1 /* 2 * QEMU e1000 emulation 3 * 4 * Software developer's manual: 5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf 6 * 7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 8 * Copyright (c) 2008 Qumranet 9 * Based on work done by: 10 * Copyright (c) 2007 Dan Aloni 11 * Copyright (c) 2004 Antony T Curtis 12 * 13 * This library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2.1 of the License, or (at your option) any later version. 17 * 18 * This library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 25 */ 26 27 28 #include "qemu/osdep.h" 29 #include "hw/pci/pci.h" 30 #include "hw/qdev-properties.h" 31 #include "migration/vmstate.h" 32 #include "net/eth.h" 33 #include "net/net.h" 34 #include "net/checksum.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/dma.h" 37 #include "qemu/iov.h" 38 #include "qemu/module.h" 39 #include "qemu/range.h" 40 41 #include "e1000x_common.h" 42 #include "trace.h" 43 #include "qom/object.h" 44 45 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 46 47 /* #define E1000_DEBUG */ 48 49 #ifdef E1000_DEBUG 50 enum { 51 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, 52 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, 53 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, 54 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET, 55 }; 56 #define DBGBIT(x) (1<<DEBUG_##x) 57 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); 58 59 #define DBGOUT(what, fmt, ...) do { \ 60 if (debugflags & DBGBIT(what)) \ 61 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ 62 } while (0) 63 #else 64 #define DBGOUT(what, fmt, ...) do {} while (0) 65 #endif 66 67 #define IOPORT_SIZE 0x40 68 #define PNPMMIO_SIZE 0x20000 69 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */ 70 71 #define MAXIMUM_ETHERNET_HDR_LEN (14+4) 72 73 /* 74 * HW models: 75 * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8 76 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested 77 * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6 78 * Others never tested 79 */ 80 81 struct E1000State_st { 82 /*< private >*/ 83 PCIDevice parent_obj; 84 /*< public >*/ 85 86 NICState *nic; 87 NICConf conf; 88 MemoryRegion mmio; 89 MemoryRegion io; 90 91 uint32_t mac_reg[0x8000]; 92 uint16_t phy_reg[0x20]; 93 uint16_t eeprom_data[64]; 94 95 uint32_t rxbuf_size; 96 uint32_t rxbuf_min_shift; 97 struct e1000_tx { 98 unsigned char header[256]; 99 unsigned char vlan_header[4]; 100 /* Fields vlan and data must not be reordered or separated. */ 101 unsigned char vlan[4]; 102 unsigned char data[0x10000]; 103 uint16_t size; 104 unsigned char vlan_needed; 105 unsigned char sum_needed; 106 bool cptse; 107 e1000x_txd_props props; 108 e1000x_txd_props tso_props; 109 uint16_t tso_frames; 110 bool busy; 111 } tx; 112 113 struct { 114 uint32_t val_in; /* shifted in from guest driver */ 115 uint16_t bitnum_in; 116 uint16_t bitnum_out; 117 uint16_t reading; 118 uint32_t old_eecd; 119 } eecd_state; 120 121 QEMUTimer *autoneg_timer; 122 123 QEMUTimer *mit_timer; /* Mitigation timer. */ 124 bool mit_timer_on; /* Mitigation timer is running. */ 125 bool mit_irq_level; /* Tracks interrupt pin level. */ 126 uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */ 127 128 QEMUTimer *flush_queue_timer; 129 130 /* Compatibility flags for migration to/from qemu 1.3.0 and older */ 131 #define E1000_FLAG_AUTONEG_BIT 0 132 #define E1000_FLAG_MIT_BIT 1 133 #define E1000_FLAG_MAC_BIT 2 134 #define E1000_FLAG_TSO_BIT 3 135 #define E1000_FLAG_VET_BIT 4 136 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT) 137 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT) 138 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT) 139 #define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT) 140 #define E1000_FLAG_VET (1 << E1000_FLAG_VET_BIT) 141 142 uint32_t compat_flags; 143 bool received_tx_tso; 144 bool use_tso_for_migration; 145 e1000x_txd_props mig_props; 146 }; 147 typedef struct E1000State_st E1000State; 148 149 #define chkflag(x) (s->compat_flags & E1000_FLAG_##x) 150 151 struct E1000BaseClass { 152 PCIDeviceClass parent_class; 153 uint16_t phy_id2; 154 }; 155 typedef struct E1000BaseClass E1000BaseClass; 156 157 #define TYPE_E1000_BASE "e1000-base" 158 159 DECLARE_OBJ_CHECKERS(E1000State, E1000BaseClass, 160 E1000, TYPE_E1000_BASE) 161 162 163 static void 164 e1000_link_up(E1000State *s) 165 { 166 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg); 167 168 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 169 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 170 } 171 172 static void 173 e1000_autoneg_done(E1000State *s) 174 { 175 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg); 176 177 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 178 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 179 } 180 181 static bool 182 have_autoneg(E1000State *s) 183 { 184 return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN); 185 } 186 187 static void 188 set_phy_ctrl(E1000State *s, int index, uint16_t val) 189 { 190 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ 191 s->phy_reg[PHY_CTRL] = val & ~(0x3f | 192 MII_CR_RESET | 193 MII_CR_RESTART_AUTO_NEG); 194 195 /* 196 * QEMU 1.3 does not support link auto-negotiation emulation, so if we 197 * migrate during auto negotiation, after migration the link will be 198 * down. 199 */ 200 if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) { 201 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 202 } 203 } 204 205 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { 206 [PHY_CTRL] = set_phy_ctrl, 207 }; 208 209 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; 210 211 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; 212 static const char phy_regcap[0x20] = { 213 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, 214 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, 215 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, 216 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, 217 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, 218 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R, 219 [PHY_AUTONEG_EXP] = PHY_R, 220 }; 221 222 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */ 223 static const uint16_t phy_reg_init[] = { 224 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | 225 MII_CR_FULL_DUPLEX | 226 MII_CR_AUTO_NEG_EN, 227 228 [PHY_STATUS] = MII_SR_EXTENDED_CAPS | 229 MII_SR_LINK_STATUS | /* link initially up */ 230 MII_SR_AUTONEG_CAPS | 231 /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */ 232 MII_SR_PREAMBLE_SUPPRESS | 233 MII_SR_EXTENDED_STATUS | 234 MII_SR_10T_HD_CAPS | 235 MII_SR_10T_FD_CAPS | 236 MII_SR_100X_HD_CAPS | 237 MII_SR_100X_FD_CAPS, 238 239 [PHY_ID1] = 0x141, 240 /* [PHY_ID2] configured per DevId, from e1000_reset() */ 241 [PHY_AUTONEG_ADV] = 0xde1, 242 [PHY_LP_ABILITY] = 0x1e0, 243 [PHY_1000T_CTRL] = 0x0e00, 244 [PHY_1000T_STATUS] = 0x3c00, 245 [M88E1000_PHY_SPEC_CTRL] = 0x360, 246 [M88E1000_PHY_SPEC_STATUS] = 0xac00, 247 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, 248 }; 249 250 static const uint32_t mac_reg_init[] = { 251 [PBA] = 0x00100030, 252 [LEDCTL] = 0x602, 253 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | 254 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, 255 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | 256 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | 257 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | 258 E1000_STATUS_LU, 259 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | 260 E1000_MANC_ARP_EN | E1000_MANC_0298_EN | 261 E1000_MANC_RMCP_EN, 262 }; 263 264 /* Helper function, *curr == 0 means the value is not set */ 265 static inline void 266 mit_update_delay(uint32_t *curr, uint32_t value) 267 { 268 if (value && (*curr == 0 || value < *curr)) { 269 *curr = value; 270 } 271 } 272 273 static void 274 set_interrupt_cause(E1000State *s, int index, uint32_t val) 275 { 276 PCIDevice *d = PCI_DEVICE(s); 277 uint32_t pending_ints; 278 uint32_t mit_delay; 279 280 s->mac_reg[ICR] = val; 281 282 /* 283 * Make sure ICR and ICS registers have the same value. 