xref: /openbmc/qemu/hw/net/e1000e_core.c (revision 0b29090a)
1 /*
2  * Core code for QEMU e1000e emulation
3  *
4  * Software developer's manuals:
5  * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6  *
7  * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8  * Developed by Daynix Computing LTD (http://www.daynix.com)
9  *
10  * Authors:
11  * Dmitry Fleytman <dmitry@daynix.com>
12  * Leonid Bloch <leonid@daynix.com>
13  * Yan Vugenfirer <yan@daynix.com>
14  *
15  * Based on work done by:
16  * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17  * Copyright (c) 2008 Qumranet
18  * Based on work done by:
19  * Copyright (c) 2007 Dan Aloni
20  * Copyright (c) 2004 Antony T Curtis
21  *
22  * This library is free software; you can redistribute it and/or
23  * modify it under the terms of the GNU Lesser General Public
24  * License as published by the Free Software Foundation; either
25  * version 2.1 of the License, or (at your option) any later version.
26  *
27  * This library is distributed in the hope that it will be useful,
28  * but WITHOUT ANY WARRANTY; without even the implied warranty of
29  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30  * Lesser General Public License for more details.
31  *
32  * You should have received a copy of the GNU Lesser General Public
33  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
34  */
35 
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/net/mii.h"
41 #include "hw/pci/msi.h"
42 #include "hw/pci/msix.h"
43 #include "sysemu/runstate.h"
44 
45 #include "net_tx_pkt.h"
46 #include "net_rx_pkt.h"
47 
48 #include "e1000_common.h"
49 #include "e1000x_common.h"
50 #include "e1000e_core.h"
51 
52 #include "trace.h"
53 
54 /* No more then 7813 interrupts per second according to spec 10.2.4.2 */
55 #define E1000E_MIN_XITR     (500)
56 
57 #define E1000E_MAX_TX_FRAGS (64)
58 
59 union e1000_rx_desc_union {
60     struct e1000_rx_desc legacy;
61     union e1000_rx_desc_extended extended;
62     union e1000_rx_desc_packet_split packet_split;
63 };
64 
65 static ssize_t
66 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
67                         bool has_vnet);
68 
69 static inline void
70 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
71 
72 static void e1000e_reset(E1000ECore *core, bool sw);
73 
74 static inline void
75 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
76 {
77     if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
78         trace_e1000e_wrn_no_ts_support();
79     }
80 }
81 
82 static inline void
83 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
84 {
85     if (cmd_and_length & E1000_TXD_CMD_SNAP) {
86         trace_e1000e_wrn_no_snap_support();
87     }
88 }
89 
90 static inline void
91 e1000e_raise_legacy_irq(E1000ECore *core)
92 {
93     trace_e1000e_irq_legacy_notify(true);
94     e1000x_inc_reg_if_not_full(core->mac, IAC);
95     pci_set_irq(core->owner, 1);
96 }
97 
98 static inline void
99 e1000e_lower_legacy_irq(E1000ECore *core)
100 {
101     trace_e1000e_irq_legacy_notify(false);
102     pci_set_irq(core->owner, 0);
103 }
104 
105 static inline void
106 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
107 {
108     int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
109                                  timer->delay_resolution_ns;
110 
111     trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
112 
113     timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
114 
115     timer->running = true;
116 }
117 
118 static void
119 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
120 {
121     if (timer->running) {
122         e1000e_intrmgr_rearm_timer(timer);
123     }
124 }
125 
126 static void
127 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
128 {
129     if (timer->running) {
130         timer_del(timer->timer);
131     }
132 }
133 
134 static inline void
135 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
136 {
137     if (timer->running) {
138         timer_del(timer->timer);
139         timer->running = false;
140     }
141 }
142 
143 static inline void
144 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
145 {
146     trace_e1000e_irq_fire_delayed_interrupts();
147     e1000e_set_interrupt_cause(core, 0);
148 }
149 
150 static void
151 e1000e_intrmgr_on_timer(void *opaque)
152 {
153     E1000IntrDelayTimer *timer = opaque;
154 
155     trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
156 
157     timer->running = false;
158     e1000e_intrmgr_fire_delayed_interrupts(timer->core);
159 }
160 
161 static void
162 e1000e_intrmgr_on_throttling_timer(void *opaque)
163 {
164     E1000IntrDelayTimer *timer = opaque;
165 
166     timer->running = false;
167 
168     if (msi_enabled(timer->core->owner)) {
169         trace_e1000e_irq_msi_notify_postponed();
170         /* Clear msi_causes_pending to fire MSI eventually */
171         timer->core->msi_causes_pending = 0;
172         e1000e_set_interrupt_cause(timer->core, 0);
173     } else {
174         trace_e1000e_irq_legacy_notify_postponed();
175         e1000e_set_interrupt_cause(timer->core, 0);
176     }
177 }
178 
179 static void
180 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
181 {
182     E1000IntrDelayTimer *timer = opaque;
183     int idx = timer - &timer->core->eitr[0];
184 
185     timer->running = false;
186 
187     trace_e1000e_irq_msix_notify_postponed_vec(idx);
188     msix_notify(timer->core->owner, idx);
189 }
190 
191 static void
192 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
193 {
194     int i;
195 
196     core->radv.delay_reg = RADV;
197     core->rdtr.delay_reg = RDTR;
198     core->raid.delay_reg = RAID;
199     core->tadv.delay_reg = TADV;
200     core->tidv.delay_reg = TIDV;
201 
202     core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203     core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
204     core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
205     core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
206     core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
207 
208     core->radv.core = core;
209     core->rdtr.core = core;
210     core->raid.core = core;
211     core->tadv.core = core;
212     core->tidv.core = core;
213 
214     core->itr.core = core;
215     core->itr.delay_reg = ITR;
216     core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
217 
218     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
219         core->eitr[i].core = core;
220         core->eitr[i].delay_reg = EITR + i;
221         core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
222     }
223 
224     if (!create) {
225         return;
226     }
227 
228     core->radv.timer =
229         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
230     core->rdtr.timer =
231         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
232     core->raid.timer =
233         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
234 
235     core->tadv.timer =
236         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
237     core->tidv.timer =
238         timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
239 
240     core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
241                                    e1000e_intrmgr_on_throttling_timer,
242                                    &core->itr);
243 
244     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
245         core->eitr[i].timer =
246             timer_new_ns(QEMU_CLOCK_VIRTUAL,
247                          e1000e_intrmgr_on_msix_throttling_timer,
248                          &core->eitr[i]);
249     }
250 }
251 
252 static inline void
253 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
254 {
255     e1000e_intrmgr_stop_timer(&core->radv);
256     e1000e_intrmgr_stop_timer(&core->rdtr);
257     e1000e_intrmgr_stop_timer(&core->raid);
258     e1000e_intrmgr_stop_timer(&core->tidv);
259     e1000e_intrmgr_stop_timer(&core->tadv);
260 }
261 
262 static bool
263 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
264 {
265     uint32_t delayable_causes;
266     uint32_t rdtr = core->mac[RDTR];
267     uint32_t radv = core->mac[RADV];
268     uint32_t raid = core->mac[RAID];
269 
270     if (msix_enabled(core->owner)) {
271         return false;
272     }
273 
274     delayable_causes = E1000_ICR_RXQ0 |
275                        E1000_ICR_RXQ1 |
276                        E1000_ICR_RXT0;
277 
278     if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
279         delayable_causes |= E1000_ICR_ACK;
280     }
281 
282     /* Clean up all causes that may be delayed */
283     core->delayed_causes |= *causes & delayable_causes;
284     *causes &= ~delayable_causes;
285 
286     /*
287      * Check if delayed RX interrupts disabled by client
288      * or if there are causes that cannot be delayed
289      */
290     if ((rdtr == 0) || (*causes != 0)) {
291         return false;
292     }
293 
294     /*
295      * Check if delayed RX ACK interrupts disabled by client
296      * and there is an ACK packet received
297      */
298     if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
299         return false;
300     }
301 
302     /* All causes delayed */
303     e1000e_intrmgr_rearm_timer(&core->rdtr);
304 
305     if (!core->radv.running && (radv != 0)) {
306         e1000e_intrmgr_rearm_timer(&core->radv);
307     }
308 
309     if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
310         e1000e_intrmgr_rearm_timer(&core->raid);
311     }
312 
313     return true;
314 }
315 
316 static bool
317 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
318 {
319     static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
320                                              E1000_ICR_TXQ1 |
321                                              E1000_ICR_TXQE |
322                                              E1000_ICR_TXDW;
323 
324     if (msix_enabled(core->owner)) {
325         return false;
326     }
327 
328     /* Clean up all causes that may be delayed */
329     core->delayed_causes |= *causes & delayable_causes;
330     *causes &= ~delayable_causes;
331 
332     /* If there are causes that cannot be delayed */
333     if (*causes != 0) {
334         return false;
335     }
336 
337     /* All causes delayed */
338     e1000e_intrmgr_rearm_timer(&core->tidv);
339 
340     if (!core->tadv.running && (core->mac[TADV] != 0)) {
341         e1000e_intrmgr_rearm_timer(&core->tadv);
342     }
343 
344     return true;
345 }
346 
347 static uint32_t
348 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
349 {
350     uint32_t res;
351 
352     if (msix_enabled(core->owner)) {
353         assert(core->delayed_causes == 0);
354         return 0;
355     }
356 
357     res = core->delayed_causes;
358     core->delayed_causes = 0;
359 
360     e1000e_intrmgr_stop_delay_timers(core);
361 
362     return res;
363 }
364 
365 static void
366 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
367 {
368     int i;
369     uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
370 
371     trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
372     core->mac[ICR] |= val;
373 
374     if (core->itr.running) {
375         timer_del(core->itr.timer);
376         e1000e_intrmgr_on_throttling_timer(&core->itr);
377     }
378 
379     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
380         if (core->eitr[i].running) {
381             timer_del(core->eitr[i].timer);
382             e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
383         }
384     }
385 }
386 
387 static void
388 e1000e_intrmgr_resume(E1000ECore *core)
389 {
390     int i;
391 
392     e1000e_intmgr_timer_resume(&core->radv);
393     e1000e_intmgr_timer_resume(&core->rdtr);
394     e1000e_intmgr_timer_resume(&core->raid);
395     e1000e_intmgr_timer_resume(&core->tidv);
396     e1000e_intmgr_timer_resume(&core->tadv);
397 
398     e1000e_intmgr_timer_resume(&core->itr);
399 
400     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
401         e1000e_intmgr_timer_resume(&core->eitr[i]);
402     }
403 }
404 
405 static void
406 e1000e_intrmgr_pause(E1000ECore *core)
407 {
408     int i;
409 
410     e1000e_intmgr_timer_pause(&core->radv);
411     e1000e_intmgr_timer_pause(&core->rdtr);
412     e1000e_intmgr_timer_pause(&core->raid);
413     e1000e_intmgr_timer_pause(&core->tidv);
414     e1000e_intmgr_timer_pause(&core->tadv);
415 
416     e1000e_intmgr_timer_pause(&core->itr);
417 
418     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
419         e1000e_intmgr_timer_pause(&core->eitr[i]);
420     }
421 }
422 
423 static void
424 e1000e_intrmgr_reset(E1000ECore *core)
425 {
426     int i;
427 
428     core->delayed_causes = 0;
429 
430     e1000e_intrmgr_stop_delay_timers(core);
431 
432     e1000e_intrmgr_stop_timer(&core->itr);
433 
434     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
435         e1000e_intrmgr_stop_timer(&core->eitr[i]);
436     }
437 }
438 
439 static void
440 e1000e_intrmgr_pci_unint(E1000ECore *core)
441 {
442     int i;
443 
444     timer_free(core->radv.timer);
445     timer_free(core->rdtr.timer);
446     timer_free(core->raid.timer);
447 
448     timer_free(core->tadv.timer);
449     timer_free(core->tidv.timer);
450 
451     timer_free(core->itr.timer);
452 
453     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
454         timer_free(core->eitr[i].timer);
455     }
456 }
457 
458 static void
459 e1000e_intrmgr_pci_realize(E1000ECore *core)
460 {
461     e1000e_intrmgr_initialize_all_timers(core, true);
462 }
463 
464 static inline bool
465 e1000e_rx_csum_enabled(E1000ECore *core)
466 {
467     return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
468 }
469 
470 static inline bool
471 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
472 {
473     return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
474 }
475 
476 static inline bool
477 e1000e_rx_use_ps_descriptor(E1000ECore *core)
478 {
479     return !e1000e_rx_use_legacy_descriptor(core) &&
480            (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
481 }
482 
483 static inline bool
484 e1000e_rss_enabled(E1000ECore *core)
485 {
486     return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
487            !e1000e_rx_csum_enabled(core) &&
488            !e1000e_rx_use_legacy_descriptor(core);
489 }
490 
491 typedef struct E1000E_RSSInfo_st {
492     bool enabled;
493     uint32_t hash;
494     uint32_t queue;
495     uint32_t type;
496 } E1000E_RSSInfo;
497 
498 static uint32_t
499 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
500 {
501     bool hasip4, hasip6;
502     EthL4HdrProto l4hdr_proto;
503 
504     assert(e1000e_rss_enabled(core));
505 
506     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
507 
508     if (hasip4) {
509         trace_e1000e_rx_rss_ip4(l4hdr_proto, core->mac[MRQC],
510                                 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511                                 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
512 
513         if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
514             E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
515             return E1000_MRQ_RSS_TYPE_IPV4TCP;
516         }
517 
518         if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
519             return E1000_MRQ_RSS_TYPE_IPV4;
520         }
521     } else if (hasip6) {
522         eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
523 
524         bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
525         bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
526 
527         /*
528          * Following two traces must not be combined because resulting
529          * event will have 11 arguments totally and some trace backends
530          * (at least "ust") have limitation of maximum 10 arguments per
531          * event. Events with more arguments fail to compile for
532          * backends like these.
