1 /* 2 * QEMU e1000 emulation 3 * 4 * Software developer's manual: 5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf 6 * 7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 8 * Copyright (c) 2008 Qumranet 9 * Based on work done by: 10 * Copyright (c) 2007 Dan Aloni 11 * Copyright (c) 2004 Antony T Curtis 12 * 13 * This library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2.1 of the License, or (at your option) any later version. 17 * 18 * This library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 25 */ 26 27 28 #include "qemu/osdep.h" 29 #include "hw/pci/pci.h" 30 #include "hw/qdev-properties.h" 31 #include "migration/vmstate.h" 32 #include "net/net.h" 33 #include "net/checksum.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/dma.h" 36 #include "qemu/iov.h" 37 #include "qemu/module.h" 38 #include "qemu/range.h" 39 40 #include "e1000x_common.h" 41 #include "trace.h" 42 #include "qom/object.h" 43 44 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 45 46 /* #define E1000_DEBUG */ 47 48 #ifdef E1000_DEBUG 49 enum { 50 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, 51 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, 52 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, 53 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET, 54 }; 55 #define DBGBIT(x) (1<<DEBUG_##x) 56 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); 57 58 #define DBGOUT(what, fmt, ...) do { \ 59 if (debugflags & DBGBIT(what)) \ 60 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ 61 } while (0) 62 #else 63 #define DBGOUT(what, fmt, ...) do {} while (0) 64 #endif 65 66 #define IOPORT_SIZE 0x40 67 #define PNPMMIO_SIZE 0x20000 68 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */ 69 70 #define MAXIMUM_ETHERNET_HDR_LEN (14+4) 71 72 /* 73 * HW models: 74 * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8 75 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested 76 * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6 77 * Others never tested 78 */ 79 80 struct E1000State_st { 81 /*< private >*/ 82 PCIDevice parent_obj; 83 /*< public >*/ 84 85 NICState *nic; 86 NICConf conf; 87 MemoryRegion mmio; 88 MemoryRegion io; 89 90 uint32_t mac_reg[0x8000]; 91 uint16_t phy_reg[0x20]; 92 uint16_t eeprom_data[64]; 93 94 uint32_t rxbuf_size; 95 uint32_t rxbuf_min_shift; 96 struct e1000_tx { 97 unsigned char header[256]; 98 unsigned char vlan_header[4]; 99 /* Fields vlan and data must not be reordered or separated. */ 100 unsigned char vlan[4]; 101 unsigned char data[0x10000]; 102 uint16_t size; 103 unsigned char vlan_needed; 104 unsigned char sum_needed; 105 bool cptse; 106 e1000x_txd_props props; 107 e1000x_txd_props tso_props; 108 uint16_t tso_frames; 109 } tx; 110 111 struct { 112 uint32_t val_in; /* shifted in from guest driver */ 113 uint16_t bitnum_in; 114 uint16_t bitnum_out; 115 uint16_t reading; 116 uint32_t old_eecd; 117 } eecd_state; 118 119 QEMUTimer *autoneg_timer; 120 121 QEMUTimer *mit_timer; /* Mitigation timer. */ 122 bool mit_timer_on; /* Mitigation timer is running. */ 123 bool mit_irq_level; /* Tracks interrupt pin level. */ 124 uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */ 125 126 QEMUTimer *flush_queue_timer; 127 128 /* Compatibility flags for migration to/from qemu 1.3.0 and older */ 129 #define E1000_FLAG_AUTONEG_BIT 0 130 #define E1000_FLAG_MIT_BIT 1 131 #define E1000_FLAG_MAC_BIT 2 132 #define E1000_FLAG_TSO_BIT 3 133 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT) 134 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT) 135 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT) 136 #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT) 137 uint32_t compat_flags; 138 bool received_tx_tso; 139 bool use_tso_for_migration; 140 e1000x_txd_props mig_props; 141 }; 142 typedef struct E1000State_st E1000State; 143 144 #define chkflag(x) (s->compat_flags & E1000_FLAG_##x) 145 146 struct E1000BaseClass { 147 PCIDeviceClass parent_class; 148 uint16_t phy_id2; 149 }; 150 typedef struct E1000BaseClass E1000BaseClass; 151 152 #define TYPE_E1000_BASE "e1000-base" 153 154 DECLARE_OBJ_CHECKERS(E1000State, E1000BaseClass, 155 E1000, TYPE_E1000_BASE) 156 157 158 static void 159 e1000_link_up(E1000State *s) 160 { 161 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg); 162 163 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 164 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 165 } 166 167 static void 168 e1000_autoneg_done(E1000State *s) 169 { 170 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg); 171 172 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 173 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 174 } 175 176 static bool 177 have_autoneg(E1000State *s) 178 { 179 return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN); 180 } 181 182 static void 183 set_phy_ctrl(E1000State *s, int index, uint16_t val) 184 { 185 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ 186 s->phy_reg[PHY_CTRL] = val & ~(0x3f | 187 MII_CR_RESET | 188 MII_CR_RESTART_AUTO_NEG); 189 190 /* 191 * QEMU 1.3 does not support link auto-negotiation emulation, so if we 192 * migrate during auto negotiation, after migration the link will be 193 * down. 194 */ 195 if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) { 196 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 197 } 198 } 199 200 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { 201 [PHY_CTRL] = set_phy_ctrl, 202 }; 203 204 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; 205 206 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; 207 static const char phy_regcap[0x20] = { 208 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, 209 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, 210 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, 211 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, 212 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, 213 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R, 214 [PHY_AUTONEG_EXP] = PHY_R, 215 }; 216 217 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */ 218 static const uint16_t phy_reg_init[] = { 219 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | 220 MII_CR_FULL_DUPLEX | 221 MII_CR_AUTO_NEG_EN, 222 223 [PHY_STATUS] = MII_SR_EXTENDED_CAPS | 224 MII_SR_LINK_STATUS | /* link initially up */ 225 MII_SR_AUTONEG_CAPS | 226 /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */ 227 MII_SR_PREAMBLE_SUPPRESS | 228 MII_SR_EXTENDED_STATUS | 229 MII_SR_10T_HD_CAPS | 230 MII_SR_10T_FD_CAPS | 231 MII_SR_100X_HD_CAPS | 232 MII_SR_100X_FD_CAPS, 233 234 [PHY_ID1] = 0x141, 235 /* [PHY_ID2] configured per DevId, from e1000_reset() */ 236 [PHY_AUTONEG_ADV] = 0xde1, 237 [PHY_LP_ABILITY] = 0x1e0, 238 [PHY_1000T_CTRL] = 0x0e00, 239 [PHY_1000T_STATUS] = 0x3c00, 240 [M88E1000_PHY_SPEC_CTRL] = 0x360, 241 [M88E1000_PHY_SPEC_STATUS] = 0xac00, 242 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, 243 }; 244 245 static const uint32_t mac_reg_init[] = { 246 [PBA] = 0x00100030, 247 [LEDCTL] = 0x602, 248 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | 249 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, 250 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | 251 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | 252 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | 253 E1000_STATUS_LU, 254 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | 255 E1000_MANC_ARP_EN | E1000_MANC_0298_EN | 256 E1000_MANC_RMCP_EN, 257 }; 258 259 /* Helper function, *curr == 0 means the value is not set */ 260 static inline void 261 mit_update_delay(uint32_t *curr, uint32_t value) 262 { 263 if (value && (*curr == 0 || value < *curr)) { 264 *curr = value; 265 } 266 } 267 268 static void 269 set_interrupt_cause(E1000State *s, int index, uint32_t val) 270 { 271 PCIDevice *d = PCI_DEVICE(s); 272 uint32_t pending_ints; 273 uint32_t mit_delay; 274 275 s->mac_reg[ICR] = val; 276 277 /* 278 * Make sure ICR and ICS registers have the same value. 