1 /* 2 * QEMU INTEL 82574 GbE NIC emulation 3 * 4 * Software developer's manuals: 5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf 6 * 7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) 8 * Developed by Daynix Computing LTD (http://www.daynix.com) 9 * 10 * Authors: 11 * Dmitry Fleytman <dmitry@daynix.com> 12 * Leonid Bloch <leonid@daynix.com> 13 * Yan Vugenfirer <yan@daynix.com> 14 * 15 * Based on work done by: 16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 17 * Copyright (c) 2008 Qumranet 18 * Based on work done by: 19 * Copyright (c) 2007 Dan Aloni 20 * Copyright (c) 2004 Antony T Curtis 21 * 22 * This library is free software; you can redistribute it and/or 23 * modify it under the terms of the GNU Lesser General Public 24 * License as published by the Free Software Foundation; either 25 * version 2 of the License, or (at your option) any later version. 26 * 27 * This library is distributed in the hope that it will be useful, 28 * but WITHOUT ANY WARRANTY; without even the implied warranty of 29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 30 * Lesser General Public License for more details. 31 * 32 * You should have received a copy of the GNU Lesser General Public 33 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 34 */ 35 36 #include "qemu/osdep.h" 37 #include "net/net.h" 38 #include "net/tap.h" 39 #include "qemu/range.h" 40 #include "sysemu/sysemu.h" 41 #include "hw/pci/msi.h" 42 #include "hw/pci/msix.h" 43 44 #include "hw/net/e1000_regs.h" 45 46 #include "e1000x_common.h" 47 #include "e1000e_core.h" 48 49 #include "trace.h" 50 51 #define TYPE_E1000E "e1000e" 52 #define E1000E(obj) OBJECT_CHECK(E1000EState, (obj), TYPE_E1000E) 53 54 typedef struct E1000EState { 55 PCIDevice parent_obj; 56 NICState *nic; 57 NICConf conf; 58 59 MemoryRegion mmio; 60 MemoryRegion flash; 61 MemoryRegion io; 62 MemoryRegion msix; 63 64 uint32_t ioaddr; 65 66 uint16_t subsys_ven; 67 uint16_t subsys; 68 69 uint16_t subsys_ven_used; 70 uint16_t subsys_used; 71 72 bool disable_vnet; 73 74 E1000ECore core; 75 76 } E1000EState; 77 78 #define E1000E_MMIO_IDX 0 79 #define E1000E_FLASH_IDX 1 80 #define E1000E_IO_IDX 2 81 #define E1000E_MSIX_IDX 3 82 83 #define E1000E_MMIO_SIZE (128 * 1024) 84 #define E1000E_FLASH_SIZE (128 * 1024) 85 #define E1000E_IO_SIZE (32) 86 #define E1000E_MSIX_SIZE (16 * 1024) 87 88 #define E1000E_MSIX_TABLE (0x0000) 89 #define E1000E_MSIX_PBA (0x2000) 90 91 static uint64_t 92 e1000e_mmio_read(void *opaque, hwaddr addr, unsigned size) 93 { 94 E1000EState *s = opaque; 95 return e1000e_core_read(&s->core, addr, size); 96 } 97 98 static void 99 e1000e_mmio_write(void *opaque, hwaddr addr, 100 uint64_t val, unsigned size) 101 { 102 E1000EState *s = opaque; 103 e1000e_core_write(&s->core, addr, val, size); 104 } 105 106 static bool 107 e1000e_io_get_reg_index(E1000EState *s, uint32_t *idx) 108 { 109 if (s->ioaddr < 0x1FFFF) { 110 *idx = s->ioaddr; 111 return true; 112 } 113 114 if (s->ioaddr < 0x7FFFF) { 115 trace_e1000e_wrn_io_addr_undefined(s->ioaddr); 116 return false; 117 } 118 119 if (s->ioaddr < 0xFFFFF) { 120 trace_e1000e_wrn_io_addr_flash(s->ioaddr); 121 return false; 122 } 123 124 trace_e1000e_wrn_io_addr_unknown(s->ioaddr); 125 return false; 126 } 127 128 static uint64_t 129 e1000e_io_read(void *opaque, hwaddr addr, unsigned size) 130 { 131 E1000EState *s = opaque; 132 uint32_t idx = 0; 133 uint64_t val; 134 135 switch (addr) { 136 case E1000_IOADDR: 137 trace_e1000e_io_read_addr(s->ioaddr); 138 return s->ioaddr; 139 case E1000_IODATA: 140 if (e1000e_io_get_reg_index(s, &idx)) { 141 val = e1000e_core_read(&s->core, idx, sizeof(val)); 142 trace_e1000e_io_read_data(idx, val); 143 return val; 144 } 145 return 0; 146 default: 147 trace_e1000e_wrn_io_read_unknown(addr); 148 return 0; 149 } 150 } 151 152 static void 153 e1000e_io_write(void *opaque, hwaddr addr, 154 uint64_t val, unsigned size) 155 { 156 E1000EState *s = opaque; 157 uint32_t idx = 0; 158 159 switch (addr) { 160 case E1000_IOADDR: 161 trace_e1000e_io_write_addr(val); 162 s->ioaddr = (uint32_t) val; 163 return; 164 case E1000_IODATA: 165 if (e1000e_io_get_reg_index(s, &idx)) { 166 trace_e1000e_io_write_data(idx, val); 167 e1000e_core_write(&s->core, idx, val, sizeof(val)); 168 } 169 return; 170 default: 171 trace_e1000e_wrn_io_write_unknown(addr); 172 return; 173 } 174 } 175 176 static const MemoryRegionOps mmio_ops = { 177 .read = e1000e_mmio_read, 178 .write = e1000e_mmio_write, 179 .endianness = DEVICE_LITTLE_ENDIAN, 180 .impl = { 181 .min_access_size = 4, 182 .max_access_size = 4, 183 }, 184 }; 185 186 static const MemoryRegionOps io_ops = { 187 .read = e1000e_io_read, 188 .write = e1000e_io_write, 189 .endianness = DEVICE_LITTLE_ENDIAN, 190 .impl = { 191 .min_access_size = 4, 192 .max_access_size = 4, 193 }, 194 }; 195 196 static int 197 e1000e_nc_can_receive(NetClientState *nc) 198 { 199 E1000EState *s = qemu_get_nic_opaque(nc); 200 return e1000e_can_receive(&s->core); 201 } 202 203 static ssize_t 204 e1000e_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) 205 { 206 E1000EState *s = qemu_get_nic_opaque(nc); 207 return e1000e_receive_iov(&s->core, iov, iovcnt); 208 } 209 210 static ssize_t 211 e1000e_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size) 212 { 213 E1000EState *s = qemu_get_nic_opaque(nc); 214 return e1000e_receive(&s->core, buf, size); 215 } 216 217 static void 218 e1000e_set_link_status(NetClientState *nc) 219 { 220 E1000EState *s = qemu_get_nic_opaque(nc); 221 e1000e_core_set_link_status(&s->core); 222 } 223 224 static NetClientInfo net_e1000e_info = { 225 .type = NET_CLIENT_DRIVER_NIC, 226 .size = sizeof(NICState), 227 .can_receive = e1000e_nc_can_receive, 228 .receive = e1000e_nc_receive, 229 .receive_iov = e1000e_nc_receive_iov, 230 .link_status_changed = e1000e_set_link_status, 231 }; 232 233 /* 234 * EEPROM (NVM) contents documented in Table 36, section 6.1 235 * and generally 6.1.2 Software accessed words. 