533          */
534         trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
535         trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, l4hdr_proto,
536                                 ip6info->has_ext_hdrs,
537                                 ip6info->rss_ex_dst_valid,
538                                 ip6info->rss_ex_src_valid,
539                                 core->mac[MRQC],
540                                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
541                                 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
542                                 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
543 
544         if ((!ex_dis || !ip6info->has_ext_hdrs) &&
545             (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
546                               ip6info->rss_ex_src_valid))) {
547 
548             if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP &&
549                 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
550                 return E1000_MRQ_RSS_TYPE_IPV6TCP;
551             }
552 
553             if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
554                 return E1000_MRQ_RSS_TYPE_IPV6EX;
555             }
556 
557         }
558 
559         if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
560             return E1000_MRQ_RSS_TYPE_IPV6;
561         }
562 
563     }
564 
565     return E1000_MRQ_RSS_TYPE_NONE;
566 }
567 
568 static uint32_t
569 e1000e_rss_calc_hash(E1000ECore *core,
570                      struct NetRxPkt *pkt,
571                      E1000E_RSSInfo *info)
572 {
573     NetRxPktRssType type;
574 
575     assert(e1000e_rss_enabled(core));
576 
577     switch (info->type) {
578     case E1000_MRQ_RSS_TYPE_IPV4:
579         type = NetPktRssIpV4;
580         break;
581     case E1000_MRQ_RSS_TYPE_IPV4TCP:
582         type = NetPktRssIpV4Tcp;
583         break;
584     case E1000_MRQ_RSS_TYPE_IPV6TCP:
585         type = NetPktRssIpV6TcpEx;
586         break;
587     case E1000_MRQ_RSS_TYPE_IPV6:
588         type = NetPktRssIpV6;
589         break;
590     case E1000_MRQ_RSS_TYPE_IPV6EX:
591         type = NetPktRssIpV6Ex;
592         break;
593     default:
594         assert(false);
595         return 0;
596     }
597 
598     return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
599 }
600 
601 static void
602 e1000e_rss_parse_packet(E1000ECore *core,
603                         struct NetRxPkt *pkt,
604                         E1000E_RSSInfo *info)
605 {
606     trace_e1000e_rx_rss_started();
607 
608     if (!e1000e_rss_enabled(core)) {
609         info->enabled = false;
610         info->hash = 0;
611         info->queue = 0;
612         info->type = 0;
613         trace_e1000e_rx_rss_disabled();
614         return;
615     }
616 
617     info->enabled = true;
618 
619     info->type = e1000e_rss_get_hash_type(core, pkt);
620 
621     trace_e1000e_rx_rss_type(info->type);
622 
623     if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
624         info->hash = 0;
625         info->queue = 0;
626         return;
627     }
628 
629     info->hash = e1000e_rss_calc_hash(core, pkt, info);
630     info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
631 }
632 
633 static bool
634 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
635 {
636     if (tx->props.tse && tx->cptse) {
637         if (!net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss)) {
638             return false;
639         }
640 
641         net_tx_pkt_update_ip_checksums(tx->tx_pkt);
642         e1000x_inc_reg_if_not_full(core->mac, TSCTC);
643         return true;
644     }
645 
646     if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
647         if (!net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0)) {
648             return false;
649         }
650     }
651 
652     if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
653         net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
654     }
655 
656     return true;
657 }
658 
659 static void e1000e_tx_pkt_callback(void *core,
660                                    const struct iovec *iov,
661                                    int iovcnt,
662                                    const struct iovec *virt_iov,
663                                    int virt_iovcnt)
664 {
665     e1000e_receive_internal(core, virt_iov, virt_iovcnt, true);
666 }
667 
668 static bool
669 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
670 {
671     int target_queue = MIN(core->max_queue_num, queue_index);
672     NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
673 
674     if (!e1000e_setup_tx_offloads(core, tx)) {
675         return false;
676     }
677 
678     net_tx_pkt_dump(tx->tx_pkt);
679 
680     if ((core->phy[0][MII_BMCR] & MII_BMCR_LOOPBACK) ||
681         ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
682         return net_tx_pkt_send_custom(tx->tx_pkt, false,
683                                       e1000e_tx_pkt_callback, core);
684     } else {
685         return net_tx_pkt_send(tx->tx_pkt, queue);
686     }
687 }
688 
689 static void
690 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
691 {
692     static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
693                                     PTC1023, PTC1522 };
694 
695     size_t tot_len = net_tx_pkt_get_total_len(tx_pkt) + 4;
696 
697     e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
698     e1000x_inc_reg_if_not_full(core->mac, TPT);
699     e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
700 
701     switch (net_tx_pkt_get_packet_type(tx_pkt)) {
702     case ETH_PKT_BCAST:
703         e1000x_inc_reg_if_not_full(core->mac, BPTC);
704         break;
705     case ETH_PKT_MCAST:
706         e1000x_inc_reg_if_not_full(core->mac, MPTC);
707         break;
708     case ETH_PKT_UCAST:
709         break;
710     default:
711         g_assert_not_reached();
712     }
713 
714     core->mac[GPTC] = core->mac[TPT];
715     core->mac[GOTCL] = core->mac[TOTL];
716     core->mac[GOTCH] = core->mac[TOTH];
717 }
718 
719 static void
720 e1000e_process_tx_desc(E1000ECore *core,
721                        struct e1000e_tx *tx,
722                        struct e1000_tx_desc *dp,
723                        int queue_index)
724 {
725     uint32_t txd_lower = le32_to_cpu(dp->lower.data);
726     uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
727     unsigned int split_size = txd_lower & 0xffff;
728     uint64_t addr;
729     struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
730     bool eop = txd_lower & E1000_TXD_CMD_EOP;
731 
732     if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
733         e1000x_read_tx_ctx_descr(xp, &tx->props);
734         e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
735         return;
736     } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
737         /* data descriptor */
738         tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
739         tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
740         e1000e_process_ts_option(core, dp);
741     } else {
742         /* legacy descriptor */
743         e1000e_process_ts_option(core, dp);
744         tx->cptse = 0;
745     }
746 
747     addr = le64_to_cpu(dp->buffer_addr);
748 
749     if (!tx->skip_cp) {
750         if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
751             tx->skip_cp = true;
752         }
753     }
754 
755     if (eop) {
756         if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
757             if (e1000x_vlan_enabled(core->mac) &&
758                 e1000x_is_vlan_txd(txd_lower)) {
759                 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
760                     le16_to_cpu(dp->upper.fields.special), core->mac[VET]);
761             }
762             if (e1000e_tx_pkt_send(core, tx, queue_index)) {
763                 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
764             }
765         }
766 
767         tx->skip_cp = false;
768         net_tx_pkt_reset(tx->tx_pkt);
769 
770         tx->sum_needed = 0;
771         tx->cptse = 0;
772     }
773 }
774 
775 static inline uint32_t
776 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
777 {
778     if (!msix_enabled(core->owner)) {
779         return E1000_ICR_TXDW;
780     }
781 
782     return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
783 }
784 
785 static inline uint32_t
786 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
787                              bool min_threshold_hit)
788 {
789     if (!msix_enabled(core->owner)) {
790         return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
791     }
792 
793     return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
794 }
795 
796 static uint32_t
797 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
798                         struct e1000_tx_desc *dp, bool *ide, int queue_idx)
799 {
800     uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
801 
802     if (!(txd_lower & E1000_TXD_CMD_RS) &&
803         !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
804         return 0;
805     }
806 
807     *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
808 
809     txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
810 
811     dp->upper.data = cpu_to_le32(txd_upper);
812     pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
813                   &dp->upper, sizeof(dp->upper));
814     return e1000e_tx_wb_interrupt_cause(core, queue_idx);
815 }
816 
817 typedef struct E1000E_RingInfo_st {
818     int dbah;
819     int dbal;
820     int dlen;
821     int dh;
822     int dt;
823     int idx;
824 } E1000E_RingInfo;
825 
826 static inline bool
827 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
828 {
829     return core->mac[r->dh] == core->mac[r->dt] ||
830                 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
831 }
832 
833 static inline uint64_t
834 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
835 {
836     uint64_t bah = core->mac[r->dbah];
837     uint64_t bal = core->mac[r->dbal];
838 
839     return (bah << 32) + bal;
840 }
841 
842 static inline uint64_t
843 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
844 {
845     return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
846 }
847 
848 static inline void
849 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
850 {
851     core->mac[r->dh] += count;
852 
853     if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
854         core->mac[r->dh] = 0;
855     }
856 }
857 
858 static inline uint32_t
859 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
860 {
861     trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
862                                  core->mac[r->dh],  core->mac[r->dt]);
863 
864     if (core->mac[r->dh] <= core->mac[r->dt]) {
865         return core->mac[r->dt] - core->mac[r->dh];
866     }
867 
868     if (core->mac[r->dh] > core->mac[r->dt]) {
869         return core->mac[r->dlen] / E1000_RING_DESC_LEN +
870                core->mac[r->dt] - core->mac[r->dh];
871     }
872 
873     g_assert_not_reached();
874     return 0;
875 }
876 
877 static inline bool
878 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
879 {
880     return core->mac[r->dlen] > 0;
881 }
882 
883 static inline uint32_t
884 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
885 {
886     return core->mac[r->dlen];
887 }
888 
889 typedef struct E1000E_TxRing_st {
890     const E1000E_RingInfo *i;
891     struct e1000e_tx *tx;
892 } E1000E_TxRing;
893 
894 static inline int
895 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
896 {
897     return (reg_idx - base_reg_idx) / (0x100 >> 2);
898 }
899 
900 static inline void
901 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
902 {
903     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
904         { TDBAH,  TDBAL,  TDLEN,  TDH,  TDT, 0 },
905         { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
906     };
907 
908     assert(idx < ARRAY_SIZE(i));
909 
910     txr->i     = &i[idx];
911     txr->tx    = &core->tx[idx];
912 }
913 
914 typedef struct E1000E_RxRing_st {
915     const E1000E_RingInfo *i;
916 } E1000E_RxRing;
917 
918 static inline void
919 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
920 {
921     static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
922         { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
923         { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
924     };
925 
926     assert(idx < ARRAY_SIZE(i));
927 
928     rxr->i      = &i[idx];
929 }
930 
931 static void
932 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
933 {
934     dma_addr_t base;
935     struct e1000_tx_desc desc;
936     bool ide = false;
937     const E1000E_RingInfo *txi = txr->i;
938     uint32_t cause = E1000_ICS_TXQE;
939 
940     if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
941         trace_e1000e_tx_disabled();
942         return;
943     }
944 
945     while (!e1000e_ring_empty(core, txi)) {
946         base = e1000e_ring_head_descr(core, txi);
947 
948         pci_dma_read(core->owner, base, &desc, sizeof(desc));
949 
950         trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
951                               desc.lower.data, desc.upper.data);
952 
953         e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
954         cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
955 
956         e1000e_ring_advance(core, txi, 1);
957     }
958 
959     if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
960         e1000e_set_interrupt_cause(core, cause);
961     }
962 }
963 
964 static bool
965 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
966                   size_t total_size)
967 {
968     uint32_t bufs = e1000e_ring_free_descr_num(core, r);
969 
970     trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
971                                 core->rx_desc_buf_size);
972 
973     return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
974                          core->rx_desc_buf_size;
975 }
976 
977 void
978 e1000e_start_recv(E1000ECore *core)
979 {
980     int i;
981 
982     trace_e1000e_rx_start_recv();
983 
984     for (i = 0; i <= core->max_queue_num; i++) {
985         qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
986     }
987 }
988 
989 bool
990 e1000e_can_receive(E1000ECore *core)
991 {
992     int i;
993 
994     if (!e1000x_rx_ready(core->owner, core->mac)) {
995         return false;
996     }
997 
998     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
999         E1000E_RxRing rxr;
1000 
1001         e1000e_rx_ring_init(core, &rxr, i);
1002         if (e1000e_ring_enabled(core, rxr.i) &&
1003             e1000e_has_rxbufs(core, rxr.i, 1)) {
1004             trace_e1000e_rx_can_recv();
1005             return true;
1006         }
1007     }
1008 
1009     trace_e1000e_rx_can_recv_rings_full();
1010     return false;
1011 }
1012 
1013 ssize_t
1014 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
1015 {
1016     const struct iovec iov = {
1017         .iov_base = (uint8_t *)buf,
1018         .iov_len = size
1019     };
1020 
1021     return e1000e_receive_iov(core, &iov, 1);
1022 }
1023 
1024 static inline bool
1025 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1026 {
1027     return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1028 }
1029 
1030 static inline bool
1031 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1032 {
1033     return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1034 }
1035 
1036 static bool
1037 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1038 {
1039     uint32_t rctl = core->mac[RCTL];
1040 
1041     if (e1000x_is_vlan_packet(buf, core->mac[VET]) &&
1042         e1000x_vlan_rx_filter_enabled(core->mac)) {
1043         uint16_t vid = lduw_be_p(&PKT_GET_VLAN_HDR(buf)->h_tci);
1044         uint32_t vfta =
1045             ldl_le_p((uint32_t *)(core->mac + VFTA) +
1046                      ((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
1047         if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
1048             trace_e1000e_rx_flt_vlan_mismatch(vid);
1049             return false;
1050         } else {
1051             trace_e1000e_rx_flt_vlan_match(vid);
1052         }
1053     }
1054 
1055     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1056     case ETH_PKT_UCAST:
1057         if (rctl & E1000_RCTL_UPE) {
1058             return true; /* promiscuous ucast */
1059         }
1060         break;
1061 
1062     case ETH_PKT_BCAST:
1063         if (rctl & E1000_RCTL_BAM) {
1064             return true; /* broadcast enabled */
1065         }
1066         break;
1067 
1068     case ETH_PKT_MCAST:
1069         if (rctl & E1000_RCTL_MPE) {
1070             return true; /* promiscuous mcast */
1071         }
1072         break;
1073 
1074     default:
1075         g_assert_not_reached();
1076     }
1077 
1078     return e1000x_rx_group_filter(core->mac, buf);
1079 }
1080 
1081 static inline void
1082 e1000e_read_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1083                           hwaddr *buff_addr)
