1 /* 2 * QEMU INTEL 82574 GbE NIC emulation 3 * 4 * Software developer's manuals: 5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf 6 * 7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com) 8 * Developed by Daynix Computing LTD (http://www.daynix.com) 9 * 10 * Authors: 11 * Dmitry Fleytman <dmitry@daynix.com> 12 * Leonid Bloch <leonid@daynix.com> 13 * Yan Vugenfirer <yan@daynix.com> 14 * 15 * Based on work done by: 16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 17 * Copyright (c) 2008 Qumranet 18 * Based on work done by: 19 * Copyright (c) 2007 Dan Aloni 20 * Copyright (c) 2004 Antony T Curtis 21 * 22 * This library is free software; you can redistribute it and/or 23 * modify it under the terms of the GNU Lesser General Public 24 * License as published by the Free Software Foundation; either 25 * version 2 of the License, or (at your option) any later version. 26 * 27 * This library is distributed in the hope that it will be useful, 28 * but WITHOUT ANY WARRANTY; without even the implied warranty of 29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 30 * Lesser General Public License for more details. 31 * 32 * You should have received a copy of the GNU Lesser General Public 33 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 34 */ 35 36 #include "qemu/osdep.h" 37 #include "net/net.h" 38 #include "net/tap.h" 39 #include "qemu/range.h" 40 #include "sysemu/sysemu.h" 41 #include "hw/pci/msi.h" 42 #include "hw/pci/msix.h" 43 44 #include "hw/net/e1000_regs.h" 45 46 #include "e1000x_common.h" 47 #include "e1000e_core.h" 48 49 #include "trace.h" 50 51 #define TYPE_E1000E "e1000e" 52 #define E1000E(obj) OBJECT_CHECK(E1000EState, (obj), TYPE_E1000E) 53 54 typedef struct E1000EState { 55 PCIDevice parent_obj; 56 NICState *nic; 57 NICConf conf; 58 59 MemoryRegion mmio; 60 MemoryRegion flash; 61 MemoryRegion io; 62 MemoryRegion msix; 63 64 uint32_t ioaddr; 65 66 uint16_t subsys_ven; 67 uint16_t subsys; 68 69 uint16_t subsys_ven_used; 70 uint16_t subsys_used; 71 72 uint32_t intr_state; 73 bool disable_vnet; 74 75 E1000ECore core; 76 77 } E1000EState; 78 79 #define E1000E_MMIO_IDX 0 80 #define E1000E_FLASH_IDX 1 81 #define E1000E_IO_IDX 2 82 #define E1000E_MSIX_IDX 3 83 84 #define E1000E_MMIO_SIZE (128 * 1024) 85 #define E1000E_FLASH_SIZE (128 * 1024) 86 #define E1000E_IO_SIZE (32) 87 #define E1000E_MSIX_SIZE (16 * 1024) 88 89 #define E1000E_MSIX_TABLE (0x0000) 90 #define E1000E_MSIX_PBA (0x2000) 91 92 #define E1000E_USE_MSIX BIT(0) 93 94 static uint64_t 95 e1000e_mmio_read(void *opaque, hwaddr addr, unsigned size) 96 { 97 E1000EState *s = opaque; 98 return e1000e_core_read(&s->core, addr, size); 99 } 100 101 static void 102 e1000e_mmio_write(void *opaque, hwaddr addr, 103 uint64_t val, unsigned size) 104 { 105 E1000EState *s = opaque; 106 e1000e_core_write(&s->core, addr, val, size); 107 } 108 109 static bool 110 e1000e_io_get_reg_index(E1000EState *s, uint32_t *idx) 111 { 112 if (s->ioaddr < 0x1FFFF) { 