474 
475 static inline bool
476 e1000e_rx_use_ps_descriptor(E1000ECore *core)
477 {
478     return !e1000e_rx_use_legacy_descriptor(core) &&
479            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
480 }
481 
482 static inline bool
483 e1000e_rss_enabled(E1000ECore *core)
484 {
485     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
486            !e1000e_rx_csum_enabled(core) &&
487            !e1000e_rx_use_legacy_descriptor(core);
488 }
489 
490 typedef struct E1000E_RSSInfo_st {
491     bool enabled;
492     uint32_t hash;
493     uint32_t queue;
494     uint32_t type;
495 } E1000E_RSSInfo;
496 
497 static uint32_t
498 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
499 {
500     bool isip4, isip6, isudp, istcp;
501 
502     assert(e1000e_rss_enabled(core));
503 
504     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
505 
506     if (isip4) {
507         bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
508 
509         trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
510                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
512 
513         if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
514             return E1000_MRQ_RSS_TYPE_IPV4TCP;
515         }
516 
517         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
518             return E1000_MRQ_RSS_TYPE_IPV4;
519         }
520     } else if (isip6) {
521         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
522 
523         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
524         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
525 
526         /*
527          * Following two traces must not be combined because resulting
528          * event will have 11 arguments totally and some trace backends
529          * (at least "ust") have limitation of maximum 10 arguments per
530          * event. Events with more arguments fail to compile for
531          * backends like these.
532          */
533         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
534         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
535                                 ip6info->has_ext_hdrs,
536                                 ip6info->rss_ex_dst_valid,
537                                 ip6info->rss_ex_src_valid,
538                                 core->mac[MRQC],
539                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
540                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
541                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
542 
543         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
544             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
545                               ip6info->rss_ex_src_valid))) {
546 
547             if (istcp && !ip6info->fragment &&
548                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
549                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
550             }
551 
552             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
553                 return E1000_MRQ_RSS_TYPE_IPV6EX;
554             }
555 
556         }
557 
558         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
559             return E1000_MRQ_RSS_TYPE_IPV6;
560         }
561 
562     }
563 
564     return E1000_MRQ_RSS_TYPE_NONE;
565 }
566 
567 static uint32_t
568 e1000e_rss_calc_hash(E1000ECore *core,
569                      struct NetRxPkt *pkt,
570                      E1000E_RSSInfo *info)
571 {
572     NetRxPktRssType type;
573 
574     assert(e1000e_rss_enabled(core));
575 
576     switch (info->type) {
577     case E1000_MRQ_RSS_TYPE_IPV4:
578         type = NetPktRssIpV4;
579         break;
580     case E1000_MRQ_RSS_TYPE_IPV4TCP:
581         type = NetPktRssIpV4Tcp;
582         break;
583     case E1000_MRQ_RSS_TYPE_IPV6TCP:
584         type = NetPktRssIpV6Tcp;
585         break;
586     case E1000_MRQ_RSS_TYPE_IPV6:
587         type = NetPktRssIpV6;
588         break;
589     case E1000_MRQ_RSS_TYPE_IPV6EX:
590         type = NetPktRssIpV6Ex;
591         break;
592     default:
593         assert(false);
594         return 0;
595     }
596 
597     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
598 }
599 
600 static void
601 e1000e_rss_parse_packet(E1000ECore *core,
602                         struct NetRxPkt *pkt,
603                         E1000E_RSSInfo *info)
604 {
605     trace_e1000e_rx_rss_started();
606 
607     if (!e1000e_rss_enabled(core)) {
608         info->enabled = false;
609         info->hash = 0;
610         info->queue = 0;
611         info->type = 0;
612         trace_e1000e_rx_rss_disabled();
613         return;
614     }
615 
616     info->enabled = true;
617 
618     info->type = e1000e_rss_get_hash_type(core, pkt);
619 
620     trace_e1000e_rx_rss_type(info->type);
621 
622     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
623         info->hash = 0;
624         info->queue = 0;
625         return;
626     }
627 
628     info->hash = e1000e_rss_calc_hash(core, pkt, info);
629     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
630 }
631 
632 static void
633 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
634 {
635     if (tx->props.tse && tx->props.cptse) {
636         net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
637         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
638         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
639         return;
640     }
641 
642     if (tx->props.sum_needed & E1000_TXD_POPTS_TXSM) {
643         net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
644     }
645 
646     if (tx->props.sum_needed & E1000_TXD_POPTS_IXSM) {
647         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
648     }
649 }
650 
651 static bool
652 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
653 {
654     int target_queue = MIN(core->max_queue_num, queue_index);
655     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
656 
657     e1000e_setup_tx_offloads(core, tx);
658 
659     net_tx_pkt_dump(tx->tx_pkt);
660 
661     if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
662         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
663         return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
664     } else {
665         return net_tx_pkt_send(tx->tx_pkt, queue);
666     }
667 }
668 
669 static void
670 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
671 {
672     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
673                                     PTC1023, PTC1522 };
674 
675     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
676 
677     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
678     e1000x_inc_reg_if_not_full(core->mac, TPT);
679     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
680 
681     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
682     case ETH_PKT_BCAST:
683         e1000x_inc_reg_if_not_full(core->mac, BPTC);
684         break;
685     case ETH_PKT_MCAST:
686         e1000x_inc_reg_if_not_full(core->mac, MPTC);
687         break;
688     case ETH_PKT_UCAST:
689         break;
690     default:
691         g_assert_not_reached();
692     }
693 
694     core->mac[GPTC] = core->mac[TPT];
695     core->mac[GOTCL] = core->mac[TOTL];
696     core->mac[GOTCH] = core->mac[TOTH];
697 }
698 
699 static void
700 e1000e_process_tx_desc(E1000ECore *core,
701                        struct e1000e_tx *tx,
702                        struct e1000_tx_desc *dp,
703                        int queue_index)
704 {
705     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
706     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
707     unsigned int split_size = txd_lower & 0xffff;
708     uint64_t addr;
709     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
710     bool eop = txd_lower & E1000_TXD_CMD_EOP;
711 
712     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
713         e1000x_read_tx_ctx_descr(xp, &tx->props);
714         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
715         return;
716     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
717         /* data descriptor */
718         tx->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8;
719         tx->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
720         e1000e_process_ts_option(core, dp);
721     } else {
722         /* legacy descriptor */
723         e1000e_process_ts_option(core, dp);
724         tx->props.cptse = 0;
725     }
726 
727     addr = le64_to_cpu(dp->buffer_addr);
728 
729     if (!tx->skip_cp) {
730         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
731             tx->skip_cp = true;
732         }
733     }
734 
735     if (eop) {
736         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
737             if (e1000x_vlan_enabled(core->mac) &&
738                 e1000x_is_vlan_txd(txd_lower)) {
739                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
740                     le16_to_cpu(dp->upper.fields.special), core->vet);
741             }
742             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
743                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
744             }
745         }
746 
747         tx->skip_cp = false;
748         net_tx_pkt_reset(tx->tx_pkt);
749 
750         tx->props.sum_needed = 0;
751         tx->props.cptse = 0;
752     }
753 }
754 
755 static inline uint32_t
756 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
757 {
758     if (!msix_enabled(core->owner)) {
759         return E1000_ICR_TXDW;
760     }
761 
762     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
763 }
764 
765 static inline uint32_t
766 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
767                              bool min_threshold_hit)
768 {
769     if (!msix_enabled(core->owner)) {
770         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
771     }
772 
773     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
774 }
775 
776 static uint32_t
777 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
778                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
779 {
780     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
781 
782     if (!(txd_lower & E1000_TXD_CMD_RS) &&
783         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
784         return 0;
785     }
786 
787     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
788 
789     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
790 
791     dp->upper.data = cpu_to_le32(txd_upper);
792     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
793                   &dp->upper, sizeof(dp->upper));
794     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
795 }
796 
797 typedef struct E1000E_RingInfo_st {
798     int dbah;
799     int dbal;
800     int dlen;
801     int dh;
802     int dt;
803     int idx;
804 } E1000E_RingInfo;
805 
806 static inline bool
807 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
808 {
809     return core->mac[r->dh] == core->mac[r->dt];
810 }
811 
812 static inline uint64_t
813 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
814 {
815     uint64_t bah = core->mac[r->dbah];
816     uint64_t bal = core->mac[r->dbal];
817 
818     return (bah << 32) + bal;
819 }
820 
821 static inline uint64_t
822 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
823 {
824     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
825 }
826 
827 static inline void
828 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
829 {
830     core->mac[r->dh] += count;
831 
832     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
833         core->mac[r->dh] = 0;
834     }
835 }
836 
837 static inline uint32_t
838 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
839 {
840     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
841                                  core->mac[r->dh],  core->mac[r->dt]);
842 
843     if (core->mac[r->dh] <= core->mac[r->dt]) {
844         return core->mac[r->dt] - core->mac[r->dh];
845     }
846 
847     if (core->mac[r->dh] > core->mac[r->dt]) {
848         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
849                core->mac[r->dt] - core->mac[r->dh];
850     }
851 
852     g_assert_not_reached();
853     return 0;
854 }
855 
856 static inline bool
857 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
858 {
859     return core->mac[r->dlen] > 0;
860 }
861 
862 static inline uint32_t
863 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
864 {
865     return core->mac[r->dlen];
866 }
867 
868 typedef struct E1000E_TxRing_st {
869     const E1000E_RingInfo *i;
870     struct e1000e_tx *tx;
871 } E1000E_TxRing;
872 
873 static inline int
874 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
875 {
876     return (reg_idx - base_reg_idx) / (0x100 >> 2);
877 }
878 
879 static inline void
880 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
881 {
882     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
883         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
884         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
885     };
886 
887     assert(idx < ARRAY_SIZE(i));
888 
889     txr->i     = &i[idx];
890     txr->tx    = &core->tx[idx];
891 }
892 
893 typedef struct E1000E_RxRing_st {
894     const E1000E_RingInfo *i;
895 } E1000E_RxRing;
896 
897 static inline void
898 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
899 {
900     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
901         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
902         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
903     };
904 
905     assert(idx < ARRAY_SIZE(i));
906 
907     rxr->i      = &i[idx];
908 }
909 
910 static void
911 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
912 {
913     dma_addr_t base;
914     struct e1000_tx_desc desc;
915     bool ide = false;
916     const E1000E_RingInfo *txi = txr->i;
917     uint32_t cause = E1000_ICS_TXQE;
918 
919     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
920         trace_e1000e_tx_disabled();
921         return;
922     }
923 