1084 {
1085     *buff_addr = le64_to_cpu(desc->buffer_addr);
1086 }
1087 
1088 static inline void
1089 e1000e_read_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1090                          hwaddr *buff_addr)
1091 {
1092     *buff_addr = le64_to_cpu(desc->read.buffer_addr);
1093 }
1094 
1095 static inline void
1096 e1000e_read_ps_rx_descr(E1000ECore *core,
1097                         union e1000_rx_desc_packet_split *desc,
1098                         hwaddr buff_addr[MAX_PS_BUFFERS])
1099 {
1100     int i;
1101 
1102     for (i = 0; i < MAX_PS_BUFFERS; i++) {
1103         buff_addr[i] = le64_to_cpu(desc->read.buffer_addr[i]);
1104     }
1105 
1106     trace_e1000e_rx_desc_ps_read(buff_addr[0], buff_addr[1],
1107                                  buff_addr[2], buff_addr[3]);
1108 }
1109 
1110 static inline void
1111 e1000e_read_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1112                      hwaddr buff_addr[MAX_PS_BUFFERS])
1113 {
1114     if (e1000e_rx_use_legacy_descriptor(core)) {
1115         e1000e_read_lgcy_rx_descr(core, &desc->legacy, &buff_addr[0]);
1116         buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1117     } else {
1118         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1119             e1000e_read_ps_rx_descr(core, &desc->packet_split, buff_addr);
1120         } else {
1121             e1000e_read_ext_rx_descr(core, &desc->extended, &buff_addr[0]);
1122             buff_addr[1] = buff_addr[2] = buff_addr[3] = 0;
1123         }
1124     }
1125 }
1126 
1127 static void
1128 e1000e_verify_csum_in_sw(E1000ECore *core,
1129                          struct NetRxPkt *pkt,
1130                          uint32_t *status_flags,
1131                          EthL4HdrProto l4hdr_proto)
1132 {
1133     bool csum_valid;
1134     uint32_t csum_error;
1135 
1136     if (e1000e_rx_l3_cso_enabled(core)) {
1137         if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1138             trace_e1000e_rx_metadata_l3_csum_validation_failed();
1139         } else {
1140             csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1141             *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1142         }
1143     } else {
1144         trace_e1000e_rx_metadata_l3_cso_disabled();
1145     }
1146 
1147     if (!e1000e_rx_l4_cso_enabled(core)) {
1148         trace_e1000e_rx_metadata_l4_cso_disabled();
1149         return;
1150     }
1151 
1152     if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1153         trace_e1000e_rx_metadata_l4_csum_validation_failed();
1154         return;
1155     }
1156 
1157     csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1158     *status_flags |= E1000_RXD_STAT_TCPCS | csum_error;
1159 
1160     if (l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1161         *status_flags |= E1000_RXD_STAT_UDPCS;
1162     }
1163 }
1164 
1165 static inline bool
1166 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1167 {
1168     if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1169         return false;
1170     }
1171 
1172     if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1173         return !net_rx_pkt_has_tcp_data(rx_pkt);
1174     }
1175 
1176     return true;
1177 }
1178 
1179 static void
1180 e1000e_build_rx_metadata(E1000ECore *core,
1181                          struct NetRxPkt *pkt,
1182                          bool is_eop,
1183                          const E1000E_RSSInfo *rss_info,
1184                          uint32_t *rss, uint32_t *mrq,
1185                          uint32_t *status_flags,
1186                          uint16_t *ip_id,
1187                          uint16_t *vlan_tag)
1188 {
1189     struct virtio_net_hdr *vhdr;
1190     bool hasip4, hasip6;
1191     EthL4HdrProto l4hdr_proto;
1192     uint32_t pkt_type;
1193 
1194     *status_flags = E1000_RXD_STAT_DD;
1195 
1196     /* No additional metadata needed for non-EOP descriptors */
1197     if (!is_eop) {
1198         goto func_exit;
1199     }
1200 
1201     *status_flags |= E1000_RXD_STAT_EOP;
1202 
1203     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1204     trace_e1000e_rx_metadata_protocols(hasip4, hasip6, l4hdr_proto);
1205 
1206     /* VLAN state */
1207     if (net_rx_pkt_is_vlan_stripped(pkt)) {
1208         *status_flags |= E1000_RXD_STAT_VP;
1209         *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1210         trace_e1000e_rx_metadata_vlan(*vlan_tag);
1211     }
1212 
1213     /* Packet parsing results */
1214     if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1215         if (rss_info->enabled) {
1216             *rss = cpu_to_le32(rss_info->hash);
1217             *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1218             trace_e1000e_rx_metadata_rss(*rss, *mrq);
1219         }
1220     } else if (hasip4) {
1221             *status_flags |= E1000_RXD_STAT_IPIDV;
1222             *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1223             trace_e1000e_rx_metadata_ip_id(*ip_id);
1224     }
1225 
1226     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP && e1000e_is_tcp_ack(core, pkt)) {
1227         *status_flags |= E1000_RXD_STAT_ACK;
1228         trace_e1000e_rx_metadata_ack();
1229     }
1230 
1231     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1232         trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1233         pkt_type = E1000_RXD_PKT_MAC;
1234     } else if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1235                l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1236         pkt_type = hasip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1237     } else if (hasip4 || hasip6) {
1238         pkt_type = hasip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1239     } else {
1240         pkt_type = E1000_RXD_PKT_MAC;
1241     }
1242 
1243     *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1244     trace_e1000e_rx_metadata_pkt_type(pkt_type);
1245 
1246     /* RX CSO information */
1247     if (hasip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1248         trace_e1000e_rx_metadata_ipv6_sum_disabled();
1249         goto func_exit;
1250     }
1251 
1252     vhdr = net_rx_pkt_get_vhdr(pkt);
1253 
1254     if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1255         !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1256         trace_e1000e_rx_metadata_virthdr_no_csum_info();
1257         e1000e_verify_csum_in_sw(core, pkt, status_flags, l4hdr_proto);
1258         goto func_exit;
1259     }
1260 
1261     if (e1000e_rx_l3_cso_enabled(core)) {
1262         *status_flags |= hasip4 ? E1000_RXD_STAT_IPCS : 0;
1263     } else {
1264         trace_e1000e_rx_metadata_l3_cso_disabled();
1265     }
1266 
1267     if (e1000e_rx_l4_cso_enabled(core)) {
1268         switch (l4hdr_proto) {
1269         case ETH_L4_HDR_PROTO_TCP:
1270             *status_flags |= E1000_RXD_STAT_TCPCS;
1271             break;
1272 
1273         case ETH_L4_HDR_PROTO_UDP:
1274             *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1275             break;
1276 
1277         default:
1278             break;
1279         }
1280     } else {
1281         trace_e1000e_rx_metadata_l4_cso_disabled();
1282     }
1283 
1284     trace_e1000e_rx_metadata_status_flags(*status_flags);
1285 
1286 func_exit:
1287     *status_flags = cpu_to_le32(*status_flags);
1288 }
1289 
1290 static inline void
1291 e1000e_write_lgcy_rx_descr(E1000ECore *core, struct e1000_rx_desc *desc,
1292                            struct NetRxPkt *pkt,
1293                            const E1000E_RSSInfo *rss_info,
1294                            uint16_t length)
1295 {
1296     uint32_t status_flags, rss, mrq;
1297     uint16_t ip_id;
1298 
1299     assert(!rss_info->enabled);
1300 
1301     desc->length = cpu_to_le16(length);
1302     desc->csum = 0;
1303 
1304     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1305                              rss_info,
1306                              &rss, &mrq,
1307                              &status_flags, &ip_id,
1308                              &desc->special);
1309     desc->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1310     desc->status = (uint8_t) le32_to_cpu(status_flags);
1311 }
1312 
1313 static inline void
1314 e1000e_write_ext_rx_descr(E1000ECore *core, union e1000_rx_desc_extended *desc,
1315                           struct NetRxPkt *pkt,
1316                           const E1000E_RSSInfo *rss_info,
1317                           uint16_t length)
1318 {
1319     memset(&desc->wb, 0, sizeof(desc->wb));
1320 
1321     desc->wb.upper.length = cpu_to_le16(length);
1322 
1323     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1324                              rss_info,
1325                              &desc->wb.lower.hi_dword.rss,
1326                              &desc->wb.lower.mrq,
1327                              &desc->wb.upper.status_error,
1328                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1329                              &desc->wb.upper.vlan);
1330 }
1331 
1332 static inline void
1333 e1000e_write_ps_rx_descr(E1000ECore *core,
1334                          union e1000_rx_desc_packet_split *desc,
1335                          struct NetRxPkt *pkt,
1336                          const E1000E_RSSInfo *rss_info,
1337                          size_t ps_hdr_len,
1338                          uint16_t(*written)[MAX_PS_BUFFERS])
1339 {
1340     int i;
1341 
1342     memset(&desc->wb, 0, sizeof(desc->wb));
1343 
1344     desc->wb.middle.length0 = cpu_to_le16((*written)[0]);
1345 
1346     for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1347         desc->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1348     }
1349 
1350     e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1351                              rss_info,
1352                              &desc->wb.lower.hi_dword.rss,
1353                              &desc->wb.lower.mrq,
1354                              &desc->wb.middle.status_error,
1355                              &desc->wb.lower.hi_dword.csum_ip.ip_id,
1356                              &desc->wb.middle.vlan);
1357 
1358     desc->wb.upper.header_status =
1359         cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1360 
1361     trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1362                                   (*written)[2], (*written)[3]);
1363 }
1364 
1365 static inline void
1366 e1000e_write_rx_descr(E1000ECore *core, union e1000_rx_desc_union *desc,
1367 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1368     size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1369 {
1370     if (e1000e_rx_use_legacy_descriptor(core)) {
1371         assert(ps_hdr_len == 0);
1372         e1000e_write_lgcy_rx_descr(core, &desc->legacy, pkt, rss_info,
1373                                    (*written)[0]);
1374     } else {
1375         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1376             e1000e_write_ps_rx_descr(core, &desc->packet_split, pkt, rss_info,
1377                                       ps_hdr_len, written);
1378         } else {
1379             assert(ps_hdr_len == 0);
1380             e1000e_write_ext_rx_descr(core, &desc->extended, pkt, rss_info,
1381                                        (*written)[0]);
1382         }
1383     }
1384 }
1385 
1386 static inline void
1387 e1000e_pci_dma_write_rx_desc(E1000ECore *core, dma_addr_t addr,
1388                              union e1000_rx_desc_union *desc, dma_addr_t len)
1389 {
1390     PCIDevice *dev = core->owner;
1391 
1392     if (e1000e_rx_use_legacy_descriptor(core)) {
1393         struct e1000_rx_desc *d = &desc->legacy;
1394         size_t offset = offsetof(struct e1000_rx_desc, status);
1395         uint8_t status = d->status;
1396 
1397         d->status &= ~E1000_RXD_STAT_DD;
1398         pci_dma_write(dev, addr, desc, len);
1399 
1400         if (status & E1000_RXD_STAT_DD) {
1401             d->status = status;
1402             pci_dma_write(dev, addr + offset, &status, sizeof(status));
1403         }
1404     } else {
1405         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1406             union e1000_rx_desc_packet_split *d = &desc->packet_split;
1407             size_t offset = offsetof(union e1000_rx_desc_packet_split,
1408                 wb.middle.status_error);
1409             uint32_t status = d->wb.middle.status_error;
1410 
1411             d->wb.middle.status_error &= ~E1000_RXD_STAT_DD;
1412             pci_dma_write(dev, addr, desc, len);
1413 
1414             if (status & E1000_RXD_STAT_DD) {
1415                 d->wb.middle.status_error = status;
1416                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1417             }
1418         } else {
1419             union e1000_rx_desc_extended *d = &desc->extended;
1420             size_t offset = offsetof(union e1000_rx_desc_extended,
1421                 wb.upper.status_error);
1422             uint32_t status = d->wb.upper.status_error;
1423 
1424             d->wb.upper.status_error &= ~E1000_RXD_STAT_DD;
1425             pci_dma_write(dev, addr, desc, len);
1426 
1427             if (status & E1000_RXD_STAT_DD) {
1428                 d->wb.upper.status_error = status;
1429                 pci_dma_write(dev, addr + offset, &status, sizeof(status));
1430             }
1431         }
1432     }
1433 }
1434 
1435 typedef struct e1000e_ba_state_st {
1436     uint16_t written[MAX_PS_BUFFERS];
1437     uint8_t cur_idx;
1438 } e1000e_ba_state;
1439 
1440 static inline void
1441 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1442                                hwaddr ba[MAX_PS_BUFFERS],
1443                                e1000e_ba_state *bastate,
1444                                const char *data,
1445                                dma_addr_t data_len)
1446 {
1447     assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1448 
1449     pci_dma_write(core->owner, ba[0] + bastate->written[0], data, data_len);
1450     bastate->written[0] += data_len;
1451 
1452     bastate->cur_idx = 1;
1453 }
1454 
1455 static void
1456 e1000e_write_to_rx_buffers(E1000ECore *core,
1457                            hwaddr ba[MAX_PS_BUFFERS],
1458                            e1000e_ba_state *bastate,
1459                            const char *data,
1460                            dma_addr_t data_len)
1461 {
1462     while (data_len > 0) {
1463         uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1464         uint32_t cur_buf_bytes_left = cur_buf_len -
1465                                       bastate->written[bastate->cur_idx];
1466         uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1467 
1468         trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1469                                         ba[bastate->cur_idx],
1470                                         bastate->written[bastate->cur_idx],
1471                                         data,
1472                                         bytes_to_write);
1473 
1474         pci_dma_write(core->owner,
1475             ba[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1476             data, bytes_to_write);
1477 
1478         bastate->written[bastate->cur_idx] += bytes_to_write;
1479         data += bytes_to_write;
1480         data_len -= bytes_to_write;
1481 
1482         if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1483             bastate->cur_idx++;
1484         }
1485 
1486         assert(bastate->cur_idx < MAX_PS_BUFFERS);
1487     }
1488 }
1489 
1490 static void
1491 e1000e_update_rx_stats(E1000ECore *core,
1492                        size_t data_size,
1493                        size_t data_fcs_size)
1494 {
1495     e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1496 
1497     switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1498     case ETH_PKT_BCAST:
1499         e1000x_inc_reg_if_not_full(core->mac, BPRC);
1500         break;
1501 
1502     case ETH_PKT_MCAST:
1503         e1000x_inc_reg_if_not_full(core->mac, MPRC);
1504         break;
1505 
1506     default:
1507         break;
1508     }
1509 }
1510 
1511 static inline bool
1512 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1513 {
1514     return e1000e_ring_free_descr_num(core, rxi) ==
1515            e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1516 }
1517 
1518 static bool
1519 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1520 {
1521     bool hasip4, hasip6;
1522     EthL4HdrProto l4hdr_proto;
1523     bool fragment;
1524 
1525     if (!e1000e_rx_use_ps_descriptor(core)) {
1526         return false;
1527     }
1528 
1529     net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto);
1530 
1531     if (hasip4) {
1532         fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1533     } else if (hasip6) {
1534         fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1535     } else {
1536         return false;
1537     }
1538 
1539     if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1540         return false;
1541     }
1542 