236 */ 237 static const uint16_t e1000e_eeprom_template[64] = { 238 /* Address | Compat. | ImVer | Compat. */ 239 0x0000, 0x0000, 0x0000, 0x0420, 0xf746, 0x2010, 0xffff, 0xffff, 240 /* PBA |ICtrl1 | SSID | SVID | DevID |-------|ICtrl2 */ 241 0x0000, 0x0000, 0x026b, 0x0000, 0x8086, 0x0000, 0x0000, 0x8058, 242 /* NVM words 1,2,3 |-------------------------------|PCI-EID*/ 243 0x0000, 0x2001, 0x7e7c, 0xffff, 0x1000, 0x00c8, 0x0000, 0x2704, 244 /* PCIe Init. Conf 1,2,3 |PCICtrl|PHY|LD1|-------| RevID | LD0,2 */ 245 0x6cc9, 0x3150, 0x070e, 0x460b, 0x2d84, 0x0100, 0xf000, 0x0706, 246 /* FLPAR |FLANADD|LAN-PWR|FlVndr |ICtrl3 |APTSMBA|APTRxEP|APTSMBC*/ 247 0x6000, 0x0080, 0x0f04, 0x7fff, 0x4f01, 0xc600, 0x0000, 0x20ff, 248 /* APTIF | APTMC |APTuCP |LSWFWID|MSWFWID|NC-SIMC|NC-SIC | VPDP */ 249 0x0028, 0x0003, 0x0000, 0x0000, 0x0000, 0x0003, 0x0000, 0xffff, 250 /* SW Section */ 251 0x0100, 0xc000, 0x121c, 0xc007, 0xffff, 0xffff, 0xffff, 0xffff, 252 /* SW Section |CHKSUM */ 253 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0120, 0xffff, 0x0000, 254 }; 255 256 static void e1000e_core_realize(E1000EState *s) 257 { 258 s->core.owner = &s->parent_obj; 259 s->core.owner_nic = s->nic; 260 } 261 262 static void 263 e1000e_unuse_msix_vectors(E1000EState *s, int num_vectors) 264 { 265 int i; 266 for (i = 0; i < num_vectors; i++) { 267 msix_vector_unuse(PCI_DEVICE(s), i); 268 } 269 } 270 271 static bool 272 e1000e_use_msix_vectors(E1000EState *s, int num_vectors) 273 { 274 int i; 275 for (i = 0; i < num_vectors; i++) { 276 int res = msix_vector_use(PCI_DEVICE(s), i); 277 if (res < 0) { 278 trace_e1000e_msix_use_vector_fail(i, res); 279 e1000e_unuse_msix_vectors(s, i); 280 return false; 281 } 282 } 283 return true; 284 } 285 286 static void 287 e1000e_init_msix(E1000EState *s) 288 { 289 PCIDevice *d = PCI_DEVICE(s); 290 int res = msix_init(PCI_DEVICE(s), E1000E_MSIX_VEC_NUM, 291 &s->msix, 292 E1000E_MSIX_IDX, E1000E_MSIX_TABLE, 293 &s->msix, 294 E1000E_MSIX_IDX, E1000E_MSIX_PBA, 295 0xA0); 296 297 if (res < 0) { 298 trace_e1000e_msix_init_fail(res); 299 } else { 300 if (!e1000e_use_msix_vectors(s, E1000E_MSIX_VEC_NUM)) { 301 msix_uninit(d, &s->msix, &s->msix); 302 } 303 } 304 } 305 306 static void 307 e1000e_cleanup_msix(E1000EState *s) 308 { 309 if (msix_enabled(PCI_DEVICE(s))) { 310 e1000e_unuse_msix_vectors(s, E1000E_MSIX_VEC_NUM); 311 msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix); 312 } 313 } 314 315 static void 316 e1000e_init_net_peer(E1000EState *s, PCIDevice *pci_dev, uint8_t *macaddr) 317 { 318 DeviceState *dev = DEVICE(pci_dev); 319 NetClientState *nc; 320 int i; 321 322 s->nic = qemu_new_nic(&net_e1000e_info, &s->conf, 323 object_get_typename(OBJECT(s)), dev->id, s); 324 325 s->core.max_queue_num = s->conf.peers.queues - 1; 326 327 trace_e1000e_mac_set_permanent(MAC_ARG(macaddr)); 328 memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac)); 