279 * The spec says that the ICS register is write-only. However in practice, 280 * on real hardware ICS is readable, and for reads it has the same value as 281 * ICR (except that ICS does not have the clear on read behaviour of ICR). 282 * 283 * The VxWorks PRO/1000 driver uses this behaviour. 284 */ 285 s->mac_reg[ICS] = val; 286 287 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]); 288 if (!s->mit_irq_level && pending_ints) { 289 /* 290 * Here we detect a potential raising edge. We postpone raising the 291 * interrupt line if we are inside the mitigation delay window 292 * (s->mit_timer_on == 1). 293 * We provide a partial implementation of interrupt mitigation, 294 * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for 295 * RADV and TADV, 256ns units for ITR). RDTR is only used to enable 296 * RADV; relative timers based on TIDV and RDTR are not implemented. 297 */ 298 if (s->mit_timer_on) { 299 return; 300 } 301 if (chkflag(MIT)) { 302 /* Compute the next mitigation delay according to pending 303 * interrupts and the current values of RADV (provided 304 * RDTR!=0), TADV and ITR. 305 * Then rearm the timer. 306 */ 307 mit_delay = 0; 308 if (s->mit_ide && 309 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) { 310 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4); 311 } 312 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) { 313 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4); 314 } 315 mit_update_delay(&mit_delay, s->mac_reg[ITR]); 316 317 /* 318 * According to e1000 SPEC, the Ethernet controller guarantees 319 * a maximum observable interrupt rate of 7813 interrupts/sec. 320 * Thus if mit_delay < 500 then the delay should be set to the 321 * minimum delay possible which is 500. 322 */ 323 mit_delay = (mit_delay < 500) ? 500 : mit_delay; 324 325 s->mit_timer_on = 1; 326 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 327 mit_delay * 256); 328 s->mit_ide = 0; 329 } 330 } 331 332 s->mit_irq_level = (pending_ints != 0); 333 pci_set_irq(d, s->mit_irq_level); 334 } 335 336 static void 337 e1000_mit_timer(void *opaque) 338 { 339 E1000State *s = opaque; 340 341 s->mit_timer_on = 0; 342 /* Call set_interrupt_cause to update the irq level (if necessary). */ 343 set_interrupt_cause(s, 0, s->mac_reg[ICR]); 344 } 345 346 static void 347 set_ics(E1000State *s, int index, uint32_t val) 348 { 349 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], 350 s->mac_reg[IMS]); 351 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); 352 } 353 354 static void 355 e1000_autoneg_timer(void *opaque) 356 { 357 E1000State *s = opaque; 358 if (!qemu_get_queue(s->nic)->link_down) { 359 e1000_autoneg_done(s); 360 set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ 361 } 362 } 363 364 static void e1000_reset(void *opaque) 365 { 366 E1000State *d = opaque; 367 E1000BaseClass *edc = E1000_GET_CLASS(d); 368 uint8_t *macaddr = d->conf.macaddr.a; 369 370 timer_del(d->autoneg_timer); 371 timer_del(d->mit_timer); 372 timer_del(d->flush_queue_timer); 373 d->mit_timer_on = 0; 374 d->mit_irq_level = 0; 375 d->mit_ide = 0; 376 memset(d->phy_reg, 0, sizeof d->phy_reg); 377 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); 378 d->phy_reg[PHY_ID2] = edc->phy_id2; 379 memset(d->mac_reg, 0, sizeof d->mac_reg); 380 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); 381 d->rxbuf_min_shift = 1; 382 memset(&d->tx, 0, sizeof d->tx); 383 384 if (qemu_get_queue(d->nic)->link_down) { 385 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg); 386 } 387 388 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr); 389 } 390 391 static void 392 set_ctrl(E1000State *s, int index, uint32_t val) 393 { 394 /* RST is self clearing */ 395 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; 396 } 397 398 static void 399 e1000_flush_queue_timer(void *opaque) 400 { 401 E1000State *s = opaque; 402 403 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 404 } 405 406 static void 407 set_rx_control(E1000State *s, int index, uint32_t val) 408 { 409 s->mac_reg[RCTL] = val; 410 s->rxbuf_size = e1000x_rxbufsize(val); 411 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; 412 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], 413 s->mac_reg[RCTL]); 414 timer_mod(s->flush_queue_timer, 415 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000); 416 } 417 418 static void 419 set_mdic(E1000State *s, int index, uint32_t val) 420 { 421 uint32_t data = val & E1000_MDIC_DATA_MASK; 422 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 423 424 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # 425 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; 426 else if (val & E1000_MDIC_OP_READ) { 427 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); 428 if (!(phy_regcap[addr] & PHY_R)) { 429 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); 430 val |= E1000_MDIC_ERROR; 431 } else 432 val = (val ^ data) | s->phy_reg[addr]; 433 } else if (val & E1000_MDIC_OP_WRITE) { 434 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); 435 if (!(phy_regcap[addr] & PHY_W)) { 436 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); 437 val |= E1000_MDIC_ERROR; 438 } else { 439 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { 440 phyreg_writeops[addr](s, index, data); 441 } else { 442 s->phy_reg[addr] = data; 443 } 444 } 445 } 446 s->mac_reg[MDIC] = val | E1000_MDIC_READY; 447 448 if (val & E1000_MDIC_INT_EN) { 449 set_ics(s, 0, E1000_ICR_MDAC); 450 } 451 } 452 453 static uint32_t 454 get_eecd(E1000State *s, int index) 455 { 456 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; 457 458 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", 459 s->eecd_state.bitnum_out, s->eecd_state.reading); 460 if (!s->eecd_state.reading || 461 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> 462 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) 463 ret |= E1000_EECD_DO; 464 return ret; 465 } 466 467 static void 468 set_eecd(E1000State *s, int index, uint32_t val) 469 { 470 uint32_t oldval = s->eecd_state.old_eecd; 471 472 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | 473 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); 474 if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */ 475 return; 476 } 477 if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */ 478 s->eecd_state.val_in = 0; 479 s->eecd_state.bitnum_in = 0; 480 s->eecd_state.bitnum_out = 0; 481 s->eecd_state.reading = 0; 482 } 483 if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */ 484 return; 485 } 486 if (!