284 * The spec says that the ICS register is write-only. However in practice, 285 * on real hardware ICS is readable, and for reads it has the same value as 286 * ICR (except that ICS does not have the clear on read behaviour of ICR). 287 * 288 * The VxWorks PRO/1000 driver uses this behaviour. 289 */ 290 s->mac_reg[ICS] = val; 291 292 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]); 293 if (!s->mit_irq_level && pending_ints) { 294 /* 295 * Here we detect a potential raising edge. We postpone raising the 296 * interrupt line if we are inside the mitigation delay window 297 * (s->mit_timer_on == 1). 298 * We provide a partial implementation of interrupt mitigation, 299 * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for 300 * RADV and TADV, 256ns units for ITR). RDTR is only used to enable 301 * RADV; relative timers based on TIDV and RDTR are not implemented. 302 */ 303 if (s->mit_timer_on) { 304 return; 305 } 306 if (chkflag(MIT)) { 307 /* Compute the next mitigation delay according to pending 308 * interrupts and the current values of RADV (provided 309 * RDTR!=0), TADV and ITR. 310 * Then rearm the timer. 311 */ 312 mit_delay = 0; 313 if (s->mit_ide && 314 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) { 315 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4); 316 } 317 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) { 318 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4); 319 } 320 mit_update_delay(&mit_delay, s->mac_reg[ITR]); 321 322 /* 323 * According to e1000 SPEC, the Ethernet controller guarantees 324 * a maximum observable interrupt rate of 7813 interrupts/sec. 325 * Thus if mit_delay < 500 then the delay should be set to the 326 * minimum delay possible which is 500. 327 */ 328 mit_delay = (mit_delay < 500) ? 500 : mit_delay; 329 330 s->mit_timer_on = 1; 331 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 332 mit_delay * 256); 333 s->mit_ide = 0; 334 } 335 } 336 337 s->mit_irq_level = (pending_ints != 0); 338 pci_set_irq(d, s->mit_irq_level); 339 } 340 341 static void 342 e1000_mit_timer(void *opaque) 343 { 344 E1000State *s = opaque; 345 346 s->mit_timer_on = 0; 347 /* Call set_interrupt_cause to update the irq level (if necessary). */ 348 set_interrupt_cause(s, 0, s->mac_reg[ICR]); 349 } 350 351 static void 352 set_ics(E1000State *s, int index, uint32_t val) 353 { 354 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], 355 s->mac_reg[IMS]); 356 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); 357 } 358 359 static void 360 e1000_autoneg_timer(void *opaque) 361 { 362 E1000State *s = opaque; 363 if (!qemu_get_queue(s->nic)->link_down) { 364 e1000_autoneg_done(s); 365 set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ 366 } 367 } 368 369 static bool e1000_vet_init_need(void *opaque) 370 { 371 E1000State *s = opaque; 372 373 return chkflag(VET); 374 } 375 376 static void e1000_reset(void *opaque) 377 { 378 E1000State *d = opaque; 379 E1000BaseClass *edc = E1000_GET_CLASS(d); 380 uint8_t *macaddr = d->conf.macaddr.a; 381 382 timer_del(d->autoneg_timer); 383 timer_del(d->mit_timer); 384 timer_del(d->flush_queue_timer); 385 d->mit_timer_on = 0; 386 d->mit_irq_level = 0; 387 d->mit_ide = 0; 388 memset(d->phy_reg, 0, sizeof d->phy_reg); 389 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); 390 d->phy_reg[PHY_ID2] = edc->phy_id2; 391 memset(d->mac_reg, 0, sizeof d->mac_reg); 392 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); 393 d->rxbuf_min_shift = 1; 394 memset(&d->tx, 0, sizeof d->tx); 395 396 if (qemu_get_queue(d->nic)->link_down) { 397 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg); 398 } 399 400 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr); 401 402 if (e1000_vet_init_need(d)) { 403 d->mac_reg[VET] = ETH_P_VLAN; 404 } 405 } 406 407 static void 408 set_ctrl(E1000State *s, int index, uint32_t val) 409 { 410 /* RST is self clearing */ 411 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; 412 } 413 414 static void 415 e1000_flush_queue_timer(void *opaque) 416 { 417 E1000State *s = opaque; 418 419 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 420 } 421 422 static void 423 set_rx_control(E1000State *s, int index, uint32_t val) 424 { 425 s->mac_reg[RCTL] = val; 426 s->rxbuf_size = e1000x_rxbufsize(val); 427 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; 428 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], 429 s->mac_reg[RCTL]); 430 timer_mod(s->flush_queue_timer, 431 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000); 432 } 433 434 static void 435 set_mdic(E1000State *s, int index, uint32_t val) 436 { 437 uint32_t data = val & E1000_MDIC_DATA_MASK; 438 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 439 440 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # 441 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; 442 else if (val & E1000_MDIC_OP_READ) { 443 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); 444 if (!(phy_regcap[addr] & PHY_R)) { 445 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); 446 val |= E1000_MDIC_ERROR; 447 } else 448 val = (val ^ data) | s->phy_reg[addr]; 449 } else if (val & E1000_MDIC_OP_WRITE) { 450 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); 451 if (!(phy_regcap[addr] & PHY_W)) { 452 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); 453 val |= E1000_MDIC_ERROR; 454 } else { 455 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { 456 phyreg_writeops[addr](s, index, data); 457 } else { 458 s->phy_reg[addr] = data; 459 } 460 } 461 } 462 s->mac_reg[MDIC] = val | E1000_MDIC_READY; 463 464 if (val & E1000_MDIC_INT_EN) { 465 set_ics(s, 0, E1000_ICR_MDAC); 466 } 467 } 468 469 static uint32_t 470 get_eecd(E1000State *s, int index) 471 { 472 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; 473 474 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", 475 s->eecd_state.bitnum_out, s->eecd_state.reading); 476 if (!s->eecd_state.reading || 477 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> 478 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) 479 ret |= E1000_EECD_DO; 480 return ret; 481 } 482 483 static void 484 set_eecd(E1000State *s, int index, uint32_t val) 485 { 486 uint32_t oldval = s->eecd_state.old_eecd; 487 488 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | 489 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); 490 if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */ 491 return; 492 } 493 if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */ 494 s->eecd_state.val_in = 0; 495 s->eecd_state.bitnum_in = 0; 496 s->eecd_state.bitnum_out = 0; 497 s->eecd_state.reading = 0; 498 } 499 if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */ 500 return; 501 } 502 if (!