924     while (!e1000e_ring_empty(core, txi)) {
925         base = e1000e_ring_head_descr(core, txi);
926 
927         pci_dma_read(core->owner, base, &desc, sizeof(desc));
928 
929         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
930                               desc.lower.data, desc.upper.data);
931 
932         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
933         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
934 
935         e1000e_ring_advance(core, txi, 1);
936     }
937 
938     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
939         e1000e_set_interrupt_cause(core, cause);
940     }
941 }
942 
943 static bool
944 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
945                   size_t total_size)
946 {
947     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
948 
949     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
950                                 core->rx_desc_buf_size);
951 
952     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
953                          core->rx_desc_buf_size;
954 }
955 
956 void
957 e1000e_start_recv(E1000ECore *core)
958 {
959     int i;
960 
961     trace_e1000e_rx_start_recv();
962 
963     for (i = 0; i <= core->max_queue_num; i++) {
964         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
965     }
966 }
967 
968 int
969 e1000e_can_receive(E1000ECore *core)
970 {
971     int i;
972 
973     if (!e1000x_rx_ready(core->owner, core->mac)) {
974         return false;
975     }
976 
977     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
978         E1000E_RxRing rxr;
979 
980         e1000e_rx_ring_init(core, &rxr, i);
981         if (e1000e_ring_enabled(core, rxr.i) &&
982             e1000e_has_rxbufs(core, rxr.i, 1)) {
983             trace_e1000e_rx_can_recv();
984             return true;
985         }
986     }
987 
988     trace_e1000e_rx_can_recv_rings_full();
989     return false;
990 }
991 
992 ssize_t
993 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
994 {
995     const struct iovec iov = {
996         .iov_base = (uint8_t *)buf,
997         .iov_len = size
998     };
999 
1000     return e1000e_receive_iov(core, &iov, 1);
1001 }
1002 
1003 static inline bool
1004 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1005 {
1006     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1007 }
1008 
1009 static inline bool
1010 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1011 {
1012     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1013 }
1014 
1015 static bool
1016 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1017 {
1018     uint32_t rctl = core->mac[RCTL];
1019 
1020     if (e1000x_is_vlan_packet(buf, core->vet) &&
1021         e1000x_vlan_rx_filter_enabled(core->mac)) {
1022         uint16_t vid = lduw_be_p(buf + 14);
1023         uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1024                                  ((vid >> 5) & 0x7f));
1025         if ((vfta & (1 << (vid & 0x1f))) == 0) {
1026             trace_e1000e_rx_flt_vlan_mismatch(vid);
1027             return false;
1028         } else {
1029             trace_e1000e_rx_flt_vlan_match(vid);
1030         }
1031     }
1032 
1033     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1034     case ETH_PKT_UCAST:
1035         if (rctl & E1000_RCTL_UPE) {
1036             return true; /* promiscuous ucast */
1037         }
1038         break;
1039 
1040     case ETH_PKT_BCAST:
1041         if (rctl & E1000_RCTL_BAM) {
1042             return true; /* broadcast enabled */
1043         }
1044         break;
1045 
1046     case ETH_PKT_MCAST:
1047         if (rctl & E1000_RCTL_MPE) {
1048             return true; /* promiscuous mcast */
1049         }
1050         break;
1051 
1052     default:
1053         g_assert_not_reached();
1054     }
1055 
1056     return e1000x_rx_group_filter(core->mac, buf);
1057 }
1058 
1059 static inline void
1060 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1061 {
1062     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1063     *buff_addr = le64_to_cpu(d->buffer_addr);
1064 }
1065 
1066 static inline void
1067 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1068 {
1069     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1070     *buff_addr = le64_to_cpu(d->read.buffer_addr);
1071 }
1072 
1073 static inline void
1074 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1075                         hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1076 {
1077     int i;
1078     union e1000_rx_desc_packet_split *d =
1079         (union e1000_rx_desc_packet_split *) desc;
1080 
1081     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1082         (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1083     }
1084 
1085     trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1086                                  (*buff_addr)[2], (*buff_addr)[3]);
1087 }
1088 
1089 static inline void
1090 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1091                      hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1092 {
1093     if (e1000e_rx_use_legacy_descriptor(core)) {
1094         e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1095         (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1096     } else {
1097         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1098             e1000e_read_ps_rx_descr(core, desc, buff_addr);
1099         } else {
1100             e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1101             (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1102         }
1103     }
1104 }
1105 
1106 static void
1107 e1000e_verify_csum_in_sw(E1000ECore *core,
1108                          struct NetRxPkt *pkt,
1109                          uint32_t *status_flags,
1110                          bool istcp, bool isudp)
1111 {
1112     bool csum_valid;
1113     uint32_t csum_error;
1114 
1115     if (e1000e_rx_l3_cso_enabled(core)) {
1116         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1117             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1118         } else {
1119             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1120             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1121         }
1122     } else {
1123         trace_e1000e_rx_metadata_l3_cso_disabled();
1124     }
1125 
1126     if (!e1000e_rx_l4_cso_enabled(core)) {
1127         trace_e1000e_rx_metadata_l4_cso_disabled();
1128         return;
1129     }
1130 
1131     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1132         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1133         return;
1134     }
1135 
1136     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1137 
1138     if (istcp) {
1139         *status_flags |= E1000_RXD_STAT_TCPCS |
1140                          csum_error;
1141     } else if (isudp) {
1142         *status_flags |= E1000_RXD_STAT_TCPCS |
1143                          E1000_RXD_STAT_UDPCS |
1144                          csum_error;
1145     }
1146 }
1147 
1148 static inline bool
1149 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1150 {
1151     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1152         return false;
1153     }
1154 
1155     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1156         return !net_rx_pkt_has_tcp_data(rx_pkt);
1157     }
1158 
1159     return true;
1160 }
1161 
1162 static void
1163 e1000e_build_rx_metadata(E1000ECore *core,
1164                          struct NetRxPkt *pkt,
1165                          bool is_eop,
1166                          const E1000E_RSSInfo *rss_info,
1167                          uint32_t *rss, uint32_t *mrq,
1168                          uint32_t *status_flags,
1169                          uint16_t *ip_id,
1170                          uint16_t *vlan_tag)
1171 {
1172     struct virtio_net_hdr *vhdr;
1173     bool isip4, isip6, istcp, isudp;
1174     uint32_t pkt_type;
1175 
1176     *status_flags = E1000_RXD_STAT_DD;
1177 
1178     /* No additional metadata needed for non-EOP descriptors */
1179     if (!is_eop) {
1180         goto func_exit;
1181     }
1182 
1183     *status_flags |= E1000_RXD_STAT_EOP;
1184 
1185     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1186     trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1187 
1188     /* VLAN state */
1189     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1190         *status_flags |= E1000_RXD_STAT_VP;
1191         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1192         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1193     }
1194 
1195     /* Packet parsing results */
1196     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1197         if (rss_info->enabled) {
1198             *rss = cpu_to_le32(rss_info->hash);
1199             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1200             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1201         }
1202     } else if (isip4) {
1203             *status_flags |= E1000_RXD_STAT_IPIDV;
1204             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1205             trace_e1000e_rx_metadata_ip_id(*ip_id);
1206     }
1207 
1208     if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1209         *status_flags |= E1000_RXD_STAT_ACK;
1210         trace_e1000e_rx_metadata_ack();
1211     }
1212 
1213     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1214         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1215         pkt_type = E1000_RXD_PKT_MAC;
1216     } else if (istcp || isudp) {
1217         pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1218     } else if (isip4 || isip6) {
1219         pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1220     } else {
1221         pkt_type = E1000_RXD_PKT_MAC;
1222     }
1223 
1224     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1225     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1226 
1227     /* RX CSO information */
1228     if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1229         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1230         goto func_exit;
1231     }
1232 
1233     if (!net_rx_pkt_has_virt_hdr(pkt)) {
1234         trace_e1000e_rx_metadata_no_virthdr();
1235         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1236         goto func_exit;
1237     }
1238 
1239     vhdr = net_rx_pkt_get_vhdr(pkt);
1240 
1241     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1242         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1243         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1244         e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1245         goto func_exit;
1246     }
1247 
1248     if (e1000e_rx_l3_cso_enabled(core)) {
1249         *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1250     } else {
1251         trace_e1000e_rx_metadata_l3_cso_disabled();
1252     }
1253 
1254     if (e1000e_rx_l4_cso_enabled(core)) {
1255         if (istcp) {
1256             *status_flags |= E1000_RXD_STAT_TCPCS;
1257         } else if (isudp) {
1258             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1259         }
1260     } else {
1261         trace_e1000e_rx_metadata_l4_cso_disabled();
1262     }
1263 
1264     trace_e1000e_rx_metadata_status_flags(*status_flags);
1265 
1266 func_exit:
1267     *status_flags = cpu_to_le32(*status_flags);
1268 }
1269 
1270 static inline void
1271 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1272                            struct NetRxPkt *pkt,
1273                            const E1000E_RSSInfo *rss_info,
1274                            uint16_t length)
1275 {
1276     uint32_t status_flags, rss, mrq;
1277     uint16_t ip_id;
1278 
1279     struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1280 
1281     memset(d, 0, sizeof(*d));
1282 
1283     assert(!rss_info->enabled);
1284 
1285     d->length = cpu_to_le16(length);
1286 
1287     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1288                              rss_info,
1289                              &rss, &mrq,
1290                              &status_flags, &ip_id,
1291                              &d->special);
1292     d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1293     d->status = (uint8_t) le32_to_cpu(status_flags);
1294 }
1295 
1296 static inline void
1297 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1298                           struct NetRxPkt *pkt,
1299                           const E1000E_RSSInfo *rss_info,
1300                           uint16_t length)
1301 {
1302     union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1303 
1304     memset(d, 0, sizeof(*d));
1305 
1306     d->wb.upper.length = cpu_to_le16(length);
1307 
1308     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1309                              rss_info,
1310                              &d->wb.lower.hi_dword.rss,
1311                              &d->wb.lower.mrq,
1312                              &d->wb.upper.status_error,
1313                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1314                              &d->wb.upper.vlan);
1315 }
1316 
1317 static inline void
1318 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1319                          struct NetRxPkt *pkt,
1320                          const E1000E_RSSInfo *rss_info,
1321                          size_t ps_hdr_len,
1322                          uint16_t(*written)[MAX_PS_BUFFERS])
1323 {
1324     int i;
1325     union e1000_rx_desc_packet_split *d =
1326         (union e1000_rx_desc_packet_split *) desc;
1327 
1328     memset(d, 0, sizeof(*d));
1329 
1330     d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1331 
1332     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1333         d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1334     }
1335 
1336     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1337                              rss_info,
1338                              &d->wb.lower.hi_dword.rss,
1339                              &d->wb.lower.mrq,
1340                              &d->wb.middle.status_error,