(E1000_EECD_SK & val)) { /* falling edge */ 487 s->eecd_state.bitnum_out++; 488 return; 489 } 490 s->eecd_state.val_in <<= 1; 491 if (val & E1000_EECD_DI) 492 s->eecd_state.val_in |= 1; 493 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { 494 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; 495 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == 496 EEPROM_READ_OPCODE_MICROWIRE); 497 } 498 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", 499 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, 500 s->eecd_state.reading); 501 } 502 503 static uint32_t 504 flash_eerd_read(E1000State *s, int x) 505 { 506 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; 507 508 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) 509 return (s->mac_reg[EERD]); 510 511 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) 512 return (E1000_EEPROM_RW_REG_DONE | r); 513 514 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | 515 E1000_EEPROM_RW_REG_DONE | r); 516 } 517 518 static void 519 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) 520 { 521 uint32_t sum; 522 523 if (cse && cse < n) 524 n = cse + 1; 525 if (sloc < n-1) { 526 sum = net_checksum_add(n-css, data+css); 527 stw_be_p(data + sloc, net_checksum_finish_nozero(sum)); 528 } 529 } 530 531 static inline void 532 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) 533 { 534 if (!memcmp(arr, bcast, sizeof bcast)) { 535 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC); 536 } else if (arr[0] & 1) { 537 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC); 538 } 539 } 540 541 static void 542 e1000_send_packet(E1000State *s, const uint8_t *buf, int size) 543 { 544 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 545 PTC1023, PTC1522 }; 546 547 NetClientState *nc = qemu_get_queue(s->nic); 548 if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) { 549 qemu_receive_packet(nc, buf, size); 550 } else { 551 qemu_send_packet(nc, buf, size); 552 } 553 inc_tx_bcast_or_mcast_count(s, buf); 554 e1000x_increase_size_stats(s->mac_reg, PTCregs, size); 555 } 556 557 static void 558 xmit_seg(E1000State *s) 559 { 560 uint16_t len; 561 unsigned int frames = s->tx.tso_frames, css, sofar; 562 struct e1000_tx *tp = &s->tx; 563 struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props; 564 565 if (tp->cptse) { 566 css = props->ipcss; 567 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", 568 frames, tp->size, css); 569 if (props->ip) { /* IPv4 */ 570 stw_be_p(tp->data+css+2, tp->size - css); 571 stw_be_p(tp->data+css+4, 572 lduw_be_p(tp->data + css + 4) + frames); 573 } else { /* IPv6 */ 574 stw_be_p(tp->data+css+4, tp->size - css); 575 } 576 css = props->tucss; 577 len = tp->size - css; 578 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len); 579 if (props->tcp) { 580 sofar = frames * props->mss; 581 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ 582 if (props->paylen - sofar > props->mss) { 583 tp->data[css + 13] &= ~9; /* PSH, FIN */ 584 } else if (frames) { 585 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC); 586 } 587 } else { /* UDP */ 588 stw_be_p(tp->data+css+4, len); 589 } 590 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 591 unsigned int phsum; 592 // add pseudo-header length before checksum calculation 593 void *sp = tp->data + props->tucso; 594 595 phsum = lduw_be_p(sp) + len; 596 phsum = (phsum >> 16) + (phsum & 0xffff); 597 stw_be_p(sp, phsum); 598 } 599 tp->tso_frames++; 600 } 601 602 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 603 putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse); 604 } 605 if (tp->sum_needed & E1000_TXD_POPTS_IXSM) { 606 putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse); 607 } 608 if (tp->vlan_needed) { 609 memmove(tp->vlan, tp->data, 4); 610 memmove(tp->data, tp->data + 4, 8); 611 memcpy(tp->data + 8, tp->vlan_header, 4); 612 e1000_send_packet(s, tp->vlan, tp->size + 4); 613 } else { 614 e1000_send_packet(s, tp->data, tp->size); 615 } 616 617 e1000x_inc_reg_if_not_full(s->mac_reg, TPT); 618 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size); 619 s->mac_reg[GPTC] = s->mac_reg[TPT]; 620 s->mac_reg[GOTCL] = s->mac_reg[TOTL]; 621 s->mac_reg[GOTCH] = s->mac_reg[TOTH]; 622 } 623 624 static void 625 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) 626 { 627 PCIDevice *d = PCI_DEVICE(s); 628 uint32_t txd_lower = le32_to_cpu(dp->lower.data); 629 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); 630 unsigned int split_size = txd_lower & 0xffff, bytes, sz; 631 unsigned int msh = 0xfffff; 632 uint64_t addr; 633 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; 634 struct e1000_tx *tp = &s->tx; 635 636 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); 637 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ 638 if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) { 639 e1000x_read_tx_ctx_descr(xp, &tp->tso_props); 640 s->use_tso_for_migration = 1; 641 tp->tso_frames = 0; 642 } else { 643 e1000x_read_tx_ctx_descr(xp, &tp->props); 644 s->use_tso_for_migration = 0; 645 } 646 return; 647 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { 648 // data descriptor 649 if (tp->size == 0) { 650 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; 651 } 652 tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; 653 } else { 654 // legacy descriptor 655 tp->cptse = 0; 656 } 657 658 if (e1000x_vlan_enabled(s->mac_reg) && 659 e1000x_is_vlan_txd(txd_lower) && 660 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { 661 tp->vlan_needed = 1; 662 stw_be_p(tp->vlan_header, 663 le16_to_cpu(s->mac_reg[VET])); 664 stw_be_p(tp->vlan_header + 2, 665 le16_to_cpu(dp->upper.fields.special)); 666 } 667 668 addr = le64_to_cpu(dp->buffer_addr); 669 if (tp->cptse) { 670 msh = tp->tso_props.hdr_len + tp->tso_props.mss; 671 do { 672 bytes = split_size; 673 if (tp->size >= msh) { 674 goto eop; 675 } 676 if (tp->size + bytes > msh) 677 bytes = msh - tp->size; 678 679 bytes = MIN(sizeof(tp->data) - tp->size, bytes); 680 pci_dma_read(d, addr, tp->data + tp->size, bytes); 681 sz = tp->size + bytes; 682 if (sz >= tp->tso_props.hdr_len 683 && tp->size < tp->tso_props.hdr_len) { 684 memmove(tp->header, tp->data, tp->tso_props.hdr_len); 685 } 686 tp->size = sz; 687 addr += bytes; 688 if (sz == msh) { 689 xmit_seg(s); 690 memmove(tp->data, tp->header, tp->tso_props.hdr_len); 691 tp->size = tp->tso_props.hdr_len; 692 } 693 split_size -= bytes; 694 } while (bytes && split_size); 695 } else { 696 split_size = MIN(sizeof(tp->data) - tp->size, split_size); 697 pci_dma_read(d, addr, tp->data + tp->size, split_size); 698 tp->size += split_size; 699 } 700 701 eop: 702 if (!