(E1000_EECD_SK & val)) { /* falling edge */ 503 s->eecd_state.bitnum_out++; 504 return; 505 } 506 s->eecd_state.val_in <<= 1; 507 if (val & E1000_EECD_DI) 508 s->eecd_state.val_in |= 1; 509 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { 510 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; 511 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == 512 EEPROM_READ_OPCODE_MICROWIRE); 513 } 514 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", 515 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, 516 s->eecd_state.reading); 517 } 518 519 static uint32_t 520 flash_eerd_read(E1000State *s, int x) 521 { 522 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; 523 524 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) 525 return (s->mac_reg[EERD]); 526 527 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) 528 return (E1000_EEPROM_RW_REG_DONE | r); 529 530 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | 531 E1000_EEPROM_RW_REG_DONE | r); 532 } 533 534 static void 535 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) 536 { 537 uint32_t sum; 538 539 if (cse && cse < n) 540 n = cse + 1; 541 if (sloc < n-1) { 542 sum = net_checksum_add(n-css, data+css); 543 stw_be_p(data + sloc, net_checksum_finish_nozero(sum)); 544 } 545 } 546 547 static inline void 548 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) 549 { 550 if (!memcmp(arr, bcast, sizeof bcast)) { 551 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC); 552 } else if (arr[0] & 1) { 553 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC); 554 } 555 } 556 557 static void 558 e1000_send_packet(E1000State *s, const uint8_t *buf, int size) 559 { 560 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 561 PTC1023, PTC1522 }; 562 563 NetClientState *nc = qemu_get_queue(s->nic); 564 if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) { 565 qemu_receive_packet(nc, buf, size); 566 } else { 567 qemu_send_packet(nc, buf, size); 568 } 569 inc_tx_bcast_or_mcast_count(s, buf); 570 e1000x_increase_size_stats(s->mac_reg, PTCregs, size); 571 } 572 573 static void 574 xmit_seg(E1000State *s) 575 { 576 uint16_t len; 577 unsigned int frames = s->tx.tso_frames, css, sofar; 578 struct e1000_tx *tp = &s->tx; 579 struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props; 580 581 if (tp->cptse) { 582 css = props->ipcss; 583 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", 584 frames, tp->size, css); 585 if (props->ip) { /* IPv4 */ 586 stw_be_p(tp->data+css+2, tp->size - css); 587 stw_be_p(tp->data+css+4, 588 lduw_be_p(tp->data + css + 4) + frames); 589 } else { /* IPv6 */ 590 stw_be_p(tp->data+css+4, tp->size - css); 591 } 592 css = props->tucss; 593 len = tp->size - css; 594 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len); 595 if (props->tcp) { 596 sofar = frames * props->mss; 597 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ 598 if (props->paylen - sofar > props->mss) { 599 tp->data[css + 13] &= ~9; /* PSH, FIN */ 600 } else if (frames) { 601 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC); 602 } 603 } else { /* UDP */ 604 stw_be_p(tp->data+css+4, len); 605 } 606 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 607 unsigned int phsum; 608 // add pseudo-header length before checksum calculation 609 void *sp = tp->data + props->tucso; 610 611 phsum = lduw_be_p(sp) + len; 612 phsum = (phsum >> 16) + (phsum & 0xffff); 613 stw_be_p(sp, phsum); 614 } 615 tp->tso_frames++; 616 } 617 618 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 619 putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse); 620 } 621 if (tp->sum_needed & E1000_TXD_POPTS_IXSM) { 622 putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse); 623 } 624 if (tp->vlan_needed) { 625 memmove(tp->vlan, tp->data, 4); 626 memmove(tp->data, tp->data + 4, 8); 627 memcpy(tp->data + 8, tp->vlan_header, 4); 628 e1000_send_packet(s, tp->vlan, tp->size + 4); 629 } else { 630 e1000_send_packet(s, tp->data, tp->size); 631 } 632 633 e1000x_inc_reg_if_not_full(s->mac_reg, TPT); 634 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size); 635 s->mac_reg[GPTC] = s->mac_reg[TPT]; 636 s->mac_reg[GOTCL] = s->mac_reg[TOTL]; 637 s->mac_reg[GOTCH] = s->mac_reg[TOTH]; 638 } 639 640 static void 641 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) 642 { 643 PCIDevice *d = PCI_DEVICE(s); 644 uint32_t txd_lower = le32_to_cpu(dp->lower.data); 645 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); 646 unsigned int split_size = txd_lower & 0xffff, bytes, sz; 647 unsigned int msh = 0xfffff; 648 uint64_t addr; 649 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; 650 struct e1000_tx *tp = &s->tx; 651 652 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); 653 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ 654 if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) { 655 e1000x_read_tx_ctx_descr(xp, &tp->tso_props); 656 s->use_tso_for_migration = 1; 657 tp->tso_frames = 0; 658 } else { 659 e1000x_read_tx_ctx_descr(xp, &tp->props); 660 s->use_tso_for_migration = 0; 661 } 662 return; 663 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { 664 // data descriptor 665 if (tp->size == 0) { 666 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; 667 } 668 tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; 669 } else { 670 // legacy descriptor 671 tp->cptse = 0; 672 } 673 674 if (e1000x_vlan_enabled(s->mac_reg) && 675 e1000x_is_vlan_txd(txd_lower) && 676 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { 677 tp->vlan_needed = 1; 678 stw_be_p(tp->vlan_header, 679 le16_to_cpu(s->mac_reg[VET])); 680 stw_be_p(tp->vlan_header + 2, 681 le16_to_cpu(dp->upper.fields.special)); 682 } 683 684 addr = le64_to_cpu(dp->buffer_addr); 685 if (tp->cptse) { 686 msh = tp->tso_props.hdr_len + tp->tso_props.mss; 687 do { 688 bytes = split_size; 689 if (tp->size >= msh) { 690 goto eop; 691 } 692 if (tp->size + bytes > msh) 693 bytes = msh - tp->size; 694 695 bytes = MIN(sizeof(tp->data) - tp->size, bytes); 696 pci_dma_read(d, addr, tp->data + tp->size, bytes); 697 sz = tp->size + bytes; 698 if (sz >= tp->tso_props.hdr_len 699 && tp->size < tp->tso_props.hdr_len) { 700 memmove(tp->header, tp->data, tp->tso_props.hdr_len); 701 } 702 tp->size = sz; 703 addr += bytes; 704 if (sz == msh) { 705 xmit_seg(s); 706 memmove(tp->data, tp->header, tp->tso_props.hdr_len); 707 tp->size = tp->tso_props.hdr_len; 708 } 709 split_size -= bytes; 710 } while (bytes && split_size); 711 } else { 712 split_size = MIN(sizeof(tp->data) - tp->size, split_size); 713 pci_dma_read(d, addr, tp->data + tp->size, split_size); 714 tp->size += split_size; 715 } 716 717 eop: 718 if (!