113 *idx = s->ioaddr; 114 return true; 115 } 116 117 if (s->ioaddr < 0x7FFFF) { 118 trace_e1000e_wrn_io_addr_undefined(s->ioaddr); 119 return false; 120 } 121 122 if (s->ioaddr < 0xFFFFF) { 123 trace_e1000e_wrn_io_addr_flash(s->ioaddr); 124 return false; 125 } 126 127 trace_e1000e_wrn_io_addr_unknown(s->ioaddr); 128 return false; 129 } 130 131 static uint64_t 132 e1000e_io_read(void *opaque, hwaddr addr, unsigned size) 133 { 134 E1000EState *s = opaque; 135 uint32_t idx = 0; 136 uint64_t val; 137 138 switch (addr) { 139 case E1000_IOADDR: 140 trace_e1000e_io_read_addr(s->ioaddr); 141 return s->ioaddr; 142 case E1000_IODATA: 143 if (e1000e_io_get_reg_index(s, &idx)) { 144 val = e1000e_core_read(&s->core, idx, sizeof(val)); 145 trace_e1000e_io_read_data(idx, val); 146 return val; 147 } 148 return 0; 149 default: 150 trace_e1000e_wrn_io_read_unknown(addr); 151 return 0; 152 } 153 } 154 155 static void 156 e1000e_io_write(void *opaque, hwaddr addr, 157 uint64_t val, unsigned size) 158 { 159 E1000EState *s = opaque; 160 uint32_t idx = 0; 161 162 switch (addr) { 163 case E1000_IOADDR: 164 trace_e1000e_io_write_addr(val); 165 s->ioaddr = (uint32_t) val; 166 return; 167 case E1000_IODATA: 168 if (e1000e_io_get_reg_index(s, &idx)) { 169 trace_e1000e_io_write_data(idx, val); 170 e1000e_core_write(&s->core, idx, val, sizeof(val)); 171 } 172 return; 173 default: 174 trace_e1000e_wrn_io_write_unknown(addr); 175 return; 176 } 177 } 178 179 static const MemoryRegionOps mmio_ops = { 180 .read = e1000e_mmio_read, 181 .write = e1000e_mmio_write, 182 .endianness = DEVICE_LITTLE_ENDIAN, 183 .impl = { 184 .min_access_size = 4, 185 .max_access_size = 4, 186 }, 187 }; 188 189 static const MemoryRegionOps io_ops = { 190 .read = e1000e_io_read, 191 .write = e1000e_io_write, 192 .endianness = DEVICE_LITTLE_ENDIAN, 193 .impl = { 194 .min_access_size = 4, 195 .max_access_size = 4, 196 }, 197 }; 198 199 static int 200 e1000e_nc_can_receive(NetClientState *nc) 201 { 202 E1000EState *s = qemu_get_nic_opaque(nc); 203 return e1000e_can_receive(&s->core); 204 } 205 206 static ssize_t 207 e1000e_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) 208 { 209 E1000EState *s = qemu_get_nic_opaque(nc); 210 return e1000e_receive_iov(&s->core, iov, iovcnt); 211 } 212 213 static ssize_t 214 e1000e_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size) 215 { 216 E1000EState *s = qemu_get_nic_opaque(nc); 217 return e1000e_receive(&s->core, buf, size); 218 } 219 220 static void 221 e1000e_set_link_status(NetClientState *nc) 222 { 223 E1000EState *s = qemu_get_nic_opaque(nc); 224 e1000e_core_set_link_status(&s->core); 225 } 226 227 static NetClientInfo net_e1000e_info = { 228 .type = NET_CLIENT_DRIVER_NIC, 229 .size = sizeof(NICState), 230 .can_receive = e1000e_nc_can_receive, 231 .receive = e1000e_nc_receive, 232 .receive_iov = e1000e_nc_receive_iov, 233 .link_status_changed = e1000e_set_link_status, 234 }; 235 236 /* 237 * EEPROM (NVM) contents documented in Table 36, section 6.1 238 * and generally 6.1.2 Software accessed words. 