(txd_lower & E1000_TXD_CMD_EOP)) 703 return; 704 if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) { 705 xmit_seg(s); 706 } 707 tp->tso_frames = 0; 708 tp->sum_needed = 0; 709 tp->vlan_needed = 0; 710 tp->size = 0; 711 tp->cptse = 0; 712 } 713 714 static uint32_t 715 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) 716 { 717 PCIDevice *d = PCI_DEVICE(s); 718 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); 719 720 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) 721 return 0; 722 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & 723 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); 724 dp->upper.data = cpu_to_le32(txd_upper); 725 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), 726 &dp->upper, sizeof(dp->upper)); 727 return E1000_ICR_TXDW; 728 } 729 730 static uint64_t tx_desc_base(E1000State *s) 731 { 732 uint64_t bah = s->mac_reg[TDBAH]; 733 uint64_t bal = s->mac_reg[TDBAL] & ~0xf; 734 735 return (bah << 32) + bal; 736 } 737 738 static void 739 start_xmit(E1000State *s) 740 { 741 PCIDevice *d = PCI_DEVICE(s); 742 dma_addr_t base; 743 struct e1000_tx_desc desc; 744 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; 745 746 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { 747 DBGOUT(TX, "tx disabled\n"); 748 return; 749 } 750 751 while (s->mac_reg[TDH] != s->mac_reg[TDT]) { 752 base = tx_desc_base(s) + 753 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; 754 pci_dma_read(d, base, &desc, sizeof(desc)); 755 756 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], 757 (void *)(intptr_t)desc.buffer_addr, desc.lower.data, 758 desc.upper.data); 759 760 process_tx_desc(s, &desc); 761 cause |= txdesc_writeback(s, base, &desc); 762 763 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) 764 s->mac_reg[TDH] = 0; 765 /* 766 * the following could happen only if guest sw assigns 767 * bogus values to TDT/TDLEN. 768 * there's nothing too intelligent we could do about this. 769 */ 770 if (s->mac_reg[TDH] == tdh_start || 771 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) { 772 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", 773 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); 774 break; 775 } 776 } 777 set_ics(s, 0, cause); 778 } 779 780 static int 781 receive_filter(E1000State *s, const uint8_t *buf, int size) 782 { 783 uint32_t rctl = s->mac_reg[RCTL]; 784 int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1); 785 786 if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) && 787 e1000x_vlan_rx_filter_enabled(s->mac_reg)) { 788 uint16_t vid = lduw_be_p(buf + 14); 789 uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) + 790 ((vid >> 5) & 0x7f)); 791 if ((vfta & (1 << (vid & 0x1f))) == 0) 792 return 0; 793 } 794 795 if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */ 796 return 1; 797 } 798 799 if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */ 800 e1000x_inc_reg_if_not_full(s->mac_reg, MPRC); 801 return 1; 802 } 803 804 if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */ 805 e1000x_inc_reg_if_not_full(s->mac_reg, BPRC); 806 return 1; 807 } 808 809 return e1000x_rx_group_filter(s->mac_reg, buf); 810 } 811 812 static void 813 e1000_set_link_status(NetClientState *nc) 814 { 815 E1000State *s = qemu_get_nic_opaque(nc); 816 uint32_t old_status = s->mac_reg[STATUS]; 817 818 if (nc->link_down) { 819 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg); 820 } else { 821 if (have_autoneg(s) && 822 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 823 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 824 } else { 825 e1000_link_up(s); 826 } 827 } 828 829 if (s->mac_reg[STATUS] != old_status) 830 set_ics(s, 0, E1000_ICR_LSC); 831 } 832 833 static bool e1000_has_rxbufs(E1000State *s, size_t total_size) 834 { 835 int bufs; 836 /* Fast-path short packets */ 837 if (total_size <= s->rxbuf_size) { 838 return s->mac_reg[RDH] != s->mac_reg[RDT]; 839 } 840 if (s->mac_reg[RDH] < s->mac_reg[RDT]) { 841 bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; 842 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { 843 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) + 844 s->mac_reg[RDT] - s->mac_reg[RDH]; 845 } else { 846 return false; 847 } 848 return total_size <= bufs * s->rxbuf_size; 849 } 850 851 static bool 852 e1000_can_receive(NetClientState *nc) 853 { 854 E1000State *s = qemu_get_nic_opaque(nc); 855 856 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) && 857 e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer); 858 } 859 860 static uint64_t rx_desc_base(E1000State *s) 861 { 862 uint64_t bah = s->mac_reg[RDBAH]; 863 uint64_t bal = s->mac_reg[RDBAL] & ~0xf; 864 865 return (bah << 32) + bal; 866 } 867 868 static void 869 e1000_receiver_overrun(E1000State *s, size_t size) 870 { 871 trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]); 872 e1000x_inc_reg_if_not_full(s->mac_reg, RNBC); 873 e1000x_inc_reg_if_not_full(s->mac_reg, MPC); 874 set_ics(s, 0, E1000_ICS_RXO); 875 } 876 877 static ssize_t 878 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) 879 { 880 E1000State *s = qemu_get_nic_opaque(nc); 881 PCIDevice *d = PCI_DEVICE(s); 882 struct e1000_rx_desc desc; 883 dma_addr_t base; 884 unsigned int n, rdt; 885 uint32_t rdh_start; 886 uint16_t vlan_special = 0; 887 uint8_t vlan_status = 0; 888 uint8_t min_buf[MIN_BUF_SIZE]; 889 struct iovec min_iov; 890 uint8_t *filter_buf = iov->iov_base; 891 size_t size = iov_size(iov, iovcnt); 892 size_t iov_ofs = 0; 893 size_t desc_offset; 894 size_t desc_size; 895 size_t total_size; 896 897 if (!e1000x_hw_rx_enabled(s->mac_reg)) { 898 return -1; 899 } 900 901 if (timer_pending(s->flush_queue_timer)) { 902 return 0; 903 } 904 905 /* Pad to minimum Ethernet frame length */ 906 if (size < sizeof(min_buf)) { 907 iov_to_buf(iov, iovcnt, 0, min_buf, size); 908 memset(&min_buf[size], 0, sizeof(min_buf) - size); 909 min_iov.iov_base = filter_buf = min_buf; 910 min_iov.iov_len = size = sizeof(min_buf); 911 iovcnt = 1; 912 iov = &min_iov; 913 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) { 914 /* This is very unlikely, but may happen. */ 915 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN); 916 filter_buf = min_buf; 917 } 918 919 /* Discard oversized packets if !LPE and !SBP. */ 920 if (e1000x_is_oversized(s->mac_reg, size)) { 921 return size; 922 } 923 924 if (!receive_filter(s, filter_buf, size)) { 925 return size; 926 } 927 928 if (e1000x_vlan_enabled(s->mac_reg) && 929 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) { 930 vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14)); 931 iov_ofs = 4; 932 if (filter_buf == iov->iov_base) { 933 memmove(filter_buf + 4, filter_buf, 12); 934 } else { 935 iov_from_buf(iov, iovcnt, 4, filter_buf, 12); 936 while (iov->iov_len <= iov_ofs) { 937 iov_ofs -= iov->iov_len; 938 iov++; 939 } 940 } 941 vlan_status = E1000_RXD_STAT_VP; 942 size -= 4; 943 } 944 945 rdh_start = s->mac_reg[RDH]; 946 desc_offset = 0; 947 total_size = size + e1000x_fcs_len(s->mac_reg); 948 if (!e1000_has_rxbufs(s, total_size)) { 949 e1000_receiver_overrun(s, total_size); 950 return -1; 951 } 952 do { 953 desc_size = total_size - desc_offset; 954 if (desc_size > s->rxbuf_size) { 955 desc_size = s->rxbuf_size; 956 } 957 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; 958 pci_dma_read(d, base, &desc, sizeof(desc)); 959 desc.special = vlan_special; 960 desc.status |= (vlan_status | E1000_RXD_STAT_DD); 961 if (desc.buffer_addr) { 962 if (desc_offset < size) { 963 size_t iov_copy; 964 hwaddr ba = le64_to_cpu(desc.buffer_addr); 965 size_t copy_size = size - desc_offset; 966 if (copy_size > s->rxbuf_size) { 967 copy_size = s->rxbuf_size; 968 } 969 do { 970 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 971 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy); 972 copy_size -= iov_copy; 973 ba += iov_copy; 974 iov_ofs += iov_copy; 975 if (iov_ofs == iov->iov_len) { 976 iov++; 977 iov_ofs = 0; 978 } 979 } while (copy_size); 980 } 981 desc_offset += desc_size; 982 desc.length = cpu_to_le16(desc_size); 983 if (desc_offset >= total_size) { 984 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; 985 } else { 986 /* Guest zeroing out status is not a hardware requirement. 