(txd_lower & E1000_TXD_CMD_EOP)) 719 return; 720 if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) { 721 xmit_seg(s); 722 } 723 tp->tso_frames = 0; 724 tp->sum_needed = 0; 725 tp->vlan_needed = 0; 726 tp->size = 0; 727 tp->cptse = 0; 728 } 729 730 static uint32_t 731 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) 732 { 733 PCIDevice *d = PCI_DEVICE(s); 734 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); 735 736 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) 737 return 0; 738 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & 739 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); 740 dp->upper.data = cpu_to_le32(txd_upper); 741 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), 742 &dp->upper, sizeof(dp->upper)); 743 return E1000_ICR_TXDW; 744 } 745 746 static uint64_t tx_desc_base(E1000State *s) 747 { 748 uint64_t bah = s->mac_reg[TDBAH]; 749 uint64_t bal = s->mac_reg[TDBAL] & ~0xf; 750 751 return (bah << 32) + bal; 752 } 753 754 static void 755 start_xmit(E1000State *s) 756 { 757 PCIDevice *d = PCI_DEVICE(s); 758 dma_addr_t base; 759 struct e1000_tx_desc desc; 760 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; 761 762 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { 763 DBGOUT(TX, "tx disabled\n"); 764 return; 765 } 766 767 if (s->tx.busy) { 768 return; 769 } 770 s->tx.busy = true; 771 772 while (s->mac_reg[TDH] != s->mac_reg[TDT]) { 773 base = tx_desc_base(s) + 774 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; 775 pci_dma_read(d, base, &desc, sizeof(desc)); 776 777 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], 778 (void *)(intptr_t)desc.buffer_addr, desc.lower.data, 779 desc.upper.data); 780 781 process_tx_desc(s, &desc); 782 cause |= txdesc_writeback(s, base, &desc); 783 784 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) 785 s->mac_reg[TDH] = 0; 786 /* 787 * the following could happen only if guest sw assigns 788 * bogus values to TDT/TDLEN. 789 * there's nothing too intelligent we could do about this. 790 */ 791 if (s->mac_reg[TDH] == tdh_start || 792 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) { 793 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", 794 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); 795 break; 796 } 797 } 798 s->tx.busy = false; 799 set_ics(s, 0, cause); 800 } 801 802 static int 803 receive_filter(E1000State *s, const uint8_t *buf, int size) 804 { 805 uint32_t rctl = s->mac_reg[RCTL]; 806 int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1); 807 808 if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) && 809 e1000x_vlan_rx_filter_enabled(s->mac_reg)) { 810 uint16_t vid = lduw_be_p(buf + 14); 811 uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) + 812 ((vid >> 5) & 0x7f)); 813 if ((vfta & (1 << (vid & 0x1f))) == 0) 814 return 0; 815 } 816 817 if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */ 818 return 1; 819 } 820 821 if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */ 822 e1000x_inc_reg_if_not_full(s->mac_reg, MPRC); 823 return 1; 824 } 825 826 if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */ 827 e1000x_inc_reg_if_not_full(s->mac_reg, BPRC); 828 return 1; 829 } 830 831 return e1000x_rx_group_filter(s->mac_reg, buf); 832 } 833 834 static void 835 e1000_set_link_status(NetClientState *nc) 836 { 837 E1000State *s = qemu_get_nic_opaque(nc); 838 uint32_t old_status = s->mac_reg[STATUS]; 839 840 if (nc->link_down) { 841 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg); 842 } else { 843 if (have_autoneg(s) && 844 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 845 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 846 } else { 847 e1000_link_up(s); 848 } 849 } 850 851 if (s->mac_reg[STATUS] != old_status) 852 set_ics(s, 0, E1000_ICR_LSC); 853 } 854 855 static bool e1000_has_rxbufs(E1000State *s, size_t total_size) 856 { 857 int bufs; 858 /* Fast-path short packets */ 859 if (total_size <= s->rxbuf_size) { 860 return s->mac_reg[RDH] != s->mac_reg[RDT]; 861 } 862 if (s->mac_reg[RDH] < s->mac_reg[RDT]) { 863 bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; 864 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { 865 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) + 866 s->mac_reg[RDT] - s->mac_reg[RDH]; 867 } else { 868 return false; 869 } 870 return total_size <= bufs * s->rxbuf_size; 871 } 872 873 static bool 874 e1000_can_receive(NetClientState *nc) 875 { 876 E1000State *s = qemu_get_nic_opaque(nc); 877 878 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) && 879 e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer); 880 } 881 882 static uint64_t rx_desc_base(E1000State *s) 883 { 884 uint64_t bah = s->mac_reg[RDBAH]; 885 uint64_t bal = s->mac_reg[RDBAL] & ~0xf; 886 887 return (bah << 32) + bal; 888 } 889 890 static void 891 e1000_receiver_overrun(E1000State *s, size_t size) 892 { 893 trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]); 894 e1000x_inc_reg_if_not_full(s->mac_reg, RNBC); 895 e1000x_inc_reg_if_not_full(s->mac_reg, MPC); 896 set_ics(s, 0, E1000_ICS_RXO); 897 } 898 899 static ssize_t 900 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) 901 { 902 E1000State *s = qemu_get_nic_opaque(nc); 903 PCIDevice *d = PCI_DEVICE(s); 904 struct e1000_rx_desc desc; 905 dma_addr_t base; 906 unsigned int n, rdt; 907 uint32_t rdh_start; 908 uint16_t vlan_special = 0; 909 uint8_t vlan_status = 0; 910 uint8_t min_buf[MIN_BUF_SIZE]; 911 struct iovec min_iov; 912 uint8_t *filter_buf = iov->iov_base; 913 size_t size = iov_size(iov, iovcnt); 914 size_t iov_ofs = 0; 915 size_t desc_offset; 916 size_t desc_size; 917 size_t total_size; 918 919 if (!e1000x_hw_rx_enabled(s->mac_reg)) { 920 return -1; 921 } 922 923 if (timer_pending(s->flush_queue_timer)) { 924 return 0; 925 } 926 927 /* Pad to minimum Ethernet frame length */ 928 if (size < sizeof(min_buf)) { 929 iov_to_buf(iov, iovcnt, 0, min_buf, size); 930 memset(&min_buf[size], 0, sizeof(min_buf) - size); 931 min_iov.iov_base = filter_buf = min_buf; 932 min_iov.iov_len = size = sizeof(min_buf); 933 iovcnt = 1; 934 iov = &min_iov; 935 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) { 936 /* This is very unlikely, but may happen. */ 937 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN); 938 filter_buf = min_buf; 939 } 940 941 /* Discard oversized packets if !LPE and !SBP. */ 942 if (e1000x_is_oversized(s->mac_reg, size)) { 943 return size; 944 } 945 946 if (!receive_filter(s, filter_buf, size)) { 947 return size; 948 } 949 950 if (e1000x_vlan_enabled(s->mac_reg) && 951 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) { 952 vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14)); 953 iov_ofs = 4; 954 if (filter_buf == iov->iov_base) { 955 memmove(filter_buf + 4, filter_buf, 12); 956 } else { 957 iov_from_buf(iov, iovcnt, 4, filter_buf, 12); 958 while (iov->iov_len <= iov_ofs) { 959 iov_ofs -= iov->iov_len; 960 iov++; 961 } 962 } 963 vlan_status = E1000_RXD_STAT_VP; 964 size -= 4; 965 } 966 967 rdh_start = s->mac_reg[RDH]; 968 desc_offset = 0; 969 total_size = size + e1000x_fcs_len(s->mac_reg); 970 if (!e1000_has_rxbufs(s, total_size)) { 971 e1000_receiver_overrun(s, total_size); 972 return -1; 973 } 974 do { 975 desc_size = total_size - desc_offset; 976 if (desc_size > s->rxbuf_size) { 977 desc_size = s->rxbuf_size; 978 } 979 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; 980 pci_dma_read(d, base, &desc, sizeof(desc)); 981 desc.special = vlan_special; 982 desc.status &= ~E1000_RXD_STAT_DD; 983 if (desc.buffer_addr) { 984 if (desc_offset < size) { 985 size_t iov_copy; 986 hwaddr ba = le64_to_cpu(desc.buffer_addr); 987 size_t copy_size = size - desc_offset; 988 if (copy_size > s->rxbuf_size) { 989 copy_size = s->rxbuf_size; 990 } 991 do { 992 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 993 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy); 994 copy_size -= iov_copy; 995 ba += iov_copy; 996 iov_ofs += iov_copy; 997 if (iov_ofs == iov->iov_len) { 998 iov++; 999 iov_ofs = 0; 1000 } 1001 } while (copy_size); 1002 } 1003 desc_offset += desc_size; 1004 desc.length = cpu_to_le16(desc_size); 1005 if (desc_offset >= total_size) { 1006 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; 1007 } else { 1008 /* Guest zeroing out status is not a hardware requirement. 