1341                              &d->wb.lower.hi_dword.csum_ip.ip_id,
1342                              &d->wb.middle.vlan);
1343 
1344     d->wb.upper.header_status =
1345         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1346 
1347     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1348                                   (*written)[2], (*written)[3]);
1349 }
1350 
1351 static inline void
1352 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1353 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1354     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1355 {
1356     if (e1000e_rx_use_legacy_descriptor(core)) {
1357         assert(ps_hdr_len == 0);
1358         e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1359     } else {
1360         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1361             e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1362                                       ps_hdr_len, written);
1363         } else {
1364             assert(ps_hdr_len == 0);
1365             e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1366                                        (*written)[0]);
1367         }
1368     }
1369 }
1370 
1371 typedef struct e1000e_ba_state_st {
1372     uint16_t written[MAX_PS_BUFFERS];
1373     uint8_t cur_idx;
1374 } e1000e_ba_state;
1375 
1376 static inline void
1377 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1378                                hwaddr (*ba)[MAX_PS_BUFFERS],
1379                                e1000e_ba_state *bastate,
1380                                const char *data,
1381                                dma_addr_t data_len)
1382 {
1383     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1384 
1385     pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1386     bastate->written[0] += data_len;
1387 
1388     bastate->cur_idx = 1;
1389 }
1390 
1391 static void
1392 e1000e_write_to_rx_buffers(E1000ECore *core,
1393                            hwaddr (*ba)[MAX_PS_BUFFERS],
1394                            e1000e_ba_state *bastate,
1395                            const char *data,
1396                            dma_addr_t data_len)
1397 {
1398     while (data_len > 0) {
1399         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1400         uint32_t cur_buf_bytes_left = cur_buf_len -
1401                                       bastate->written[bastate->cur_idx];
1402         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1403 
1404         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1405                                         (*ba)[bastate->cur_idx],
1406                                         bastate->written[bastate->cur_idx],
1407                                         data,
1408                                         bytes_to_write);
1409 
1410         pci_dma_write(core->owner,
1411             (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1412             data, bytes_to_write);
1413 
1414         bastate->written[bastate->cur_idx] += bytes_to_write;
1415         data += bytes_to_write;
1416         data_len -= bytes_to_write;
1417 
1418         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1419             bastate->cur_idx++;
1420         }
1421 
1422         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1423     }
1424 }
1425 
1426 static void
1427 e1000e_update_rx_stats(E1000ECore *core,
1428                        size_t data_size,
1429                        size_t data_fcs_size)
1430 {
1431     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1432 
1433     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1434     case ETH_PKT_BCAST:
1435         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1436         break;
1437 
1438     case ETH_PKT_MCAST:
1439         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1440         break;
1441 
1442     default:
1443         break;
1444     }
1445 }
1446 
1447 static inline bool
1448 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1449 {
1450     return e1000e_ring_free_descr_num(core, rxi) ==
1451            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1452 }
1453 
1454 static bool
1455 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1456 {
1457     bool isip4, isip6, isudp, istcp;
1458     bool fragment;
1459 
1460     if (!e1000e_rx_use_ps_descriptor(core)) {
1461         return false;
1462     }
1463 
1464     net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1465 
1466     if (isip4) {
1467         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1468     } else if (isip6) {
1469         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1470     } else {
1471         return false;
1472     }
1473 
1474     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1475         return false;
1476     }
1477 
1478     if (!fragment && (isudp || istcp)) {
1479         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1480     } else {
1481         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1482     }
1483 
1484     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1485         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1486         return false;
1487     }
1488 
1489     return true;
1490 }
1491 
1492 static void
1493 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1494                              const E1000E_RxRing *rxr,
1495                              const E1000E_RSSInfo *rss_info)
1496 {
1497     PCIDevice *d = core->owner;
1498     dma_addr_t base;
1499     uint8_t desc[E1000_MAX_RX_DESC_LEN];
1500     size_t desc_size;
1501     size_t desc_offset = 0;
1502     size_t iov_ofs = 0;
1503 
1504     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1505     size_t size = net_rx_pkt_get_total_len(pkt);
1506     size_t total_size = size + e1000x_fcs_len(core->mac);
1507     const E1000E_RingInfo *rxi;
1508     size_t ps_hdr_len = 0;
1509     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1510 
1511     rxi = rxr->i;
1512 
1513     do {
1514         hwaddr ba[MAX_PS_BUFFERS];
1515         e1000e_ba_state bastate = { { 0 } };
1516         bool is_last = false;
1517         bool is_first = true;
1518 
1519         desc_size = total_size - desc_offset;
1520 
1521         if (desc_size > core->rx_desc_buf_size) {
1522             desc_size = core->rx_desc_buf_size;
1523         }
1524 
1525         base = e1000e_ring_head_descr(core, rxi);
1526 
1527         pci_dma_read(d, base, &desc, core->rx_desc_len);
1528 
1529         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1530 
1531         e1000e_read_rx_descr(core, desc, &ba);
1532 
1533         if (ba[0]) {
1534             if (desc_offset < size) {
1535                 static const uint32_t fcs_pad;
1536                 size_t iov_copy;
1537                 size_t copy_size = size - desc_offset;
1538                 if (copy_size > core->rx_desc_buf_size) {
1539                     copy_size = core->rx_desc_buf_size;
1540                 }
1541 
1542                 /* For PS mode copy the packet header first */
1543                 if (do_ps) {
1544                     if (is_first) {
1545                         size_t ps_hdr_copied = 0;
1546                         do {
1547                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1548                                            iov->iov_len - iov_ofs);
1549 
1550                             e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1551                                                       iov->iov_base, iov_copy);
1552 
1553                             copy_size -= iov_copy;
1554                             ps_hdr_copied += iov_copy;
1555 
1556                             iov_ofs += iov_copy;
1557                             if (iov_ofs == iov->iov_len) {
1558                                 iov++;
1559                                 iov_ofs = 0;
1560                             }
1561                         } while (ps_hdr_copied < ps_hdr_len);
1562 
1563                         is_first = false;
1564                     } else {
1565                         /* Leave buffer 0 of each descriptor except first */
1566                         /* empty as per spec 7.1.5.1                      */
1567                         e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1568                                                        NULL, 0);
1569                     }
1570                 }
1571 
1572                 /* Copy packet payload */
1573                 while (copy_size) {
1574                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1575 
1576                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1577                                             iov->iov_base + iov_ofs, iov_copy);
1578 
1579                     copy_size -= iov_copy;
1580                     iov_ofs += iov_copy;
1581                     if (iov_ofs == iov->iov_len) {
1582                         iov++;
1583                         iov_ofs = 0;
1584                     }
1585                 }
1586 
1587                 if (desc_offset + desc_size >= total_size) {
1588                     /* Simulate FCS checksum presence in the last descriptor */
1589                     e1000e_write_to_rx_buffers(core, &ba, &bastate,
1590                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1591                 }
1592             }
1593             desc_offset += desc_size;
1594             if (desc_offset >= total_size) {
1595                 is_last = true;
1596             }
1597         } else { /* as per intel docs; skip descriptors with null buf addr */
1598             trace_e1000e_rx_null_descriptor();
1599         }
1600 
1601         e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1602                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1603         pci_dma_write(d, base, &desc, core->rx_desc_len);
1604 
1605         e1000e_ring_advance(core, rxi,
1606                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1607 
1608     } while (desc_offset < total_size);
1609 
1610     e1000e_update_rx_stats(core, size, total_size);
1611 }
1612 
1613 static inline void
1614 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1615 {
1616     if (net_rx_pkt_has_virt_hdr(pkt)) {
1617         struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1618 
1619         if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1620             net_rx_pkt_fix_l4_csum(pkt);
1621         }
1622     }
1623 }
1624 
1625 ssize_t
1626 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1627 {
1628     static const int maximum_ethernet_hdr_len = (14 + 4);
1629     /* Min. octets in an ethernet frame sans FCS */
1630     static const int min_buf_size = 60;
1631 
1632     uint32_t n = 0;
1633     uint8_t min_buf[min_buf_size];
1634     struct iovec min_iov;
1635     uint8_t *filter_buf;
1636     size_t size, orig_size;
1637     size_t iov_ofs = 0;
1638     E1000E_RxRing rxr;
1639     E1000E_RSSInfo rss_info;
1640     size_t total_size;
1641     ssize_t retval;
1642     bool rdmts_hit;
1643 
1644     trace_e1000e_rx_receive_iov(iovcnt);
1645 
1646     if (!e1000x_hw_rx_enabled(core->mac)) {
1647         return -1;
1648     }
1649 
1650     /* Pull virtio header in */
1651     if (core->has_vnet) {
1652         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1653         iov_ofs = sizeof(struct virtio_net_hdr);
1654     }
1655 
1656     filter_buf = iov->iov_base + iov_ofs;
1657     orig_size = iov_size(iov, iovcnt);
1658     size = orig_size - iov_ofs;
1659 
1660     /* Pad to minimum Ethernet frame length */
1661     if (size < sizeof(min_buf)) {
1662         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1663         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1664         e1000x_inc_reg_if_not_full(core->mac, RUC);
1665         min_iov.iov_base = filter_buf = min_buf;
1666         min_iov.iov_len = size = sizeof(min_buf);
1667         iovcnt = 1;
1668         iov = &min_iov;
1669         iov_ofs = 0;
1670     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1671         /* This is very unlikely, but may happen. */
1672         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1673         filter_buf = min_buf;
1674     }
1675 
1676     /* Discard oversized packets if !LPE and !SBP. */
1677     if (e1000x_is_oversized(core->mac, size)) {
1678         return orig_size;
1679     }
1680 
1681     net_rx_pkt_set_packet_type(core->rx_pkt,
1682         get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1683 
1684     if (!e1000e_receive_filter(core, filter_buf, size)) {
1685         trace_e1000e_rx_flt_dropped();
1686         return orig_size;
1687     }
1688 
1689     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1690                                e1000x_vlan_enabled(core->mac), core->vet);
1691 
1692     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1693     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1694 
1695     trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1696 
1697     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1698         e1000x_fcs_len(core->mac);
1699 
1700     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1701         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1702 
1703         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1704 
1705         retval = orig_size;
1706 
1707         /* Perform small receive detection (RSRPD) */
1708         if (total_size < core->mac[RSRPD]) {
1709             n |= E1000_ICS_SRPD;
1710         }
1711 
1712         /* Perform ACK receive detection */
1713         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1714              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1715             n |= E1000_ICS_ACK;
1716         }
1717 
1718         /* Check if receive descriptor minimum threshold hit */
1719         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1720         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1721 
1722         trace_e1000e_rx_written_to_guest(n);
1723     } else {
1724         n |= E1000_ICS_RXO;