1543     if (l4hdr_proto == ETH_L4_HDR_PROTO_TCP ||
1544         l4hdr_proto == ETH_L4_HDR_PROTO_UDP) {
1545         *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1546     } else {
1547         *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1548     }
1549 
1550     if ((*hdr_len > core->rxbuf_sizes[0]) ||
1551         (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1552         return false;
1553     }
1554 
1555     return true;
1556 }
1557 
1558 static void
1559 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1560                              const E1000E_RxRing *rxr,
1561                              const E1000E_RSSInfo *rss_info)
1562 {
1563     PCIDevice *d = core->owner;
1564     dma_addr_t base;
1565     union e1000_rx_desc_union desc;
1566     size_t desc_size;
1567     size_t desc_offset = 0;
1568     size_t iov_ofs = 0;
1569 
1570     struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1571     size_t size = net_rx_pkt_get_total_len(pkt);
1572     size_t total_size = size + e1000x_fcs_len(core->mac);
1573     const E1000E_RingInfo *rxi;
1574     size_t ps_hdr_len = 0;
1575     bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1576     bool is_first = true;
1577 
1578     rxi = rxr->i;
1579 
1580     do {
1581         hwaddr ba[MAX_PS_BUFFERS];
1582         e1000e_ba_state bastate = { { 0 } };
1583         bool is_last = false;
1584 
1585         desc_size = total_size - desc_offset;
1586 
1587         if (desc_size > core->rx_desc_buf_size) {
1588             desc_size = core->rx_desc_buf_size;
1589         }
1590 
1591         if (e1000e_ring_empty(core, rxi)) {
1592             return;
1593         }
1594 
1595         base = e1000e_ring_head_descr(core, rxi);
1596 
1597         pci_dma_read(d, base, &desc, core->rx_desc_len);
1598 
1599         trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1600 
1601         e1000e_read_rx_descr(core, &desc, ba);
1602 
1603         if (ba[0]) {
1604             if (desc_offset < size) {
1605                 static const uint32_t fcs_pad;
1606                 size_t iov_copy;
1607                 size_t copy_size = size - desc_offset;
1608                 if (copy_size > core->rx_desc_buf_size) {
1609                     copy_size = core->rx_desc_buf_size;
1610                 }
1611 
1612                 /* For PS mode copy the packet header first */
1613                 if (do_ps) {
1614                     if (is_first) {
1615                         size_t ps_hdr_copied = 0;
1616                         do {
1617                             iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1618                                            iov->iov_len - iov_ofs);
1619 
1620                             e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1621                                                       iov->iov_base, iov_copy);
1622 
1623                             copy_size -= iov_copy;
1624                             ps_hdr_copied += iov_copy;
1625 
1626                             iov_ofs += iov_copy;
1627                             if (iov_ofs == iov->iov_len) {
1628                                 iov++;
1629                                 iov_ofs = 0;
1630                             }
1631                         } while (ps_hdr_copied < ps_hdr_len);
1632 
1633                         is_first = false;
1634                     } else {
1635                         /* Leave buffer 0 of each descriptor except first */
1636                         /* empty as per spec 7.1.5.1                      */
1637                         e1000e_write_hdr_to_rx_buffers(core, ba, &bastate,
1638                                                        NULL, 0);
1639                     }
1640                 }
1641 
1642                 /* Copy packet payload */
1643                 while (copy_size) {
1644                     iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1645 
1646                     e1000e_write_to_rx_buffers(core, ba, &bastate,
1647                                             iov->iov_base + iov_ofs, iov_copy);
1648 
1649                     copy_size -= iov_copy;
1650                     iov_ofs += iov_copy;
1651                     if (iov_ofs == iov->iov_len) {
1652                         iov++;
1653                         iov_ofs = 0;
1654                     }
1655                 }
1656 
1657                 if (desc_offset + desc_size >= total_size) {
1658                     /* Simulate FCS checksum presence in the last descriptor */
1659                     e1000e_write_to_rx_buffers(core, ba, &bastate,
1660                           (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1661                 }
1662             }
1663         } else { /* as per intel docs; skip descriptors with null buf addr */
1664             trace_e1000e_rx_null_descriptor();
1665         }
1666         desc_offset += desc_size;
1667         if (desc_offset >= total_size) {
1668             is_last = true;
1669         }
1670 
1671         e1000e_write_rx_descr(core, &desc, is_last ? core->rx_pkt : NULL,
1672                            rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1673         e1000e_pci_dma_write_rx_desc(core, base, &desc, core->rx_desc_len);
1674 
1675         e1000e_ring_advance(core, rxi,
1676                             core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1677 
1678     } while (desc_offset < total_size);
1679 
1680     e1000e_update_rx_stats(core, size, total_size);
1681 }
1682 
1683 static inline void
1684 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1685 {
1686     struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1687 
1688     if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1689         net_rx_pkt_fix_l4_csum(pkt);
1690     }
1691 }
1692 
1693 ssize_t
1694 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1695 {
1696     return e1000e_receive_internal(core, iov, iovcnt, core->has_vnet);
1697 }
1698 
1699 static ssize_t
1700 e1000e_receive_internal(E1000ECore *core, const struct iovec *iov, int iovcnt,
1701                         bool has_vnet)
1702 {
1703     static const int maximum_ethernet_hdr_len = (ETH_HLEN + 4);
1704 
1705     uint32_t n = 0;
1706     uint8_t min_buf[ETH_ZLEN];
1707     struct iovec min_iov;
1708     uint8_t *filter_buf;
1709     size_t size, orig_size;
1710     size_t iov_ofs = 0;
1711     E1000E_RxRing rxr;
1712     E1000E_RSSInfo rss_info;
1713     size_t total_size;
1714     ssize_t retval;
1715     bool rdmts_hit;
1716 
1717     trace_e1000e_rx_receive_iov(iovcnt);
1718 
1719     if (!e1000x_hw_rx_enabled(core->mac)) {
1720         return -1;
1721     }
1722 
1723     /* Pull virtio header in */
1724     if (has_vnet) {
1725         net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1726         iov_ofs = sizeof(struct virtio_net_hdr);
1727     } else {
1728         net_rx_pkt_unset_vhdr(core->rx_pkt);
1729     }
1730 
1731     filter_buf = iov->iov_base + iov_ofs;
1732     orig_size = iov_size(iov, iovcnt);
1733     size = orig_size - iov_ofs;
1734 
1735     /* Pad to minimum Ethernet frame length */
1736     if (size < sizeof(min_buf)) {
1737         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1738         memset(&min_buf[size], 0, sizeof(min_buf) - size);
1739         e1000x_inc_reg_if_not_full(core->mac, RUC);
1740         min_iov.iov_base = filter_buf = min_buf;
1741         min_iov.iov_len = size = sizeof(min_buf);
1742         iovcnt = 1;
1743         iov = &min_iov;
1744         iov_ofs = 0;
1745     } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1746         /* This is very unlikely, but may happen. */
1747         iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1748         filter_buf = min_buf;
1749     }
1750 
1751     /* Discard oversized packets if !LPE and !SBP. */
1752     if (e1000x_is_oversized(core->mac, size)) {
1753         return orig_size;
1754     }
1755 
1756     net_rx_pkt_set_packet_type(core->rx_pkt,
1757         get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1758 
1759     if (!e1000e_receive_filter(core, filter_buf, size)) {
1760         trace_e1000e_rx_flt_dropped();
1761         return orig_size;
1762     }
1763 
1764     net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1765                                e1000x_vlan_enabled(core->mac), core->mac[VET]);
1766 
1767     e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1768     e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1769 
1770     total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1771         e1000x_fcs_len(core->mac);
1772 
1773     if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1774         e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1775 
1776         e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1777 
1778         retval = orig_size;
1779 
1780         /* Perform small receive detection (RSRPD) */
1781         if (total_size < core->mac[RSRPD]) {
1782             n |= E1000_ICS_SRPD;
1783         }
1784 
1785         /* Perform ACK receive detection */
1786         if  (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1787              (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1788             n |= E1000_ICS_ACK;
1789         }
1790 
1791         /* Check if receive descriptor minimum threshold hit */
1792         rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1793         n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1794 
1795         trace_e1000e_rx_written_to_guest(rxr.i->idx);
1796     } else {
1797         n |= E1000_ICS_RXO;
1798         retval = 0;
1799 
1800         trace_e1000e_rx_not_written_to_guest(rxr.i->idx);
1801     }
1802 
1803     if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1804         trace_e1000e_rx_interrupt_set(n);
1805         e1000e_set_interrupt_cause(core, n);
1806     } else {
1807         trace_e1000e_rx_interrupt_delayed(n);
1808     }
1809 
1810     return retval;
1811 }
1812 
1813 static inline bool
1814 e1000e_have_autoneg(E1000ECore *core)
1815 {
1816     return core->phy[0][MII_BMCR] & MII_BMCR_AUTOEN;
1817 }
1818 
1819 static void e1000e_update_flowctl_status(E1000ECore *core)
1820 {
1821     if (e1000e_have_autoneg(core) &&
1822         core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP) {
1823         trace_e1000e_link_autoneg_flowctl(true);
1824         core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1825     } else {
1826         trace_e1000e_link_autoneg_flowctl(false);
1827     }
1828 }
1829 
1830 static inline void
1831 e1000e_link_down(E1000ECore *core)
1832 {
1833     e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1834     e1000e_update_flowctl_status(core);
1835 }
1836 
1837 static inline void
1838 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1839 {
1840     /* bits 0-5 reserved; MII_BMCR_[ANRESTART,RESET] are self clearing */
1841     core->phy[0][MII_BMCR] = val & ~(0x3f |
1842                                      MII_BMCR_RESET |
1843                                      MII_BMCR_ANRESTART);
1844 
1845     if ((val & MII_BMCR_ANRESTART) &&
1846         e1000e_have_autoneg(core)) {
1847         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1848     }
1849 }
1850 
1851 static void
1852 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1853 {
1854     core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1855 
1856     if (val & BIT(10)) {
1857         e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1858     }
1859 }
1860 
1861 static void
1862 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1863 {
1864     core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1865 }
1866 
1867 void
1868 e1000e_core_set_link_status(E1000ECore *core)
1869 {
1870     NetClientState *nc = qemu_get_queue(core->owner_nic);
1871     uint32_t old_status = core->mac[STATUS];
1872 
1873     trace_e1000e_link_status_changed(nc->link_down ? false : true);
1874 
1875     if (nc->link_down) {
1876         e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1877     } else {
1878         if (e1000e_have_autoneg(core) &&
1879             !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
1880             e1000x_restart_autoneg(core->mac, core->phy[0],
1881                                    core->autoneg_timer);
1882         } else {
1883             e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1884             e1000e_start_recv(core);
1885         }
1886     }
1887 
1888     if (core->mac[STATUS] != old_status) {
1889         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1890     }
1891 }
1892 
1893 static void
1894 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1895 {
1896     trace_e1000e_core_ctrl_write(index, val);
1897 
1898     /* RST is self clearing */
1899     core->mac[CTRL] = val & ~E1000_CTRL_RST;
1900     core->mac[CTRL_DUP] = core->mac[CTRL];
1901 
1902     trace_e1000e_link_set_params(
1903         !!(val & E1000_CTRL_ASDE),
1904         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1905         !!(val & E1000_CTRL_FRCSPD),
1906         !!(val & E1000_CTRL_FRCDPX),
1907         !!(val & E1000_CTRL_RFCE),
1908         !!(val & E1000_CTRL_TFCE));
1909 
1910     if (val & E1000_CTRL_RST) {
1911         trace_e1000e_core_ctrl_sw_reset();
1912         e1000e_reset(core, true);
1913     }
1914 
1915     if (val & E1000_CTRL_PHY_RST) {
1916         trace_e1000e_core_ctrl_phy_reset();
1917         core->mac[STATUS] |= E1000_STATUS_PHYRA;
1918     }
1919 }
1920 
1921 static void
1922 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1923 {
1924     trace_e1000e_rx_set_rfctl(val);
1925 
1926     if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1927         trace_e1000e_wrn_iscsi_filtering_not_supported();
1928     }
1929 
1930     if (!(val & E1000_RFCTL_NFSW_DIS)) {
1931         trace_e1000e_wrn_nfsw_filtering_not_supported();
1932     }
1933 
1934     if (!(val & E1000_RFCTL_NFSR_DIS)) {
1935         trace_e1000e_wrn_nfsr_filtering_not_supported();
1936     }
1937 
1938     core->mac[RFCTL] = val;
1939 }
1940 
1941 static void
1942 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1943 {
1944     int i;
1945     core->rx_desc_buf_size = 0;
1946 
1947     for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1948         core->rx_desc_buf_size += core->rxbuf_sizes[i];
1949     }
1950 }
1951 
1952 static void
1953 e1000e_parse_rxbufsize(E1000ECore *core)
1954 {
1955     uint32_t rctl = core->mac[RCTL];
1956 
1957     memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1958 
1959     if (rctl & E1000_RCTL_DTYP_MASK) {
1960         uint32_t bsize;
1961 
1962         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1963         core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1964 
1965         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1966         core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1967 
1968         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1969         core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1970 
1971         bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1972         core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1973     } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1974         int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1975         core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1976     } else {
1977         core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1978     }
1979 
1980     trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1981                                     core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1982 
1983     e1000e_calc_per_desc_buf_size(core);
1984 }
1985 
1986 static void
1987 e1000e_calc_rxdesclen(E1000ECore *core)
1988 {
1989     if (e1000e_rx_use_legacy_descriptor(core)) {
1990         core->rx_desc_len = sizeof(struct e1000_rx_desc);
1991     } else {
1992         if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1993             core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1994         } else {
1995             core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1996         }
1997     }
1998     trace_e1000e_rx_desc_len(core->rx_desc_len);
1999 }
2000 
2001 static void
2002 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
2003 {
2004     core->mac[RCTL] = val;
2005     trace_e1000e_rx_set_rctl(core->mac[RCTL]);
2006 
2007     if (val & E1000_RCTL_EN) {
2008         e1000e_parse_rxbufsize(core);
2009         e1000e_calc_rxdesclen(core);
2010         core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
2011                                 E1000_RING_DESC_LEN_SHIFT;
2012 
2013         e1000e_start_recv(core);
2014     }
2015 }
2016 
2017 static
2018 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
2019 (E1000ECore *, int, uint16_t) = {
2020     [0] = {
2021         [MII_BMCR]     = e1000e_set_phy_ctrl,
2022         [PHY_PAGE]     = e1000e_set_phy_page,
2023         [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
2024     }
2025 };
2026 
2027 static inline void