1009 Clear EOP in case guest didn't do it. */ 1010 desc.status &= ~E1000_RXD_STAT_EOP; 1011 } 1012 } else { // as per intel docs; skip descriptors with null buf addr 1013 DBGOUT(RX, "Null RX descriptor!!\n"); 1014 } 1015 pci_dma_write(d, base, &desc, sizeof(desc)); 1016 desc.status |= (vlan_status | E1000_RXD_STAT_DD); 1017 pci_dma_write(d, base + offsetof(struct e1000_rx_desc, status), 1018 &desc.status, sizeof(desc.status)); 1019 1020 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) 1021 s->mac_reg[RDH] = 0; 1022 /* see comment in start_xmit; same here */ 1023 if (s->mac_reg[RDH] == rdh_start || 1024 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) { 1025 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", 1026 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); 1027 e1000_receiver_overrun(s, total_size); 1028 return -1; 1029 } 1030 } while (desc_offset < total_size); 1031 1032 e1000x_update_rx_total_stats(s->mac_reg, size, total_size); 1033 1034 n = E1000_ICS_RXT0; 1035 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) 1036 rdt += s->mac_reg[RDLEN] / sizeof(desc); 1037 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> 1038 s->rxbuf_min_shift) 1039 n |= E1000_ICS_RXDMT0; 1040 1041 set_ics(s, 0, n); 1042 1043 return size; 1044 } 1045 1046 static ssize_t 1047 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) 1048 { 1049 const struct iovec iov = { 1050 .iov_base = (uint8_t *)buf, 1051 .iov_len = size 1052 }; 1053 1054 return e1000_receive_iov(nc, &iov, 1); 1055 } 1056 1057 static uint32_t 1058 mac_readreg(E1000State *s, int index) 1059 { 1060 return s->mac_reg[index]; 1061 } 1062 1063 static uint32_t 1064 mac_low4_read(E1000State *s, int index) 1065 { 1066 return s->mac_reg[index] & 0xf; 1067 } 1068 1069 static uint32_t 1070 mac_low11_read(E1000State *s, int index) 1071 { 1072 return s->mac_reg[index] & 0x7ff; 1073 } 1074 1075 static uint32_t 1076 mac_low13_read(E1000State *s, int index) 1077 { 1078 return s->mac_reg[index] & 0x1fff; 1079 } 1080 1081 static uint32_t 1082 mac_low16_read(E1000State *s, int index) 1083 { 1084 return s->mac_reg[index] & 0xffff; 1085 } 1086 1087 static uint32_t 1088 mac_icr_read(E1000State *s, int index) 1089 { 1090 uint32_t ret = s->mac_reg[ICR]; 1091 1092 DBGOUT(INTERRUPT, "ICR read: %x\n", ret); 1093 set_interrupt_cause(s, 0, 0); 1094 return ret; 1095 } 1096 1097 static uint32_t 1098 mac_read_clr4(E1000State *s, int index) 1099 { 1100 uint32_t ret = s->mac_reg[index]; 1101 1102 s->mac_reg[index] = 0; 1103 return ret; 1104 } 1105 1106 static uint32_t 1107 mac_read_clr8(E1000State *s, int index) 1108 { 1109 uint32_t ret = s->mac_reg[index]; 1110 1111 s->mac_reg[index] = 0; 1112 s->mac_reg[index-1] = 0; 1113 return ret; 1114 } 1115 1116 static void 1117 mac_writereg(E1000State *s, int index, uint32_t val) 1118 { 1119 uint32_t macaddr[2]; 1120 1121 s->mac_reg[index] = val; 1122 1123 if (index == RA + 1) { 1124 macaddr[0] = cpu_to_le32(s->mac_reg[RA]); 1125 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]); 1126 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr); 1127 } 1128 } 1129 1130 static void 1131 set_rdt(E1000State *s, int index, uint32_t val) 1132 { 1133 s->mac_reg[index] = val & 0xffff; 1134 if (e1000_has_rxbufs(s, 1)) { 1135 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1136 } 1137 } 1138 1139 static void 1140 set_16bit(E1000State *s, int index, uint32_t val) 1141 { 1142 s->mac_reg[index] = val & 0xffff; 1143 } 1144 1145 static void 1146 set_dlen(E1000State *s, int index, uint32_t val) 1147 { 1148 s->mac_reg[index] = val & 0xfff80; 1149 } 1150 1151 static void 1152 set_tctl(E1000State *s, int index, uint32_t val) 1153 { 1154 s->mac_reg[index] = val; 1155 s->mac_reg[TDT] &= 0xffff; 1156 start_xmit(s); 1157 } 1158 1159 static void 1160 set_icr(E1000State *s, int index, uint32_t val) 1161 { 1162 DBGOUT(INTERRUPT, "set_icr %x\n", val); 1163 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); 1164 } 1165 1166 static void 1167 set_imc(E1000State *s, int index, uint32_t val) 1168 { 1169 s->mac_reg[IMS] &= ~val; 1170 set_ics(s, 0, 0); 1171 } 1172 1173 static void 1174 set_ims(E1000State *s, int index, uint32_t val) 1175 { 1176 s->mac_reg[IMS] |= val; 1177 set_ics(s, 0, 0); 1178 } 1179 1180 #define getreg(x) [x] = mac_readreg 1181 typedef uint32_t (*readops)(E1000State *, int); 1182 static const readops macreg_readops[] = { 1183 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), 1184 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), 1185 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), 1186 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), 1187 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS), 1188 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL), 1189 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV), 1190 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV), 1191 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL), 1192 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC), 1193 getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC), 1194 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC), 1195 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC), 1196 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL), 1197 getreg(GOTCL), 1198 1199 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, 1200 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8, 1201 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4, 1202 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4, 1203 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4, 1204 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4, 1205 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4, 1206 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4, 1207 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4, 1208 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4, 1209 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4, 1210 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4, 1211 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4, 1212 [MPTC] = mac_read_clr4, 1213 [ICR] = mac_icr_read, [EECD] = get_eecd, 1214 [EERD] = flash_eerd_read, 1215 [RDFH] = mac_low13_read, [RDFT] = mac_low13_read, 1216 [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read, 1217 [RDFPC] = mac_low13_read, 1218 [TDFH] = mac_low11_read, [TDFT] = mac_low11_read, 1219 [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read, 1220 [TDFPC] = mac_low13_read, 1221 [AIT] = mac_low16_read, 1222 1223 [CRCERRS ... MPC] = &mac_readreg, 1224 [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg, 1225 [FFLT ... FFLT+6] = &mac_low11_read, 1226 [RA ... RA+31] = &mac_readreg, 1227 [WUPM ... WUPM+31] = &mac_readreg, 1228 [MTA ... MTA+127] = &mac_readreg, 1229 [VFTA ... VFTA+127] = &mac_readreg, 1230 [FFMT ... FFMT+254] = &mac_low4_read, 1231 [FFVT ... FFVT+254] = &mac_readreg, 1232 [PBM ... PBM+16383] = &mac_readreg, 1233 }; 1234 enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; 1235 1236 #define putreg(x) [x] = mac_writereg 