329 330 qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr); 331 332 /* Setup virtio headers */ 333 if (s->disable_vnet) { 334 s->core.has_vnet = false; 335 trace_e1000e_cfg_support_virtio(false); 336 return; 337 } else { 338 s->core.has_vnet = true; 339 } 340 341 for (i = 0; i < s->conf.peers.queues; i++) { 342 nc = qemu_get_subqueue(s->nic, i); 343 if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) { 344 s->core.has_vnet = false; 345 trace_e1000e_cfg_support_virtio(false); 346 return; 347 } 348 } 349 350 trace_e1000e_cfg_support_virtio(true); 351 352 for (i = 0; i < s->conf.peers.queues; i++) { 353 nc = qemu_get_subqueue(s->nic, i); 354 qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr)); 355 qemu_using_vnet_hdr(nc->peer, true); 356 } 357 } 358 359 static inline uint64_t 360 e1000e_gen_dsn(uint8_t *mac) 361 { 362 return (uint64_t)(mac[5]) | 363 (uint64_t)(mac[4]) << 8 | 364 (uint64_t)(mac[3]) << 16 | 365 (uint64_t)(0x00FF) << 24 | 366 (uint64_t)(0x00FF) << 32 | 367 (uint64_t)(mac[2]) << 40 | 368 (uint64_t)(mac[1]) << 48 | 369 (uint64_t)(mac[0]) << 56; 370 } 371 372 static int 373 e1000e_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc) 374 { 375 int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset, PCI_PM_SIZEOF); 376 377 if (ret >= 0) { 378 pci_set_word(pdev->config + offset + PCI_PM_PMC, 379 PCI_PM_CAP_VER_1_1 | 380 pmc); 381 382 pci_set_word(pdev->wmask + offset + PCI_PM_CTRL, 383 PCI_PM_CTRL_STATE_MASK | 384 PCI_PM_CTRL_PME_ENABLE | 385 PCI_PM_CTRL_DATA_SEL_MASK); 386 387 pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL, 388 PCI_PM_CTRL_PME_STATUS); 389 } 390 391 return ret; 392 } 393 394 static void e1000e_write_config(PCIDevice *pci_dev, uint32_t address, 395 uint32_t val, int len) 396 { 397 E1000EState *s = E1000E(pci_dev); 398 399 pci_default_write_config(pci_dev, address, val, len); 400 401 if (range_covers_byte(address, len, PCI_COMMAND) && 402 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { 403 e1000e_start_recv(&s->core); 404 } 405 } 406 407 static void e1000e_pci_realize(PCIDevice *pci_dev, Error **errp) 408 { 409 static const uint16_t e1000e_pmrb_offset = 0x0C8; 410 static const uint16_t e1000e_pcie_offset = 0x0E0; 411 static const uint16_t e1000e_aer_offset = 0x100; 412 static const uint16_t e1000e_dsn_offset = 0x140; 413 E1000EState *s = E1000E(pci_dev); 414 uint8_t *macaddr; 415 int ret; 416 417 trace_e1000e_cb_pci_realize(); 418 419 pci_dev->config_write = e1000e_write_config; 420 421 pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10; 422 pci_dev->config[PCI_INTERRUPT_PIN] = 1; 423 424 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, s->subsys_ven); 425 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, s->subsys); 426 427 s->subsys_ven_used = s->subsys_ven; 428 s->subsys_used = s->subsys; 429 430 /* Define IO/MMIO regions */ 431 memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s, 432 "e1000e-mmio", E1000E_MMIO_SIZE); 433 pci_register_bar(pci_dev, E1000E_MMIO_IDX, 434 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio); 435 436 /* 437 * We provide a dummy implementation for the flash BAR 438 * for drivers that may theoretically probe for its presence. 