987 Clear EOP in case guest didn't do it. */ 988 desc.status &= ~E1000_RXD_STAT_EOP; 989 } 990 } else { // as per intel docs; skip descriptors with null buf addr 991 DBGOUT(RX, "Null RX descriptor!!\n"); 992 } 993 pci_dma_write(d, base, &desc, sizeof(desc)); 994 995 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) 996 s->mac_reg[RDH] = 0; 997 /* see comment in start_xmit; same here */ 998 if (s->mac_reg[RDH] == rdh_start || 999 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) { 1000 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", 1001 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); 1002 e1000_receiver_overrun(s, total_size); 1003 return -1; 1004 } 1005 } while (desc_offset < total_size); 1006 1007 e1000x_update_rx_total_stats(s->mac_reg, size, total_size); 1008 1009 n = E1000_ICS_RXT0; 1010 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) 1011 rdt += s->mac_reg[RDLEN] / sizeof(desc); 1012 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> 1013 s->rxbuf_min_shift) 1014 n |= E1000_ICS_RXDMT0; 1015 1016 set_ics(s, 0, n); 1017 1018 return size; 1019 } 1020 1021 static ssize_t 1022 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) 1023 { 1024 const struct iovec iov = { 1025 .iov_base = (uint8_t *)buf, 1026 .iov_len = size 1027 }; 1028 1029 return e1000_receive_iov(nc, &iov, 1); 1030 } 1031 1032 static uint32_t 1033 mac_readreg(E1000State *s, int index) 1034 { 1035 return s->mac_reg[index]; 1036 } 1037 1038 static uint32_t 1039 mac_low4_read(E1000State *s, int index) 1040 { 1041 return s->mac_reg[index] & 0xf; 1042 } 1043 1044 static uint32_t 1045 mac_low11_read(E1000State *s, int index) 1046 { 1047 return s->mac_reg[index] & 0x7ff; 1048 } 1049 1050 static uint32_t 1051 mac_low13_read(E1000State *s, int index) 1052 { 1053 return s->mac_reg[index] & 0x1fff; 1054 } 1055 1056 static uint32_t 1057 mac_low16_read(E1000State *s, int index) 1058 { 1059 return s->mac_reg[index] & 0xffff; 1060 } 1061 1062 static uint32_t 1063 mac_icr_read(E1000State *s, int index) 1064 { 1065 uint32_t ret = s->mac_reg[ICR]; 1066 1067 DBGOUT(INTERRUPT, "ICR read: %x\n", ret); 1068 set_interrupt_cause(s, 0, 0); 1069 return ret; 1070 } 1071 1072 static uint32_t 1073 mac_read_clr4(E1000State *s, int index) 1074 { 1075 uint32_t ret = s->mac_reg[index]; 1076 1077 s->mac_reg[index] = 0; 1078 return ret; 1079 } 1080 1081 static uint32_t 1082 mac_read_clr8(E1000State *s, int index) 1083 { 1084 uint32_t ret = s->mac_reg[index]; 1085 1086 s->mac_reg[index] = 0; 1087 s->mac_reg[index-1] = 0; 1088 return ret; 1089 } 1090 1091 static void 1092 mac_writereg(E1000State *s, int index, uint32_t val) 1093 { 1094 uint32_t macaddr[2]; 1095 1096 s->mac_reg[index] = val; 1097 1098 if (index == RA + 1) { 1099 macaddr[0] = cpu_to_le32(s->mac_reg[RA]); 1100 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]); 1101 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr); 1102 } 1103 } 1104 1105 static void 1106 set_rdt(E1000State *s, int index, uint32_t val) 1107 { 1108 s->mac_reg[index] = val & 0xffff; 1109 if (e1000_has_rxbufs(s, 1)) { 1110 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1111 } 1112 } 1113 1114 static void 1115 set_16bit(E1000State *s, int index, uint32_t val) 1116 { 1117 s->mac_reg[index] = val & 0xffff; 1118 } 1119 1120 static void 1121 set_dlen(E1000State *s, int index, uint32_t val) 1122 { 1123 s->mac_reg[index] = val & 0xfff80; 1124 } 1125 1126 static void 1127 set_tctl(E1000State *s, int index, uint32_t val) 1128 { 1129 s->mac_reg[index] = val; 1130 s->mac_reg[TDT] &= 0xffff; 1131 start_xmit(s); 1132 } 1133 1134 static void 1135 set_icr(E1000State *s, int index, uint32_t val) 1136 { 1137 DBGOUT(INTERRUPT, "set_icr %x\n", val); 1138 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); 1139 } 1140 1141 static void 1142 set_imc(E1000State *s, int index, uint32_t val) 1143 { 1144 s->mac_reg[IMS] &= ~val; 1145 set_ics(s, 0, 0); 1146 } 1147 1148 static void 1149 set_ims(E1000State *s, int index, uint32_t val) 1150 { 1151 s->mac_reg[IMS] |= val; 1152 set_ics(s, 0, 0); 1153 } 1154 1155 #define getreg(x) [x] = mac_readreg 1156 typedef uint32_t (*readops)(E1000State *, int); 1157 static const readops macreg_readops[] = { 1158 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), 1159 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), 1160 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), 1161 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), 1162 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS), 1163 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL), 1164 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV), 1165 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV), 1166 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL), 1167 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC), 1168 getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC), 1169 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC), 1170 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC), 1171 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL), 1172 getreg(GOTCL), 1173 1174 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, 1175 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8, 1176 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4, 1177 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4, 1178 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4, 1179 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4, 1180 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4, 1181 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4, 1182 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4, 1183 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4, 1184 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4, 1185 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4, 1186 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4, 1187 [MPTC] = mac_read_clr4, 1188 [ICR] = mac_icr_read, [EECD] = get_eecd, 1189 [EERD] = flash_eerd_read, 1190 [RDFH] = mac_low13_read, [RDFT] = mac_low13_read, 1191 [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read, 1192 [RDFPC] = mac_low13_read, 1193 [TDFH] = mac_low11_read, [TDFT] = mac_low11_read, 1194 [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read, 1195 [TDFPC] = mac_low13_read, 1196 [AIT] = mac_low16_read, 1197 1198 [CRCERRS ... MPC] = &mac_readreg, 1199 [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg, 1200 [FFLT ... FFLT+6] = &mac_low11_read, 1201 [RA ... RA+31] = &mac_readreg, 1202 [WUPM ... WUPM+31] = &mac_readreg, 1203 [MTA ... MTA+127] = &mac_readreg, 1204 [VFTA ... VFTA+127] = &mac_readreg, 1205 [FFMT ... FFMT+254] = &mac_low4_read, 1206 [FFVT ... FFVT+254] = &mac_readreg, 1207 [PBM ... PBM+16383] = &mac_readreg, 1208 }; 1209 enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; 1210 1211 #define putreg(x) [x] = mac_writereg 1212 typedef void (*writeops)(E1000State *, int, uint32_t); 1213 static const writeops macreg_writeops[] = { 1214 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), 