1237 typedef void (*writeops)(E1000State *, int, uint32_t); 1238 static const writeops macreg_writeops[] = { 1239 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), 1240 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), 1241 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC), 1242 putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS), 1243 putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS), 1244 putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC), 1245 putreg(WUS), putreg(AIT), 1246 1247 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, 1248 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, 1249 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, 1250 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, 1251 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl, 1252 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit, 1253 [ITR] = set_16bit, 1254 1255 [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg, 1256 [FFLT ... FFLT+6] = &mac_writereg, 1257 [RA ... RA+31] = &mac_writereg, 1258 [WUPM ... WUPM+31] = &mac_writereg, 1259 [MTA ... MTA+127] = &mac_writereg, 1260 [VFTA ... VFTA+127] = &mac_writereg, 1261 [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg, 1262 [PBM ... PBM+16383] = &mac_writereg, 1263 }; 1264 1265 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; 1266 1267 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 }; 1268 1269 #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED) 1270 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p] 1271 * f - flag bits (up to 6 possible flags) 1272 * n - flag needed 1273 * p - partially implenented */ 1274 static const uint8_t mac_reg_access[0x8000] = { 1275 [RDTR] = markflag(MIT), [TADV] = markflag(MIT), 1276 [RADV] = markflag(MIT), [ITR] = markflag(MIT), 1277 1278 [IPAV] = markflag(MAC), [WUC] = markflag(MAC), 1279 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC), 1280 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC), 1281 [ECOL] = markflag(MAC), [MCC] = markflag(MAC), 1282 [DC] = markflag(MAC), [TNCRS] = markflag(MAC), 1283 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC), 1284 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC), 1285 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC), 1286 [WUS] = markflag(MAC), [AIT] = markflag(MAC), 1287 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC), 1288 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC), 1289 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC), 1290 [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC), 1291 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC), 1292 [RJC] = markflag(MAC), [RNBC] = markflag(MAC), 1293 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC), 1294 [RUC] = markflag(MAC), [ROC] = markflag(MAC), 1295 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC), 1296 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC), 1297 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC), 1298 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC), 1299 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC), 1300 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC), 1301 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC), 1302 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC), 1303 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC), 1304 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC), 1305 [BPTC] = markflag(MAC), 1306 1307 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1308 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1309 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1310 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1311 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1312 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1313 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1314 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1315 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1316 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1317 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1318 }; 1319 1320 static void 1321 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, 1322 unsigned size) 1323 { 1324 E1000State *s = opaque; 1325 unsigned int index = (addr & 0x1ffff) >> 2; 1326 1327 if (index < NWRITEOPS && macreg_writeops[index]) { 1328 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1329 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1330 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1331 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. " 1332 "It is not fully implemented.\n", index<<2); 1333 } 1334 macreg_writeops[index](s, index, val); 1335 } else { /* "flag needed" bit is set, but the flag is not active */ 1336 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n", 1337 index<<2); 1338 } 1339 } else if (index < NREADOPS && macreg_readops[index]) { 1340 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", 1341 index<<2, val); 1342 } else { 1343 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", 1344 index<<2, val); 1345 } 1346 } 1347 1348 static uint64_t 1349 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) 1350 { 1351 E1000State *s = opaque; 1352 unsigned int index = (addr & 0x1ffff) >> 2; 1353 1354 if (index < NREADOPS && macreg_readops[index]) { 1355 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1356 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1357 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1358 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. " 1359 "It is not fully implemented.\n", index<<2); 1360 } 1361 return macreg_readops[index](s, index); 1362 } else { /* "flag needed" bit is set, but the flag is not active */ 1363 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n", 1364 index<<2); 1365 } 1366 } else { 1367 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); 1368 } 1369 return 0; 1370 } 1371 1372 static const MemoryRegionOps e1000_mmio_ops = { 1373 .read = e1000_mmio_read, 1374 .write = e1000_mmio_write, 1375 .endianness = DEVICE_LITTLE_ENDIAN, 1376 .impl = { 1377 .min_access_size = 4, 1378 .max_access_size = 4, 1379 }, 1380 }; 1381 1382 static uint64_t e1000_io_read(void *opaque, hwaddr addr, 1383 unsigned size) 1384 { 1385 E1000State *s = opaque; 1386 1387 (void)s; 1388 return 0; 1389 } 1390 1391 static void e1000_io_write(void *opaque, hwaddr addr, 1392 uint64_t val, unsigned size) 1393 { 1394 E1000State *s = opaque; 1395 1396 (void)s; 1397 } 1398 1399 static const MemoryRegionOps e1000_io_ops = { 1400 .read = e1000_io_read, 1401 .write = e1000_io_write, 1402 .endianness = DEVICE_LITTLE_ENDIAN, 1403 }; 1404 1405 static bool is_version_1(void *opaque, int version_id) 1406 { 1407 return version_id == 1; 1408 } 1409 1410 static int e1000_pre_save(void *opaque) 1411 { 1412 E1000State *s = opaque; 1413 NetClientState *nc = qemu_get_queue(s->nic); 1414 1415 /* 1416 * If link is down and auto-negotiation is supported and ongoing, 1417 * complete auto-negotiation immediately. This allows us to look 1418 * at MII_SR_AUTONEG_COMPLETE to infer link status on load. 1419 */ 1420 if (nc->link_down && have_autoneg(s)) { 1421 s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; 1422 } 1423 1424 /* Decide which set of props to migrate in the main structure */ 1425 if (chkflag(TSO) || !s->use_tso_for_migration) { 1426 /* Either we're migrating with the extra subsection, in which 1427 * case the mig_props is always 'props' OR 1428 * we've not got the subsection, but 'props' was the last 1429 * updated. 