1 /* 2 * QEMU e1000 emulation 3 * 4 * Software developer's manual: 5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf 6 * 7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc. 8 * Copyright (c) 2008 Qumranet 9 * Based on work done by: 10 * Copyright (c) 2007 Dan Aloni 11 * Copyright (c) 2004 Antony T Curtis 12 * 13 * This library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2 of the License, or (at your option) any later version. 17 * 18 * This library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 25 */ 26 27 28 #include "qemu/osdep.h" 29 #include "hw/hw.h" 30 #include "hw/pci/pci.h" 31 #include "net/net.h" 32 #include "net/checksum.h" 33 #include "sysemu/sysemu.h" 34 #include "sysemu/dma.h" 35 #include "qemu/iov.h" 36 #include "qemu/range.h" 37 38 #include "e1000x_common.h" 39 40 static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 41 42 /* #define E1000_DEBUG */ 43 44 #ifdef E1000_DEBUG 45 enum { 46 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT, 47 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM, 48 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR, 49 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET, 50 }; 51 #define DBGBIT(x) (1<<DEBUG_##x) 52 static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL); 53 54 #define DBGOUT(what, fmt, ...) do { \ 55 if (debugflags & DBGBIT(what)) \ 56 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \ 57 } while (0) 58 #else 59 #define DBGOUT(what, fmt, ...) do {} while (0) 60 #endif 61 62 #define IOPORT_SIZE 0x40 63 #define PNPMMIO_SIZE 0x20000 64 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */ 65 66 #define MAXIMUM_ETHERNET_HDR_LEN (14+4) 67 68 /* 69 * HW models: 70 * E1000_DEV_ID_82540EM works with Windows, Linux, and OS X <= 10.8 71 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested 72 * E1000_DEV_ID_82545EM_COPPER works with Linux and OS X >= 10.6 73 * Others never tested 74 */ 75 76 typedef struct E1000State_st { 77 /*< private >*/ 78 PCIDevice parent_obj; 79 /*< public >*/ 80 81 NICState *nic; 82 NICConf conf; 83 MemoryRegion mmio; 84 MemoryRegion io; 85 86 uint32_t mac_reg[0x8000]; 87 uint16_t phy_reg[0x20]; 88 uint16_t eeprom_data[64]; 89 90 uint32_t rxbuf_size; 91 uint32_t rxbuf_min_shift; 92 struct e1000_tx { 93 unsigned char header[256]; 94 unsigned char vlan_header[4]; 95 /* Fields vlan and data must not be reordered or separated. */ 96 unsigned char vlan[4]; 97 unsigned char data[0x10000]; 98 uint16_t size; 99 unsigned char vlan_needed; 100 unsigned char sum_needed; 101 bool cptse; 102 e1000x_txd_props props; 103 e1000x_txd_props tso_props; 104 uint16_t tso_frames; 105 } tx; 106 107 struct { 108 uint32_t val_in; /* shifted in from guest driver */ 109 uint16_t bitnum_in; 110 uint16_t bitnum_out; 111 uint16_t reading; 112 uint32_t old_eecd; 113 } eecd_state; 114 115 QEMUTimer *autoneg_timer; 116 117 QEMUTimer *mit_timer; /* Mitigation timer. */ 118 bool mit_timer_on; /* Mitigation timer is running. */ 119 bool mit_irq_level; /* Tracks interrupt pin level. */ 120 uint32_t mit_ide; /* Tracks E1000_TXD_CMD_IDE bit. */ 121 122 /* Compatibility flags for migration to/from qemu 1.3.0 and older */ 123 #define E1000_FLAG_AUTONEG_BIT 0 124 #define E1000_FLAG_MIT_BIT 1 125 #define E1000_FLAG_MAC_BIT 2 126 #define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT) 127 #define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT) 128 #define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT) 129 uint32_t compat_flags; 130 } E1000State; 131 132 #define chkflag(x) (s->compat_flags & E1000_FLAG_##x) 133 134 typedef struct E1000BaseClass { 135 PCIDeviceClass parent_class; 136 uint16_t phy_id2; 137 } E1000BaseClass; 138 139 #define TYPE_E1000_BASE "e1000-base" 140 141 #define E1000(obj) \ 142 OBJECT_CHECK(E1000State, (obj), TYPE_E1000_BASE) 143 144 #define E1000_DEVICE_CLASS(klass) \ 145 OBJECT_CLASS_CHECK(E1000BaseClass, (klass), TYPE_E1000_BASE) 146 #define E1000_DEVICE_GET_CLASS(obj) \ 147 OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE) 148 149 static void 150 e1000_link_up(E1000State *s) 151 { 152 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg); 153 154 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 155 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 156 } 157 158 static void 159 e1000_autoneg_done(E1000State *s) 160 { 161 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg); 162 163 /* E1000_STATUS_LU is tested by e1000_can_receive() */ 164 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 165 } 166 167 static bool 168 have_autoneg(E1000State *s) 169 { 170 return chkflag(AUTONEG) && (s->phy_reg[PHY_CTRL] & MII_CR_AUTO_NEG_EN); 171 } 172 173 static void 174 set_phy_ctrl(E1000State *s, int index, uint16_t val) 175 { 176 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */ 177 s->phy_reg[PHY_CTRL] = val & ~(0x3f | 178 MII_CR_RESET | 179 MII_CR_RESTART_AUTO_NEG); 180 181 /* 182 * QEMU 1.3 does not support link auto-negotiation emulation, so if we 183 * migrate during auto negotiation, after migration the link will be 184 * down. 185 */ 186 if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) { 187 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 188 } 189 } 190 191 static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = { 192 [PHY_CTRL] = set_phy_ctrl, 193 }; 194 195 enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) }; 196 197 enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W }; 198 static const char phy_regcap[0x20] = { 199 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW, 200 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW, 201 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW, 202 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R, 203 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R, 204 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R, 205 [PHY_AUTONEG_EXP] = PHY_R, 206 }; 207 208 /* PHY_ID2 documented in 8254x_GBe_SDM.pdf, pp. 250 */ 209 static const uint16_t phy_reg_init[] = { 210 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB | 211 MII_CR_FULL_DUPLEX | 212 MII_CR_AUTO_NEG_EN, 213 214 [PHY_STATUS] = MII_SR_EXTENDED_CAPS | 215 MII_SR_LINK_STATUS | /* link initially up */ 216 MII_SR_AUTONEG_CAPS | 217 /* MII_SR_AUTONEG_COMPLETE: initially NOT completed */ 218 