1725         retval = 0;
1726 
1727         trace_e1000e_rx_not_written_to_guest(n);
1728     }
1729 
1730     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1731         trace_e1000e_rx_interrupt_set(n);
1732         e1000e_set_interrupt_cause(core, n);
1733     } else {
1734         trace_e1000e_rx_interrupt_delayed(n);
1735     }
1736 
1737     return retval;
1738 }
1739 
1740 static inline bool
1741 e1000e_have_autoneg(E1000ECore *core)
1742 {
1743     return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1744 }
1745 
1746 static void e1000e_update_flowctl_status(E1000ECore *core)
1747 {
1748     if (e1000e_have_autoneg(core) &&
1749         core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1750         trace_e1000e_link_autoneg_flowctl(true);
1751         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1752     } else {
1753         trace_e1000e_link_autoneg_flowctl(false);
1754     }
1755 }
1756 
1757 static inline void
1758 e1000e_link_down(E1000ECore *core)
1759 {
1760     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1761     e1000e_update_flowctl_status(core);
1762 }
1763 
1764 static inline void
1765 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1766 {
1767     /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1768     core->phy[0][PHY_CTRL] = val & ~(0x3f |
1769                                      MII_CR_RESET |
1770                                      MII_CR_RESTART_AUTO_NEG);
1771 
1772     if ((val & MII_CR_RESTART_AUTO_NEG) &&
1773         e1000e_have_autoneg(core)) {
1774         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1775     }
1776 }
1777 
1778 static void
1779 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1780 {
1781     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1782 
1783     if (val & BIT(10)) {
1784         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1785     }
1786 }
1787 
1788 static void
1789 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1790 {
1791     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1792 }
1793 
1794 void
1795 e1000e_core_set_link_status(E1000ECore *core)
1796 {
1797     NetClientState *nc = qemu_get_queue(core->owner_nic);
1798     uint32_t old_status = core->mac[STATUS];
1799 
1800     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1801 
1802     if (nc->link_down) {
1803         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1804     } else {
1805         if (e1000e_have_autoneg(core) &&
1806             !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1807             e1000x_restart_autoneg(core->mac, core->phy[0],
1808                                    core->autoneg_timer);
1809         } else {
1810             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1811             e1000e_start_recv(core);
1812         }
1813     }
1814 
1815     if (core->mac[STATUS] != old_status) {
1816         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1817     }
1818 }
1819 
1820 static void
1821 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1822 {
1823     trace_e1000e_core_ctrl_write(index, val);
1824 
1825     /* RST is self clearing */
1826     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1827     core->mac[CTRL_DUP] = core->mac[CTRL];
1828 
1829     trace_e1000e_link_set_params(
1830         !!(val & E1000_CTRL_ASDE),
1831         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1832         !!(val & E1000_CTRL_FRCSPD),
1833         !!(val & E1000_CTRL_FRCDPX),
1834         !!(val & E1000_CTRL_RFCE),
1835         !!(val & E1000_CTRL_TFCE));
1836 
1837     if (val & E1000_CTRL_RST) {
1838         trace_e1000e_core_ctrl_sw_reset();
1839         e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1840     }
1841 
1842     if (val & E1000_CTRL_PHY_RST) {
1843         trace_e1000e_core_ctrl_phy_reset();
1844         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1845     }
1846 }
1847 
1848 static void
1849 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1850 {
1851     trace_e1000e_rx_set_rfctl(val);
1852 
1853     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1854         trace_e1000e_wrn_iscsi_filtering_not_supported();
1855     }
1856 
1857     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1858         trace_e1000e_wrn_nfsw_filtering_not_supported();
1859     }
1860 
1861     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1862         trace_e1000e_wrn_nfsr_filtering_not_supported();
1863     }
1864 
1865     core->mac[RFCTL] = val;
1866 }
1867 
1868 static void
1869 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1870 {
1871     int i;
1872     core->rx_desc_buf_size = 0;
1873 
1874     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1875         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1876     }
1877 }
1878 
1879 static void
1880 e1000e_parse_rxbufsize(E1000ECore *core)
1881 {
1882     uint32_t rctl = core->mac[RCTL];
1883 
1884     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1885 
1886     if (rctl & E1000_RCTL_DTYP_MASK) {
1887         uint32_t bsize;
1888 
1889         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1890         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1891 
1892         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1893         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1894 
1895         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1896         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1897 
1898         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1899         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1900     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1901         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1902         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1903     } else {
1904         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1905     }
1906 
1907     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1908                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1909 
1910     e1000e_calc_per_desc_buf_size(core);
1911 }
1912 
1913 static void
1914 e1000e_calc_rxdesclen(E1000ECore *core)
1915 {
1916     if (e1000e_rx_use_legacy_descriptor(core)) {
1917         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1918     } else {
1919         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1920             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1921         } else {
1922             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1923         }
1924     }
1925     trace_e1000e_rx_desc_len(core->rx_desc_len);
1926 }
1927 
1928 static void
1929 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1930 {
1931     core->mac[RCTL] = val;
1932     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1933 
1934     if (val & E1000_RCTL_EN) {
1935         e1000e_parse_rxbufsize(core);
1936         e1000e_calc_rxdesclen(core);
1937         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1938                                 E1000_RING_DESC_LEN_SHIFT;
1939 
1940         e1000e_start_recv(core);
1941     }
1942 }
1943 
1944 static
1945 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1946 (E1000ECore *, int, uint16_t) = {
1947     [0] = {
1948         [PHY_CTRL]     = e1000e_set_phy_ctrl,
1949         [PHY_PAGE]     = e1000e_set_phy_page,
1950         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1951     }
1952 };
1953 
1954 static inline void
1955 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1956 {
1957     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1958     core->mac[IMS] &= ~bits;
1959 }
1960 
1961 static inline bool
1962 e1000e_postpone_interrupt(bool *interrupt_pending,
1963                            E1000IntrDelayTimer *timer)
1964 {
1965     if (timer->running) {
1966         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1967 
1968         *interrupt_pending = true;
1969         return true;
1970     }
1971 
1972     if (timer->core->mac[timer->delay_reg] != 0) {
1973         e1000e_intrmgr_rearm_timer(timer);
1974     }
1975 
1976     return false;
1977 }
1978 
1979 static inline bool
1980 e1000e_itr_should_postpone(E1000ECore *core)
1981 {
1982     return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1983 }
1984 
1985 static inline bool
1986 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1987 {
1988     return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1989                                      &core->eitr[idx]);
1990 }
1991 
1992 static void
1993 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1994 {
1995     uint32_t effective_eiac;
1996 
1997     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1998         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1999         if (vec < E1000E_MSIX_VEC_NUM) {
2000             if (!e1000e_eitr_should_postpone(core, vec)) {
2001                 trace_e1000e_irq_msix_notify_vec(vec);
2002                 msix_notify(core->owner, vec);
2003             }
2004         } else {
2005             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2006         }
2007     } else {
2008         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2009     }
2010 
2011     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2012         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2013         core->mac[IAM] &= ~cause;
2014     }
2015 
2016     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2017 
2018     effective_eiac = core->mac[EIAC] & cause;
2019 
2020     if (effective_eiac == E1000_ICR_OTHER) {
2021         effective_eiac |= E1000_ICR_OTHER_CAUSES;
2022     }
2023 
2024     core->mac[ICR] &= ~effective_eiac;
2025 
2026     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2027         core->mac[IMS] &= ~effective_eiac;
2028     }
2029 }
2030 
2031 static void
2032 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2033 {
2034     if (causes & E1000_ICR_RXQ0) {
2035         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2036                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2037     }
2038 
2039     if (causes & E1000_ICR_RXQ1) {
2040         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2041                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2042     }
2043 
2044     if (causes & E1000_ICR_TXQ0) {
2045         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2046                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2047     }
2048 
2049     if (causes & E1000_ICR_TXQ1) {
2050         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2051                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2052     }
2053 
2054     if (causes & E1000_ICR_OTHER) {
2055         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2056                                E1000_IVAR_OTHER(core->mac[IVAR]));
2057     }
2058 }
2059 
2060 static void
2061 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2062 {
2063     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2064         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2065         if (vec < E1000E_MSIX_VEC_NUM) {
2066             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2067             msix_clr_pending(core->owner, vec);
2068         } else {
2069             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2070         }
2071     } else {
2072         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2073     }
2074 }
2075 
2076 static void
2077 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2078 {
2079     if (causes & E1000_ICR_RXQ0) {
2080         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2081                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2082     }
2083 
2084     if (causes & E1000_ICR_RXQ1) {
2085         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2086                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2087     }
2088 
2089     if (causes & E1000_ICR_TXQ0) {
2090         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2091                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2092     }
2093 
2094     if (causes & E1000_ICR_TXQ1) {
2095         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2096                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2097     }
2098 
2099     if (causes & E1000_ICR_OTHER) {
2100         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2101                               E1000_IVAR_OTHER(core->mac[IVAR]));
2102     }
2103 }
2104 
2105 static inline void
2106 e1000e_fix_icr_asserted(E1000ECore *core)
2107 {
2108     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2109     if (core->mac[ICR]) {
2110         core->mac[ICR] |= E1000_ICR_ASSERTED;
2111     }
2112 
2113     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2114 }
2115 
2116 static void
2117 e1000e_send_msi(E1000ECore *core, bool msix)
2118 {
2119     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2120 
2121     if (msix) {
2122         e1000e_msix_notify(core, causes);
2123     } else {
2124         if (!e1000e_itr_should_postpone(core)) {
2125             trace_e1000e_irq_msi_notify(causes);
2126             msi_notify(core->owner, 0);
2127         }
2128     }
2129 }
2130 
2131 static void
2132 e1000e_update_interrupt_state(E1000ECore *core)
2133 {
2134     bool interrupts_pending;
2135     bool is_msix = msix_enabled(core->owner);
2136 
2137     /* Set ICR[OTHER] for MSI-X */
2138     if (is_msix) {
2139         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2140             core->mac[ICR] |= E1000_ICR_OTHER;
2141             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2142         }
2143     }
2144 
2145     e1000e_fix_icr_asserted(core);
2146 
2147     /*
2148      * Make sure ICR and ICS registers have the same value.
2149      * The spec says that the ICS register is write-only.  However in practice,
2150      * on real hardware ICS is readable, and for reads it has the same value as
2151      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2152      *
2153      * The VxWorks PRO/1000 driver uses this behaviour.