1430 */ 1431 s->mig_props = s->tx.props; 1432 } else { 1433 /* We're not using the subsection, and 'tso_props' was 1434 * the last updated. 1435 */ 1436 s->mig_props = s->tx.tso_props; 1437 } 1438 return 0; 1439 } 1440 1441 static int e1000_post_load(void *opaque, int version_id) 1442 { 1443 E1000State *s = opaque; 1444 NetClientState *nc = qemu_get_queue(s->nic); 1445 1446 if (!chkflag(MIT)) { 1447 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] = 1448 s->mac_reg[TADV] = 0; 1449 s->mit_irq_level = false; 1450 } 1451 s->mit_ide = 0; 1452 s->mit_timer_on = true; 1453 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1); 1454 1455 /* nc.link_down can't be migrated, so infer link_down according 1456 * to link status bit in mac_reg[STATUS]. 1457 * Alternatively, restart link negotiation if it was in progress. */ 1458 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; 1459 1460 if (have_autoneg(s) && 1461 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 1462 nc->link_down = false; 1463 timer_mod(s->autoneg_timer, 1464 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 1465 } 1466 1467 s->tx.props = s->mig_props; 1468 if (!s->received_tx_tso) { 1469 /* We received only one set of offload data (tx.props) 1470 * and haven't got tx.tso_props. The best we can do 1471 * is dupe the data. 1472 */ 1473 s->tx.tso_props = s->mig_props; 1474 } 1475 return 0; 1476 } 1477 1478 static int e1000_tx_tso_post_load(void *opaque, int version_id) 1479 { 1480 E1000State *s = opaque; 1481 s->received_tx_tso = true; 1482 return 0; 1483 } 1484 1485 static bool e1000_mit_state_needed(void *opaque) 1486 { 1487 E1000State *s = opaque; 1488 1489 return chkflag(MIT); 1490 } 1491 1492 static bool e1000_full_mac_needed(void *opaque) 1493 { 1494 E1000State *s = opaque; 1495 1496 return chkflag(MAC); 1497 } 1498 1499 static bool e1000_tso_state_needed(void *opaque) 1500 { 1501 E1000State *s = opaque; 1502 1503 return chkflag(TSO); 1504 } 1505 1506 static const VMStateDescription vmstate_e1000_mit_state = { 1507 .name = "e1000/mit_state", 1508 .version_id = 1, 1509 .minimum_version_id = 1, 1510 .needed = e1000_mit_state_needed, 1511 .fields = (VMStateField[]) { 1512 VMSTATE_UINT32(mac_reg[RDTR], E1000State), 1513 VMSTATE_UINT32(mac_reg[RADV], E1000State), 1514 VMSTATE_UINT32(mac_reg[TADV], E1000State), 1515 VMSTATE_UINT32(mac_reg[ITR], E1000State), 1516 VMSTATE_BOOL(mit_irq_level, E1000State), 1517 VMSTATE_END_OF_LIST() 1518 } 1519 }; 1520 1521 static const VMStateDescription vmstate_e1000_full_mac_state = { 1522 .name = "e1000/full_mac_state", 1523 .version_id = 1, 1524 .minimum_version_id = 1, 1525 .needed = e1000_full_mac_needed, 1526 .fields = (VMStateField[]) { 1527 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000), 1528 VMSTATE_END_OF_LIST() 1529 } 1530 }; 1531 1532 static const VMStateDescription vmstate_e1000_tx_tso_state = { 1533 .name = "e1000/tx_tso_state", 1534 .version_id = 1, 1535 .minimum_version_id = 1, 1536 .needed = e1000_tso_state_needed, 1537 .post_load = e1000_tx_tso_post_load, 1538 .fields = (VMStateField[]) { 1539 VMSTATE_UINT8(tx.tso_props.ipcss, E1000State), 1540 VMSTATE_UINT8(tx.tso_props.ipcso, E1000State), 1541 VMSTATE_UINT16(tx.tso_props.ipcse, E1000State), 1542 VMSTATE_UINT8(tx.tso_props.tucss, E1000State), 1543 VMSTATE_UINT8(tx.tso_props.tucso, E1000State), 1544 VMSTATE_UINT16(tx.tso_props.tucse, E1000State), 1545 VMSTATE_UINT32(tx.tso_props.paylen, E1000State), 1546 VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State), 1547 VMSTATE_UINT16(tx.tso_props.mss, E1000State), 1548 VMSTATE_INT8(tx.tso_props.ip, E1000State), 1549 VMSTATE_INT8(tx.tso_props.tcp, E1000State), 1550 VMSTATE_END_OF_LIST() 1551 } 1552 }; 1553 1554 static const VMStateDescription vmstate_e1000 = { 1555 .name = "e1000", 1556 .version_id = 2, 1557 .minimum_version_id = 1, 1558 .pre_save = e1000_pre_save, 1559 .post_load = e1000_post_load, 1560 .fields = (VMStateField[]) { 1561 VMSTATE_PCI_DEVICE(parent_obj, E1000State), 1562 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ 1563 VMSTATE_UNUSED(4), /* Was mmio_base. */ 1564 VMSTATE_UINT32(rxbuf_size, E1000State), 1565 VMSTATE_UINT32(rxbuf_min_shift, E1000State), 1566 VMSTATE_UINT32(eecd_state.val_in, E1000State), 1567 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), 1568 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), 1569 VMSTATE_UINT16(eecd_state.reading, E1000State), 1570 VMSTATE_UINT32(eecd_state.old_eecd, E1000State), 1571 VMSTATE_UINT8(mig_props.ipcss, E1000State), 1572 VMSTATE_UINT8(mig_props.ipcso, E1000State), 1573 VMSTATE_UINT16(mig_props.ipcse, E1000State), 1574 VMSTATE_UINT8(mig_props.tucss, E1000State), 1575 VMSTATE_UINT8(mig_props.tucso, E1000State), 1576 VMSTATE_UINT16(mig_props.tucse, E1000State), 1577 VMSTATE_UINT32(mig_props.paylen, E1000State), 1578 VMSTATE_UINT8(mig_props.hdr_len, E1000State), 1579 VMSTATE_UINT16(mig_props.mss, E1000State), 1580 VMSTATE_UINT16(tx.size, E1000State), 1581 VMSTATE_UINT16(tx.tso_frames, E1000State), 1582 VMSTATE_UINT8(tx.sum_needed, E1000State), 1583 VMSTATE_INT8(mig_props.ip, E1000State), 1584 VMSTATE_INT8(mig_props.tcp, E1000State), 1585 VMSTATE_BUFFER(tx.header, E1000State), 1586 VMSTATE_BUFFER(tx.data, E1000State), 1587 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), 1588 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), 1589 VMSTATE_UINT32(mac_reg[CTRL], E1000State), 1590 VMSTATE_UINT32(mac_reg[EECD], E1000State), 1591 VMSTATE_UINT32(mac_reg[EERD], E1000State), 1592 VMSTATE_UINT32(mac_reg[GPRC], E1000State), 1593 VMSTATE_UINT32(mac_reg[GPTC], E1000State), 1594 VMSTATE_UINT32(mac_reg[ICR], E1000State), 1595 VMSTATE_UINT32(mac_reg[ICS], E1000State), 1596 VMSTATE_UINT32(mac_reg[IMC], E1000State), 1597 VMSTATE_UINT32(mac_reg[IMS], E1000State), 1598 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), 1599 VMSTATE_UINT32(mac_reg[MANC], E1000State), 1600 VMSTATE_UINT32(mac_reg[MDIC], E1000State), 1601 VMSTATE_UINT32(mac_reg[MPC], E1000State), 1602 VMSTATE_UINT32(mac_reg[PBA], E1000State), 1603 VMSTATE_UINT32(mac_reg[RCTL], E1000State), 1604 VMSTATE_UINT32(mac_reg[RDBAH], E1000State), 1605 VMSTATE_UINT32(mac_reg[RDBAL], E1000State), 1606 VMSTATE_UINT32(mac_reg[RDH], E1000State), 1607 VMSTATE_UINT32(mac_reg[RDLEN], E1000State), 1608 VMSTATE_UINT32(mac_reg[RDT], E1000State), 1609 VMSTATE_UINT32(mac_reg[STATUS], E1000State), 1610 VMSTATE_UINT32(mac_reg[SWSM], E1000State), 1611 VMSTATE_UINT32(mac_reg[TCTL], E1000State), 1612 VMSTATE_UINT32(mac_reg[TDBAH], E1000State), 1613 VMSTATE_UINT32(mac_reg[TDBAL], E1000State), 1614 VMSTATE_UINT32(mac_reg[TDH], E1000State), 1615 VMSTATE_UINT32(mac_reg[TDLEN], E1000State), 1616 VMSTATE_UINT32(mac_reg[TDT], E1000State), 1617 VMSTATE_UINT32(mac_reg[TORH], E1000State), 1618 VMSTATE_UINT32(mac_reg[TORL], E1000State), 1619 VMSTATE_UINT32(mac_reg[TOTH], E1000State), 1620 VMSTATE_UINT32(mac_reg[TOTL], E1000State), 1621 VMSTATE_UINT32(mac_reg[TPR], E1000State), 1622 VMSTATE_UINT32(mac_reg[TPT], E1000State), 1623 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), 1624 VMSTATE_UINT32(mac_reg[WUFC], E1000State), 1625 VMSTATE_UINT32(mac_reg[VET], E1000State), 1626 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), 1627 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), 1628 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), 1629 VMSTATE_END_OF_LIST() 1630 }, 1631 .subsections = (const VMStateDescription*[]) { 1632 &vmstate_e1000_mit_state, 1633 &vmstate_e1000_full_mac_state, 1634 &vmstate_e1000_tx_tso_state, 1635 NULL 1636 } 1637 }; 1638 1639 /* 1640 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102. 