239 */ 240 static const uint16_t e1000e_eeprom_template[64] = { 241 /* Address | Compat. | ImVer | Compat. */ 242 0x0000, 0x0000, 0x0000, 0x0420, 0xf746, 0x2010, 0xffff, 0xffff, 243 /* PBA |ICtrl1 | SSID | SVID | DevID |-------|ICtrl2 */ 244 0x0000, 0x0000, 0x026b, 0x0000, 0x8086, 0x0000, 0x0000, 0x8058, 245 /* NVM words 1,2,3 |-------------------------------|PCI-EID*/ 246 0x0000, 0x2001, 0x7e7c, 0xffff, 0x1000, 0x00c8, 0x0000, 0x2704, 247 /* PCIe Init. Conf 1,2,3 |PCICtrl|PHY|LD1|-------| RevID | LD0,2 */ 248 0x6cc9, 0x3150, 0x070e, 0x460b, 0x2d84, 0x0100, 0xf000, 0x0706, 249 /* FLPAR |FLANADD|LAN-PWR|FlVndr |ICtrl3 |APTSMBA|APTRxEP|APTSMBC*/ 250 0x6000, 0x0080, 0x0f04, 0x7fff, 0x4f01, 0xc600, 0x0000, 0x20ff, 251 /* APTIF | APTMC |APTuCP |LSWFWID|MSWFWID|NC-SIMC|NC-SIC | VPDP */ 252 0x0028, 0x0003, 0x0000, 0x0000, 0x0000, 0x0003, 0x0000, 0xffff, 253 /* SW Section */ 254 0x0100, 0xc000, 0x121c, 0xc007, 0xffff, 0xffff, 0xffff, 0xffff, 255 /* SW Section |CHKSUM */ 256 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 0x0120, 0xffff, 0x0000, 257 }; 258 259 static void e1000e_core_realize(E1000EState *s) 260 { 261 s->core.owner = &s->parent_obj; 262 s->core.owner_nic = s->nic; 263 } 264 265 static void 266 e1000e_unuse_msix_vectors(E1000EState *s, int num_vectors) 267 { 268 int i; 269 for (i = 0; i < num_vectors; i++) { 270 msix_vector_unuse(PCI_DEVICE(s), i); 271 } 272 } 273 274 static bool 275 e1000e_use_msix_vectors(E1000EState *s, int num_vectors) 276 { 277 int i; 278 for (i = 0; i < num_vectors; i++) { 279 int res = msix_vector_use(PCI_DEVICE(s), i); 280 if (res < 0) { 281 trace_e1000e_msix_use_vector_fail(i, res); 282 e1000e_unuse_msix_vectors(s, i); 283 return false; 284 } 285 } 286 return true; 287 } 288 289 static void 290 e1000e_init_msix(E1000EState *s) 291 { 292 PCIDevice *d = PCI_DEVICE(s); 293 int res = msix_init(PCI_DEVICE(s), E1000E_MSIX_VEC_NUM, 294 &s->msix, 295 E1000E_MSIX_IDX, E1000E_MSIX_TABLE, 296 &s->msix, 297 E1000E_MSIX_IDX, E1000E_MSIX_PBA, 298 0xA0); 299 300 if (res < 0) { 301 trace_e1000e_msix_init_fail(res); 302 } else { 303 if (!e1000e_use_msix_vectors(s, E1000E_MSIX_VEC_NUM)) { 304 msix_uninit(d, &s->msix, &s->msix); 305 } else { 306 s->intr_state |= E1000E_USE_MSIX; 307 } 308 } 309 } 310 311 static void 312 e1000e_cleanup_msix(E1000EState *s) 313 { 314 if (s->intr_state & E1000E_USE_MSIX) { 315 e1000e_unuse_msix_vectors(s, E1000E_MSIX_VEC_NUM); 316 msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix); 317 } 318 } 319 320 static void 321 e1000e_init_net_peer(E1000EState *s, PCIDevice *pci_dev, uint8_t *macaddr) 322 { 323 DeviceState *dev = DEVICE(pci_dev); 324 NetClientState *nc; 325 int i; 326 327 s->nic = qemu_new_nic(&net_e1000e_info, &s->conf, 328 object_get_typename(OBJECT(s)), dev->id, s); 329 330 s->core.max_queue_num = s->conf.peers.queues - 1; 331 332 trace_e1000e_mac_set_permanent(MAC_ARG(macaddr)); 333 memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac)); 334 335 qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr); 336 337 /* Setup virtio headers */ 338 if (s->disable_vnet) { 339 s->core.has_vnet = false; 340 trace_e1000e_cfg_support_virtio(false); 341 return; 342 } else { 343 s->core.has_vnet = true; 344 } 345 346 for (i = 0; i < s->conf.peers.queues; i++) { 347 nc = qemu_get_subqueue(s->nic, i); 348 if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) { 349 s->core.has_vnet = false; 350 trace_e1000e_cfg_support_virtio(false); 351 return; 352 } 353 } 354 355 trace_e1000e_cfg_support_virtio(true); 356 357 for (i = 0; i < s->conf.peers.queues; i++) { 358 nc = qemu_get_subqueue(s->nic, i); 359 qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr)); 360 qemu_using_vnet_hdr(nc->peer, true); 361 } 362 } 363 364 static inline uint64_t 365 e1000e_gen_dsn(uint8_t *mac) 366 { 367 return (uint64_t)(mac[5]) | 368 (uint64_t)(mac[4]) << 8 | 369 (uint64_t)(mac[3]) << 16 | 370 (uint64_t)(0x00FF) << 24 | 371 (uint64_t)(0x00FF) << 32 | 372 (uint64_t)(mac[2]) << 40 | 373 (uint64_t)(mac[1]) << 48 | 374 (uint64_t)(mac[0]) << 56; 375 } 376 377 static int 378 e1000e_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc) 379 { 380 int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset, PCI_PM_SIZEOF); 381 382 if (ret >= 0) { 383 pci_set_word(pdev->config + offset + PCI_PM_PMC, 384 PCI_PM_CAP_VER_1_1 | 385 pmc); 386 387 pci_set_word(pdev->wmask + offset + PCI_PM_CTRL, 388 PCI_PM_CTRL_STATE_MASK | 389 PCI_PM_CTRL_PME_ENABLE | 390 PCI_PM_CTRL_DATA_SEL_MASK); 391 392 pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL, 393 PCI_PM_CTRL_PME_STATUS); 394 } 395 396 return ret; 397 } 398 399 static void e1000e_write_config(PCIDevice *pci_dev, uint32_t address, 400 uint32_t val, int len) 401 { 402 E1000EState *s = E1000E(pci_dev); 403 404 pci_default_write_config(pci_dev, address, val, len); 405 406 if (range_covers_byte(address, len, PCI_COMMAND) && 407 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { 408 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 409 } 410 } 411 412 static void e1000e_pci_realize(PCIDevice *pci_dev, Error **errp) 413 { 414 static const uint16_t e1000e_pmrb_offset = 0x0C8; 415 static const uint16_t e1000e_pcie_offset = 0x0E0; 416 static const uint16_t e1000e_aer_offset = 0x100; 417 static const uint16_t e1000e_dsn_offset = 0x140; 418 E1000EState *s = E1000E(pci_dev); 419 uint8_t *macaddr; 420 int ret; 421 422 trace_e1000e_cb_pci_realize(); 423 424 pci_dev->config_write = e1000e_write_config; 425 426 pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10; 427 pci_dev->config[PCI_INTERRUPT_PIN] = 1; 428 429 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, s->subsys_ven); 430 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, s->subsys); 431 432 s->subsys_ven_used = s->subsys_ven; 433 s->subsys_used = s->subsys; 434 435 /* Define IO/MMIO regions */ 436 memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s, 437 "e1000e-mmio", E1000E_MMIO_SIZE); 438 pci_register_bar(pci_dev, E1000E_MMIO_IDX, 439 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio); 440 441 /* 442 * We provide a dummy implementation for the flash BAR 443 * for drivers that may theoretically probe for its presence. 