439 */ 440 memory_region_init(&s->flash, OBJECT(s), 441 "e1000e-flash", E1000E_FLASH_SIZE); 442 pci_register_bar(pci_dev, E1000E_FLASH_IDX, 443 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash); 444 445 memory_region_init_io(&s->io, OBJECT(s), &io_ops, s, 446 "e1000e-io", E1000E_IO_SIZE); 447 pci_register_bar(pci_dev, E1000E_IO_IDX, 448 PCI_BASE_ADDRESS_SPACE_IO, &s->io); 449 450 memory_region_init(&s->msix, OBJECT(s), "e1000e-msix", 451 E1000E_MSIX_SIZE); 452 pci_register_bar(pci_dev, E1000E_MSIX_IDX, 453 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix); 454 455 /* Create networking backend */ 456 qemu_macaddr_default_if_unset(&s->conf.macaddr); 457 macaddr = s->conf.macaddr.a; 458 459 e1000e_init_msix(s); 460 461 if (pcie_endpoint_cap_v1_init(pci_dev, e1000e_pcie_offset) < 0) { 462 hw_error("Failed to initialize PCIe capability"); 463 } 464 465 ret = msi_init(PCI_DEVICE(s), 0xD0, 1, true, false, NULL); 466 if (ret) { 467 trace_e1000e_msi_init_fail(ret); 468 } 469 470 if (e1000e_add_pm_capability(pci_dev, e1000e_pmrb_offset, 471 PCI_PM_CAP_DSI) < 0) { 472 hw_error("Failed to initialize PM capability"); 473 } 474 475 if (pcie_aer_init(pci_dev, e1000e_aer_offset, PCI_ERR_SIZEOF) < 0) { 476 hw_error("Failed to initialize AER capability"); 477 } 478 479 pcie_dev_ser_num_init(pci_dev, e1000e_dsn_offset, 480 e1000e_gen_dsn(macaddr)); 481 482 e1000e_init_net_peer(s, pci_dev, macaddr); 483 484 /* Initialize core */ 485 e1000e_core_realize(s); 486 487 e1000e_core_pci_realize(&s->core, 488 e1000e_eeprom_template, 489 sizeof(e1000e_eeprom_template), 490 macaddr); 491 } 492 493 static void e1000e_pci_uninit(PCIDevice *pci_dev) 494 { 495 E1000EState *s = E1000E(pci_dev); 496 497 trace_e1000e_cb_pci_uninit(); 498 499 e1000e_core_pci_uninit(&s->core); 500 501 pcie_aer_exit(pci_dev); 502 pcie_cap_exit(pci_dev); 503 504 qemu_del_nic(s->nic); 505 506 e1000e_cleanup_msix(s); 507 msi_uninit(pci_dev); 508 } 509 510 static void e1000e_qdev_reset(DeviceState *dev) 511 { 512 E1000EState *s = E1000E(dev); 513 514 trace_e1000e_cb_qdev_reset(); 515 516 e1000e_core_reset(&s->core); 517 } 518 519 static void e1000e_pre_save(void *opaque) 520 { 521 E1000EState *s = opaque; 522 523 trace_e1000e_cb_pre_save(); 524 525 e1000e_core_pre_save(&s->core); 526 } 527 528 static int e1000e_post_load(void *opaque, int version_id) 529 { 530 E1000EState *s = opaque; 531 532 trace_e1000e_cb_post_load(); 533 534 if ((s->subsys != s->subsys_used) || 535 (s->subsys_ven != s->subsys_ven_used)) { 536 fprintf(stderr, 537 "ERROR: Cannot migrate while device properties " 538 "(subsys/subsys_ven) differ"); 539 return -1; 540 } 541 542 return e1000e_core_post_load(&s->core); 