MII_SR_PREAMBLE_SUPPRESS | 219 MII_SR_EXTENDED_STATUS | 220 MII_SR_10T_HD_CAPS | 221 MII_SR_10T_FD_CAPS | 222 MII_SR_100X_HD_CAPS | 223 MII_SR_100X_FD_CAPS, 224 225 [PHY_ID1] = 0x141, 226 /* [PHY_ID2] configured per DevId, from e1000_reset() */ 227 [PHY_AUTONEG_ADV] = 0xde1, 228 [PHY_LP_ABILITY] = 0x1e0, 229 [PHY_1000T_CTRL] = 0x0e00, 230 [PHY_1000T_STATUS] = 0x3c00, 231 [M88E1000_PHY_SPEC_CTRL] = 0x360, 232 [M88E1000_PHY_SPEC_STATUS] = 0xac00, 233 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, 234 }; 235 236 static const uint32_t mac_reg_init[] = { 237 [PBA] = 0x00100030, 238 [LEDCTL] = 0x602, 239 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 | 240 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU, 241 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE | 242 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK | 243 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD | 244 E1000_STATUS_LU, 245 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN | 246 E1000_MANC_ARP_EN | E1000_MANC_0298_EN | 247 E1000_MANC_RMCP_EN, 248 }; 249 250 /* Helper function, *curr == 0 means the value is not set */ 251 static inline void 252 mit_update_delay(uint32_t *curr, uint32_t value) 253 { 254 if (value && (*curr == 0 || value < *curr)) { 255 *curr = value; 256 } 257 } 258 259 static void 260 set_interrupt_cause(E1000State *s, int index, uint32_t val) 261 { 262 PCIDevice *d = PCI_DEVICE(s); 263 uint32_t pending_ints; 264 uint32_t mit_delay; 265 266 s->mac_reg[ICR] = val; 267 268 /* 269 * Make sure ICR and ICS registers have the same value. 270 * The spec says that the ICS register is write-only. However in practice, 271 * on real hardware ICS is readable, and for reads it has the same value as 272 * ICR (except that ICS does not have the clear on read behaviour of ICR). 273 * 274 * The VxWorks PRO/1000 driver uses this behaviour. 275 */ 276 s->mac_reg[ICS] = val; 277 278 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]); 279 if (!s->mit_irq_level && pending_ints) { 280 /* 281 * Here we detect a potential raising edge. We postpone raising the 282 * interrupt line if we are inside the mitigation delay window 283 * (s->mit_timer_on == 1). 284 * We provide a partial implementation of interrupt mitigation, 285 * emulating only RADV, TADV and ITR (lower 16 bits, 1024ns units for 286 * RADV and TADV, 256ns units for ITR). RDTR is only used to enable 287 * RADV; relative timers based on TIDV and RDTR are not implemented. 288 */ 289 if (s->mit_timer_on) { 290 return; 291 } 292 if (chkflag(MIT)) { 293 /* Compute the next mitigation delay according to pending 294 * interrupts and the current values of RADV (provided 295 * RDTR!=0), TADV and ITR. 296 * Then rearm the timer. 297 */ 298 mit_delay = 0; 299 if (s->mit_ide && 300 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) { 301 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4); 302 } 303 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) { 304 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4); 305 } 306 mit_update_delay(&mit_delay, s->mac_reg[ITR]); 307 308 /* 309 * According to e1000 SPEC, the Ethernet controller guarantees 310 * a maximum observable interrupt rate of 7813 interrupts/sec. 311 * Thus if mit_delay < 500 then the delay should be set to the 312 * minimum delay possible which is 500. 313 */ 314 mit_delay = (mit_delay < 500) ? 500 : mit_delay; 315 316 s->mit_timer_on = 1; 317 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 318 mit_delay * 256); 319 s->mit_ide = 0; 320 } 321 } 322 323 s->mit_irq_level = (pending_ints != 0); 324 pci_set_irq(d, s->mit_irq_level); 325 } 326 327 static void 328 e1000_mit_timer(void *opaque) 329 { 330 E1000State *s = opaque; 331 332 s->mit_timer_on = 0; 333 /* Call set_interrupt_cause to update the irq level (if necessary). */ 334 set_interrupt_cause(s, 0, s->mac_reg[ICR]); 335 } 336 337 static void 338 set_ics(E1000State *s, int index, uint32_t val) 339 { 340 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR], 341 s->mac_reg[IMS]); 342 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]); 343 } 344 345 static void 346 e1000_autoneg_timer(void *opaque) 347 { 348 E1000State *s = opaque; 349 if (!qemu_get_queue(s->nic)->link_down) { 350 e1000_autoneg_done(s); 351 set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ 352 } 353 } 354 355 static void e1000_reset(void *opaque) 356 { 357 E1000State *d = opaque; 358 E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d); 359 uint8_t *macaddr = d->conf.macaddr.a; 360 361 timer_del(d->autoneg_timer); 362 timer_del(d->mit_timer); 363 d->mit_timer_on = 0; 364 d->mit_irq_level = 0; 365 d->mit_ide = 0; 366 memset(d->phy_reg, 0, sizeof d->phy_reg); 367 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init); 368 d->phy_reg[PHY_ID2] = edc->phy_id2; 369 memset(d->mac_reg, 0, sizeof d->mac_reg); 370 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init); 371 d->rxbuf_min_shift = 1; 372 memset(&d->tx, 0, sizeof d->tx); 373 374 if (qemu_get_queue(d->nic)->link_down) { 375 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg); 376 } 377 378 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr); 379 } 380 381 static void 382 set_ctrl(E1000State *s, int index, uint32_t val) 383 { 384 /* RST is self clearing */ 385 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST; 386 } 387 388 static void 389 set_rx_control(E1000State *s, int index, uint32_t val) 390 { 391 s->mac_reg[RCTL] = val; 392 s->rxbuf_size = e1000x_rxbufsize(val); 393 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; 394 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], 395 s->mac_reg[RCTL]); 396 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 397 } 398 399 static void 400 set_mdic(E1000State *s, int index, uint32_t val) 401 { 402 uint32_t data = val & E1000_MDIC_DATA_MASK; 403 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); 404 405 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy # 406 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR; 407 else if (val & E1000_MDIC_OP_READ) { 408 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr); 409 if (!(phy_regcap[addr] & PHY_R)) { 410 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr); 411 val |= E1000_MDIC_ERROR; 412 } else 413 val = (val ^ data) | s->phy_reg[addr]; 414 } else if (val & E1000_MDIC_OP_WRITE) { 415 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data); 416 if (!