1215 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), 1216 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC), 1217 putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS), 1218 putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS), 1219 putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC), 1220 putreg(WUS), putreg(AIT), 1221 1222 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, 1223 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, 1224 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, 1225 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, 1226 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl, 1227 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit, 1228 [ITR] = set_16bit, 1229 1230 [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg, 1231 [FFLT ... FFLT+6] = &mac_writereg, 1232 [RA ... RA+31] = &mac_writereg, 1233 [WUPM ... WUPM+31] = &mac_writereg, 1234 [MTA ... MTA+127] = &mac_writereg, 1235 [VFTA ... VFTA+127] = &mac_writereg, 1236 [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg, 1237 [PBM ... PBM+16383] = &mac_writereg, 1238 }; 1239 1240 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; 1241 1242 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 }; 1243 1244 #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED) 1245 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p] 1246 * f - flag bits (up to 6 possible flags) 1247 * n - flag needed 1248 * p - partially implenented */ 1249 static const uint8_t mac_reg_access[0x8000] = { 1250 [RDTR] = markflag(MIT), [TADV] = markflag(MIT), 1251 [RADV] = markflag(MIT), [ITR] = markflag(MIT), 1252 1253 [IPAV] = markflag(MAC), [WUC] = markflag(MAC), 1254 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC), 1255 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC), 1256 [ECOL] = markflag(MAC), [MCC] = markflag(MAC), 1257 [DC] = markflag(MAC), [TNCRS] = markflag(MAC), 1258 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC), 1259 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC), 1260 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC), 1261 [WUS] = markflag(MAC), [AIT] = markflag(MAC), 1262 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC), 1263 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC), 1264 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC), 1265 [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC), 1266 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC), 1267 [RJC] = markflag(MAC), [RNBC] = markflag(MAC), 1268 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC), 1269 [RUC] = markflag(MAC), [ROC] = markflag(MAC), 1270 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC), 1271 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC), 1272 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC), 1273 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC), 1274 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC), 1275 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC), 1276 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC), 1277 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC), 1278 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC), 1279 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC), 1280 [BPTC] = markflag(MAC), 1281 1282 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1283 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1284 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1285 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1286 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1287 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1288 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1289 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1290 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1291 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1292 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1293 }; 1294 1295 static void 1296 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, 1297 unsigned size) 1298 { 1299 E1000State *s = opaque; 1300 unsigned int index = (addr & 0x1ffff) >> 2; 1301 1302 if (index < NWRITEOPS && macreg_writeops[index]) { 1303 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1304 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1305 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1306 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. " 1307 "It is not fully implemented.\n", index<<2); 1308 } 1309 macreg_writeops[index](s, index, val); 1310 } else { /* "flag needed" bit is set, but the flag is not active */ 1311 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n", 1312 index<<2); 1313 } 1314 } else if (index < NREADOPS && macreg_readops[index]) { 1315 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", 1316 index<<2, val); 1317 } else { 1318 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", 1319 index<<2, val); 1320 } 1321 } 1322 1323 static uint64_t 1324 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) 1325 { 1326 E1000State *s = opaque; 1327 unsigned int index = (addr & 0x1ffff) >> 2; 1328 1329 if (index < NREADOPS && macreg_readops[index]) { 1330 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1331 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1332 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1333 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. " 1334 "It is not fully implemented.\n", index<<2); 1335 } 1336 return macreg_readops[index](s, index); 1337 } else { /* "flag needed" bit is set, but the flag is not active */ 1338 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n", 1339 index<<2); 1340 } 1341 } else { 1342 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); 1343 } 1344 return 0; 1345 } 1346 1347 static const MemoryRegionOps e1000_mmio_ops = { 1348 .read = e1000_mmio_read, 1349 .write = e1000_mmio_write, 1350 .endianness = DEVICE_LITTLE_ENDIAN, 1351 .impl = { 1352 .min_access_size = 4, 1353 .max_access_size = 4, 1354 }, 1355 }; 1356 1357 static uint64_t e1000_io_read(void *opaque, hwaddr addr, 1358 unsigned size) 1359 { 1360 E1000State *s = opaque; 1361 1362 (void)s; 1363 return 0; 1364 } 1365 1366 static void e1000_io_write(void *opaque, hwaddr addr, 1367 uint64_t val, unsigned size) 1368 { 1369 E1000State *s = opaque; 1370 1371 (void)s; 1372 } 1373 1374 static const MemoryRegionOps e1000_io_ops = { 1375 .read = e1000_io_read, 1376 .write = e1000_io_write, 1377 .endianness = DEVICE_LITTLE_ENDIAN, 1378 }; 1379 1380 static bool is_version_1(void *opaque, int version_id) 1381 { 1382 return version_id == 1; 1383 } 1384 1385 static int e1000_pre_save(void *opaque) 1386 { 1387 E1000State *s = opaque; 1388 NetClientState *nc = qemu_get_queue(s->nic); 1389 1390 /* 1391 * If link is down and auto-negotiation is supported and ongoing, 1392 * complete auto-negotiation immediately. This allows us to look 1393 * at MII_SR_AUTONEG_COMPLETE to infer link status on load. 1394 */ 1395 if (nc->link_down && have_autoneg(s)) { 1396 s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; 1397 } 1398 1399 /* Decide which set of props to migrate in the main structure */ 1400 if (chkflag(TSO) || !s->use_tso_for_migration) { 1401 /* Either we're migrating with the extra subsection, in which 1402 * case the mig_props is always 'props' OR 1403 * we've not got the subsection, but 'props' was the last 1404 * updated. 