543 } 544 545 static const VMStateDescription e1000e_vmstate_tx = { 546 .name = "e1000e-tx", 547 .version_id = 1, 548 .minimum_version_id = 1, 549 .fields = (VMStateField[]) { 550 VMSTATE_UINT8(props.sum_needed, struct e1000e_tx), 551 VMSTATE_UINT8(props.ipcss, struct e1000e_tx), 552 VMSTATE_UINT8(props.ipcso, struct e1000e_tx), 553 VMSTATE_UINT16(props.ipcse, struct e1000e_tx), 554 VMSTATE_UINT8(props.tucss, struct e1000e_tx), 555 VMSTATE_UINT8(props.tucso, struct e1000e_tx), 556 VMSTATE_UINT16(props.tucse, struct e1000e_tx), 557 VMSTATE_UINT8(props.hdr_len, struct e1000e_tx), 558 VMSTATE_UINT16(props.mss, struct e1000e_tx), 559 VMSTATE_UINT32(props.paylen, struct e1000e_tx), 560 VMSTATE_INT8(props.ip, struct e1000e_tx), 561 VMSTATE_INT8(props.tcp, struct e1000e_tx), 562 VMSTATE_BOOL(props.tse, struct e1000e_tx), 563 VMSTATE_BOOL(props.cptse, struct e1000e_tx), 564 VMSTATE_BOOL(skip_cp, struct e1000e_tx), 565 VMSTATE_END_OF_LIST() 566 } 567 }; 568 569 static const VMStateDescription e1000e_vmstate_intr_timer = { 570 .name = "e1000e-intr-timer", 571 .version_id = 1, 572 .minimum_version_id = 1, 573 .fields = (VMStateField[]) { 574 VMSTATE_TIMER_PTR(timer, E1000IntrDelayTimer), 575 VMSTATE_BOOL(running, E1000IntrDelayTimer), 576 VMSTATE_END_OF_LIST() 577 } 578 }; 579 580 #define VMSTATE_E1000E_INTR_DELAY_TIMER(_f, _s) \ 581 VMSTATE_STRUCT(_f, _s, 0, \ 582 e1000e_vmstate_intr_timer, E1000IntrDelayTimer) 583 584 #define VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(_f, _s, _num) \ 585 VMSTATE_STRUCT_ARRAY(_f, _s, _num, 0, \ 586 e1000e_vmstate_intr_timer, E1000IntrDelayTimer) 587 588 static const VMStateDescription e1000e_vmstate = { 589 .name = "e1000e", 590 .version_id = 1, 591 .minimum_version_id = 1, 592 .pre_save = e1000e_pre_save, 593 .post_load = e1000e_post_load, 594 .fields = (VMStateField[]) { 595 VMSTATE_PCIE_DEVICE(parent_obj, E1000EState), 596 VMSTATE_MSIX(parent_obj, E1000EState), 597 598 VMSTATE_UINT32(ioaddr, E1000EState), 599 VMSTATE_UINT32(core.rxbuf_min_shift, E1000EState), 600 VMSTATE_UINT8(core.rx_desc_len, E1000EState), 601 VMSTATE_UINT32_ARRAY(core.rxbuf_sizes, E1000EState, 602 E1000_PSRCTL_BUFFS_PER_DESC), 603 VMSTATE_UINT32(core.rx_desc_buf_size, E1000EState), 604 VMSTATE_UINT16_ARRAY(core.eeprom, E1000EState, E1000E_EEPROM_SIZE), 605 VMSTATE_UINT16_2DARRAY(core.phy, E1000EState, 606 E1000E_PHY_PAGES, E1000E_PHY_PAGE_SIZE), 607 VMSTATE_UINT32_ARRAY(core.mac, E1000EState, E1000E_MAC_SIZE), 608 VMSTATE_UINT8_ARRAY(core.permanent_mac, E1000EState, ETH_ALEN), 609 610 VMSTATE_UINT32(core.delayed_causes, E1000EState), 611 612 VMSTATE_UINT16(subsys, E1000EState), 613 VMSTATE_UINT16(subsys_ven, E1000EState), 614 615 VMSTATE_E1000E_INTR_DELAY_TIMER(core.rdtr, E1000EState), 616 VMSTATE_E1000E_INTR_DELAY_TIMER(core.radv, E1000EState), 617 VMSTATE_E1000E_INTR_DELAY_TIMER(core.raid, E1000EState), 618 VMSTATE_E1000E_INTR_DELAY_TIMER(core.tadv, E1000EState), 619 