(phy_regcap[addr] & PHY_W)) { 417 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr); 418 val |= E1000_MDIC_ERROR; 419 } else { 420 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) { 421 phyreg_writeops[addr](s, index, data); 422 } else { 423 s->phy_reg[addr] = data; 424 } 425 } 426 } 427 s->mac_reg[MDIC] = val | E1000_MDIC_READY; 428 429 if (val & E1000_MDIC_INT_EN) { 430 set_ics(s, 0, E1000_ICR_MDAC); 431 } 432 } 433 434 static uint32_t 435 get_eecd(E1000State *s, int index) 436 { 437 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd; 438 439 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n", 440 s->eecd_state.bitnum_out, s->eecd_state.reading); 441 if (!s->eecd_state.reading || 442 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >> 443 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1) 444 ret |= E1000_EECD_DO; 445 return ret; 446 } 447 448 static void 449 set_eecd(E1000State *s, int index, uint32_t val) 450 { 451 uint32_t oldval = s->eecd_state.old_eecd; 452 453 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS | 454 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ); 455 if (!(E1000_EECD_CS & val)) { /* CS inactive; nothing to do */ 456 return; 457 } 458 if (E1000_EECD_CS & (val ^ oldval)) { /* CS rise edge; reset state */ 459 s->eecd_state.val_in = 0; 460 s->eecd_state.bitnum_in = 0; 461 s->eecd_state.bitnum_out = 0; 462 s->eecd_state.reading = 0; 463 } 464 if (!(E1000_EECD_SK & (val ^ oldval))) { /* no clock edge */ 465 return; 466 } 467 if (!(E1000_EECD_SK & val)) { /* falling edge */ 468 s->eecd_state.bitnum_out++; 469 return; 470 } 471 s->eecd_state.val_in <<= 1; 472 if (val & E1000_EECD_DI) 473 s->eecd_state.val_in |= 1; 474 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) { 475 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1; 476 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) == 477 EEPROM_READ_OPCODE_MICROWIRE); 478 } 479 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n", 480 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out, 481 s->eecd_state.reading); 482 } 483 484 static uint32_t 485 flash_eerd_read(E1000State *s, int x) 486 { 487 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START; 488 489 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0) 490 return (s->mac_reg[EERD]); 491 492 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG) 493 return (E1000_EEPROM_RW_REG_DONE | r); 494 495 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) | 496 E1000_EEPROM_RW_REG_DONE | r); 497 } 498 499 static void 500 putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse) 501 { 502 uint32_t sum; 503 504 if (cse && cse < n) 505 n = cse + 1; 506 if (sloc < n-1) { 507 sum = net_checksum_add(n-css, data+css); 508 stw_be_p(data + sloc, net_checksum_finish_nozero(sum)); 509 } 510 } 511 512 static inline void 513 inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) 514 { 515 if (!memcmp(arr, bcast, sizeof bcast)) { 516 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC); 517 } else if (arr[0] & 1) { 518 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC); 519 } 520 } 521 522 static void 523 e1000_send_packet(E1000State *s, const uint8_t *buf, int size) 524 { 525 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511, 526 PTC1023, PTC1522 }; 527 528 NetClientState *nc = qemu_get_queue(s->nic); 529 if (s->phy_reg[PHY_CTRL] & MII_CR_LOOPBACK) { 530 nc->info->receive(nc, buf, size); 531 } else { 532 qemu_send_packet(nc, buf, size); 533 } 534 inc_tx_bcast_or_mcast_count(s, buf); 535 e1000x_increase_size_stats(s->mac_reg, PTCregs, size); 536 } 537 538 static void 539 xmit_seg(E1000State *s) 540 { 541 uint16_t len; 542 unsigned int frames = s->tx.tso_frames, css, sofar; 543 struct e1000_tx *tp = &s->tx; 544 struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props; 545 546 if (tp->cptse) { 547 css = props->ipcss; 548 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", 549 frames, tp->size, css); 550 if (props->ip) { /* IPv4 */ 551 stw_be_p(tp->data+css+2, tp->size - css); 552 stw_be_p(tp->data+css+4, 553 lduw_be_p(tp->data + css + 4) + frames); 554 } else { /* IPv6 */ 555 stw_be_p(tp->data+css+4, tp->size - css); 556 } 557 css = props->tucss; 558 len = tp->size - css; 559 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len); 560 if (props->tcp) { 561 sofar = frames * props->mss; 562 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ 563 if (props->paylen - sofar > props->mss) { 564 tp->data[css + 13] &= ~9; /* PSH, FIN */ 565 } else if (frames) { 566 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC); 567 } 568 } else { /* UDP */ 569 stw_be_p(tp->data+css+4, len); 570 } 571 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 572 unsigned int phsum; 573 // add pseudo-header length before checksum calculation 574 void *sp = tp->data + props->tucso; 575 576 phsum = lduw_be_p(sp) + len; 577 phsum = (phsum >> 16) + (phsum & 0xffff); 578 stw_be_p(sp, phsum); 579 } 580 tp->tso_frames++; 581 } 582 583 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { 584 putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse); 585 } 586 if (tp->sum_needed & E1000_TXD_POPTS_IXSM) { 587 putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse); 588 } 589 if (tp->vlan_needed) { 590 memmove(tp->vlan, tp->data, 4); 591 memmove(tp->data, tp->data + 4, 8); 592 memcpy(tp->data + 8, tp->vlan_header, 4); 593 e1000_send_packet(s, tp->vlan, tp->size + 4); 594 } else { 595 e1000_send_packet(s, tp->data, tp->size); 596 } 597 598 e1000x_inc_reg_if_not_full(s->mac_reg, TPT); 599 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size); 600 s->mac_reg[GPTC] = s->mac_reg[TPT]; 601 s->mac_reg[GOTCL] = s->mac_reg[TOTL]; 602 s->mac_reg[GOTCH] = s->mac_reg[TOTH]; 603 } 604 605 static void 606 process_tx_desc(E1000State *s, struct e1000_tx_desc *dp) 607 { 608 PCIDevice *d = PCI_DEVICE(s); 609 uint32_t txd_lower = le32_to_cpu(dp->lower.data); 610 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); 611 unsigned int split_size = txd_lower & 0xffff, bytes, sz; 612 unsigned int msh = 0xfffff; 613 uint64_t addr; 614 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; 615 struct e1000_tx *tp = &s->tx; 616 