444 */ 445 memory_region_init(&s->flash, OBJECT(s), 446 "e1000e-flash", E1000E_FLASH_SIZE); 447 pci_register_bar(pci_dev, E1000E_FLASH_IDX, 448 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash); 449 450 memory_region_init_io(&s->io, OBJECT(s), &io_ops, s, 451 "e1000e-io", E1000E_IO_SIZE); 452 pci_register_bar(pci_dev, E1000E_IO_IDX, 453 PCI_BASE_ADDRESS_SPACE_IO, &s->io); 454 455 memory_region_init(&s->msix, OBJECT(s), "e1000e-msix", 456 E1000E_MSIX_SIZE); 457 pci_register_bar(pci_dev, E1000E_MSIX_IDX, 458 PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix); 459 460 /* Create networking backend */ 461 qemu_macaddr_default_if_unset(&s->conf.macaddr); 462 macaddr = s->conf.macaddr.a; 463 464 e1000e_init_msix(s); 465 466 if (pcie_endpoint_cap_v1_init(pci_dev, e1000e_pcie_offset) < 0) { 467 hw_error("Failed to initialize PCIe capability"); 468 } 469 470 ret = msi_init(PCI_DEVICE(s), 0xD0, 1, true, false, NULL); 471 if (ret) { 472 trace_e1000e_msi_init_fail(ret); 473 } 474 475 if (e1000e_add_pm_capability(pci_dev, e1000e_pmrb_offset, 476 PCI_PM_CAP_DSI) < 0) { 477 hw_error("Failed to initialize PM capability"); 478 } 479 480 if (pcie_aer_init(pci_dev, e1000e_aer_offset, PCI_ERR_SIZEOF) < 0) { 481 hw_error("Failed to initialize AER capability"); 482 } 483 484 pcie_dev_ser_num_init(pci_dev, e1000e_dsn_offset, 485 e1000e_gen_dsn(macaddr)); 486 487 e1000e_init_net_peer(s, pci_dev, macaddr); 488 489 /* Initialize core */ 490 e1000e_core_realize(s); 491 492 e1000e_core_pci_realize(&s->core, 493 e1000e_eeprom_template, 494 sizeof(e1000e_eeprom_template), 495 macaddr); 496 } 497 498 static void e1000e_pci_uninit(PCIDevice *pci_dev) 499 { 500 E1000EState *s = E1000E(pci_dev); 501 502 trace_e1000e_cb_pci_uninit(); 503 504 e1000e_core_pci_uninit(&s->core); 505 506 pcie_aer_exit(pci_dev); 507 pcie_cap_exit(pci_dev); 508 509 qemu_del_nic(s->nic); 510 511 e1000e_cleanup_msix(s); 512 msi_uninit(pci_dev); 513 } 514 515 static void e1000e_qdev_reset(DeviceState *dev) 516 { 517 E1000EState *s = E1000E(dev); 518 519 trace_e1000e_cb_qdev_reset(); 520 521 e1000e_core_reset(&s->core); 522 } 523 524 static void e1000e_pre_save(void *opaque) 525 { 526 E1000EState *s = opaque; 527 528 trace_e1000e_cb_pre_save(); 529 530 e1000e_core_pre_save(&s->core); 531 } 532 533 static int e1000e_post_load(void *opaque, int version_id) 534 { 535 E1000EState *s = opaque; 536 537 trace_e1000e_cb_post_load(); 538 539 if ((s->subsys != s->subsys_used) || 540 (s->subsys_ven != s->subsys_ven_used)) { 541 fprintf(stderr, 542 "ERROR: Cannot migrate while device properties " 543 "(subsys/subsys_ven) differ"); 544 return -1; 545 } 546 547 return