2154      */
2155     core->mac[ICS] = core->mac[ICR];
2156 
2157     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2158 
2159     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2160                                         core->mac[ICR], core->mac[IMS]);
2161 
2162     if (is_msix || msi_enabled(core->owner)) {
2163         if (interrupts_pending) {
2164             e1000e_send_msi(core, is_msix);
2165         }
2166     } else {
2167         if (interrupts_pending) {
2168             if (!e1000e_itr_should_postpone(core)) {
2169                 e1000e_raise_legacy_irq(core);
2170             }
2171         } else {
2172             e1000e_lower_legacy_irq(core);
2173         }
2174     }
2175 }
2176 
2177 static void
2178 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2179 {
2180     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2181 
2182     val |= e1000e_intmgr_collect_delayed_causes(core);
2183     core->mac[ICR] |= val;
2184 
2185     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2186 
2187     e1000e_update_interrupt_state(core);
2188 }
2189 
2190 static inline void
2191 e1000e_autoneg_timer(void *opaque)
2192 {
2193     E1000ECore *core = opaque;
2194     if (!qemu_get_queue(core->owner_nic)->link_down) {
2195         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2196         e1000e_start_recv(core);
2197 
2198         e1000e_update_flowctl_status(core);
2199         /* signal link status change to the guest */
2200         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2201     }
2202 }
2203 
2204 static inline uint16_t
2205 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2206 {
2207     uint16_t index = (addr & 0x1ffff) >> 2;
2208     return index + (mac_reg_access[index] & 0xfffe);
2209 }
2210 
2211 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2212     [0] = {
2213         [PHY_CTRL]          = PHY_ANYPAGE | PHY_RW,
2214         [PHY_STATUS]        = PHY_ANYPAGE | PHY_R,
2215         [PHY_ID1]           = PHY_ANYPAGE | PHY_R,
2216         [PHY_ID2]           = PHY_ANYPAGE | PHY_R,
2217         [PHY_AUTONEG_ADV]   = PHY_ANYPAGE | PHY_RW,
2218         [PHY_LP_ABILITY]    = PHY_ANYPAGE | PHY_R,
2219         [PHY_AUTONEG_EXP]   = PHY_ANYPAGE | PHY_R,
2220         [PHY_NEXT_PAGE_TX]  = PHY_ANYPAGE | PHY_RW,
2221         [PHY_LP_NEXT_PAGE]  = PHY_ANYPAGE | PHY_R,
2222         [PHY_1000T_CTRL]    = PHY_ANYPAGE | PHY_RW,
2223         [PHY_1000T_STATUS]  = PHY_ANYPAGE | PHY_R,
2224         [PHY_EXT_STATUS]    = PHY_ANYPAGE | PHY_R,
2225         [PHY_PAGE]          = PHY_ANYPAGE | PHY_RW,
2226 
2227         [PHY_COPPER_CTRL1]      = PHY_RW,
2228         [PHY_COPPER_STAT1]      = PHY_R,
2229         [PHY_COPPER_CTRL3]      = PHY_RW,
2230         [PHY_RX_ERR_CNTR]       = PHY_R,
2231         [PHY_OEM_BITS]          = PHY_RW,
2232         [PHY_BIAS_1]            = PHY_RW,
2233         [PHY_BIAS_2]            = PHY_RW,
2234         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2235         [PHY_COPPER_STAT2]      = PHY_R,
2236         [PHY_COPPER_CTRL2]      = PHY_RW
2237     },
2238     [2] = {
2239         [PHY_MAC_CTRL1]         = PHY_RW,
2240         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2241         [PHY_MAC_STAT]          = PHY_R,
2242         [PHY_MAC_CTRL2]         = PHY_RW
2243     },
2244     [3] = {
2245         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2246         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2247         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2248         [PHY_LED_45_CTRL]       = PHY_RW
2249     },
2250     [5] = {
2251         [PHY_1000T_SKEW]        = PHY_R,
2252         [PHY_1000T_SWAP]        = PHY_R
2253     },
2254     [6] = {
2255         [PHY_CRC_COUNTERS]      = PHY_R
2256     }
2257 };
2258 
2259 static bool
2260 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2261                          char cap, uint8_t *page)
2262 {
2263     *page =
2264         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2265                                                     : core->phy[0][PHY_PAGE];
2266 
2267     if (*page >= E1000E_PHY_PAGES) {
2268         return false;
2269     }
2270 
2271     return e1000e_phy_regcap[*page][addr] & cap;
2272 }
2273 
2274 static void
2275 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2276                      uint32_t addr, uint16_t data)
2277 {
2278     assert(page < E1000E_PHY_PAGES);
2279     assert(addr < E1000E_PHY_PAGE_SIZE);
2280 
2281     if (e1000e_phyreg_writeops[page][addr]) {
2282         e1000e_phyreg_writeops[page][addr](core, addr, data);
2283     } else {
2284         core->phy[page][addr] = data;
2285     }
2286 }
2287 
2288 static void
2289 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2290 {
2291     uint32_t data = val & E1000_MDIC_DATA_MASK;
2292     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2293     uint8_t page;
2294 
2295     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2296         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2297     } else if (val & E1000_MDIC_OP_READ) {
2298         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2299             trace_e1000e_core_mdic_read_unhandled(page, addr);
2300             val |= E1000_MDIC_ERROR;
2301         } else {
2302             val = (val ^ data) | core->phy[page][addr];
2303             trace_e1000e_core_mdic_read(page, addr, val);
2304         }
2305     } else if (val & E1000_MDIC_OP_WRITE) {
2306         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2307             trace_e1000e_core_mdic_write_unhandled(page, addr);
2308             val |= E1000_MDIC_ERROR;
2309         } else {
2310             trace_e1000e_core_mdic_write(page, addr, data);
2311             e1000e_phy_reg_write(core, page, addr, data);
2312         }
2313     }
2314     core->mac[MDIC] = val | E1000_MDIC_READY;
2315 
2316     if (val & E1000_MDIC_INT_EN) {
2317         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2318     }
2319 }
2320 
2321 static void
2322 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2323 {
2324     core->mac[index] = val & 0xffff;
2325     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2326     e1000e_start_recv(core);
2327 }
2328 
2329 static void
2330 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2331 {
2332     if ((val & E1000_STATUS_PHYRA) == 0) {
2333         core->mac[index] &= ~E1000_STATUS_PHYRA;
2334     }
2335 }
2336 
2337 static void
2338 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2339 {
2340     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2341                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2342 
2343     /* Zero self-clearing bits */
2344     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2345     core->mac[CTRL_EXT] = val;
2346 }
2347 
2348 static void
2349 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2350 {
2351     int i;
2352 
2353     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2354 
2355     if (!msix_enabled(core->owner)) {
2356         return;
2357     }
2358 
2359     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2360         if (core->mac[PBACLR] & BIT(i)) {
2361             msix_clr_pending(core->owner, i);
2362         }
2363     }
2364 }
2365 
2366 static void
2367 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2368 {
2369     core->mac[FCRTH] = val & 0xFFF8;
2370 }
2371 
2372 static void
2373 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2374 {
2375     core->mac[FCRTL] = val & 0x8000FFF8;
2376 }
2377 
2378 static inline void
2379 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2380 {
2381     core->mac[index] = val & 0xffff;
2382 }
2383 
2384 static void
2385 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2386 {
2387     core->mac[index] = val & 0xfff;
2388 }
2389 
2390 static void
2391 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2392 {
2393     core->mac[VET] = val & 0xffff;
2394     core->vet = le16_to_cpu(core->mac[VET]);
2395     trace_e1000e_vlan_vet(core->vet);
2396 }
2397 
2398 static void
2399 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2400 {
2401     core->mac[index] = val & E1000_XDLEN_MASK;
2402 }
2403 
2404 static void
2405 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2406 {
2407     core->mac[index] = val & E1000_XDBAL_MASK;
2408 }
2409 
2410 static void
2411 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2412 {
2413     E1000E_TxRing txr;
2414     core->mac[index] = val;
2415 
2416     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2417         e1000e_tx_ring_init(core, &txr, 0);
2418         e1000e_start_xmit(core, &txr);
2419     }
2420 
2421     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2422         e1000e_tx_ring_init(core, &txr, 1);
2423         e1000e_start_xmit(core, &txr);
2424     }
2425 }
2426 
2427 static void
2428 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2429 {
2430     E1000E_TxRing txr;
2431     int qidx = e1000e_mq_queue_idx(TDT, index);
2432     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2433 
2434     core->mac[index] = val & 0xffff;
2435 
2436     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2437         e1000e_tx_ring_init(core, &txr, qidx);
2438         e1000e_start_xmit(core, &txr);
2439     }
2440 }
2441 
2442 static void
2443 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2444 {
2445     trace_e1000e_irq_write_ics(val);
2446     e1000e_set_interrupt_cause(core, val);
2447 }
2448 
2449 static void
2450 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2451 {
2452     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2453         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2454         trace_e1000e_irq_icr_process_iame();
2455         e1000e_clear_ims_bits(core, core->mac[IAM]);
2456     }
2457 
2458     trace_e1000e_irq_icr_write(val, core->mac[ICR], core->mac[ICR] & ~val);
2459     core->mac[ICR] &= ~val;
2460     e1000e_update_interrupt_state(core);
2461 }
2462 
2463 static void
2464 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2465 {
2466     trace_e1000e_irq_ims_clear_set_imc(val);
2467     e1000e_clear_ims_bits(core, val);
2468     e1000e_update_interrupt_state(core);
2469 }
2470 
2471 static void
2472 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2473 {
2474     static const uint32_t ims_ext_mask =
2475         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2476         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2477         E1000_IMS_OTHER;
2478 
2479     static const uint32_t ims_valid_mask =
2480         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2481         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2482         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2483         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2484         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2485         E1000_IMS_OTHER;
2486 
2487     uint32_t valid_val = val & ims_valid_mask;
2488 
2489     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2490     core->mac[IMS] |= valid_val;
2491 
2492     if ((valid_val & ims_ext_mask) &&
2493         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2494         msix_enabled(core->owner)) {
2495         e1000e_msix_clear(core, valid_val);
2496     }
2497 
2498     if ((valid_val == ims_valid_mask) &&
2499         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2500         trace_e1000e_irq_fire_all_timers(val);
2501         e1000e_intrmgr_fire_all_timers(core);
2502     }
2503 