617 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); 618 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ 619 if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) { 620 e1000x_read_tx_ctx_descr(xp, &tp->tso_props); 621 tp->tso_frames = 0; 622 } else { 623 e1000x_read_tx_ctx_descr(xp, &tp->props); 624 } 625 return; 626 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { 627 // data descriptor 628 if (tp->size == 0) { 629 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; 630 } 631 tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0; 632 } else { 633 // legacy descriptor 634 tp->cptse = 0; 635 } 636 637 if (e1000x_vlan_enabled(s->mac_reg) && 638 e1000x_is_vlan_txd(txd_lower) && 639 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { 640 tp->vlan_needed = 1; 641 stw_be_p(tp->vlan_header, 642 le16_to_cpu(s->mac_reg[VET])); 643 stw_be_p(tp->vlan_header + 2, 644 le16_to_cpu(dp->upper.fields.special)); 645 } 646 647 addr = le64_to_cpu(dp->buffer_addr); 648 if (tp->cptse) { 649 msh = tp->tso_props.hdr_len + tp->tso_props.mss; 650 do { 651 bytes = split_size; 652 if (tp->size + bytes > msh) 653 bytes = msh - tp->size; 654 655 bytes = MIN(sizeof(tp->data) - tp->size, bytes); 656 pci_dma_read(d, addr, tp->data + tp->size, bytes); 657 sz = tp->size + bytes; 658 if (sz >= tp->tso_props.hdr_len 659 && tp->size < tp->tso_props.hdr_len) { 660 memmove(tp->header, tp->data, tp->tso_props.hdr_len); 661 } 662 tp->size = sz; 663 addr += bytes; 664 if (sz == msh) { 665 xmit_seg(s); 666 memmove(tp->data, tp->header, tp->tso_props.hdr_len); 667 tp->size = tp->tso_props.hdr_len; 668 } 669 split_size -= bytes; 670 } while (bytes && split_size); 671 } else { 672 split_size = MIN(sizeof(tp->data) - tp->size, split_size); 673 pci_dma_read(d, addr, tp->data + tp->size, split_size); 674 tp->size += split_size; 675 } 676 677 if (!(txd_lower & E1000_TXD_CMD_EOP)) 678 return; 679 if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) { 680 xmit_seg(s); 681 } 682 tp->tso_frames = 0; 683 tp->sum_needed = 0; 684 tp->vlan_needed = 0; 685 tp->size = 0; 686 tp->cptse = 0; 687 } 688 689 static uint32_t 690 txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp) 691 { 692 PCIDevice *d = PCI_DEVICE(s); 693 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data); 694 695 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS))) 696 return 0; 697 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) & 698 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU); 699 dp->upper.data = cpu_to_le32(txd_upper); 700 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp), 701 &dp->upper, sizeof(dp->upper)); 702 return E1000_ICR_TXDW; 703 } 704 705 static uint64_t tx_desc_base(E1000State *s) 706 { 707 uint64_t bah = s->mac_reg[TDBAH]; 708 uint64_t bal = s->mac_reg[TDBAL] & ~0xf; 709 710 return (bah << 32) + bal; 711 } 712 713 static void 714 start_xmit(E1000State *s) 715 { 716 PCIDevice *d = PCI_DEVICE(s); 717 dma_addr_t base; 718 struct e1000_tx_desc desc; 719 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE; 720 721 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) { 722 DBGOUT(TX, "tx disabled\n"); 723 return; 724 } 725 726 while (s->mac_reg[TDH] != s->mac_reg[TDT]) { 727 base = tx_desc_base(s) + 728 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH]; 729 pci_dma_read(d, base, &desc, sizeof(desc)); 730 731 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH], 732 (void *)(intptr_t)desc.buffer_addr, desc.lower.data, 733 desc.upper.data); 734 735 process_tx_desc(s, &desc); 736 cause |= txdesc_writeback(s, base, &desc); 737 738 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN]) 739 s->mac_reg[TDH] = 0; 740 /* 741 * the following could happen only if guest sw assigns 742 * bogus values to TDT/TDLEN. 743 * there's nothing too intelligent we could do about this. 744 */ 745 if (s->mac_reg[TDH] == tdh_start || 746 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) { 747 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n", 748 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]); 749 break; 750 } 751 } 752 set_ics(s, 0, cause); 753 } 754 755 static int 756 receive_filter(E1000State *s, const uint8_t *buf, int size) 757 { 758 uint32_t rctl = s->mac_reg[RCTL]; 759 int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1); 760 761 if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) && 762 e1000x_vlan_rx_filter_enabled(s->mac_reg)) { 763 uint16_t vid = lduw_be_p(buf + 14); 764 uint32_t vfta = ldl_le_p((uint32_t*)(s->mac_reg + VFTA) + 765 ((vid >> 5) & 0x7f)); 766 if ((vfta & (1 << (vid & 0x1f))) == 0) 767 return 0; 768 } 769 770 if (!isbcast && !ismcast && (rctl & E1000_RCTL_UPE)) { /* promiscuous ucast */ 771 return 1; 772 } 773 774 if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */ 775 e1000x_inc_reg_if_not_full(s->mac_reg, MPRC); 776 return 1; 777 } 778 779 if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */ 780 e1000x_inc_reg_if_not_full(s->mac_reg, BPRC); 781 return 1; 782 } 783 784 return e1000x_rx_group_filter(s->mac_reg, buf); 785 } 786 787 static void 788 e1000_set_link_status(NetClientState *nc) 789 { 790 E1000State *s = qemu_get_nic_opaque(nc); 791 uint32_t old_status = s->mac_reg[STATUS]; 792 793 if (nc->link_down) { 794 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg); 795 } else { 796 if (have_autoneg(s) && 797 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 798 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer); 799 } else { 800 e1000_link_up(s); 801 } 802 } 803 804 if (s->mac_reg[STATUS] != old_status) 805 set_ics(s, 0, E1000_ICR_LSC); 806 } 807 808 static bool e1000_has_rxbufs(E1000State *s, size_t total_size) 809 { 810 int bufs; 811 /* Fast-path short packets */ 812 if (total_size <= s->rxbuf_size) { 813 return s->mac_reg[RDH] != s->mac_reg[RDT]; 814 } 815 if (s->mac_reg[RDH] < s->mac_reg[RDT]) { 816 bufs = s->mac_reg[RDT] - s->mac_reg[RDH]; 817 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) { 818 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) + 819 s->mac_reg[RDT] - s->mac_reg[RDH]; 820 } else { 821 return false; 822 } 823 return total_size <= bufs * s->rxbuf_size; 824 } 825 826 static int 827 e1000_can_receive(NetClientState *nc) 828 { 829 E1000State *s = qemu_get_nic_opaque(nc); 830 831 