2028 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
2029 {
2030     trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
2031     core->mac[IMS] &= ~bits;
2032 }
2033 
2034 static inline bool
2035 e1000e_postpone_interrupt(E1000IntrDelayTimer *timer)
2036 {
2037     if (timer->running) {
2038         trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
2039 
2040         return true;
2041     }
2042 
2043     if (timer->core->mac[timer->delay_reg] != 0) {
2044         e1000e_intrmgr_rearm_timer(timer);
2045     }
2046 
2047     return false;
2048 }
2049 
2050 static inline bool
2051 e1000e_itr_should_postpone(E1000ECore *core)
2052 {
2053     return e1000e_postpone_interrupt(&core->itr);
2054 }
2055 
2056 static inline bool
2057 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
2058 {
2059     return e1000e_postpone_interrupt(&core->eitr[idx]);
2060 }
2061 
2062 static void
2063 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2064 {
2065     uint32_t effective_eiac;
2066 
2067     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2068         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2069         if (vec < E1000E_MSIX_VEC_NUM) {
2070             if (!e1000e_eitr_should_postpone(core, vec)) {
2071                 trace_e1000e_irq_msix_notify_vec(vec);
2072                 msix_notify(core->owner, vec);
2073             }
2074         } else {
2075             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2076         }
2077     } else {
2078         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2079     }
2080 
2081     if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2082         trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2083         core->mac[IAM] &= ~cause;
2084     }
2085 
2086     trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2087 
2088     effective_eiac = core->mac[EIAC] & cause;
2089 
2090     core->mac[ICR] &= ~effective_eiac;
2091     core->msi_causes_pending &= ~effective_eiac;
2092 
2093     if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2094         core->mac[IMS] &= ~effective_eiac;
2095     }
2096 }
2097 
2098 static void
2099 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2100 {
2101     if (causes & E1000_ICR_RXQ0) {
2102         e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2103                                E1000_IVAR_RXQ0(core->mac[IVAR]));
2104     }
2105 
2106     if (causes & E1000_ICR_RXQ1) {
2107         e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2108                                E1000_IVAR_RXQ1(core->mac[IVAR]));
2109     }
2110 
2111     if (causes & E1000_ICR_TXQ0) {
2112         e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2113                                E1000_IVAR_TXQ0(core->mac[IVAR]));
2114     }
2115 
2116     if (causes & E1000_ICR_TXQ1) {
2117         e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2118                                E1000_IVAR_TXQ1(core->mac[IVAR]));
2119     }
2120 
2121     if (causes & E1000_ICR_OTHER) {
2122         e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2123                                E1000_IVAR_OTHER(core->mac[IVAR]));
2124     }
2125 }
2126 
2127 static void
2128 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2129 {
2130     if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2131         uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2132         if (vec < E1000E_MSIX_VEC_NUM) {
2133             trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2134             msix_clr_pending(core->owner, vec);
2135         } else {
2136             trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2137         }
2138     } else {
2139         trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2140     }
2141 }
2142 
2143 static void
2144 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2145 {
2146     if (causes & E1000_ICR_RXQ0) {
2147         e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2148                               E1000_IVAR_RXQ0(core->mac[IVAR]));
2149     }
2150 
2151     if (causes & E1000_ICR_RXQ1) {
2152         e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2153                               E1000_IVAR_RXQ1(core->mac[IVAR]));
2154     }
2155 
2156     if (causes & E1000_ICR_TXQ0) {
2157         e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2158                               E1000_IVAR_TXQ0(core->mac[IVAR]));
2159     }
2160 
2161     if (causes & E1000_ICR_TXQ1) {
2162         e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2163                               E1000_IVAR_TXQ1(core->mac[IVAR]));
2164     }
2165 
2166     if (causes & E1000_ICR_OTHER) {
2167         e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2168                               E1000_IVAR_OTHER(core->mac[IVAR]));
2169     }
2170 }
2171 
2172 static inline void
2173 e1000e_fix_icr_asserted(E1000ECore *core)
2174 {
2175     core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2176     if (core->mac[ICR]) {
2177         core->mac[ICR] |= E1000_ICR_ASSERTED;
2178     }
2179 
2180     trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2181 }
2182 
2183 static void
2184 e1000e_send_msi(E1000ECore *core, bool msix)
2185 {
2186     uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2187 
2188     core->msi_causes_pending &= causes;
2189     causes ^= core->msi_causes_pending;
2190     if (causes == 0) {
2191         return;
2192     }
2193     core->msi_causes_pending |= causes;
2194 
2195     if (msix) {
2196         e1000e_msix_notify(core, causes);
2197     } else {
2198         if (!e1000e_itr_should_postpone(core)) {
2199             trace_e1000e_irq_msi_notify(causes);
2200             msi_notify(core->owner, 0);
2201         }
2202     }
2203 }
2204 
2205 static void
2206 e1000e_update_interrupt_state(E1000ECore *core)
2207 {
2208     bool interrupts_pending;
2209     bool is_msix = msix_enabled(core->owner);
2210 
2211     /* Set ICR[OTHER] for MSI-X */
2212     if (is_msix) {
2213         if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2214             core->mac[ICR] |= E1000_ICR_OTHER;
2215             trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2216         }
2217     }
2218 
2219     e1000e_fix_icr_asserted(core);
2220 
2221     /*
2222      * Make sure ICR and ICS registers have the same value.
2223      * The spec says that the ICS register is write-only.  However in practice,
2224      * on real hardware ICS is readable, and for reads it has the same value as
2225      * ICR (except that ICS does not have the clear on read behaviour of ICR).
2226      *
2227      * The VxWorks PRO/1000 driver uses this behaviour.
2228      */
2229     core->mac[ICS] = core->mac[ICR];
2230 
2231     interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2232     if (!interrupts_pending) {
2233         core->msi_causes_pending = 0;
2234     }
2235 
2236     trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2237                                         core->mac[ICR], core->mac[IMS]);
2238 
2239     if (is_msix || msi_enabled(core->owner)) {
2240         if (interrupts_pending) {
2241             e1000e_send_msi(core, is_msix);
2242         }
2243     } else {
2244         if (interrupts_pending) {
2245             if (!e1000e_itr_should_postpone(core)) {
2246                 e1000e_raise_legacy_irq(core);
2247             }
2248         } else {
2249             e1000e_lower_legacy_irq(core);
2250         }
2251     }
2252 }
2253 
2254 static void
2255 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2256 {
2257     trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2258 
2259     val |= e1000e_intmgr_collect_delayed_causes(core);
2260     core->mac[ICR] |= val;
2261 
2262     trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2263 
2264     e1000e_update_interrupt_state(core);
2265 }
2266 
2267 static inline void
2268 e1000e_autoneg_timer(void *opaque)
2269 {
2270     E1000ECore *core = opaque;
2271     if (!qemu_get_queue(core->owner_nic)->link_down) {
2272         e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2273         e1000e_start_recv(core);
2274 
2275         e1000e_update_flowctl_status(core);
2276         /* signal link status change to the guest */
2277         e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2278     }
2279 }
2280 
2281 static inline uint16_t
2282 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2283 {
2284     uint16_t index = (addr & 0x1ffff) >> 2;
2285     return index + (mac_reg_access[index] & 0xfffe);
2286 }
2287 
2288 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2289     [0] = {
2290         [MII_BMCR]              = PHY_ANYPAGE | PHY_RW,
2291         [MII_BMSR]              = PHY_ANYPAGE | PHY_R,
2292         [MII_PHYID1]            = PHY_ANYPAGE | PHY_R,
2293         [MII_PHYID2]            = PHY_ANYPAGE | PHY_R,
2294         [MII_ANAR]              = PHY_ANYPAGE | PHY_RW,
2295         [MII_ANLPAR]            = PHY_ANYPAGE | PHY_R,
2296         [MII_ANER]              = PHY_ANYPAGE | PHY_R,
2297         [MII_ANNP]              = PHY_ANYPAGE | PHY_RW,
2298         [MII_ANLPRNP]           = PHY_ANYPAGE | PHY_R,
2299         [MII_CTRL1000]          = PHY_ANYPAGE | PHY_RW,
2300         [MII_STAT1000]          = PHY_ANYPAGE | PHY_R,
2301         [MII_EXTSTAT]           = PHY_ANYPAGE | PHY_R,
2302         [PHY_PAGE]              = PHY_ANYPAGE | PHY_RW,
2303 
2304         [PHY_COPPER_CTRL1]      = PHY_RW,
2305         [PHY_COPPER_STAT1]      = PHY_R,
2306         [PHY_COPPER_CTRL3]      = PHY_RW,
2307         [PHY_RX_ERR_CNTR]       = PHY_R,
2308         [PHY_OEM_BITS]          = PHY_RW,
2309         [PHY_BIAS_1]            = PHY_RW,
2310         [PHY_BIAS_2]            = PHY_RW,
2311         [PHY_COPPER_INT_ENABLE] = PHY_RW,
2312         [PHY_COPPER_STAT2]      = PHY_R,
2313         [PHY_COPPER_CTRL2]      = PHY_RW
2314     },
2315     [2] = {
2316         [PHY_MAC_CTRL1]         = PHY_RW,
2317         [PHY_MAC_INT_ENABLE]    = PHY_RW,
2318         [PHY_MAC_STAT]          = PHY_R,
2319         [PHY_MAC_CTRL2]         = PHY_RW
2320     },
2321     [3] = {
2322         [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2323         [PHY_LED_03_POL_CTRL]   = PHY_RW,
2324         [PHY_LED_TIMER_CTRL]    = PHY_RW,
2325         [PHY_LED_45_CTRL]       = PHY_RW
2326     },
2327     [5] = {
2328         [PHY_1000T_SKEW]        = PHY_R,
2329         [PHY_1000T_SWAP]        = PHY_R
2330     },
2331     [6] = {
2332         [PHY_CRC_COUNTERS]      = PHY_R
2333     }
2334 };
2335 
2336 static bool
2337 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2338                          char cap, uint8_t *page)
2339 {
2340     *page =
2341         (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2342                                                     : core->phy[0][PHY_PAGE];
2343 
2344     if (*page >= E1000E_PHY_PAGES) {
2345         return false;
2346     }
2347 
2348     return e1000e_phy_regcap[*page][addr] & cap;
2349 }
2350 
2351 static void
2352 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2353                      uint32_t addr, uint16_t data)
2354 {
2355     assert(page < E1000E_PHY_PAGES);
2356     assert(addr < E1000E_PHY_PAGE_SIZE);
2357 
2358     if (e1000e_phyreg_writeops[page][addr]) {
2359         e1000e_phyreg_writeops[page][addr](core, addr, data);
2360     } else {
2361         core->phy[page][addr] = data;
2362     }
2363 }
2364 
2365 static void
2366 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2367 {
2368     uint32_t data = val & E1000_MDIC_DATA_MASK;
2369     uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2370     uint8_t page;
2371 
2372     if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2373         val = core->mac[MDIC] | E1000_MDIC_ERROR;
2374     } else if (val & E1000_MDIC_OP_READ) {
2375         if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2376             trace_e1000e_core_mdic_read_unhandled(page, addr);
2377             val |= E1000_MDIC_ERROR;
2378         } else {
2379             val = (val ^ data) | core->phy[page][addr];
2380             trace_e1000e_core_mdic_read(page, addr, val);
2381         }
2382     } else if (val & E1000_MDIC_OP_WRITE) {
2383         if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2384             trace_e1000e_core_mdic_write_unhandled(page, addr);
2385             val |= E1000_MDIC_ERROR;
2386         } else {
2387             trace_e1000e_core_mdic_write(page, addr, data);
2388             e1000e_phy_reg_write(core, page, addr, data);
2389         }
2390     }
2391     core->mac[MDIC] = val | E1000_MDIC_READY;
2392 
2393     if (val & E1000_MDIC_INT_EN) {
2394         e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2395     }
2396 }
2397 
2398 static void
2399 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2400 {
2401     core->mac[index] = val & 0xffff;
2402     trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2403     e1000e_start_recv(core);
2404 }
2405 
2406 static void
2407 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2408 {
2409     if ((val & E1000_STATUS_PHYRA) == 0) {
2410         core->mac[index] &= ~E1000_STATUS_PHYRA;
2411     }
2412 }
2413 
2414 static void
2415 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2416 {
2417     trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2418                                      !!(val & E1000_CTRL_EXT_SPD_BYPS));
2419 
2420     /* Zero self-clearing bits */
2421     val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2422     core->mac[CTRL_EXT] = val;
2423 }
2424 
2425 static void
2426 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2427 {
2428     int i;
2429 
2430     core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2431 
2432     if (!msix_enabled(core->owner)) {
2433         return;
2434     }
2435 
2436     for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2437         if (core->mac[PBACLR] & BIT(i)) {
2438             msix_clr_pending(core->owner, i);
2439         }
2440     }
2441 }
2442 
2443 static void
2444 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2445 {
2446     core->mac[FCRTH] = val & 0xFFF8;
2447 }
2448 
2449 static void
2450 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2451 {
2452     core->mac[FCRTL] = val & 0x8000FFF8;
2453 }
2454 
2455 #define E1000E_LOW_BITS_SET_FUNC(num)                                \
2456     static void                                                      \
2457     e1000e_set_##num##bit(E1000ECore *core, int index, uint32_t val) \
2458     {                                                                \
2459         core->mac[index] = val & (BIT(num) - 1);                     \
2460     }
2461 
2462 E1000E_LOW_BITS_SET_FUNC(4)
2463 E1000E_LOW_BITS_SET_FUNC(6)
2464 E1000E_LOW_BITS_SET_FUNC(11)
2465 E1000E_LOW_BITS_SET_FUNC(12)
2466 E1000E_LOW_BITS_SET_FUNC(13)
2467 E1000E_LOW_BITS_SET_FUNC(16)
2468 
2469 static void
2470 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2471 {
2472     core->mac[VET] = val & 0xffff;
2473     trace_e1000e_vlan_vet(core->mac[VET]);
2474 }
2475 
2476 static void
2477 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2478 {
2479     core->mac[index] = val & E1000_XDLEN_MASK;
2480 }
2481 
2482 static void
2483 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2484 {
2485     core->mac[index] = val & E1000_XDBAL_MASK;
2486 }
2487 
2488 static void
2489 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2490 {
2491     E1000E_TxRing txr;
2492     core->mac[index] = val;
2493 
2494     if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2495         e1000e_tx_ring_init(core, &txr, 0);
2496         e1000e_start_xmit(core, &txr);
2497     }
2498 
2499     if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2500         e1000e_tx_ring_init(core, &txr, 1);
2501         e1000e_start_xmit(core, &txr);
2502     }
2503 }
2504 
2505 static void
2506 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2507 {
2508     E1000E_TxRing txr;
2509     int qidx = e1000e_mq_queue_idx(TDT, index);
2510     uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2511 
2512     core->mac[index] = val & 0xffff;
2513 
2514     if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2515         e1000e_tx_ring_init(core, &txr, qidx);
2516         e1000e_start_xmit(core, &txr);
2517     }
2518 }
2519 
2520 static void
2521 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2522 {
2523     trace_e1000e_irq_write_ics(val);
2524     e1000e_set_interrupt_cause(core, val);
2525 }
2526 
2527 static void
2528 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2529 {
2530     uint32_t icr = 0;
2531     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2532         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2533         trace_e1000e_irq_icr_process_iame();
2534         e1000e_clear_ims_bits(core, core->mac[IAM]);
2535     }
2536 
2537     icr = core->mac[ICR] & ~val;
2538     /*
2539      * Windows driver expects that the "receive overrun" bit and other
2540      * ones to be cleared when the "Other" bit (#24) is cleared.