1641 * Note: A valid DevId will be inserted during pci_e1000_realize(). 1642 */ 1643 static const uint16_t e1000_eeprom_template[64] = { 1644 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, 1645 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040, 1646 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, 1647 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, 1648 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, 1649 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1650 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1651 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 1652 }; 1653 1654 /* PCI interface */ 1655 1656 static void 1657 e1000_mmio_setup(E1000State *d) 1658 { 1659 int i; 1660 const uint32_t excluded_regs[] = { 1661 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, 1662 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE 1663 }; 1664 1665 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, 1666 "e1000-mmio", PNPMMIO_SIZE); 1667 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); 1668 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) 1669 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, 1670 excluded_regs[i+1] - excluded_regs[i] - 4); 1671 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); 1672 } 1673 1674 static void 1675 pci_e1000_uninit(PCIDevice *dev) 1676 { 1677 E1000State *d = E1000(dev); 1678 1679 timer_free(d->autoneg_timer); 1680 timer_free(d->mit_timer); 1681 timer_free(d->flush_queue_timer); 1682 qemu_del_nic(d->nic); 1683 } 1684 1685 static NetClientInfo net_e1000_info = { 1686 .type = NET_CLIENT_DRIVER_NIC, 1687 .size = sizeof(NICState), 1688 .can_receive = e1000_can_receive, 1689 .receive = e1000_receive, 1690 .receive_iov = e1000_receive_iov, 1691 .link_status_changed = e1000_set_link_status, 1692 }; 1693 1694 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address, 1695 uint32_t val, int len) 1696 { 1697 E1000State *s = E1000(pci_dev); 1698 1699 pci_default_write_config(pci_dev, address, val, len); 1700 1701 if (range_covers_byte(address, len, PCI_COMMAND) && 1702 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { 1703 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1704 } 1705 } 1706 1707 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) 1708 { 1709 DeviceState *dev = DEVICE(pci_dev); 1710 E1000State *d = E1000(pci_dev); 1711 uint8_t *pci_conf; 1712 uint8_t *macaddr; 1713 1714 pci_dev->config_write = e1000_write_config; 1715 1716 pci_conf = pci_dev->config; 1717 1718 /* TODO: RST# value should be 0, PCI spec 6.2.4 */ 1719 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; 1720 1721 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 1722 1723 e1000_mmio_setup(d); 1724 1725 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); 1726 1727 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); 1728 1729 qemu_macaddr_default_if_unset(&d->conf.macaddr); 1730 macaddr = d->conf.macaddr.a; 1731 1732 e1000x_core_prepare_eeprom(d->eeprom_data, 1733 e1000_eeprom_template, 1734 sizeof(e1000_eeprom_template), 1735 PCI_DEVICE_GET_CLASS(pci_dev)->device_id, 1736 macaddr); 1737 1738 d->nic = qemu_new_nic(&net_e1000_info, &d->conf, 1739 object_get_typename(OBJECT(d)), dev->id, d); 1740 1741 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); 1742 1743 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d); 1744 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d); 1745 d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, 1746 e1000_flush_queue_timer, d); 1747 } 1748 1749 static void qdev_e1000_reset(DeviceState *dev) 1750 { 1751 E1000State *d = E1000(dev); 1752 e1000_reset(d); 1753 } 1754 1755 static Property e1000_properties[] = { 1756 DEFINE_NIC_PROPERTIES(E1000State, conf), 1757 DEFINE_PROP_BIT("autonegotiation", E1000State, 1758 compat_flags, E1000_FLAG_AUTONEG_BIT, true), 1759 DEFINE_PROP_BIT("mitigation", E1000State, 1760 compat_flags, E1000_FLAG_MIT_BIT, true), 1761 DEFINE_PROP_BIT("extra_mac_registers", E1000State, 1762 compat_flags, E1000_FLAG_MAC_BIT, true), 1763 DEFINE_PROP_BIT("migrate_tso_props", E1000State, 1764 compat_flags, E1000_FLAG_TSO_BIT, true), 1765 DEFINE_PROP_BIT("init-vet", E1000State, 1766 compat_flags, E1000_FLAG_VET_BIT, true), 1767 DEFINE_PROP_END_OF_LIST(), 1768 }; 1769 1770 typedef struct E1000Info { 1771 const char *name; 1772 uint16_t device_id; 1773 uint8_t revision; 1774 uint16_t phy_id2; 1775 } E1000Info; 1776 1777 static void e1000_class_init(ObjectClass *klass, void *data) 1778 { 1779 DeviceClass *dc = DEVICE_CLASS(klass); 1780 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1781 E1000BaseClass *e = E1000_CLASS(klass); 1782 const E1000Info *info = data; 1783 1784 k->realize = pci_e1000_realize; 1785 k->exit = pci_e1000_uninit; 1786 k->romfile = "efi-e1000.rom"; 1787 k->vendor_id = PCI_VENDOR_ID_INTEL; 1788 k->device_id = info->device_id; 1789 k->revision = info->revision; 1790 e->phy_id2 = info->phy_id2; 1791 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 1792 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 1793 dc->desc = "Intel Gigabit Ethernet"; 1794 dc->reset = qdev_e1000_reset; 1795 dc->vmsd = &vmstate_e1000; 1796 device_class_set_props(dc, e1000_properties); 1797 } 1798 1799 static void e1000_instance_init(Object *obj) 1800 { 1801 E1000State *n = E1000(obj); 1802 device_add_bootindex_property(obj, &n->conf.bootindex, 1803 "bootindex", "/ethernet-phy@0", 1804 DEVICE(n)); 1805 } 1806 1807 static const TypeInfo e1000_base_info = { 1808 .name = TYPE_E1000_BASE, 1809 .parent = TYPE_PCI_DEVICE, 1810 .instance_size = sizeof(E1000State), 1811 .instance_init = e1000_instance_init, 1812 .class_size = sizeof(E1000BaseClass), 1813 .abstract = true, 1814 .interfaces = (InterfaceInfo[]) { 1815 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1816 { }, 1817 }, 1818 }; 1819 1820 static const E1000Info e1000_devices[] = { 1821 { 1822 .name = "e1000", 1823 .device_id = E1000_DEV_ID_82540EM, 1824 .revision = 0x03, 1825 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1826 }, 1827 { 1828 .name = "e1000-82544gc", 1829 .device_id = E1000_DEV_ID_82544GC_COPPER, 1830 .revision = 0x03, 1831 .phy_id2 = E1000_PHY_ID2_82544x, 1832 }, 1833 { 1834 .name = "e1000-82545em", 1835 .device_id = E1000_DEV_ID_82545EM_COPPER, 1836 .revision = 0x03, 1837 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1838 }, 1839 }; 1840 1841 static void e1000_register_types(void) 1842 { 1843 int i; 1844 1845 type_register_static(&e1000_base_info); 1846 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) { 1847 const E1000Info *info = &e1000_devices[i]; 1848 TypeInfo type_info = {}; 1849 1850 type_info.name = info->name; 1851 type_info.parent = TYPE_E1000_BASE; 1852 type_info.class_data = (void *)info; 1853 type_info.class_init = e1000_class_init; 1854 1855 type_register(&type_info); 1856 } 1857 } 1858 1859 type_init(e1000_register_types) 1860