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) && 832 e1000_has_rxbufs(s, 1); 833 } 834 835 static uint64_t rx_desc_base(E1000State *s) 836 { 837 uint64_t bah = s->mac_reg[RDBAH]; 838 uint64_t bal = s->mac_reg[RDBAL] & ~0xf; 839 840 return (bah << 32) + bal; 841 } 842 843 static ssize_t 844 e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt) 845 { 846 E1000State *s = qemu_get_nic_opaque(nc); 847 PCIDevice *d = PCI_DEVICE(s); 848 struct e1000_rx_desc desc; 849 dma_addr_t base; 850 unsigned int n, rdt; 851 uint32_t rdh_start; 852 uint16_t vlan_special = 0; 853 uint8_t vlan_status = 0; 854 uint8_t min_buf[MIN_BUF_SIZE]; 855 struct iovec min_iov; 856 uint8_t *filter_buf = iov->iov_base; 857 size_t size = iov_size(iov, iovcnt); 858 size_t iov_ofs = 0; 859 size_t desc_offset; 860 size_t desc_size; 861 size_t total_size; 862 863 if (!e1000x_hw_rx_enabled(s->mac_reg)) { 864 return -1; 865 } 866 867 /* Pad to minimum Ethernet frame length */ 868 if (size < sizeof(min_buf)) { 869 iov_to_buf(iov, iovcnt, 0, min_buf, size); 870 memset(&min_buf[size], 0, sizeof(min_buf) - size); 871 e1000x_inc_reg_if_not_full(s->mac_reg, RUC); 872 min_iov.iov_base = filter_buf = min_buf; 873 min_iov.iov_len = size = sizeof(min_buf); 874 iovcnt = 1; 875 iov = &min_iov; 876 } else if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) { 877 /* This is very unlikely, but may happen. */ 878 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN); 879 filter_buf = min_buf; 880 } 881 882 /* Discard oversized packets if !LPE and !SBP. */ 883 if (e1000x_is_oversized(s->mac_reg, size)) { 884 return size; 885 } 886 887 if (!receive_filter(s, filter_buf, size)) { 888 return size; 889 } 890 891 if (e1000x_vlan_enabled(s->mac_reg) && 892 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) { 893 vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14)); 894 iov_ofs = 4; 895 if (filter_buf == iov->iov_base) { 896 memmove(filter_buf + 4, filter_buf, 12); 897 } else { 898 iov_from_buf(iov, iovcnt, 4, filter_buf, 12); 899 while (iov->iov_len <= iov_ofs) { 900 iov_ofs -= iov->iov_len; 901 iov++; 902 } 903 } 904 vlan_status = E1000_RXD_STAT_VP; 905 size -= 4; 906 } 907 908 rdh_start = s->mac_reg[RDH]; 909 desc_offset = 0; 910 total_size = size + e1000x_fcs_len(s->mac_reg); 911 if (!e1000_has_rxbufs(s, total_size)) { 912 set_ics(s, 0, E1000_ICS_RXO); 913 return -1; 914 } 915 do { 916 desc_size = total_size - desc_offset; 917 if (desc_size > s->rxbuf_size) { 918 desc_size = s->rxbuf_size; 919 } 920 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH]; 921 pci_dma_read(d, base, &desc, sizeof(desc)); 922 desc.special = vlan_special; 923 desc.status |= (vlan_status | E1000_RXD_STAT_DD); 924 if (desc.buffer_addr) { 925 if (desc_offset < size) { 926 size_t iov_copy; 927 hwaddr ba = le64_to_cpu(desc.buffer_addr); 928 size_t copy_size = size - desc_offset; 929 if (copy_size > s->rxbuf_size) { 930 copy_size = s->rxbuf_size; 931 } 932 do { 933 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs); 934 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy); 935 copy_size -= iov_copy; 936 ba += iov_copy; 937 iov_ofs += iov_copy; 938 if (iov_ofs == iov->iov_len) { 939 iov++; 940 iov_ofs = 0; 941 } 942 } while (copy_size); 943 } 944 desc_offset += desc_size; 945 desc.length = cpu_to_le16(desc_size); 946 if (desc_offset >= total_size) { 947 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM; 948 } else { 949 /* Guest zeroing out status is not a hardware requirement. 950 Clear EOP in case guest didn't do it. */ 951 desc.status &= ~E1000_RXD_STAT_EOP; 952 } 953 } else { // as per intel docs; skip descriptors with null buf addr 954 DBGOUT(RX, "Null RX descriptor!!\n"); 955 } 956 pci_dma_write(d, base, &desc, sizeof(desc)); 957 958 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN]) 959 s->mac_reg[RDH] = 0; 960 /* see comment in start_xmit; same here */ 961 if (s->mac_reg[RDH] == rdh_start || 962 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) { 963 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n", 964 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]); 965 set_ics(s, 0, E1000_ICS_RXO); 966 return -1; 967 } 968 } while (desc_offset < total_size); 969 970 e1000x_update_rx_total_stats(s->mac_reg, size, total_size); 971 972 n = E1000_ICS_RXT0; 973 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) 974 rdt += s->mac_reg[RDLEN] / sizeof(desc); 975 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >> 976 s->rxbuf_min_shift) 977 n |= E1000_ICS_RXDMT0; 978 979 set_ics(s, 0, n); 980 981 return size; 982 } 983 984 static ssize_t 985 e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size) 986 { 987 const struct iovec iov = { 988 .iov_base = (uint8_t *)buf, 989 .iov_len = size 990 }; 991 992 return e1000_receive_iov(nc, &iov, 1); 993 } 994 995 static uint32_t 996 mac_readreg(E1000State *s, int index) 997 { 998 return s->mac_reg[index]; 999 } 1000 1001 static uint32_t 1002 mac_low4_read(E1000State *s, int index) 1003 { 1004 return s->mac_reg[index] & 0xf; 1005 } 1006 1007 static uint32_t 1008 mac_low11_read(E1000State *s, int index) 1009 { 1010 return s->mac_reg[index] & 0x7ff; 1011 } 1012 1013 static uint32_t 1014 mac_low13_read(E1000State *s, int index) 1015 { 1016 return s->mac_reg[index] & 0x1fff; 1017 } 1018 1019 static uint32_t 1020 mac_low16_read(E1000State *s, int index) 1021 { 1022 return s->mac_reg[index] & 0xffff; 1023 } 1024 1025 static uint32_t 1026 mac_icr_read(E1000State *s, int index) 1027 { 1028 uint32_t ret = s->mac_reg[ICR]; 1029 1030 DBGOUT(INTERRUPT, "ICR read: %x\n", ret); 1031 set_interrupt_cause(s, 0, 0); 1032 return ret; 1033 } 1034 1035 static uint32_t 1036 mac_read_clr4(E1000State *s, int index) 1037 { 1038 uint32_t ret = s->mac_reg[index]; 1039 1040 s->mac_reg[index] = 0; 1041 return ret; 1042 } 1043 1044 static uint32_t 1045 mac_read_clr8(E1000State *s, int index) 1046 { 1047 uint32_t ret = s->mac_reg[index]; 1048 1049 s->mac_reg[index] = 0; 1050 s->mac_reg[index-1] = 0; 1051 return ret; 1052 } 1053 1054 static void 1055 mac_writereg(E1000State *s, int index, uint32_t val) 1056 { 1057 uint32_t macaddr[2]; 1058 1059 s->mac_reg[index] = val; 1060 1061 if (index == RA + 1) { 1062 macaddr[0] = cpu_to_le32(s->mac_reg[RA]); 1063 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]); 1064 