2541      */
2542     icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2543     trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2544     core->mac[ICR] = icr;
2545     e1000e_update_interrupt_state(core);
2546 }
2547 
2548 static void
2549 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2550 {
2551     trace_e1000e_irq_ims_clear_set_imc(val);
2552     e1000e_clear_ims_bits(core, val);
2553     e1000e_update_interrupt_state(core);
2554 }
2555 
2556 static void
2557 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2558 {
2559     static const uint32_t ims_ext_mask =
2560         E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2561         E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2562         E1000_IMS_OTHER;
2563 
2564     static const uint32_t ims_valid_mask =
2565         E1000_IMS_TXDW      | E1000_IMS_TXQE    | E1000_IMS_LSC  |
2566         E1000_IMS_RXDMT0    | E1000_IMS_RXO     | E1000_IMS_RXT0 |
2567         E1000_IMS_MDAC      | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2568         E1000_IMS_ACK       | E1000_IMS_MNG     | E1000_IMS_RXQ0 |
2569         E1000_IMS_RXQ1      | E1000_IMS_TXQ0    | E1000_IMS_TXQ1 |
2570         E1000_IMS_OTHER;
2571 
2572     uint32_t valid_val = val & ims_valid_mask;
2573 
2574     trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2575     core->mac[IMS] |= valid_val;
2576 
2577     if ((valid_val & ims_ext_mask) &&
2578         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2579         msix_enabled(core->owner)) {
2580         e1000e_msix_clear(core, valid_val);
2581     }
2582 
2583     if ((valid_val == ims_valid_mask) &&
2584         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2585         trace_e1000e_irq_fire_all_timers(val);
2586         e1000e_intrmgr_fire_all_timers(core);
2587     }
2588 
2589     e1000e_update_interrupt_state(core);
2590 }
2591 
2592 static void
2593 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2594 {
2595     e1000e_set_16bit(core, index, val);
2596 
2597     if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2598         trace_e1000e_irq_rdtr_fpd_running();
2599         e1000e_intrmgr_fire_delayed_interrupts(core);
2600     } else {
2601         trace_e1000e_irq_rdtr_fpd_not_running();
2602     }
2603 }
2604 
2605 static void
2606 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2607 {
2608     e1000e_set_16bit(core, index, val);
2609 
2610     if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2611         trace_e1000e_irq_tidv_fpd_running();
2612         e1000e_intrmgr_fire_delayed_interrupts(core);
2613     } else {
2614         trace_e1000e_irq_tidv_fpd_not_running();
2615     }
2616 }
2617 
2618 static uint32_t
2619 e1000e_mac_readreg(E1000ECore *core, int index)
2620 {
2621     return core->mac[index];
2622 }
2623 
2624 static uint32_t
2625 e1000e_mac_ics_read(E1000ECore *core, int index)
2626 {
2627     trace_e1000e_irq_read_ics(core->mac[ICS]);
2628     return core->mac[ICS];
2629 }
2630 
2631 static uint32_t
2632 e1000e_mac_ims_read(E1000ECore *core, int index)
2633 {
2634     trace_e1000e_irq_read_ims(core->mac[IMS]);
2635     return core->mac[IMS];
2636 }
2637 
2638 static uint32_t
2639 e1000e_mac_swsm_read(E1000ECore *core, int index)
2640 {
2641     uint32_t val = core->mac[SWSM];
2642     core->mac[SWSM] = val | E1000_SWSM_SMBI;
2643     return val;
2644 }
2645 
2646 static uint32_t
2647 e1000e_mac_itr_read(E1000ECore *core, int index)
2648 {
2649     return core->itr_guest_value;
2650 }
2651 
2652 static uint32_t
2653 e1000e_mac_eitr_read(E1000ECore *core, int index)
2654 {
2655     return core->eitr_guest_value[index - EITR];
2656 }
2657 
2658 static uint32_t
2659 e1000e_mac_icr_read(E1000ECore *core, int index)
2660 {
2661     uint32_t ret = core->mac[ICR];
2662     trace_e1000e_irq_icr_read_entry(ret);
2663 
2664     if (core->mac[IMS] == 0) {
2665         trace_e1000e_irq_icr_clear_zero_ims();
2666         core->mac[ICR] = 0;
2667     }
2668 
2669     if (!msix_enabled(core->owner)) {
2670         trace_e1000e_irq_icr_clear_nonmsix_icr_read();
2671         core->mac[ICR] = 0;
2672     }
2673 
2674     if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2675         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2676         trace_e1000e_irq_icr_clear_iame();
2677         core->mac[ICR] = 0;
2678         trace_e1000e_irq_icr_process_iame();
2679         e1000e_clear_ims_bits(core, core->mac[IAM]);
2680     }
2681 
2682     trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2683     e1000e_update_interrupt_state(core);
2684     return ret;
2685 }
2686 
2687 static uint32_t
2688 e1000e_mac_read_clr4(E1000ECore *core, int index)
2689 {
2690     uint32_t ret = core->mac[index];
2691 
2692     core->mac[index] = 0;
2693     return ret;
2694 }
2695 
2696 static uint32_t
2697 e1000e_mac_read_clr8(E1000ECore *core, int index)
2698 {
2699     uint32_t ret = core->mac[index];
2700 
2701     core->mac[index] = 0;
2702     core->mac[index - 1] = 0;
2703     return ret;
2704 }
2705 
2706 static uint32_t
2707 e1000e_get_ctrl(E1000ECore *core, int index)
2708 {
2709     uint32_t val = core->mac[CTRL];
2710 
2711     trace_e1000e_link_read_params(
2712         !!(val & E1000_CTRL_ASDE),
2713         (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2714         !!(val & E1000_CTRL_FRCSPD),
2715         !!(val & E1000_CTRL_FRCDPX),
2716         !!(val & E1000_CTRL_RFCE),
2717         !!(val & E1000_CTRL_TFCE));
2718 
2719     return val;
2720 }
2721 
2722 static uint32_t
2723 e1000e_get_status(E1000ECore *core, int index)
2724 {
2725     uint32_t res = core->mac[STATUS];
2726 
2727     if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2728         res |= E1000_STATUS_GIO_MASTER_ENABLE;
2729     }
2730 
2731     if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2732         res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2733     } else {
2734         res |= E1000_STATUS_FD;
2735     }
2736 
2737     if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2738         (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2739         switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2740         case E1000_CTRL_SPD_10:
2741             res |= E1000_STATUS_SPEED_10;
2742             break;
2743         case E1000_CTRL_SPD_100:
2744             res |= E1000_STATUS_SPEED_100;
2745             break;
2746         case E1000_CTRL_SPD_1000:
2747         default:
2748             res |= E1000_STATUS_SPEED_1000;
2749             break;
2750         }
2751     } else {
2752         res |= E1000_STATUS_SPEED_1000;
2753     }
2754 
2755     trace_e1000e_link_status(
2756         !!(res & E1000_STATUS_LU),
2757         !!(res & E1000_STATUS_FD),
2758         (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2759         (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2760 
2761     return res;
2762 }
2763 
2764 static uint32_t
2765 e1000e_get_tarc(E1000ECore *core, int index)
2766 {
2767     return core->mac[index] & ((BIT(11) - 1) |
2768                                 BIT(27)      |
2769                                 BIT(28)      |
2770                                 BIT(29)      |
2771                                 BIT(30));
2772 }
2773 
2774 static void
2775 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2776 {
2777     core->mac[index] = val;
2778 }
2779 
2780 static void
2781 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2782 {
2783     uint32_t macaddr[2];
2784 
2785     core->mac[index] = val;
2786 
2787     macaddr[0] = cpu_to_le32(core->mac[RA]);
2788     macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2789     qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2790         (uint8_t *) macaddr);
2791 
2792     trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2793 }
2794 
2795 static void
2796 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2797 {
2798     static const uint32_t ro_bits = E1000_EECD_PRES          |
2799                                     E1000_EECD_AUTO_RD       |
2800                                     E1000_EECD_SIZE_EX_MASK;
2801 
2802     core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2803 }
2804 
2805 static void
2806 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2807 {
2808     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2809     uint32_t flags = 0;
2810     uint32_t data = 0;
2811 
2812     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2813         data = core->eeprom[addr];
2814         flags = E1000_EERW_DONE;
2815     }
2816 
2817     core->mac[EERD] = flags                           |
2818                       (addr << E1000_EERW_ADDR_SHIFT) |
2819                       (data << E1000_EERW_DATA_SHIFT);
2820 }
2821 
2822 static void
2823 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2824 {
2825     uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2826     uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2827     uint32_t flags = 0;
2828 
2829     if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2830         core->eeprom[addr] = data;
2831         flags = E1000_EERW_DONE;
2832     }
2833 
2834     core->mac[EERD] = flags                           |
2835                       (addr << E1000_EERW_ADDR_SHIFT) |
2836                       (data << E1000_EERW_DATA_SHIFT);
2837 }
2838 
2839 static void
2840 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2841 {
2842     core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2843 }
2844 
2845 static void
2846 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2847 {
2848     uint32_t interval = val & 0xffff;
2849 
2850     trace_e1000e_irq_itr_set(val);
2851 
2852     core->itr_guest_value = interval;
2853     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2854 }
2855 
2856 static void
2857 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2858 {
2859     uint32_t interval = val & 0xffff;
2860     uint32_t eitr_num = index - EITR;
2861 
2862     trace_e1000e_irq_eitr_set(eitr_num, val);
2863 
2864     core->eitr_guest_value[eitr_num] = interval;
2865     core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2866 }
2867 
2868 static void
2869 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2870 {
2871     if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2872 
2873         if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2874             qemu_log_mask(LOG_GUEST_ERROR,
2875                           "e1000e: PSRCTL.BSIZE0 cannot be zero");
2876             return;
2877         }
2878 
2879         if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2880             qemu_log_mask(LOG_GUEST_ERROR,
2881                           "e1000e: PSRCTL.BSIZE1 cannot be zero");
2882             return;
2883         }
2884     }
2885 
2886     core->mac[PSRCTL] = val;
2887 }
2888 
2889 static void
2890 e1000e_update_rx_offloads(E1000ECore *core)
2891 {
2892     int cso_state = e1000e_rx_l4_cso_enabled(core);
2893 
2894     trace_e1000e_rx_set_cso(cso_state);
2895 
2896     if (core->has_vnet) {
2897         qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2898                          cso_state, 0, 0, 0, 0);
2899     }
2900 }
2901 
2902 static void
2903 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2904 {
2905     core->mac[RXCSUM] = val;
2906     e1000e_update_rx_offloads(core);
2907 }
2908 
2909 static void
2910 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2911 {
2912     uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2913     core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2914 }
2915 
2916 static uint32_t e1000e_get_systiml(E1000ECore *core, int index)
2917 {
2918     e1000x_timestamp(core->mac, core->timadj, SYSTIML, SYSTIMH);
2919     return core->mac[SYSTIML];
2920 }
2921 
2922 static uint32_t e1000e_get_rxsatrh(E1000ECore *core, int index)
2923 {
2924     core->mac[TSYNCRXCTL] &= ~E1000_TSYNCRXCTL_VALID;
2925     return core->mac[RXSATRH];
2926 }
2927 
2928 static uint32_t e1000e_get_txstmph(E1000ECore *core, int index)
2929 {
2930     core->mac[TSYNCTXCTL] &= ~E1000_TSYNCTXCTL_VALID;
2931     return core->mac[TXSTMPH];
2932 }
2933 
2934 static void e1000e_set_timinca(E1000ECore *core, int index, uint32_t val)
2935 {
2936     e1000x_set_timinca(core->mac, &core->timadj, val);
2937 }
2938 
2939 static void e1000e_set_timadjh(E1000ECore *core, int index, uint32_t val)
2940 {
2941     core->mac[TIMADJH] = val;
2942     core->timadj += core->mac[TIMADJL] | ((int64_t)core->mac[TIMADJH] << 32);
2943 }
2944 
2945 #define e1000e_getreg(x)    [x] = e1000e_mac_readreg
2946 typedef uint32_t (*readops)(E1000ECore *, int);
2947 static const readops e1000e_macreg_readops[] = {
2948     e1000e_getreg(PBA),
2949     e1000e_getreg(WUFC),
2950     e1000e_getreg(MANC),
2951     e1000e_getreg(TOTL),
2952     e1000e_getreg(RDT0),
2953     e1000e_getreg(RDBAH0),
2954     e1000e_getreg(TDBAL1),
2955     e1000e_getreg(RDLEN0),
2956     e1000e_getreg(RDH1),
2957     e1000e_getreg(LATECOL),