e1000e_core_post_load(&s->core); 548 } 549 550 static const VMStateDescription e1000e_vmstate_tx = { 551 .name = "e1000e-tx", 552 .version_id = 1, 553 .minimum_version_id = 1, 554 .fields = (VMStateField[]) { 555 VMSTATE_UINT8(props.sum_needed, struct e1000e_tx), 556 VMSTATE_UINT8(props.ipcss, struct e1000e_tx), 557 VMSTATE_UINT8(props.ipcso, struct e1000e_tx), 558 VMSTATE_UINT16(props.ipcse, struct e1000e_tx), 559 VMSTATE_UINT8(props.tucss, struct e1000e_tx), 560 VMSTATE_UINT8(props.tucso, struct e1000e_tx), 561 VMSTATE_UINT16(props.tucse, struct e1000e_tx), 562 VMSTATE_UINT8(props.hdr_len, struct e1000e_tx), 563 VMSTATE_UINT16(props.mss, struct e1000e_tx), 564 VMSTATE_UINT32(props.paylen, struct e1000e_tx), 565 VMSTATE_INT8(props.ip, struct e1000e_tx), 566 VMSTATE_INT8(props.tcp, struct e1000e_tx), 567 VMSTATE_BOOL(props.tse, struct e1000e_tx), 568 VMSTATE_BOOL(props.cptse, struct e1000e_tx), 569 VMSTATE_BOOL(skip_cp, struct e1000e_tx), 570 VMSTATE_END_OF_LIST() 571 } 572 }; 573 574 static const VMStateDescription e1000e_vmstate_intr_timer = { 575 .name = "e1000e-intr-timer", 576 .version_id = 1, 577 .minimum_version_id = 1, 578 .fields = (VMStateField[]) { 579 VMSTATE_TIMER_PTR(timer, E1000IntrDelayTimer), 580 VMSTATE_BOOL(running, E1000IntrDelayTimer), 581 VMSTATE_END_OF_LIST() 582 } 583 }; 584 585 #define VMSTATE_E1000E_INTR_DELAY_TIMER(_f, _s) \ 586 VMSTATE_STRUCT(_f, _s, 0, \ 587 e1000e_vmstate_intr_timer, E1000IntrDelayTimer) 588 589 #define VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(_f, _s, _num) \ 590 VMSTATE_STRUCT_ARRAY(_f, _s, _num, 0, \ 591 e1000e_vmstate_intr_timer, E1000IntrDelayTimer) 592 593 static const VMStateDescription e1000e_vmstate = { 594 .name = "e1000e", 595 .version_id = 1, 596 .minimum_version_id = 1, 597 .pre_save = e1000e_pre_save, 598 .post_load = e1000e_post_load, 599 .fields = (VMStateField[]) { 600 VMSTATE_PCIE_DEVICE(parent_obj, E1000EState), 601 VMSTATE_MSIX(parent_obj, E1000EState), 602 603 VMSTATE_UINT32(ioaddr, E1000EState), 604 VMSTATE_UINT32(intr_state, E1000EState), 605 VMSTATE_UINT32(core.rxbuf_min_shift, E1000EState), 606 VMSTATE_UINT8(core.rx_desc_len, E1000EState), 607 VMSTATE_UINT32_ARRAY(core.rxbuf_sizes, E1000EState, 608 E1000_PSRCTL_BUFFS_PER_DESC), 609 VMSTATE_UINT32(core.rx_desc_buf_size, E1000EState), 610 VMSTATE_UINT16_ARRAY(core.eeprom, E1000EState, E1000E_EEPROM_SIZE), 611 VMSTATE_UINT16_2DARRAY(core.phy, E1000EState, 612 E1000E_PHY_PAGES, E1000E_PHY_PAGE_SIZE), 613 VMSTATE_UINT32_ARRAY(core.mac, E1000EState, E1000E_MAC_SIZE), 614 VMSTATE_UINT8_ARRAY(core.permanent_mac, E1000EState, ETH_ALEN), 615 616 VMSTATE_UINT32(core.delayed_causes, E1000EState), 617 618 VMSTATE_UINT16(subsys, E1000EState), 619 VMSTATE_UINT16(subsys_ven, E1000EState), 620 621 VMSTATE_E1000E_INTR_DELAY_TIMER(core.rdtr, E1000EState), 622 VMSTATE_E1000E_INTR_DELAY_TIMER(core.radv, E1000EState), 623 VMSTATE_E1000E_INTR_DELAY_TIMER(core.raid, E1000EState), 624 VMSTATE_E1000E_INTR_DELAY_TIMER(core.tadv, E1000EState), 