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr); 1065 } 1066 } 1067 1068 static void 1069 set_rdt(E1000State *s, int index, uint32_t val) 1070 { 1071 s->mac_reg[index] = val & 0xffff; 1072 if (e1000_has_rxbufs(s, 1)) { 1073 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1074 } 1075 } 1076 1077 static void 1078 set_16bit(E1000State *s, int index, uint32_t val) 1079 { 1080 s->mac_reg[index] = val & 0xffff; 1081 } 1082 1083 static void 1084 set_dlen(E1000State *s, int index, uint32_t val) 1085 { 1086 s->mac_reg[index] = val & 0xfff80; 1087 } 1088 1089 static void 1090 set_tctl(E1000State *s, int index, uint32_t val) 1091 { 1092 s->mac_reg[index] = val; 1093 s->mac_reg[TDT] &= 0xffff; 1094 start_xmit(s); 1095 } 1096 1097 static void 1098 set_icr(E1000State *s, int index, uint32_t val) 1099 { 1100 DBGOUT(INTERRUPT, "set_icr %x\n", val); 1101 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val); 1102 } 1103 1104 static void 1105 set_imc(E1000State *s, int index, uint32_t val) 1106 { 1107 s->mac_reg[IMS] &= ~val; 1108 set_ics(s, 0, 0); 1109 } 1110 1111 static void 1112 set_ims(E1000State *s, int index, uint32_t val) 1113 { 1114 s->mac_reg[IMS] |= val; 1115 set_ics(s, 0, 0); 1116 } 1117 1118 #define getreg(x) [x] = mac_readreg 1119 static uint32_t (*macreg_readops[])(E1000State *, int) = { 1120 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL), 1121 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL), 1122 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS), 1123 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL), 1124 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS), 1125 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL), 1126 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV), 1127 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV), 1128 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL), 1129 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC), 1130 getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC), 1131 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC), 1132 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC), 1133 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL), 1134 getreg(GOTCL), 1135 1136 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, 1137 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8, 1138 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4, 1139 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4, 1140 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4, 1141 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4, 1142 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4, 1143 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4, 1144 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4, 1145 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4, 1146 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4, 1147 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4, 1148 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4, 1149 [MPTC] = mac_read_clr4, 1150 [ICR] = mac_icr_read, [EECD] = get_eecd, 1151 [EERD] = flash_eerd_read, 1152 [RDFH] = mac_low13_read, [RDFT] = mac_low13_read, 1153 [RDFHS] = mac_low13_read, [RDFTS] = mac_low13_read, 1154 [RDFPC] = mac_low13_read, 1155 [TDFH] = mac_low11_read, [TDFT] = mac_low11_read, 1156 [TDFHS] = mac_low13_read, [TDFTS] = mac_low13_read, 1157 [TDFPC] = mac_low13_read, 1158 [AIT] = mac_low16_read, 1159 1160 [CRCERRS ... MPC] = &mac_readreg, 1161 [IP6AT ... IP6AT+3] = &mac_readreg, [IP4AT ... IP4AT+6] = &mac_readreg, 1162 [FFLT ... FFLT+6] = &mac_low11_read, 1163 [RA ... RA+31] = &mac_readreg, 1164 [WUPM ... WUPM+31] = &mac_readreg, 1165 [MTA ... MTA+127] = &mac_readreg, 1166 [VFTA ... VFTA+127] = &mac_readreg, 1167 [FFMT ... FFMT+254] = &mac_low4_read, 1168 [FFVT ... FFVT+254] = &mac_readreg, 1169 [PBM ... PBM+16383] = &mac_readreg, 1170 }; 1171 enum { NREADOPS = ARRAY_SIZE(macreg_readops) }; 1172 1173 #define putreg(x) [x] = mac_writereg 1174 static void (*macreg_writeops[])(E1000State *, int, uint32_t) = { 1175 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC), 1176 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH), 1177 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC), 1178 putreg(TDFH), putreg(TDFT), putreg(TDFHS), putreg(TDFTS), 1179 putreg(TDFPC), putreg(RDFH), putreg(RDFT), putreg(RDFHS), 1180 putreg(RDFTS), putreg(RDFPC), putreg(IPAV), putreg(WUC), 1181 putreg(WUS), putreg(AIT), 1182 1183 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl, 1184 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics, 1185 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt, 1186 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr, 1187 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl, 1188 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit, 1189 [ITR] = set_16bit, 1190 1191 [IP6AT ... IP6AT+3] = &mac_writereg, [IP4AT ... IP4AT+6] = &mac_writereg, 1192 [FFLT ... FFLT+6] = &mac_writereg, 1193 [RA ... RA+31] = &mac_writereg, 1194 [WUPM ... WUPM+31] = &mac_writereg, 1195 [MTA ... MTA+127] = &mac_writereg, 1196 [VFTA ... VFTA+127] = &mac_writereg, 1197 [FFMT ... FFMT+254] = &mac_writereg, [FFVT ... FFVT+254] = &mac_writereg, 1198 [PBM ... PBM+16383] = &mac_writereg, 1199 }; 1200 1201 enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) }; 1202 1203 enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 }; 1204 1205 #define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED) 1206 /* In the array below the meaning of the bits is: [f|f|f|f|f|f|n|p] 1207 * f - flag bits (up to 6 possible flags) 1208 * n - flag needed 1209 * p - partially implenented */ 1210 static const uint8_t mac_reg_access[0x8000] = { 1211 [RDTR] = markflag(MIT), [TADV] = markflag(MIT), 1212 [RADV] = markflag(MIT), [ITR] = markflag(MIT), 1213 1214 [IPAV] = markflag(MAC), [WUC] = markflag(MAC), 1215 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC), 1216 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC), 1217 [ECOL] = markflag(MAC), [MCC] = markflag(MAC), 1218 [DC] = markflag(MAC), [TNCRS] = markflag(MAC), 1219 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC), 1220 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC), 1221 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC), 1222 [WUS] = markflag(MAC), [AIT] = markflag(MAC), 