2958     e1000e_getreg(SEQEC),
2959     e1000e_getreg(XONTXC),
2960     e1000e_getreg(AIT),
2961     e1000e_getreg(TDFH),
2962     e1000e_getreg(TDFT),
2963     e1000e_getreg(TDFHS),
2964     e1000e_getreg(TDFTS),
2965     e1000e_getreg(TDFPC),
2966     e1000e_getreg(WUS),
2967     e1000e_getreg(PBS),
2968     e1000e_getreg(RDFH),
2969     e1000e_getreg(RDFT),
2970     e1000e_getreg(RDFHS),
2971     e1000e_getreg(RDFTS),
2972     e1000e_getreg(RDFPC),
2973     e1000e_getreg(GORCL),
2974     e1000e_getreg(MGTPRC),
2975     e1000e_getreg(EERD),
2976     e1000e_getreg(EIAC),
2977     e1000e_getreg(PSRCTL),
2978     e1000e_getreg(MANC2H),
2979     e1000e_getreg(RXCSUM),
2980     e1000e_getreg(GSCL_3),
2981     e1000e_getreg(GSCN_2),
2982     e1000e_getreg(RSRPD),
2983     e1000e_getreg(RDBAL1),
2984     e1000e_getreg(FCAH),
2985     e1000e_getreg(FCRTH),
2986     e1000e_getreg(FLOP),
2987     e1000e_getreg(FLASHT),
2988     e1000e_getreg(RXSTMPH),
2989     e1000e_getreg(TXSTMPL),
2990     e1000e_getreg(TIMADJL),
2991     e1000e_getreg(TXDCTL),
2992     e1000e_getreg(RDH0),
2993     e1000e_getreg(TDT1),
2994     e1000e_getreg(TNCRS),
2995     e1000e_getreg(RJC),
2996     e1000e_getreg(IAM),
2997     e1000e_getreg(GSCL_2),
2998     e1000e_getreg(RDBAH1),
2999     e1000e_getreg(FLSWDATA),
3000     e1000e_getreg(TIPG),
3001     e1000e_getreg(FLMNGCTL),
3002     e1000e_getreg(FLMNGCNT),
3003     e1000e_getreg(TSYNCTXCTL),
3004     e1000e_getreg(EXTCNF_SIZE),
3005     e1000e_getreg(EXTCNF_CTRL),
3006     e1000e_getreg(EEMNGDATA),
3007     e1000e_getreg(CTRL_EXT),
3008     e1000e_getreg(SYSTIMH),
3009     e1000e_getreg(EEMNGCTL),
3010     e1000e_getreg(FLMNGDATA),
3011     e1000e_getreg(TSYNCRXCTL),
3012     e1000e_getreg(TDH),
3013     e1000e_getreg(LEDCTL),
3014     e1000e_getreg(TCTL),
3015     e1000e_getreg(TDBAL),
3016     e1000e_getreg(TDLEN),
3017     e1000e_getreg(TDH1),
3018     e1000e_getreg(RADV),
3019     e1000e_getreg(ECOL),
3020     e1000e_getreg(DC),
3021     e1000e_getreg(RLEC),
3022     e1000e_getreg(XOFFTXC),
3023     e1000e_getreg(RFC),
3024     e1000e_getreg(RNBC),
3025     e1000e_getreg(MGTPTC),
3026     e1000e_getreg(TIMINCA),
3027     e1000e_getreg(RXCFGL),
3028     e1000e_getreg(MFUTP01),
3029     e1000e_getreg(FACTPS),
3030     e1000e_getreg(GSCL_1),
3031     e1000e_getreg(GSCN_0),
3032     e1000e_getreg(GCR2),
3033     e1000e_getreg(RDT1),
3034     e1000e_getreg(PBACLR),
3035     e1000e_getreg(FCTTV),
3036     e1000e_getreg(EEWR),
3037     e1000e_getreg(FLSWCTL),
3038     e1000e_getreg(RXDCTL1),
3039     e1000e_getreg(RXSATRL),
3040     e1000e_getreg(RXUDP),
3041     e1000e_getreg(TORL),
3042     e1000e_getreg(TDLEN1),
3043     e1000e_getreg(MCC),
3044     e1000e_getreg(WUC),
3045     e1000e_getreg(EECD),
3046     e1000e_getreg(MFUTP23),
3047     e1000e_getreg(RAID),
3048     e1000e_getreg(FCRTV),
3049     e1000e_getreg(TXDCTL1),
3050     e1000e_getreg(RCTL),
3051     e1000e_getreg(TDT),
3052     e1000e_getreg(MDIC),
3053     e1000e_getreg(FCRUC),
3054     e1000e_getreg(VET),
3055     e1000e_getreg(RDBAL0),
3056     e1000e_getreg(TDBAH1),
3057     e1000e_getreg(RDTR),
3058     e1000e_getreg(SCC),
3059     e1000e_getreg(COLC),
3060     e1000e_getreg(CEXTERR),
3061     e1000e_getreg(XOFFRXC),
3062     e1000e_getreg(IPAV),
3063     e1000e_getreg(GOTCL),
3064     e1000e_getreg(MGTPDC),
3065     e1000e_getreg(GCR),
3066     e1000e_getreg(IVAR),
3067     e1000e_getreg(POEMB),
3068     e1000e_getreg(MFVAL),
3069     e1000e_getreg(FUNCTAG),
3070     e1000e_getreg(GSCL_4),
3071     e1000e_getreg(GSCN_3),
3072     e1000e_getreg(MRQC),
3073     e1000e_getreg(RDLEN1),
3074     e1000e_getreg(FCT),
3075     e1000e_getreg(FLA),
3076     e1000e_getreg(FLOL),
3077     e1000e_getreg(RXDCTL),
3078     e1000e_getreg(RXSTMPL),
3079     e1000e_getreg(TIMADJH),
3080     e1000e_getreg(FCRTL),
3081     e1000e_getreg(TDBAH),
3082     e1000e_getreg(TADV),
3083     e1000e_getreg(XONRXC),
3084     e1000e_getreg(TSCTFC),
3085     e1000e_getreg(RFCTL),
3086     e1000e_getreg(GSCN_1),
3087     e1000e_getreg(FCAL),
3088     e1000e_getreg(FLSWCNT),
3089 
3090     [TOTH]    = e1000e_mac_read_clr8,
3091     [GOTCH]   = e1000e_mac_read_clr8,
3092     [PRC64]   = e1000e_mac_read_clr4,
3093     [PRC255]  = e1000e_mac_read_clr4,
3094     [PRC1023] = e1000e_mac_read_clr4,
3095     [PTC64]   = e1000e_mac_read_clr4,
3096     [PTC255]  = e1000e_mac_read_clr4,
3097     [PTC1023] = e1000e_mac_read_clr4,
3098     [GPRC]    = e1000e_mac_read_clr4,
3099     [TPT]     = e1000e_mac_read_clr4,
3100     [RUC]     = e1000e_mac_read_clr4,
3101     [BPRC]    = e1000e_mac_read_clr4,
3102     [MPTC]    = e1000e_mac_read_clr4,
3103     [IAC]     = e1000e_mac_read_clr4,
3104     [ICR]     = e1000e_mac_icr_read,
3105     [STATUS]  = e1000e_get_status,
3106     [TARC0]   = e1000e_get_tarc,
3107     [ICS]     = e1000e_mac_ics_read,
3108     [TORH]    = e1000e_mac_read_clr8,
3109     [GORCH]   = e1000e_mac_read_clr8,
3110     [PRC127]  = e1000e_mac_read_clr4,
3111     [PRC511]  = e1000e_mac_read_clr4,
3112     [PRC1522] = e1000e_mac_read_clr4,
3113     [PTC127]  = e1000e_mac_read_clr4,
3114     [PTC511]  = e1000e_mac_read_clr4,
3115     [PTC1522] = e1000e_mac_read_clr4,
3116     [GPTC]    = e1000e_mac_read_clr4,
3117     [TPR]     = e1000e_mac_read_clr4,
3118     [ROC]     = e1000e_mac_read_clr4,
3119     [MPRC]    = e1000e_mac_read_clr4,
3120     [BPTC]    = e1000e_mac_read_clr4,
3121     [TSCTC]   = e1000e_mac_read_clr4,
3122     [ITR]     = e1000e_mac_itr_read,
3123     [CTRL]    = e1000e_get_ctrl,
3124     [TARC1]   = e1000e_get_tarc,
3125     [SWSM]    = e1000e_mac_swsm_read,
3126     [IMS]     = e1000e_mac_ims_read,
3127     [SYSTIML] = e1000e_get_systiml,
3128     [RXSATRH] = e1000e_get_rxsatrh,
3129     [TXSTMPH] = e1000e_get_txstmph,
3130 
3131     [CRCERRS ... MPC]      = e1000e_mac_readreg,
3132     [IP6AT ... IP6AT + 3]  = e1000e_mac_readreg,
3133     [IP4AT ... IP4AT + 6]  = e1000e_mac_readreg,
3134     [RA ... RA + 31]       = e1000e_mac_readreg,
3135     [WUPM ... WUPM + 31]   = e1000e_mac_readreg,
3136     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_readreg,
3137     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]  = e1000e_mac_readreg,
3138     [FFMT ... FFMT + 254]  = e1000e_mac_readreg,
3139     [FFVT ... FFVT + 254]  = e1000e_mac_readreg,
3140     [MDEF ... MDEF + 7]    = e1000e_mac_readreg,
3141     [FFLT ... FFLT + 10]   = e1000e_mac_readreg,
3142     [FTFT ... FTFT + 254]  = e1000e_mac_readreg,
3143     [PBM ... PBM + 10239]  = e1000e_mac_readreg,
3144     [RETA ... RETA + 31]   = e1000e_mac_readreg,
3145     [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3146     [MAVTV0 ... MAVTV3]    = e1000e_mac_readreg,
3147     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3148 };
3149 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3150 
3151 #define e1000e_putreg(x)    [x] = e1000e_mac_writereg
3152 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3153 static const writeops e1000e_macreg_writeops[] = {
3154     e1000e_putreg(PBA),
3155     e1000e_putreg(SWSM),
3156     e1000e_putreg(WUFC),
3157     e1000e_putreg(RDBAH1),
3158     e1000e_putreg(TDBAH),
3159     e1000e_putreg(TXDCTL),
3160     e1000e_putreg(RDBAH0),
3161     e1000e_putreg(LEDCTL),
3162     e1000e_putreg(FCAL),
3163     e1000e_putreg(FCRUC),
3164     e1000e_putreg(WUC),
3165     e1000e_putreg(WUS),
3166     e1000e_putreg(IPAV),
3167     e1000e_putreg(TDBAH1),
3168     e1000e_putreg(IAM),
3169     e1000e_putreg(EIAC),
3170     e1000e_putreg(IVAR),
3171     e1000e_putreg(TARC0),
3172     e1000e_putreg(TARC1),
3173     e1000e_putreg(FLSWDATA),
3174     e1000e_putreg(POEMB),
3175     e1000e_putreg(MFUTP01),
3176     e1000e_putreg(MFUTP23),
3177     e1000e_putreg(MANC),
3178     e1000e_putreg(MANC2H),
3179     e1000e_putreg(MFVAL),
3180     e1000e_putreg(EXTCNF_CTRL),
3181     e1000e_putreg(FACTPS),
3182     e1000e_putreg(FUNCTAG),
3183     e1000e_putreg(GSCL_1),
3184     e1000e_putreg(GSCL_2),
3185     e1000e_putreg(GSCL_3),
3186     e1000e_putreg(GSCL_4),
3187     e1000e_putreg(GSCN_0),
3188     e1000e_putreg(GSCN_1),
3189     e1000e_putreg(GSCN_2),
3190     e1000e_putreg(GSCN_3),
3191     e1000e_putreg(GCR2),
3192     e1000e_putreg(MRQC),
3193     e1000e_putreg(FLOP),
3194     e1000e_putreg(FLOL),
3195     e1000e_putreg(FLSWCTL),
3196     e1000e_putreg(FLSWCNT),
3197     e1000e_putreg(FLA),
3198     e1000e_putreg(RXDCTL1),
3199     e1000e_putreg(TXDCTL1),
3200     e1000e_putreg(TIPG),
3201     e1000e_putreg(RXSTMPH),
3202     e1000e_putreg(RXSTMPL),
3203     e1000e_putreg(RXSATRL),
3204     e1000e_putreg(RXSATRH),
3205     e1000e_putreg(TXSTMPL),
3206     e1000e_putreg(TXSTMPH),
3207     e1000e_putreg(SYSTIML),
3208     e1000e_putreg(SYSTIMH),
3209     e1000e_putreg(TIMADJL),
3210     e1000e_putreg(RXUDP),
3211     e1000e_putreg(RXCFGL),
3212     e1000e_putreg(TSYNCRXCTL),
3213     e1000e_putreg(TSYNCTXCTL),
3214     e1000e_putreg(EXTCNF_SIZE),
3215     e1000e_putreg(EEMNGCTL),
3216     e1000e_putreg(RA),
3217 
3218     [TDH1]     = e1000e_set_16bit,
3219     [TDT1]     = e1000e_set_tdt,
3220     [TCTL]     = e1000e_set_tctl,
3221     [TDT]      = e1000e_set_tdt,
3222     [MDIC]     = e1000e_set_mdic,
3223     [ICS]      = e1000e_set_ics,
3224     [TDH]      = e1000e_set_16bit,
3225     [RDH0]     = e1000e_set_16bit,
3226     [RDT0]     = e1000e_set_rdt,
3227     [IMC]      = e1000e_set_imc,
3228     [IMS]      = e1000e_set_ims,
3229     [ICR]      = e1000e_set_icr,
3230     [EECD]     = e1000e_set_eecd,
3231     [RCTL]     = e1000e_set_rx_control,
3232     [CTRL]     = e1000e_set_ctrl,
3233     [RDTR]     = e1000e_set_rdtr,
3234     [RADV]     = e1000e_set_16bit,
3235     [TADV]     = e1000e_set_16bit,
3236     [ITR]      = e1000e_set_itr,
3237     [EERD]     = e1000e_set_eerd,
3238     [AIT]      = e1000e_set_16bit,
3239     [TDFH]     = e1000e_set_13bit,
3240     [TDFT]     = e1000e_set_13bit,
3241     [TDFHS]    = e1000e_set_13bit,
3242     [TDFTS]    = e1000e_set_13bit,
3243     [TDFPC]    = e1000e_set_13bit,
3244     [RDFH]     = e1000e_set_13bit,
3245     [RDFHS]    = e1000e_set_13bit,
3246     [RDFT]     = e1000e_set_13bit,
3247     [RDFTS]    = e1000e_set_13bit,
3248     [RDFPC]    = e1000e_set_13bit,
3249     [PBS]      = e1000e_set_6bit,
3250     [GCR]      = e1000e_set_gcr,
3251     [PSRCTL]   = e1000e_set_psrctl,
3252     [RXCSUM]   = e1000e_set_rxcsum,
3253     [RAID]     = e1000e_set_16bit,
3254     [RSRPD]    = e1000e_set_12bit,
3255     [TIDV]     = e1000e_set_tidv,
3256     [TDLEN1]   = e1000e_set_dlen,
3257     [TDLEN]    = e1000e_set_dlen,
3258     [RDLEN0]   = e1000e_set_dlen,
3259     [RDLEN1]   = e1000e_set_dlen,
3260     [TDBAL]    = e1000e_set_dbal,
3261     [TDBAL1]   = e1000e_set_dbal,
3262     [RDBAL0]   = e1000e_set_dbal,
3263     [RDBAL1]   = e1000e_set_dbal,
3264     [RDH1]     = e1000e_set_16bit,
3265     [RDT1]     = e1000e_set_rdt,
3266     [STATUS]   = e1000e_set_status,
3267     [PBACLR]   = e1000e_set_pbaclr,
3268     [CTRL_EXT] = e1000e_set_ctrlext,
3269     [FCAH]     = e1000e_set_16bit,
3270     [FCT]      = e1000e_set_16bit,
3271     [FCTTV]    = e1000e_set_16bit,
3272     [FCRTV]    = e1000e_set_16bit,
3273     [FCRTH]    = e1000e_set_fcrth,
3274     [FCRTL]    = e1000e_set_fcrtl,
3275     [VET]      = e1000e_set_vet,
3276     [RXDCTL]   = e1000e_set_rxdctl,
3277     [FLASHT]   = e1000e_set_16bit,
3278     [EEWR]     = e1000e_set_eewr,
3279     [CTRL_DUP] = e1000e_set_ctrl,
3280     [RFCTL]    = e1000e_set_rfctl,
3281     [RA + 1]   = e1000e_mac_setmacaddr,
3282     [TIMINCA]  = e1000e_set_timinca,
3283     [TIMADJH]  = e1000e_set_timadjh,
3284 
3285     [IP6AT ... IP6AT + 3]    = e1000e_mac_writereg,
3286     [IP4AT ... IP4AT + 6]    = e1000e_mac_writereg,
3287     [RA + 2 ... RA + 31]     = e1000e_mac_writereg,
3288     [WUPM ... WUPM + 31]     = e1000e_mac_writereg,
3289     [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = e1000e_mac_writereg,
3290     [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1]    = e1000e_mac_writereg,
3291     [FFMT ... FFMT + 254]    = e1000e_set_4bit,
3292     [FFVT ... FFVT + 254]    = e1000e_mac_writereg,
3293     [PBM ... PBM + 10239]    = e1000e_mac_writereg,
3294     [MDEF ... MDEF + 7]      = e1000e_mac_writereg,
3295     [FFLT ... FFLT + 10]     = e1000e_set_11bit,
3296     [FTFT ... FTFT + 254]    = e1000e_mac_writereg,
3297     [RETA ... RETA + 31]     = e1000e_mac_writereg,
3298     [RSSRK ... RSSRK + 31]   = e1000e_mac_writereg,
3299     [MAVTV0 ... MAVTV3]      = e1000e_mac_writereg,
3300     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3301 };
3302 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3303 
3304 enum { MAC_ACCESS_PARTIAL = 1 };
3305 
3306 /*
3307  * The array below combines alias offsets of the index values for the
3308  * MAC registers that have aliases, with the indication of not fully
3309  * implemented registers (lowest bit). This combination is possible
3310  * because all of the offsets are even.