625 VMSTATE_E1000E_INTR_DELAY_TIMER(core.tidv, E1000EState), 626 627 VMSTATE_E1000E_INTR_DELAY_TIMER(core.itr, E1000EState), 628 VMSTATE_BOOL(core.itr_intr_pending, E1000EState), 629 630 VMSTATE_E1000E_INTR_DELAY_TIMER_ARRAY(core.eitr, E1000EState, 631 E1000E_MSIX_VEC_NUM), 632 VMSTATE_BOOL_ARRAY(core.eitr_intr_pending, E1000EState, 633 E1000E_MSIX_VEC_NUM), 634 635 VMSTATE_UINT32(core.itr_guest_value, E1000EState), 636 VMSTATE_UINT32_ARRAY(core.eitr_guest_value, E1000EState, 637 E1000E_MSIX_VEC_NUM), 638 639 VMSTATE_UINT16(core.vet, E1000EState), 640 641 VMSTATE_STRUCT_ARRAY(core.tx, E1000EState, E1000E_NUM_QUEUES, 0, 642 e1000e_vmstate_tx, struct e1000e_tx), 643 VMSTATE_END_OF_LIST() 644 } 645 }; 646 647 static PropertyInfo e1000e_prop_disable_vnet, 648 e1000e_prop_subsys_ven, 649 e1000e_prop_subsys; 650 651 static Property e1000e_properties[] = { 652 DEFINE_NIC_PROPERTIES(E1000EState, conf), 653 DEFINE_PROP_DEFAULT("disable_vnet_hdr", E1000EState, disable_vnet, false, 654 e1000e_prop_disable_vnet, bool), 655 DEFINE_PROP_DEFAULT("subsys_ven", E1000EState, subsys_ven, 656 PCI_VENDOR_ID_INTEL, 657 e1000e_prop_subsys_ven, uint16_t), 658 DEFINE_PROP_DEFAULT("subsys", E1000EState, subsys, 0, 659 e1000e_prop_subsys, uint16_t), 660 DEFINE_PROP_END_OF_LIST(), 661 }; 662 663 static void e1000e_class_init(ObjectClass *class, void *data) 664 { 665 DeviceClass *dc = DEVICE_CLASS(class); 666 PCIDeviceClass *c = PCI_DEVICE_CLASS(class); 667 668 c->realize = e1000e_pci_realize; 669 c->exit = e1000e_pci_uninit; 670 c->vendor_id = PCI_VENDOR_ID_INTEL; 671 c->device_id = E1000_DEV_ID_82574L; 672 c->revision = 0; 673 c->romfile = "efi-e1000e.rom"; 674 c->class_id = PCI_CLASS_NETWORK_ETHERNET; 675 c->is_express = 1; 676 677 dc->desc = "Intel 82574L GbE Controller"; 678 dc->reset = e1000e_qdev_reset; 679 dc->vmsd = &e1000e_vmstate; 680 dc->props = e1000e_properties; 681 682 e1000e_prop_disable_vnet = qdev_prop_uint8; 683 e1000e_prop_disable_vnet.description = "Do not use virtio headers, " 684 "perform SW offloads emulation " 685 "instead"; 686 687 e1000e_prop_subsys_ven = qdev_prop_uint16; 688 e1000e_prop_subsys_ven.description = "PCI device Subsystem Vendor ID"; 689 690 e1000e_prop_subsys = qdev_prop_uint16; 691 e1000e_prop_subsys.description = "PCI device Subsystem ID"; 692 693 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 694 } 695 696 static void e1000e_instance_init(Object *obj) 697 { 698 E1000EState *s = E1000E(obj); 699 device_add_bootindex_property(obj, &s->conf.bootindex, 700 "bootindex", "/ethernet-phy@0", 701 DEVICE(obj), NULL); 702 } 703 704 static const TypeInfo e1000e_info = { 705 .name = TYPE_E1000E, 706 .parent = TYPE_PCI_DEVICE, 707 .instance_size = sizeof(E1000EState), 708 .class_init = e1000e_class_init, 709 .instance_init = e1000e_instance_init, 710 }; 711 712 static void e1000e_register_types(void) 713 { 714 type_register_static(&e1000e_info); 715 } 716 717 type_init(e1000e_register_types) 718