1223 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC), 1224 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC), 1225 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC), 1226 [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC), 1227 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC), 1228 [RJC] = markflag(MAC), [RNBC] = markflag(MAC), 1229 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC), 1230 [RUC] = markflag(MAC), [ROC] = markflag(MAC), 1231 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC), 1232 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC), 1233 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC), 1234 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC), 1235 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC), 1236 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC), 1237 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC), 1238 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC), 1239 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC), 1240 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC), 1241 [BPTC] = markflag(MAC), 1242 1243 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1244 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1245 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1246 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1247 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1248 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1249 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1250 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1251 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1252 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1253 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL, 1254 }; 1255 1256 static void 1257 e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val, 1258 unsigned size) 1259 { 1260 E1000State *s = opaque; 1261 unsigned int index = (addr & 0x1ffff) >> 2; 1262 1263 if (index < NWRITEOPS && macreg_writeops[index]) { 1264 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1265 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1266 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1267 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. " 1268 "It is not fully implemented.\n", index<<2); 1269 } 1270 macreg_writeops[index](s, index, val); 1271 } else { /* "flag needed" bit is set, but the flag is not active */ 1272 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n", 1273 index<<2); 1274 } 1275 } else if (index < NREADOPS && macreg_readops[index]) { 1276 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n", 1277 index<<2, val); 1278 } else { 1279 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n", 1280 index<<2, val); 1281 } 1282 } 1283 1284 static uint64_t 1285 e1000_mmio_read(void *opaque, hwaddr addr, unsigned size) 1286 { 1287 E1000State *s = opaque; 1288 unsigned int index = (addr & 0x1ffff) >> 2; 1289 1290 if (index < NREADOPS && macreg_readops[index]) { 1291 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED) 1292 || (s->compat_flags & (mac_reg_access[index] >> 2))) { 1293 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) { 1294 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. " 1295 "It is not fully implemented.\n", index<<2); 1296 } 1297 return macreg_readops[index](s, index); 1298 } else { /* "flag needed" bit is set, but the flag is not active */ 1299 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n", 1300 index<<2); 1301 } 1302 } else { 1303 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2); 1304 } 1305 return 0; 1306 } 1307 1308 static const MemoryRegionOps e1000_mmio_ops = { 1309 .read = e1000_mmio_read, 1310 .write = e1000_mmio_write, 1311 .endianness = DEVICE_LITTLE_ENDIAN, 1312 .impl = { 1313 .min_access_size = 4, 1314 .max_access_size = 4, 1315 }, 1316 }; 1317 1318 static uint64_t e1000_io_read(void *opaque, hwaddr addr, 1319 unsigned size) 1320 { 1321 E1000State *s = opaque; 1322 1323 (void)s; 1324 return 0; 1325 } 1326 1327 static void e1000_io_write(void *opaque, hwaddr addr, 1328 uint64_t val, unsigned size) 1329 { 1330 E1000State *s = opaque; 1331 1332 (void)s; 1333 } 1334 1335 static const MemoryRegionOps e1000_io_ops = { 1336 .read = e1000_io_read, 1337 .write = e1000_io_write, 1338 .endianness = DEVICE_LITTLE_ENDIAN, 1339 }; 1340 1341 static bool is_version_1(void *opaque, int version_id) 1342 { 1343 return version_id == 1; 1344 } 1345 1346 static int e1000_pre_save(void *opaque) 1347 { 1348 E1000State *s = opaque; 1349 NetClientState *nc = qemu_get_queue(s->nic); 1350 1351 /* If the mitigation timer is active, emulate a timeout now. */ 1352 if (s->mit_timer_on) { 1353 e1000_mit_timer(s); 1354 } 1355 1356 /* 1357 * If link is down and auto-negotiation is supported and ongoing, 1358 * complete auto-negotiation immediately. This allows us to look 1359 * at MII_SR_AUTONEG_COMPLETE to infer link status on load. 1360 */ 1361 if (nc->link_down && have_autoneg(s)) { 1362 s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE; 1363 } 1364 1365 return 0; 1366 } 1367 1368 static int e1000_post_load(void *opaque, int version_id) 1369 { 1370 E1000State *s = opaque; 1371 NetClientState *nc = qemu_get_queue(s->nic); 1372 1373 if (!chkflag(MIT)) { 1374 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] = 1375 s->mac_reg[TADV] = 0; 1376 s->mit_irq_level = false; 1377 } 1378 s->mit_ide = 0; 1379 s->mit_timer_on = false; 1380 1381 /* nc.link_down can't be migrated, so infer link_down according 1382 * to link status bit in mac_reg[STATUS]. 1383 * Alternatively, restart link negotiation if it was in progress. */ 1384 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0; 1385 1386 if (have_autoneg(s) && 1387 !