2504     e1000e_update_interrupt_state(core);
2505 }
2506 
2507 static void
2508 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2509 {
2510     e1000e_set_16bit(core, index, val);
2511 
2512     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2513         trace_e1000e_irq_rdtr_fpd_running();
2514         e1000e_intrmgr_fire_delayed_interrupts(core);
2515     } else {
2516         trace_e1000e_irq_rdtr_fpd_not_running();
2517     }
2518 }
2519 
2520 static void
2521 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2522 {
2523     e1000e_set_16bit(core, index, val);
2524 
2525     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2526         trace_e1000e_irq_tidv_fpd_running();
2527         e1000e_intrmgr_fire_delayed_interrupts(core);
2528     } else {
2529         trace_e1000e_irq_tidv_fpd_not_running();
2530     }
2531 }
2532 
2533 static uint32_t
2534 e1000e_mac_readreg(E1000ECore *core, int index)
2535 {
2536     return core->mac[index];
2537 }
2538 
2539 static uint32_t
2540 e1000e_mac_ics_read(E1000ECore *core, int index)
2541 {
2542     trace_e1000e_irq_read_ics(core->mac[ICS]);
2543     return core->mac[ICS];
2544 }
2545 
2546 static uint32_t
2547 e1000e_mac_ims_read(E1000ECore *core, int index)
2548 {
2549     trace_e1000e_irq_read_ims(core->mac[IMS]);
2550     return core->mac[IMS];
2551 }
2552 
2553 #define E1000E_LOW_BITS_READ_FUNC(num)                      \
2554     static uint32_t                                         \
2555     e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2556     {                                                       \
2557         return core->mac[index] & (BIT(num) - 1);           \
2558     }                                                       \
2559 
2560 #define E1000E_LOW_BITS_READ(num)                           \
2561     e1000e_mac_low##num##_read
2562 
2563 E1000E_LOW_BITS_READ_FUNC(4);
2564 E1000E_LOW_BITS_READ_FUNC(6);
2565 E1000E_LOW_BITS_READ_FUNC(11);
2566 E1000E_LOW_BITS_READ_FUNC(13);
2567 E1000E_LOW_BITS_READ_FUNC(16);
2568 
2569 static uint32_t
2570 e1000e_mac_swsm_read(E1000ECore *core, int index)
2571 {
2572     uint32_t val = core->mac[SWSM];
2573     core->mac[SWSM] = val | 1;
2574     return val;
2575 }
2576 
2577 static uint32_t
2578 e1000e_mac_itr_read(E1000ECore *core, int index)
2579 {
2580     return core->itr_guest_value;
2581 }
2582 
2583 static uint32_t
2584 e1000e_mac_eitr_read(E1000ECore *core, int index)
2585 {
2586     return core->eitr_guest_value[index - EITR];
2587 }
2588 
2589 static uint32_t
2590 e1000e_mac_icr_read(E1000ECore *core, int index)
2591 {
2592     uint32_t ret = core->mac[ICR];
2593     trace_e1000e_irq_icr_read_entry(ret);
2594 
2595     if (core->mac[IMS] == 0) {
2596         trace_e1000e_irq_icr_clear_zero_ims();
2597         core->mac[ICR] = 0;
2598     }
2599 
2600     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2601         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2602         trace_e1000e_irq_icr_clear_iame();
2603         core->mac[ICR] = 0;
2604         trace_e1000e_irq_icr_process_iame();
2605         e1000e_clear_ims_bits(core, core->mac[IAM]);
2606     }
2607 
2608     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2609     e1000e_update_interrupt_state(core);
2610     return ret;
2611 }
2612 
2613 static uint32_t
2614 e1000e_mac_read_clr4(E1000ECore *core, int index)
2615 {
2616     uint32_t ret = core->mac[index];
2617 
2618     core->mac[index] = 0;
2619     return ret;
2620 }
2621 
2622 static uint32_t
2623 e1000e_mac_read_clr8(E1000ECore *core, int index)
2624 {
2625     uint32_t ret = core->mac[index];
2626 
2627     core->mac[index] = 0;
2628     core->mac[index - 1] = 0;
2629     return ret;
2630 }
2631 
2632 static uint32_t
2633 e1000e_get_ctrl(E1000ECore *core, int index)
2634 {
2635     uint32_t val = core->mac[CTRL];
2636 
2637     trace_e1000e_link_read_params(
2638         !!(val & E1000_CTRL_ASDE),
2639         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2640         !!(val & E1000_CTRL_FRCSPD),
2641         !!(val & E1000_CTRL_FRCDPX),
2642         !!(val & E1000_CTRL_RFCE),
2643         !!(val & E1000_CTRL_TFCE));
2644 
2645     return val;
2646 }
2647 
2648 static uint32_t
2649 e1000e_get_status(E1000ECore *core, int index)
2650 {
2651     uint32_t res = core->mac[STATUS];
2652 
2653     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2654         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2655     }
2656 
2657     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2658         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2659     } else {
2660         res |= E1000_STATUS_FD;
2661     }
2662 
2663     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2664         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2665         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2666         case E1000_CTRL_SPD_10:
2667             res |= E1000_STATUS_SPEED_10;
2668             break;
2669         case E1000_CTRL_SPD_100:
2670             res |= E1000_STATUS_SPEED_100;
2671             break;
2672         case E1000_CTRL_SPD_1000:
2673         default:
2674             res |= E1000_STATUS_SPEED_1000;
2675             break;
2676         }
2677     } else {
2678         res |= E1000_STATUS_SPEED_1000;
2679     }
2680 
2681     trace_e1000e_link_status(
2682         !!(res & E1000_STATUS_LU),
2683         !!(res & E1000_STATUS_FD),
2684         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2685         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2686 
2687     return res;
2688 }
2689 
2690 static uint32_t
2691 e1000e_get_tarc(E1000ECore *core, int index)
2692 {
2693     return core->mac[index] & ((BIT(11) - 1) |
2694                                 BIT(27)      |
2695                                 BIT(28)      |
2696                                 BIT(29)      |
2697                                 BIT(30));
2698 }
2699 
2700 static void
2701 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2702 {
2703     core->mac[index] = val;
2704 }
2705 
2706 static void
2707 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2708 {
2709     uint32_t macaddr[2];
2710 
2711     core->mac[index] = val;
2712 
2713     macaddr[0] = cpu_to_le32(core->mac[RA]);
2714     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2715     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2716         (uint8_t *) macaddr);
2717 
2718     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2719 }
2720 
2721 static void
2722 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2723 {
2724     static const uint32_t ro_bits = E1000_EECD_PRES          |
2725                                     E1000_EECD_AUTO_RD       |
2726                                     E1000_EECD_SIZE_EX_MASK;
2727 
2728     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2729 }
2730 
2731 static void
2732 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2733 {
2734     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2735     uint32_t flags = 0;
2736     uint32_t data = 0;
2737 
2738     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2739         data = core->eeprom[addr];
2740         flags = E1000_EERW_DONE;
2741     }
2742 
2743     core->mac[EERD] = flags                           |
2744                       (addr << E1000_EERW_ADDR_SHIFT) |
2745                       (data << E1000_EERW_DATA_SHIFT);
2746 }
2747 
2748 static void
2749 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2750 {
2751     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2752     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2753     uint32_t flags = 0;
2754 
2755     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2756         core->eeprom[addr] = data;
2757         flags = E1000_EERW_DONE;
2758     }
2759 
2760     core->mac[EERD] = flags                           |
2761                       (addr << E1000_EERW_ADDR_SHIFT) |
2762                       (data << E1000_EERW_DATA_SHIFT);
2763 }
2764 
2765 static void
2766 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2767 {
2768     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2769 }
2770 
2771 static void
2772 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2773 {
2774     uint32_t interval = val & 0xffff;
2775 
2776     trace_e1000e_irq_itr_set(val);
2777 
2778     core->itr_guest_value = interval;
2779     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2780 }
2781 
2782 static void
2783 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2784 {
2785     uint32_t interval = val & 0xffff;
2786     uint32_t eitr_num = index - EITR;
2787 
2788     trace_e1000e_irq_eitr_set(eitr_num, val);
2789 
2790     core->eitr_guest_value[eitr_num] = interval;
2791     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2792 }
2793 
2794 static void
2795 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2796 {
2797     if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2798         hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero");
2799     }
2800 
2801     if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2802         hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero");
2803     }
2804 
2805     core->mac[PSRCTL] = val;
2806 }
2807 
2808 static void
2809 e1000e_update_rx_offloads(E1000ECore *core)
2810 {
2811     int cso_state = e1000e_rx_l4_cso_enabled(core);
2812 
2813     trace_e1000e_rx_set_cso(cso_state);
2814 
2815     if (core->has_vnet) {
2816         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2817                          cso_state, 0, 0, 0, 0);
2818     }
2819 }
2820 
2821 static void
2822 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2823 {
2824     core->mac[RXCSUM] = val;
2825     e1000e_update_rx_offloads(core);
2826 }
2827 
2828 static void
2829 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2830 {
2831     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2832     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2833 }
2834 
2835 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2836 static uint32_t (*e1000e_macreg_readops[])(E1000ECore *, int) = {
2837     e1000e_getreg(PBA),
2838     e1000e_getreg(WUFC),
2839     e1000e_getreg(MANC),
2840     e1000e_getreg(TOTL),
2841     e1000e_getreg(RDT0),
2842     e1000e_getreg(RDBAH0),
2843     e1000e_getreg(TDBAL1),
2844     e1000e_getreg(RDLEN0),
2845     e1000e_getreg(RDH1),
2846     e1000e_getreg(LATECOL),
2847     e1000e_getreg(SEC),
2848     e1000e_getreg(XONTXC),
2849     e1000e_getreg(WUS),
2850     e1000e_getreg(GORCL),
2851     e1000e_getreg(MGTPRC),
2852     e1000e_getreg(EERD),
2853     e1000e_getreg(EIAC),
2854     e1000e_getreg(PSRCTL),
2855     e1000e_getreg(MANC2H),
2856     e1000e_getreg(RXCSUM),
2857     e1000e_getreg(GSCL_3),
2858     e1000e_getreg(GSCN_2),
2859     e1000e_getreg(RSRPD),
2860     e1000e_getreg(RDBAL1),
2861     e1000e_getreg(FCAH),
2862     e1000e_getreg(FCRTH),
2863     e1000e_getreg(FLOP),
2864     e1000e_getreg(FLASHT),
2865     e1000e_getreg(RXSTMPH),
2866     e1000e_getreg(TXSTMPL),
2867     e1000e_getreg(TIMADJL),
2868     e1000e_getreg(TXDCTL),
2869     e1000e_getreg(RDH0),
2870     e1000e_getreg(TDT1),
2871     e1000e_getreg(TNCRS),
2872     e1000e_getreg(RJC),
2873     e1000e_getreg(IAM),
2874     e1000e_getreg(GSCL_2),
2875     e1000e_getreg(RDBAH1),
2876     e1000e_getreg(FLSWDATA),
2877     e1000e_getreg(RXSATRH),
2878     e1000e_getreg(TIPG),
2879     e1000e_getreg(FLMNGCTL),
2880     e1000e_getreg(FLMNGCNT),
2881     e1000e_getreg(TSYNCTXCTL),
2882     e1000e_getreg(EXTCNF_SIZE),