1405 */ 1406 s->mig_props = s->tx.props; 1407 } else { 1408 /* We're not using the subsection, and 'tso_props' was 1409 * the last updated. 1410 */ 1411 s->mig_props = s->tx.tso_props; 1412 } 1413 return 0; 1414 } 1415 1416 static int e1000_post_load(void *opaque, int version_id) 1417 { 1418 E1000State *s = opaque; 1419 NetClientState *nc = qemu_get_queue(s->nic); 1420 1421 if (!chkflag(MIT)) { 1422 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] = 1423 s->mac_reg[TADV] = 0; 1424 s->mit_irq_level = false; 1425 } 1426 s->mit_ide = 0; 1427 s->mit_timer_on = true; 1428 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1); 1429 1430 /* nc.link_down can't be migrated, so infer link_down according 1431 * to link status bit in mac_reg[STATUS]. 1432 * Alternatively, restart link negotiation if it was in progress. */ 1433 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; 1434 1435 if (have_autoneg(s) && 1436 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 1437 nc->link_down = false; 1438 timer_mod(s->autoneg_timer, 1439 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 1440 } 1441 1442 s->tx.props = s->mig_props; 1443 if (!s->received_tx_tso) { 1444 /* We received only one set of offload data (tx.props) 1445 * and haven't got tx.tso_props. The best we can do 1446 * is dupe the data. 1447 */ 1448 s->tx.tso_props = s->mig_props; 1449 } 1450 return 0; 1451 } 1452 1453 static int e1000_tx_tso_post_load(void *opaque, int version_id) 1454 { 1455 E1000State *s = opaque; 1456 s->received_tx_tso = true; 1457 return 0; 1458 } 1459 1460 static bool e1000_mit_state_needed(void *opaque) 1461 { 1462 E1000State *s = opaque; 1463 1464 return chkflag(MIT); 1465 } 1466 1467 static bool e1000_full_mac_needed(void *opaque) 1468 { 1469 E1000State *s = opaque; 1470 1471 return chkflag(MAC); 1472 } 1473 1474 static bool e1000_tso_state_needed(void *opaque) 1475 { 1476 E1000State *s = opaque; 1477 1478 return chkflag(TSO); 1479 } 1480 1481 static const VMStateDescription vmstate_e1000_mit_state = { 1482 .name = "e1000/mit_state", 1483 .version_id = 1, 1484 .minimum_version_id = 1, 1485 .needed = e1000_mit_state_needed, 1486 .fields = (VMStateField[]) { 1487 VMSTATE_UINT32(mac_reg[RDTR], E1000State), 1488 VMSTATE_UINT32(mac_reg[RADV], E1000State), 1489 VMSTATE_UINT32(mac_reg[TADV], E1000State), 1490 VMSTATE_UINT32(mac_reg[ITR], E1000State), 1491 VMSTATE_BOOL(mit_irq_level, E1000State), 1492 VMSTATE_END_OF_LIST() 1493 } 1494 }; 1495 1496 static const VMStateDescription vmstate_e1000_full_mac_state = { 1497 .name = "e1000/full_mac_state", 1498 .version_id = 1, 1499 .minimum_version_id = 1, 1500 .needed = e1000_full_mac_needed, 1501 .fields = (VMStateField[]) { 1502 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000), 1503 VMSTATE_END_OF_LIST() 1504 } 1505 }; 1506 1507 static const VMStateDescription vmstate_e1000_tx_tso_state = { 1508 .name = "e1000/tx_tso_state", 1509 .version_id = 1, 1510 .minimum_version_id = 1, 1511 .needed = e1000_tso_state_needed, 1512 .post_load = e1000_tx_tso_post_load, 1513 .fields = (VMStateField[]) { 1514 VMSTATE_UINT8(tx.tso_props.ipcss, E1000State), 1515 VMSTATE_UINT8(tx.tso_props.ipcso, E1000State), 1516 VMSTATE_UINT16(tx.tso_props.ipcse, E1000State), 1517 VMSTATE_UINT8(tx.tso_props.tucss, E1000State), 1518 VMSTATE_UINT8(tx.tso_props.tucso, E1000State), 1519 VMSTATE_UINT16(tx.tso_props.tucse, E1000State), 1520 VMSTATE_UINT32(tx.tso_props.paylen, E1000State), 1521 VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State), 1522 VMSTATE_UINT16(tx.tso_props.mss, E1000State), 1523 VMSTATE_INT8(tx.tso_props.ip, E1000State), 1524 VMSTATE_INT8(tx.tso_props.tcp, E1000State), 1525 VMSTATE_END_OF_LIST() 1526 } 1527 }; 1528 1529 static const VMStateDescription vmstate_e1000 = { 1530 .name = "e1000", 1531 .version_id = 2, 1532 .minimum_version_id = 1, 1533 .pre_save = e1000_pre_save, 1534 .post_load = e1000_post_load, 1535 .fields = (VMStateField[]) { 1536 VMSTATE_PCI_DEVICE(parent_obj, E1000State), 1537 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ 1538 VMSTATE_UNUSED(4), /* Was mmio_base. */ 1539 VMSTATE_UINT32(rxbuf_size, E1000State), 1540 VMSTATE_UINT32(rxbuf_min_shift, E1000State), 1541 VMSTATE_UINT32(eecd_state.val_in, E1000State), 1542 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), 1543 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), 1544 VMSTATE_UINT16(eecd_state.reading, E1000State), 1545 VMSTATE_UINT32(eecd_state.old_eecd, E1000State), 1546 VMSTATE_UINT8(mig_props.ipcss, E1000State), 1547 VMSTATE_UINT8(mig_props.ipcso, E1000State), 1548 VMSTATE_UINT16(mig_props.ipcse, E1000State), 1549 VMSTATE_UINT8(mig_props.tucss, E1000State), 1550 VMSTATE_UINT8(mig_props.tucso, E1000State), 1551 VMSTATE_UINT16(mig_props.tucse, E1000State), 1552 VMSTATE_UINT32(mig_props.paylen, E1000State), 1553 VMSTATE_UINT8(mig_props.hdr_len, E1000State), 1554 VMSTATE_UINT16(mig_props.mss, E1000State), 1555 VMSTATE_UINT16(tx.size, E1000State), 1556 VMSTATE_UINT16(tx.tso_frames, E1000State), 1557 VMSTATE_UINT8(tx.sum_needed, E1000State), 1558 VMSTATE_INT8(mig_props.ip, E1000State), 1559 VMSTATE_INT8(mig_props.tcp, E1000State), 1560 VMSTATE_BUFFER(tx.header, E1000State), 1561 VMSTATE_BUFFER(tx.data, E1000State), 1562 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), 1563 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), 1564 VMSTATE_UINT32(mac_reg[CTRL], E1000State), 1565 VMSTATE_UINT32(mac_reg[EECD], E1000State), 1566 VMSTATE_UINT32(mac_reg[EERD], E1000State), 1567 VMSTATE_UINT32(mac_reg[GPRC], E1000State), 1568 VMSTATE_UINT32(mac_reg[GPTC], E1000State), 1569 VMSTATE_UINT32(mac_reg[ICR], E1000State), 1570 VMSTATE_UINT32(mac_reg[ICS], E1000State), 1571 VMSTATE_UINT32(mac_reg[IMC], E1000State), 1572 VMSTATE_UINT32(mac_reg[IMS], E1000State), 1573 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), 1574 VMSTATE_UINT32(mac_reg[MANC], E1000State), 1575 VMSTATE_UINT32(mac_reg[MDIC], E1000State), 1576 VMSTATE_UINT32(mac_reg[MPC], E1000State), 1577 VMSTATE_UINT32(mac_reg[PBA], E1000State), 1578 VMSTATE_UINT32(mac_reg[RCTL], E1000State), 1579 VMSTATE_UINT32(mac_reg[RDBAH], E1000State), 1580 VMSTATE_UINT32(mac_reg[RDBAL], E1000State), 1581 VMSTATE_UINT32(mac_reg[RDH], E1000State), 1582 VMSTATE_UINT32(mac_reg[RDLEN], E1000State), 1583 VMSTATE_UINT32(mac_reg[RDT], E1000State), 1584 VMSTATE_UINT32(mac_reg[STATUS], E1000State), 1585 VMSTATE_UINT32(mac_reg[SWSM], E1000State), 1586 VMSTATE_UINT32(mac_reg[TCTL], E1000State), 1587 VMSTATE_UINT32(mac_reg[TDBAH], E1000State), 1588 VMSTATE_UINT32(mac_reg[TDBAL], E1000State), 1589 VMSTATE_UINT32(mac_reg[TDH], E1000State), 1590 VMSTATE_UINT32(mac_reg[TDLEN], E1000State), 1591 VMSTATE_UINT32(mac_reg[TDT], E1000State), 1592 VMSTATE_UINT32(mac_reg[TORH], E1000State), 1593 VMSTATE_UINT32(mac_reg[TORL], E1000State), 1594 VMSTATE_UINT32(mac_reg[TOTH], E1000State), 1595 VMSTATE_UINT32(mac_reg[TOTL], E1000State), 1596 VMSTATE_UINT32(mac_reg[TPR], E1000State), 1597 VMSTATE_UINT32(mac_reg[TPT], E1000State), 1598 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), 1599 VMSTATE_UINT32(mac_reg[WUFC], E1000State), 1600 VMSTATE_UINT32(mac_reg[VET], E1000State), 1601 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), 1602 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), 1603 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), 1604 VMSTATE_END_OF_LIST() 1605 }, 1606 .subsections = (const VMStateDescription*[]) { 1607 &vmstate_e1000_mit_state, 1608 &vmstate_e1000_full_mac_state, 1609 &vmstate_e1000_tx_tso_state, 1610 NULL 1611 } 1612 }; 1613 1614 /* 1615 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102. 