VMSTATE_E1000E_INTR_DELAY_TIMER(core.tidv, E1000EState), 620 621 VMSTATE_E1000E_INTR_DELAY_TIMER(core.itr, E1000EState), 622 VMSTATE_BOOL(core.itr_intr_pending, E1000EState), 623 624 VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(core.eitr, E1000EState, 625 E1000E_MSIX_VEC_NUM), 626 VMSTATE_BOOL_ARRAY(core.eitr_intr_pending, E1000EState, 627 E1000E_MSIX_VEC_NUM), 628 629 VMSTATE_UINT32(core.itr_guest_value, E1000EState), 630 VMSTATE_UINT32_ARRAY(core.eitr_guest_value, E1000EState, 631 E1000E_MSIX_VEC_NUM), 632 633 VMSTATE_UINT16(core.vet, E1000EState), 634 635 VMSTATE_STRUCT_ARRAY(core.tx, E1000EState, E1000E_NUM_QUEUES, 0, 636 e1000e_vmstate_tx, struct e1000e_tx), 637 VMSTATE_END_OF_LIST() 638 } 639 }; 640 641 static PropertyInfo e1000e_prop_disable_vnet, 642 e1000e_prop_subsys_ven, 643 e1000e_prop_subsys; 644 645 static Property e1000e_properties[] = { 646 DEFINE_NIC_PROPERTIES(E1000EState, conf), 647 DEFINE_PROP_DEFAULT("disable_vnet_hdr", E1000EState, disable_vnet, false, 648 e1000e_prop_disable_vnet, bool), 649 DEFINE_PROP_DEFAULT("subsys_ven", E1000EState, subsys_ven, 650 PCI_VENDOR_ID_INTEL, 651 e1000e_prop_subsys_ven, uint16_t), 652 DEFINE_PROP_DEFAULT("subsys", E1000EState, subsys, 0, 653 e1000e_prop_subsys, uint16_t), 654 DEFINE_PROP_END_OF_LIST(), 655 }; 656 657 static void e1000e_class_init(ObjectClass *class, void *data) 658 { 659 DeviceClass *dc = DEVICE_CLASS(class); 660 PCIDeviceClass *c = PCI_DEVICE_CLASS(class); 661 662 c->realize = e1000e_pci_realize; 663 c->exit = e1000e_pci_uninit; 664 c->vendor_id = PCI_VENDOR_ID_INTEL; 665 c->device_id = E1000_DEV_ID_82574L; 666 c->revision = 0; 667 c->romfile = "efi-e1000e.rom"; 668 c->class_id = PCI_CLASS_NETWORK_ETHERNET; 669 c->is_express = 1; 670 671 dc->desc = "Intel 82574L GbE Controller"; 672 dc->reset = e1000e_qdev_reset; 673 dc->vmsd = &e1000e_vmstate; 674 dc->props = e1000e_properties; 675 676 e1000e_prop_disable_vnet = qdev_prop_uint8; 677 e1000e_prop_disable_vnet.description = "Do not use virtio headers, " 678 "perform SW offloads emulation " 679 "instead"; 680 681 e1000e_prop_subsys_ven = qdev_prop_uint16; 682 e1000e_prop_subsys_ven.description = "PCI device Subsystem Vendor ID"; 683 684 e1000e_prop_subsys = qdev_prop_uint16; 685 e1000e_prop_subsys.description = "PCI device Subsystem ID"; 686 687 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 688 } 689 690 static void e1000e_instance_init(Object *obj) 691 { 692 E1000EState *s = E1000E(obj); 693 device_add_bootindex_property(obj, &s->conf.bootindex, 694 "bootindex", "/ethernet-phy@0", 695 DEVICE(obj), NULL); 696 } 697 698 static const TypeInfo e1000e_info = { 699 .name = TYPE_E1000E, 700 .parent = TYPE_PCI_DEVICE, 701 .instance_size = sizeof(E1000EState), 702 .class_init = e1000e_class_init, 703 .instance_init = e1000e_instance_init, 704 }; 705 706 static void e1000e_register_types(void) 707 { 708 type_register_static(&e1000e_info); 709 } 710 711 type_init(e1000e_register_types) 712