2883     e1000e_getreg(EXTCNF_CTRL),
2884     e1000e_getreg(EEMNGDATA),
2885     e1000e_getreg(CTRL_EXT),
2886     e1000e_getreg(SYSTIMH),
2887     e1000e_getreg(EEMNGCTL),
2888     e1000e_getreg(FLMNGDATA),
2889     e1000e_getreg(TSYNCRXCTL),
2890     e1000e_getreg(TDH),
2891     e1000e_getreg(LEDCTL),
2892     e1000e_getreg(STATUS),
2893     e1000e_getreg(TCTL),
2894     e1000e_getreg(TDBAL),
2895     e1000e_getreg(TDLEN),
2896     e1000e_getreg(TDH1),
2897     e1000e_getreg(RADV),
2898     e1000e_getreg(ECOL),
2899     e1000e_getreg(DC),
2900     e1000e_getreg(RLEC),
2901     e1000e_getreg(XOFFTXC),
2902     e1000e_getreg(RFC),
2903     e1000e_getreg(RNBC),
2904     e1000e_getreg(MGTPTC),
2905     e1000e_getreg(TIMINCA),
2906     e1000e_getreg(RXCFGL),
2907     e1000e_getreg(MFUTP01),
2908     e1000e_getreg(FACTPS),
2909     e1000e_getreg(GSCL_1),
2910     e1000e_getreg(GSCN_0),
2911     e1000e_getreg(GCR2),
2912     e1000e_getreg(RDT1),
2913     e1000e_getreg(PBACLR),
2914     e1000e_getreg(FCTTV),
2915     e1000e_getreg(EEWR),
2916     e1000e_getreg(FLSWCTL),
2917     e1000e_getreg(RXDCTL1),
2918     e1000e_getreg(RXSATRL),
2919     e1000e_getreg(SYSTIML),
2920     e1000e_getreg(RXUDP),
2921     e1000e_getreg(TORL),
2922     e1000e_getreg(TDLEN1),
2923     e1000e_getreg(MCC),
2924     e1000e_getreg(WUC),
2925     e1000e_getreg(EECD),
2926     e1000e_getreg(MFUTP23),
2927     e1000e_getreg(RAID),
2928     e1000e_getreg(FCRTV),
2929     e1000e_getreg(TXDCTL1),
2930     e1000e_getreg(RCTL),
2931     e1000e_getreg(TDT),
2932     e1000e_getreg(MDIC),
2933     e1000e_getreg(FCRUC),
2934     e1000e_getreg(VET),
2935     e1000e_getreg(RDBAL0),
2936     e1000e_getreg(TDBAH1),
2937     e1000e_getreg(RDTR),
2938     e1000e_getreg(SCC),
2939     e1000e_getreg(COLC),
2940     e1000e_getreg(CEXTERR),
2941     e1000e_getreg(XOFFRXC),
2942     e1000e_getreg(IPAV),
2943     e1000e_getreg(GOTCL),
2944     e1000e_getreg(MGTPDC),
2945     e1000e_getreg(GCR),
2946     e1000e_getreg(IVAR),
2947     e1000e_getreg(POEMB),
2948     e1000e_getreg(MFVAL),
2949     e1000e_getreg(FUNCTAG),
2950     e1000e_getreg(GSCL_4),
2951     e1000e_getreg(GSCN_3),
2952     e1000e_getreg(MRQC),
2953     e1000e_getreg(RDLEN1),
2954     e1000e_getreg(FCT),
2955     e1000e_getreg(FLA),
2956     e1000e_getreg(FLOL),
2957     e1000e_getreg(RXDCTL),
2958     e1000e_getreg(RXSTMPL),
2959     e1000e_getreg(TXSTMPH),
2960     e1000e_getreg(TIMADJH),
2961     e1000e_getreg(FCRTL),
2962     e1000e_getreg(TDBAH),
2963     e1000e_getreg(TADV),
2964     e1000e_getreg(XONRXC),
2965     e1000e_getreg(TSCTFC),
2966     e1000e_getreg(RFCTL),
2967     e1000e_getreg(GSCN_1),
2968     e1000e_getreg(FCAL),
2969     e1000e_getreg(FLSWCNT),
2970 
2971     [TOTH]    = e1000e_mac_read_clr8,
2972     [GOTCH]   = e1000e_mac_read_clr8,
2973     [PRC64]   = e1000e_mac_read_clr4,
2974     [PRC255]  = e1000e_mac_read_clr4,
2975     [PRC1023] = e1000e_mac_read_clr4,
2976     [PTC64]   = e1000e_mac_read_clr4,
2977     [PTC255]  = e1000e_mac_read_clr4,
2978     [PTC1023] = e1000e_mac_read_clr4,
2979     [GPRC]    = e1000e_mac_read_clr4,
2980     [TPT]     = e1000e_mac_read_clr4,
2981     [RUC]     = e1000e_mac_read_clr4,
2982     [BPRC]    = e1000e_mac_read_clr4,
2983     [MPTC]    = e1000e_mac_read_clr4,
2984     [IAC]     = e1000e_mac_read_clr4,
2985     [ICR]     = e1000e_mac_icr_read,
2986     [RDFH]    = E1000E_LOW_BITS_READ(13),
2987     [RDFHS]   = E1000E_LOW_BITS_READ(13),
2988     [RDFPC]   = E1000E_LOW_BITS_READ(13),
2989     [TDFH]    = E1000E_LOW_BITS_READ(13),
2990     [TDFHS]   = E1000E_LOW_BITS_READ(13),
2991     [STATUS]  = e1000e_get_status,
2992     [TARC0]   = e1000e_get_tarc,
2993     [PBS]     = E1000E_LOW_BITS_READ(6),
2994     [ICS]     = e1000e_mac_ics_read,
2995     [AIT]     = E1000E_LOW_BITS_READ(16),
2996     [TORH]    = e1000e_mac_read_clr8,
2997     [GORCH]   = e1000e_mac_read_clr8,
2998     [PRC127]  = e1000e_mac_read_clr4,
2999     [PRC511]  = e1000e_mac_read_clr4,
3000     [PRC1522] = e1000e_mac_read_clr4,
3001     [PTC127]  = e1000e_mac_read_clr4,
3002     [PTC511]  = e1000e_mac_read_clr4,
3003     [PTC1522] = e1000e_mac_read_clr4,
3004     [GPTC]    = e1000e_mac_read_clr4,
3005     [TPR]     = e1000e_mac_read_clr4,
3006     [ROC]     = e1000e_mac_read_clr4,
3007     [MPRC]    = e1000e_mac_read_clr4,
3008     [BPTC]    = e1000e_mac_read_clr4,
3009     [TSCTC]   = e1000e_mac_read_clr4,
3010     [ITR]     = e1000e_mac_itr_read,
3011     [RDFT]    = E1000E_LOW_BITS_READ(13),
3012     [RDFTS]   = E1000E_LOW_BITS_READ(13),
3013     [TDFPC]   = E1000E_LOW_BITS_READ(13),
3014     [TDFT]    = E1000E_LOW_BITS_READ(13),
3015     [TDFTS]   = E1000E_LOW_BITS_READ(13),
3016     [CTRL]    = e1000e_get_ctrl,
3017     [TARC1]   = e1000e_get_tarc,
3018     [SWSM]    = e1000e_mac_swsm_read,
3019     [IMS]     = e1000e_mac_ims_read,
3020 
3021     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3022     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3023     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3024     [RA ... RA + 31]       = e1000e_mac_readreg,
3025     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3026     [MTA ... MTA + 127]    = e1000e_mac_readreg,
3027     [VFTA ... VFTA + 127]  = e1000e_mac_readreg,
3028     [FFMT ... FFMT + 254]  = E1000E_LOW_BITS_READ(4),
3029     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3030     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3031     [FFLT ... FFLT + 10]   = E1000E_LOW_BITS_READ(11),
3032     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3033     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3034     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3035     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3036     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3037     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3038 };
3039 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3040 
3041 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3042 static void (*e1000e_macreg_writeops[])(E1000ECore *, int, uint32_t) = {
3043     e1000e_putreg(PBA),
3044     e1000e_putreg(SWSM),
3045     e1000e_putreg(WUFC),
3046     e1000e_putreg(RDBAH1),
3047     e1000e_putreg(TDBAH),
3048     e1000e_putreg(TXDCTL),
3049     e1000e_putreg(RDBAH0),
3050     e1000e_putreg(LEDCTL),
3051     e1000e_putreg(FCAL),
3052     e1000e_putreg(FCRUC),
3053     e1000e_putreg(AIT),
3054     e1000e_putreg(TDFH),
3055     e1000e_putreg(TDFT),
3056     e1000e_putreg(TDFHS),
3057     e1000e_putreg(TDFTS),
3058     e1000e_putreg(TDFPC),
3059     e1000e_putreg(WUC),
3060     e1000e_putreg(WUS),
3061     e1000e_putreg(RDFH),
3062     e1000e_putreg(RDFT),
3063     e1000e_putreg(RDFHS),
3064     e1000e_putreg(RDFTS),
3065     e1000e_putreg(RDFPC),
3066     e1000e_putreg(IPAV),
3067     e1000e_putreg(TDBAH1),
3068     e1000e_putreg(TIMINCA),
3069     e1000e_putreg(IAM),
3070     e1000e_putreg(EIAC),
3071     e1000e_putreg(IVAR),
3072     e1000e_putreg(TARC0),
3073     e1000e_putreg(TARC1),
3074     e1000e_putreg(FLSWDATA),
3075     e1000e_putreg(POEMB),
3076     e1000e_putreg(PBS),
3077     e1000e_putreg(MFUTP01),
3078     e1000e_putreg(MFUTP23),
3079     e1000e_putreg(MANC),
3080     e1000e_putreg(MANC2H),
3081     e1000e_putreg(MFVAL),
3082     e1000e_putreg(EXTCNF_CTRL),
3083     e1000e_putreg(FACTPS),
3084     e1000e_putreg(FUNCTAG),
3085     e1000e_putreg(GSCL_1),
3086     e1000e_putreg(GSCL_2),
3087     e1000e_putreg(GSCL_3),
3088     e1000e_putreg(GSCL_4),
3089     e1000e_putreg(GSCN_0),
3090     e1000e_putreg(GSCN_1),
3091     e1000e_putreg(GSCN_2),
3092     e1000e_putreg(GSCN_3),
3093     e1000e_putreg(GCR2),
3094     e1000e_putreg(MRQC),
3095     e1000e_putreg(FLOP),
3096     e1000e_putreg(FLOL),
3097     e1000e_putreg(FLSWCTL),
3098     e1000e_putreg(FLSWCNT),
3099     e1000e_putreg(FLA),
3100     e1000e_putreg(RXDCTL1),
3101     e1000e_putreg(TXDCTL1),
3102     e1000e_putreg(TIPG),
3103     e1000e_putreg(RXSTMPH),
3104     e1000e_putreg(RXSTMPL),
3105     e1000e_putreg(RXSATRL),
3106     e1000e_putreg(RXSATRH),
3107     e1000e_putreg(TXSTMPL),
3108     e1000e_putreg(TXSTMPH),
3109     e1000e_putreg(SYSTIML),
3110     e1000e_putreg(SYSTIMH),
3111     e1000e_putreg(TIMADJL),
3112     e1000e_putreg(TIMADJH),
3113     e1000e_putreg(RXUDP),
3114     e1000e_putreg(RXCFGL),
3115     e1000e_putreg(TSYNCRXCTL),
3116     e1000e_putreg(TSYNCTXCTL),
3117     e1000e_putreg(FLSWDATA),
3118     e1000e_putreg(EXTCNF_SIZE),
3119     e1000e_putreg(EEMNGCTL),
3120     e1000e_putreg(RA),
3121 
3122     [TDH1]     = e1000e_set_16bit,
3123     [TDT1]     = e1000e_set_tdt,
3124     [TCTL]     = e1000e_set_tctl,
3125     [TDT]      = e1000e_set_tdt,
3126     [MDIC]     = e1000e_set_mdic,
3127     [ICS]      = e1000e_set_ics,
3128     [TDH]      = e1000e_set_16bit,
3129     [RDH0]     = e1000e_set_16bit,
3130     [RDT0]     = e1000e_set_rdt,
3131     [IMC]      = e1000e_set_imc,
3132     [IMS]      = e1000e_set_ims,
3133     [ICR]      = e1000e_set_icr,
3134     [EECD]     = e1000e_set_eecd,
3135     [RCTL]     = e1000e_set_rx_control,
3136     [CTRL]     = e1000e_set_ctrl,
3137     [RDTR]     = e1000e_set_rdtr,
3138     [RADV]     = e1000e_set_16bit,
3139     [TADV]     = e1000e_set_16bit,
3140     [ITR]      = e1000e_set_itr,
3141     [EERD]     = e1000e_set_eerd,
3142     [GCR]      = e1000e_set_gcr,
3143     [PSRCTL]   = e1000e_set_psrctl,
3144     [RXCSUM]   = e1000e_set_rxcsum,
3145     [RAID]     = e1000e_set_16bit,
3146     [RSRPD]    = e1000e_set_12bit,
3147     [TIDV]     = e1000e_set_tidv,
3148     [TDLEN1]   = e1000e_set_dlen,
3149     [TDLEN]    = e1000e_set_dlen,
3150     [RDLEN0]   = e1000e_set_dlen,
3151     [RDLEN1]   = e1000e_set_dlen,
3152     [TDBAL]    = e1000e_set_dbal,
3153     [TDBAL1]   = e1000e_set_dbal,
3154     [RDBAL0]   = e1000e_set_dbal,
3155     [RDBAL1]   = e1000e_set_dbal,
3156     [RDH1]     = e1000e_set_16bit,
3157     [RDT1]     = e1000e_set_rdt,
3158     [STATUS]   = e1000e_set_status,
3159     [PBACLR]   = e1000e_set_pbaclr,
3160     [CTRL_EXT] = e1000e_set_ctrlext,
3161     [FCAH]     = e1000e_set_16bit,
3162     [FCT]      = e1000e_set_16bit,
3163     [FCTTV]    = e1000e_set_16bit,
3164     [FCRTV]    = e1000e_set_16bit,
3165     [FCRTH]    = e1000e_set_fcrth,
3166     [FCRTL]    = e1000e_set_fcrtl,
3167     [VET]      = e1000e_set_vet,
3168     [RXDCTL]   = e1000e_set_rxdctl,
3169     [FLASHT]   = e1000e_set_16bit,
3170     [EEWR]     = e1000e_set_eewr,
3171     [CTRL_DUP] = e1000e_set_ctrl,
3172     [RFCTL]    = e1000e_set_rfctl,
3173     [RA + 1]   = e1000e_mac_setmacaddr,
3174 
3175     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3176     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3177     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3178     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3179     [MTA ... MTA + 127]      = e1000e_mac_writereg,
3180     [VFTA ... VFTA + 127]    = e1000e_mac_writereg,
3181     [FFMT ... FFMT + 254]    = e1000e_mac_writereg,
3182     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3183     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3184     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3185     [FFLT ... FFLT + 10]     = e1000e_mac_writereg,
3186     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3187     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3188     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3189     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3190     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3191 };