1616 * Note: A valid DevId will be inserted during pci_e1000_realize(). 1617 */ 1618 static const uint16_t e1000_eeprom_template[64] = { 1619 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, 1620 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040, 1621 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, 1622 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, 1623 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, 1624 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1625 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1626 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 1627 }; 1628 1629 /* PCI interface */ 1630 1631 static void 1632 e1000_mmio_setup(E1000State *d) 1633 { 1634 int i; 1635 const uint32_t excluded_regs[] = { 1636 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, 1637 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE 1638 }; 1639 1640 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, 1641 "e1000-mmio", PNPMMIO_SIZE); 1642 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); 1643 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) 1644 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, 1645 excluded_regs[i+1] - excluded_regs[i] - 4); 1646 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); 1647 } 1648 1649 static void 1650 pci_e1000_uninit(PCIDevice *dev) 1651 { 1652 E1000State *d = E1000(dev); 1653 1654 timer_free(d->autoneg_timer); 1655 timer_free(d->mit_timer); 1656 timer_free(d->flush_queue_timer); 1657 qemu_del_nic(d->nic); 1658 } 1659 1660 static NetClientInfo net_e1000_info = { 1661 .type = NET_CLIENT_DRIVER_NIC, 1662 .size = sizeof(NICState), 1663 .can_receive = e1000_can_receive, 1664 .receive = e1000_receive, 1665 .receive_iov = e1000_receive_iov, 1666 .link_status_changed = e1000_set_link_status, 1667 }; 1668 1669 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address, 1670 uint32_t val, int len) 1671 { 1672 E1000State *s = E1000(pci_dev); 1673 1674 pci_default_write_config(pci_dev, address, val, len); 1675 1676 if (range_covers_byte(address, len, PCI_COMMAND) && 1677 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { 1678 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1679 } 1680 } 1681 1682 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) 1683 { 1684 DeviceState *dev = DEVICE(pci_dev); 1685 E1000State *d = E1000(pci_dev); 1686 uint8_t *pci_conf; 1687 uint8_t *macaddr; 1688 1689 pci_dev->config_write = e1000_write_config; 1690 1691 pci_conf = pci_dev->config; 1692 1693 /* TODO: RST# value should be 0, PCI spec 6.2.4 */ 1694 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; 1695 1696 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 1697 1698 e1000_mmio_setup(d); 1699 1700 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); 1701 1702 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); 1703 1704 qemu_macaddr_default_if_unset(&d->conf.macaddr); 1705 macaddr = d->conf.macaddr.a; 1706 1707 e1000x_core_prepare_eeprom(d->eeprom_data, 1708 e1000_eeprom_template, 1709 sizeof(e1000_eeprom_template), 1710 PCI_DEVICE_GET_CLASS(pci_dev)->device_id, 1711 macaddr); 1712 1713 d->nic = qemu_new_nic(&net_e1000_info, &d->conf, 1714 object_get_typename(OBJECT(d)), dev->id, d); 1715 1716 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); 1717 1718 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d); 1719 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d); 1720 d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 1721 e1000_flush_queue_timer, d); 1722 } 1723 1724 static void qdev_e1000_reset(DeviceState *dev) 1725 { 1726 E1000State *d = E1000(dev); 1727 e1000_reset(d); 1728 } 1729 1730 static Property e1000_properties[] = { 1731 DEFINE_NIC_PROPERTIES(E1000State, conf), 1732 DEFINE_PROP_BIT("autonegotiation", E1000State, 1733 compat_flags, E1000_FLAG_AUTONEG_BIT, true), 1734 DEFINE_PROP_BIT("mitigation", E1000State, 1735 compat_flags, E1000_FLAG_MIT_BIT, true), 1736 DEFINE_PROP_BIT("extra_mac_registers", E1000State, 1737 compat_flags, E1000_FLAG_MAC_BIT, true), 1738 DEFINE_PROP_BIT("migrate_tso_props", E1000State, 1739 compat_flags, E1000_FLAG_TSO_BIT, true), 1740 DEFINE_PROP_END_OF_LIST(), 1741 }; 1742 1743 typedef struct E1000Info { 1744 const char *name; 1745 uint16_t device_id; 1746 uint8_t revision; 1747 uint16_t phy_id2; 1748 } E1000Info; 1749 1750 static void e1000_class_init(ObjectClass *klass, void *data) 1751 { 1752 DeviceClass *dc = DEVICE_CLASS(klass); 1753 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1754 E1000BaseClass *e = E1000_CLASS(klass); 1755 const E1000Info *info = data; 1756 1757 k->realize = pci_e1000_realize; 1758 k->exit = pci_e1000_uninit; 1759 k->romfile = "efi-e1000.rom"; 1760 k->vendor_id = PCI_VENDOR_ID_INTEL; 1761 k->device_id = info->device_id; 1762 k->revision = info->revision; 1763 e->phy_id2 = info->phy_id2; 1764 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 1765 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 1766 dc->desc = "Intel Gigabit Ethernet"; 1767 dc->reset = qdev_e1000_reset; 1768 dc->vmsd = &vmstate_e1000; 1769 device_class_set_props(dc, e1000_properties); 1770 } 1771 1772 static void e1000_instance_init(Object *obj) 1773 { 1774 E1000State *n = E1000(obj); 1775 device_add_bootindex_property(obj, &n->conf.bootindex, 1776 "bootindex", "/ethernet-phy@0", 1777 DEVICE(n)); 1778 } 1779 1780 static const TypeInfo e1000_base_info = { 1781 .name = TYPE_E1000_BASE, 1782 .parent = TYPE_PCI_DEVICE, 1783 .instance_size = sizeof(E1000State), 1784 .instance_init = e1000_instance_init, 1785 .class_size = sizeof(E1000BaseClass), 1786 .abstract = true, 1787 .interfaces = (InterfaceInfo[]) { 1788 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1789 { }, 1790 }, 1791 }; 1792 1793 static const E1000Info e1000_devices[] = { 1794 { 1795 .name = "e1000", 1796 .device_id = E1000_DEV_ID_82540EM, 1797 .revision = 0x03, 1798 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1799 }, 1800 { 1801 .name = "e1000-82544gc", 1802 .device_id = E1000_DEV_ID_82544GC_COPPER, 1803 .revision = 0x03, 1804 .phy_id2 = E1000_PHY_ID2_82544x, 1805 }, 1806 { 1807 .name = "e1000-82545em", 1808 .device_id = E1000_DEV_ID_82545EM_COPPER, 1809 .revision = 0x03, 1810 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1811 }, 1812 }; 1813 1814 static void e1000_register_types(void) 1815 { 1816 int i; 1817 1818 type_register_static(&e1000_base_info); 1819 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) { 1820 const E1000Info *info = &e1000_devices[i]; 1821 TypeInfo type_info = {}; 1822 1823 type_info.name = info->name; 1824 type_info.parent = TYPE_E1000_BASE; 1825 type_info.class_data = (void *)info; 1826 type_info.class_init = e1000_class_init; 1827 1828 type_register(&type_info); 1829 } 1830 } 1831 1832 type_init(e1000_register_types) 1833