3311  */
3312 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3313     /* Alias index offsets */
3314     [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3315     [RDH0_A]  = 0x09bc, [RDT0_A]  = 0x09bc, [RDTR_A] = 0x09c6,
3316     [RDFH_A]  = 0xe904, [RDFT_A]  = 0xe904,
3317     [TDH_A]   = 0x0cf8, [TDT_A]   = 0x0cf8, [TIDV_A] = 0x0cf8,
3318     [TDFH_A]  = 0xed00, [TDFT_A]  = 0xed00,
3319     [RA_A ... RA_A + 31]      = 0x14f0,
3320     [VFTA_A ... VFTA_A + E1000_VLAN_FILTER_TBL_SIZE - 1] = 0x1400,
3321     [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3322     [TDBAL_A ... TDLEN_A]   = 0x0cf8,
3323     /* Access options */
3324     [RDFH]  = MAC_ACCESS_PARTIAL,    [RDFT]  = MAC_ACCESS_PARTIAL,
3325     [RDFHS] = MAC_ACCESS_PARTIAL,    [RDFTS] = MAC_ACCESS_PARTIAL,
3326     [RDFPC] = MAC_ACCESS_PARTIAL,
3327     [TDFH]  = MAC_ACCESS_PARTIAL,    [TDFT]  = MAC_ACCESS_PARTIAL,
3328     [TDFHS] = MAC_ACCESS_PARTIAL,    [TDFTS] = MAC_ACCESS_PARTIAL,
3329     [TDFPC] = MAC_ACCESS_PARTIAL,    [EECD]  = MAC_ACCESS_PARTIAL,
3330     [PBM]   = MAC_ACCESS_PARTIAL,    [FLA]   = MAC_ACCESS_PARTIAL,
3331     [FCAL]  = MAC_ACCESS_PARTIAL,    [FCAH]  = MAC_ACCESS_PARTIAL,
3332     [FCT]   = MAC_ACCESS_PARTIAL,    [FCTTV] = MAC_ACCESS_PARTIAL,
3333     [FCRTV] = MAC_ACCESS_PARTIAL,    [FCRTL] = MAC_ACCESS_PARTIAL,
3334     [FCRTH] = MAC_ACCESS_PARTIAL,    [TXDCTL] = MAC_ACCESS_PARTIAL,
3335     [TXDCTL1] = MAC_ACCESS_PARTIAL,
3336     [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3337 };
3338 
3339 void
3340 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3341 {
3342     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3343 
3344     if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3345         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3346             trace_e1000e_wrn_regs_write_trivial(index << 2);
3347         }
3348         trace_e1000e_core_write(index << 2, size, val);
3349         e1000e_macreg_writeops[index](core, index, val);
3350     } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3351         trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3352     } else {
3353         trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3354     }
3355 }
3356 
3357 uint64_t
3358 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3359 {
3360     uint64_t val;
3361     uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3362 
3363     if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3364         if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3365             trace_e1000e_wrn_regs_read_trivial(index << 2);
3366         }
3367         val = e1000e_macreg_readops[index](core, index);
3368         trace_e1000e_core_read(index << 2, size, val);
3369         return val;
3370     } else {
3371         trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3372     }
3373     return 0;
3374 }
3375 
3376 static inline void
3377 e1000e_autoneg_pause(E1000ECore *core)
3378 {
3379     timer_del(core->autoneg_timer);
3380 }
3381 
3382 static void
3383 e1000e_autoneg_resume(E1000ECore *core)
3384 {
3385     if (e1000e_have_autoneg(core) &&
3386         !(core->phy[0][MII_BMSR] & MII_BMSR_AN_COMP)) {
3387         qemu_get_queue(core->owner_nic)->link_down = false;
3388         timer_mod(core->autoneg_timer,
3389                   qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3390     }
3391 }
3392 
3393 static void
3394 e1000e_vm_state_change(void *opaque, bool running, RunState state)
3395 {
3396     E1000ECore *core = opaque;
3397 
3398     if (running) {
3399         trace_e1000e_vm_state_running();
3400         e1000e_intrmgr_resume(core);
3401         e1000e_autoneg_resume(core);
3402     } else {
3403         trace_e1000e_vm_state_stopped();
3404         e1000e_autoneg_pause(core);
3405         e1000e_intrmgr_pause(core);
3406     }
3407 }
3408 
3409 void
3410 e1000e_core_pci_realize(E1000ECore     *core,
3411                         const uint16_t *eeprom_templ,
3412                         uint32_t        eeprom_size,
3413                         const uint8_t  *macaddr)
3414 {
3415     int i;
3416 
3417     core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3418                                        e1000e_autoneg_timer, core);
3419     e1000e_intrmgr_pci_realize(core);
3420 
3421     core->vmstate =
3422         qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3423 
3424     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3425         net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner, E1000E_MAX_TX_FRAGS);
3426     }
3427 
3428     net_rx_pkt_init(&core->rx_pkt);
3429 
3430     e1000x_core_prepare_eeprom(core->eeprom,
3431                                eeprom_templ,
3432                                eeprom_size,
3433                                PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3434                                macaddr);
3435     e1000e_update_rx_offloads(core);
3436 }
3437 
3438 void
3439 e1000e_core_pci_uninit(E1000ECore *core)
3440 {
3441     int i;
3442 
3443     timer_free(core->autoneg_timer);
3444 
3445     e1000e_intrmgr_pci_unint(core);
3446 
3447     qemu_del_vm_change_state_handler(core->vmstate);
3448 
3449     for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3450         net_tx_pkt_reset(core->tx[i].tx_pkt);
3451         net_tx_pkt_uninit(core->tx[i].tx_pkt);
3452     }
3453 
3454     net_rx_pkt_uninit(core->rx_pkt);
3455 }
3456 
3457 static const uint16_t
3458 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3459     [0] = {
3460         [MII_BMCR] = MII_BMCR_SPEED1000 |
3461                      MII_BMCR_FD        |
3462                      MII_BMCR_AUTOEN,
3463 
3464         [MII_BMSR] = MII_BMSR_EXTCAP    |
3465                      MII_BMSR_LINK_ST   |
3466                      MII_BMSR_AUTONEG   |
3467                      MII_BMSR_MFPS      |
3468                      MII_BMSR_EXTSTAT   |
3469                      MII_BMSR_10T_HD    |
3470                      MII_BMSR_10T_FD    |
3471                      MII_BMSR_100TX_HD  |
3472                      MII_BMSR_100TX_FD,
3473 
3474         [MII_PHYID1]            = 0x141,
3475         [MII_PHYID2]            = E1000_PHY_ID2_82574x,
3476         [MII_ANAR]              = MII_ANAR_CSMACD | MII_ANAR_10 |
3477                                   MII_ANAR_10FD | MII_ANAR_TX |
3478                                   MII_ANAR_TXFD | MII_ANAR_PAUSE |
3479                                   MII_ANAR_PAUSE_ASYM,
3480         [MII_ANLPAR]            = MII_ANLPAR_10 | MII_ANLPAR_10FD |
3481                                   MII_ANLPAR_TX | MII_ANLPAR_TXFD |
3482                                   MII_ANLPAR_T4 | MII_ANLPAR_PAUSE,
3483         [MII_ANER]              = MII_ANER_NP | MII_ANER_NWAY,
3484         [MII_ANNP]              = 1 | MII_ANNP_MP,
3485         [MII_CTRL1000]          = MII_CTRL1000_HALF | MII_CTRL1000_FULL |
3486                                   MII_CTRL1000_PORT | MII_CTRL1000_MASTER,
3487         [MII_STAT1000]          = MII_STAT1000_HALF | MII_STAT1000_FULL |
3488                                   MII_STAT1000_ROK | MII_STAT1000_LOK,
3489         [MII_EXTSTAT]           = MII_EXTSTAT_1000T_HD | MII_EXTSTAT_1000T_FD,
3490 
3491         [PHY_COPPER_CTRL1]      = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3492                                   BIT(12) | BIT(13),
3493         [PHY_COPPER_STAT1]      = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3494     },
3495     [2] = {
3496         [PHY_MAC_CTRL1]         = BIT(3) | BIT(7),
3497         [PHY_MAC_CTRL2]         = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3498     },
3499     [3] = {
3500         [PHY_LED_TIMER_CTRL]    = BIT(0) | BIT(2) | BIT(14)
3501     }
3502 };
3503 
3504 static const uint32_t e1000e_mac_reg_init[] = {
3505     [PBA]           =     0x00140014,
3506     [LEDCTL]        =  BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3507     [EXTCNF_CTRL]   = BIT(3),
3508     [EEMNGCTL]      = BIT(31),
3509     [FLASHT]        = 0x2,
3510     [FLSWCTL]       = BIT(30) | BIT(31),
3511     [FLOL]          = BIT(0),
3512     [RXDCTL]        = BIT(16),
3513     [RXDCTL1]       = BIT(16),
3514     [TIPG]          = 0x8 | (0x8 << 10) | (0x6 << 20),
3515     [RXCFGL]        = 0x88F7,
3516     [RXUDP]         = 0x319,
3517     [CTRL]          = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3518                       E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3519                       E1000_CTRL_ADVD3WUC,
3520     [STATUS]        =  E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3521     [PSRCTL]        = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3522                       (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3523                       (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3524     [TARC0]         = 0x3 | E1000_TARC_ENABLE,
3525     [TARC1]         = 0x3 | E1000_TARC_ENABLE,
3526     [EECD]          = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3527     [EERD]          = E1000_EERW_DONE,
3528     [EEWR]          = E1000_EERW_DONE,
3529     [GCR]           = E1000_L0S_ADJUST |
3530                       E1000_L1_ENTRY_LATENCY_MSB |
3531                       E1000_L1_ENTRY_LATENCY_LSB,
3532     [TDFH]          = 0x600,
3533     [TDFT]          = 0x600,
3534     [TDFHS]         = 0x600,
3535     [TDFTS]         = 0x600,
3536     [POEMB]         = 0x30D,
3537     [PBS]           = 0x028,
3538     [MANC]          = E1000_MANC_DIS_IP_CHK_ARP,
3539     [FACTPS]        = E1000_FACTPS_LAN0_ON | 0x20000000,
3540     [SWSM]          = 1,
3541     [RXCSUM]        = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3542     [ITR]           = E1000E_MIN_XITR,
3543     [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3544 };
3545 
3546 static void e1000e_reset(E1000ECore *core, bool sw)
3547 {
3548     int i;
3549 
3550     timer_del(core->autoneg_timer);
3551 
3552     e1000e_intrmgr_reset(core);
3553 
3554     memset(core->phy, 0, sizeof core->phy);
3555     memcpy(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3556 
3557     for (i = 0; i < E1000E_MAC_SIZE; i++) {
3558         if (sw && (i == PBA || i == PBS || i == FLA)) {
3559             continue;
3560         }
3561 
3562         core->mac[i] = i < ARRAY_SIZE(e1000e_mac_reg_init) ?
3563                        e1000e_mac_reg_init[i] : 0;
3564     }
3565 
3566     core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3567 
3568     if (qemu_get_queue(core->owner_nic)->link_down) {
3569         e1000e_link_down(core);
3570     }
3571 
3572     e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3573 
3574     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3575         net_tx_pkt_reset(core->tx[i].tx_pkt);
3576         memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3577         core->tx[i].skip_cp = false;
3578     }
3579 }
3580 
3581 void
3582 e1000e_core_reset(E1000ECore *core)
3583 {
3584     e1000e_reset(core, false);
3585 }
3586 
3587 void e1000e_core_pre_save(E1000ECore *core)
3588 {
3589     int i;
3590     NetClientState *nc = qemu_get_queue(core->owner_nic);
3591 
3592     /*
3593      * If link is down and auto-negotiation is supported and ongoing,
3594      * complete auto-negotiation immediately. This allows us to look
3595      * at MII_BMSR_AN_COMP to infer link status on load.
3596      */
3597     if (nc->link_down && e1000e_have_autoneg(core)) {
3598         core->phy[0][MII_BMSR] |= MII_BMSR_AN_COMP;
3599         e1000e_update_flowctl_status(core);
3600     }
3601 
3602     for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3603         if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3604             core->tx[i].skip_cp = true;
3605         }
3606     }
3607 }
3608 
3609 int
3610 e1000e_core_post_load(E1000ECore *core)
3611 {
3612     NetClientState *nc = qemu_get_queue(core->owner_nic);
3613 
3614     /*
3615      * nc.link_down can't be migrated, so infer link_down according
3616      * to link status bit in core.mac[STATUS].
3617      */
3618     nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3619 
3620     return 0;
3621 }
3622