3192 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3193 
3194 enum { MAC_ACCESS_PARTIAL = 1 };
3195 
3196 /* The array below combines alias offsets of the index values for the
3197  * MAC registers that have aliases, with the indication of not fully
3198  * implemented registers (lowest bit). This combination is possible
3199  * because all of the offsets are even. */
3200 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3201     /* Alias index offsets */
3202     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3203     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3204     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3205     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3206     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3207     [RA_A ... RA_A + 31]      = 0x14f0,
3208     [VFTA_A ... VFTA_A + 127] = 0x1400,
3209     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3210     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3211     /* Access options */
3212     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3213     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3214     [RDFPC] = MAC_ACCESS_PARTIAL,
3215     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3216     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3217     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3218     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3219     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3220     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3221     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3222     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3223     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3224     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3225 };
3226 
3227 void
3228 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3229 {
3230     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3231 
3232     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3233         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3234             trace_e1000e_wrn_regs_write_trivial(index << 2);
3235         }
3236         trace_e1000e_core_write(index << 2, size, val);
3237         e1000e_macreg_writeops[index](core, index, val);
3238     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3239         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3240     } else {
3241         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3242     }
3243 }
3244 
3245 uint64_t
3246 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3247 {
3248     uint64_t val;
3249     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3250 
3251     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3252         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3253             trace_e1000e_wrn_regs_read_trivial(index << 2);
3254         }
3255         val = e1000e_macreg_readops[index](core, index);
3256         trace_e1000e_core_read(index << 2, size, val);
3257         return val;
3258     } else {
3259         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3260     }
3261     return 0;
3262 }
3263 
3264 static inline void
3265 e1000e_autoneg_pause(E1000ECore *core)
3266 {
3267     timer_del(core->autoneg_timer);
3268 }
3269 
3270 static void
3271 e1000e_autoneg_resume(E1000ECore *core)
3272 {
3273     if (e1000e_have_autoneg(core) &&
3274         !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3275         qemu_get_queue(core->owner_nic)->link_down = false;
3276         timer_mod(core->autoneg_timer,
3277                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3278     }
3279 }
3280 
3281 static void
3282 e1000e_vm_state_change(void *opaque, int running, RunState state)
3283 {
3284     E1000ECore *core = opaque;
3285 
3286     if (running) {
3287         trace_e1000e_vm_state_running();
3288         e1000e_intrmgr_resume(core);
3289         e1000e_autoneg_resume(core);
3290     } else {
3291         trace_e1000e_vm_state_stopped();
3292         e1000e_autoneg_pause(core);
3293         e1000e_intrmgr_pause(core);
3294     }
3295 }
3296 
3297 void
3298 e1000e_core_pci_realize(E1000ECore     *core,
3299                         const uint16_t *eeprom_templ,
3300                         uint32_t        eeprom_size,
3301                         const uint8_t  *macaddr)
3302 {
3303     int i;
3304 
3305     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3306                                        e1000e_autoneg_timer, core);
3307     e1000e_intrmgr_pci_realize(core);
3308 
3309     core->vmstate =
3310         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3311 
3312     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3313         net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3314                         E1000E_MAX_TX_FRAGS, core->has_vnet);
3315     }
3316 
3317     net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3318 
3319     e1000x_core_prepare_eeprom(core->eeprom,
3320                                eeprom_templ,
3321                                eeprom_size,
3322                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3323                                macaddr);
3324     e1000e_update_rx_offloads(core);
3325 }
3326 
3327 void
3328 e1000e_core_pci_uninit(E1000ECore *core)
3329 {
3330     int i;
3331 
3332     timer_del(core->autoneg_timer);
3333     timer_free(core->autoneg_timer);
3334 
3335     e1000e_intrmgr_pci_unint(core);
3336 
3337     qemu_del_vm_change_state_handler(core->vmstate);
3338 
3339     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3340         net_tx_pkt_reset(core->tx[i].tx_pkt);
3341         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3342     }
3343 
3344     net_rx_pkt_uninit(core->rx_pkt);
3345 }
3346 
3347 static const uint16_t
3348 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3349     [0] = {
3350         [PHY_CTRL] =   MII_CR_SPEED_SELECT_MSB  |
3351                        MII_CR_FULL_DUPLEX       |
3352                        MII_CR_AUTO_NEG_EN,
3353 
3354         [PHY_STATUS] = MII_SR_EXTENDED_CAPS     |
3355                        MII_SR_LINK_STATUS       |
3356                        MII_SR_AUTONEG_CAPS      |
3357                        MII_SR_PREAMBLE_SUPPRESS |
3358                        MII_SR_EXTENDED_STATUS   |
3359                        MII_SR_10T_HD_CAPS       |
3360                        MII_SR_10T_FD_CAPS       |
3361                        MII_SR_100X_HD_CAPS      |
3362                        MII_SR_100X_FD_CAPS,
3363 
3364         [PHY_ID1]               = 0x141,
3365         [PHY_ID2]               = E1000_PHY_ID2_82574x,
3366         [PHY_AUTONEG_ADV]       = 0xde1,
3367         [PHY_LP_ABILITY]        = 0x7e0,
3368         [PHY_AUTONEG_EXP]       = BIT(2),
3369         [PHY_NEXT_PAGE_TX]      = BIT(0) | BIT(13),
3370         [PHY_1000T_CTRL]        = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3371         [PHY_1000T_STATUS]      = 0x3c00,
3372         [PHY_EXT_STATUS]        = BIT(12) | BIT(13),
3373 
3374         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3375                                   BIT(12) | BIT(13),
3376         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3377     },
3378     [2] = {
3379         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3380         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3381     },
3382     [3] = {
3383         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3384     }
3385 };
3386 
3387 static const uint32_t e1000e_mac_reg_init[] = {
3388     [PBA]           =     0x00140014,
3389     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3390     [EXTCNF_CTRL]   = BIT(3),
3391     [EEMNGCTL]      = BIT(31),
3392     [FLASHT]        = 0x2,
3393     [FLSWCTL]       = BIT(30) | BIT(31),
3394     [FLOL]          = BIT(0),
3395     [RXDCTL]        = BIT(16),
3396     [RXDCTL1]       = BIT(16),
3397     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3398     [RXCFGL]        = 0x88F7,
3399     [RXUDP]         = 0x319,
3400     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3401                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3402                       E1000_CTRL_ADVD3WUC,
3403     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3404     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3405                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3406                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3407     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3408     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3409     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3410     [EERD]          = E1000_EERW_DONE,
3411     [EEWR]          = E1000_EERW_DONE,
3412     [GCR]           = E1000_L0S_ADJUST |
3413                       E1000_L1_ENTRY_LATENCY_MSB |
3414                       E1000_L1_ENTRY_LATENCY_LSB,
3415     [TDFH]          = 0x600,
3416     [TDFT]          = 0x600,
3417     [TDFHS]         = 0x600,
3418     [TDFTS]         = 0x600,
3419     [POEMB]         = 0x30D,
3420     [PBS]           = 0x028,
3421     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3422     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3423     [SWSM]          = 1,
3424     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3425     [ITR]           = E1000E_MIN_XITR,
3426     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3427 };
3428 
3429 void
3430 e1000e_core_reset(E1000ECore *core)
3431 {
3432     int i;
3433 
3434     timer_del(core->autoneg_timer);
3435 
3436     e1000e_intrmgr_reset(core);
3437 
3438     memset(core->phy, 0, sizeof core->phy);
3439     memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3440     memset(core->mac, 0, sizeof core->mac);
3441     memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3442 
3443     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3444 
3445     if (qemu_get_queue(core->owner_nic)->link_down) {
3446         e1000e_link_down(core);
3447     }
3448 
3449     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3450 
3451     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3452         net_tx_pkt_reset(core->tx[i].tx_pkt);
3453         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3454         core->tx[i].skip_cp = false;
3455     }
3456 }
3457 
3458 void e1000e_core_pre_save(E1000ECore *core)
3459 {
3460     int i;
3461     NetClientState *nc = qemu_get_queue(core->owner_nic);
3462 
3463     /*
3464     * If link is down and auto-negotiation is supported and ongoing,
3465     * complete auto-negotiation immediately. This allows us to look
3466     * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3467     */
3468     if (nc->link_down && e1000e_have_autoneg(core)) {
3469         core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3470         e1000e_update_flowctl_status(core);
3471     }
3472 
3473     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3474         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3475             core->tx[i].skip_cp = true;
3476         }
3477     }
3478 }
3479 
3480 int
3481 e1000e_core_post_load(E1000ECore *core)
3482 {
3483     NetClientState *nc = qemu_get_queue(core->owner_nic);
3484 
3485     /* nc.link_down can't be migrated, so infer link_down according
3486      * to link status bit in core.mac[STATUS].
3487      */
3488     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3489 
3490     return 0;
3491 }
3492