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { 1388 nc->link_down = false; 1389 timer_mod(s->autoneg_timer, 1390 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500); 1391 } 1392 1393 return 0; 1394 } 1395 1396 static bool e1000_mit_state_needed(void *opaque) 1397 { 1398 E1000State *s = opaque; 1399 1400 return chkflag(MIT); 1401 } 1402 1403 static bool e1000_full_mac_needed(void *opaque) 1404 { 1405 E1000State *s = opaque; 1406 1407 return chkflag(MAC); 1408 } 1409 1410 static const VMStateDescription vmstate_e1000_mit_state = { 1411 .name = "e1000/mit_state", 1412 .version_id = 1, 1413 .minimum_version_id = 1, 1414 .needed = e1000_mit_state_needed, 1415 .fields = (VMStateField[]) { 1416 VMSTATE_UINT32(mac_reg[RDTR], E1000State), 1417 VMSTATE_UINT32(mac_reg[RADV], E1000State), 1418 VMSTATE_UINT32(mac_reg[TADV], E1000State), 1419 VMSTATE_UINT32(mac_reg[ITR], E1000State), 1420 VMSTATE_BOOL(mit_irq_level, E1000State), 1421 VMSTATE_END_OF_LIST() 1422 } 1423 }; 1424 1425 static const VMStateDescription vmstate_e1000_full_mac_state = { 1426 .name = "e1000/full_mac_state", 1427 .version_id = 1, 1428 .minimum_version_id = 1, 1429 .needed = e1000_full_mac_needed, 1430 .fields = (VMStateField[]) { 1431 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000), 1432 VMSTATE_END_OF_LIST() 1433 } 1434 }; 1435 1436 static const VMStateDescription vmstate_e1000 = { 1437 .name = "e1000", 1438 .version_id = 3, 1439 .minimum_version_id = 1, 1440 .pre_save = e1000_pre_save, 1441 .post_load = e1000_post_load, 1442 .fields = (VMStateField[]) { 1443 VMSTATE_PCI_DEVICE(parent_obj, E1000State), 1444 VMSTATE_UNUSED_TEST(is_version_1, 4), /* was instance id */ 1445 VMSTATE_UNUSED(4), /* Was mmio_base. */ 1446 VMSTATE_UINT32(rxbuf_size, E1000State), 1447 VMSTATE_UINT32(rxbuf_min_shift, E1000State), 1448 VMSTATE_UINT32(eecd_state.val_in, E1000State), 1449 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State), 1450 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), 1451 VMSTATE_UINT16(eecd_state.reading, E1000State), 1452 VMSTATE_UINT32(eecd_state.old_eecd, E1000State), 1453 VMSTATE_UINT8(tx.props.ipcss, E1000State), 1454 VMSTATE_UINT8(tx.props.ipcso, E1000State), 1455 VMSTATE_UINT16(tx.props.ipcse, E1000State), 1456 VMSTATE_UINT8(tx.props.tucss, E1000State), 1457 VMSTATE_UINT8(tx.props.tucso, E1000State), 1458 VMSTATE_UINT16(tx.props.tucse, E1000State), 1459 VMSTATE_UINT32(tx.props.paylen, E1000State), 1460 VMSTATE_UINT8(tx.props.hdr_len, E1000State), 1461 VMSTATE_UINT16(tx.props.mss, E1000State), 1462 VMSTATE_UINT16(tx.size, E1000State), 1463 VMSTATE_UINT16(tx.tso_frames, E1000State), 1464 VMSTATE_UINT8(tx.sum_needed, E1000State), 1465 VMSTATE_INT8(tx.props.ip, E1000State), 1466 VMSTATE_INT8(tx.props.tcp, E1000State), 1467 VMSTATE_BUFFER(tx.header, E1000State), 1468 VMSTATE_BUFFER(tx.data, E1000State), 1469 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), 1470 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20), 1471 VMSTATE_UINT32(mac_reg[CTRL], E1000State), 1472 VMSTATE_UINT32(mac_reg[EECD], E1000State), 1473 VMSTATE_UINT32(mac_reg[EERD], E1000State), 1474 VMSTATE_UINT32(mac_reg[GPRC], E1000State), 1475 VMSTATE_UINT32(mac_reg[GPTC], E1000State), 1476 VMSTATE_UINT32(mac_reg[ICR], E1000State), 1477 VMSTATE_UINT32(mac_reg[ICS], E1000State), 1478 VMSTATE_UINT32(mac_reg[IMC], E1000State), 1479 VMSTATE_UINT32(mac_reg[IMS], E1000State), 1480 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State), 1481 VMSTATE_UINT32(mac_reg[MANC], E1000State), 1482 VMSTATE_UINT32(mac_reg[MDIC], E1000State), 1483 VMSTATE_UINT32(mac_reg[MPC], E1000State), 1484 VMSTATE_UINT32(mac_reg[PBA], E1000State), 1485 VMSTATE_UINT32(mac_reg[RCTL], E1000State), 1486 VMSTATE_UINT32(mac_reg[RDBAH], E1000State), 1487 VMSTATE_UINT32(mac_reg[RDBAL], E1000State), 1488 VMSTATE_UINT32(mac_reg[RDH], E1000State), 1489 VMSTATE_UINT32(mac_reg[RDLEN], E1000State), 1490 VMSTATE_UINT32(mac_reg[RDT], E1000State), 1491 VMSTATE_UINT32(mac_reg[STATUS], E1000State), 1492 VMSTATE_UINT32(mac_reg[SWSM], E1000State), 1493 VMSTATE_UINT32(mac_reg[TCTL], E1000State), 1494 VMSTATE_UINT32(mac_reg[TDBAH], E1000State), 1495 VMSTATE_UINT32(mac_reg[TDBAL], E1000State), 1496 VMSTATE_UINT32(mac_reg[TDH], E1000State), 1497 VMSTATE_UINT32(mac_reg[TDLEN], E1000State), 1498 VMSTATE_UINT32(mac_reg[TDT], E1000State), 1499 VMSTATE_UINT32(mac_reg[TORH], E1000State), 1500 VMSTATE_UINT32(mac_reg[TORL], E1000State), 1501 VMSTATE_UINT32(mac_reg[TOTH], E1000State), 1502 VMSTATE_UINT32(mac_reg[TOTL], E1000State), 1503 VMSTATE_UINT32(mac_reg[TPR], E1000State), 1504 VMSTATE_UINT32(mac_reg[TPT], E1000State), 1505 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State), 1506 VMSTATE_UINT32(mac_reg[WUFC], E1000State), 1507 VMSTATE_UINT32(mac_reg[VET], E1000State), 1508 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32), 1509 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, 128), 1510 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA, 128), 1511 VMSTATE_UINT8_V(tx.tso_props.ipcss, E1000State, 3), 1512 VMSTATE_UINT8_V(tx.tso_props.ipcso, E1000State, 3), 1513 VMSTATE_UINT16_V(tx.tso_props.ipcse, E1000State, 3), 1514 VMSTATE_UINT8_V(tx.tso_props.tucss, E1000State, 3), 1515 VMSTATE_UINT8_V(tx.tso_props.tucso, E1000State, 3), 1516 VMSTATE_UINT16_V(tx.tso_props.tucse, E1000State, 3), 1517 VMSTATE_UINT32_V(tx.tso_props.paylen, E1000State, 3), 1518 VMSTATE_UINT8_V(tx.tso_props.hdr_len, E1000State, 3), 1519 VMSTATE_UINT16_V(tx.tso_props.mss, E1000State, 3), 1520 VMSTATE_INT8_V(tx.tso_props.ip, E1000State, 3), 1521 VMSTATE_INT8_V(tx.tso_props.tcp, E1000State, 3), 1522 VMSTATE_END_OF_LIST() 1523 }, 1524 .subsections = (const VMStateDescription*[]) { 1525 &vmstate_e1000_mit_state, 1526 &vmstate_e1000_full_mac_state, 1527 NULL 1528 } 1529 }; 1530 1531 /* 1532 * EEPROM contents documented in Tables 5-2 and 5-3, pp. 98-102. 1533 * Note: A valid DevId will be inserted during pci_e1000_init(). 1534 */ 1535 static const uint16_t e1000_eeprom_template[64] = { 1536 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000, 1537 0x3000, 0x1000, 0x6403, 0 /*DevId*/, 0x8086, 0 /*DevId*/, 0x8086, 0x3040, 1538 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700, 1539 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706, 1540 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff, 1541 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1542 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 1543 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000, 1544 }; 1545 1546 /* PCI interface */ 1547 1548 static void 1549 e1000_mmio_setup(E1000State *d) 1550 { 1551 int i; 1552 const uint32_t excluded_regs[] = { 1553 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS, 1554 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE 1555 }; 1556 1557 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d, 1558 "e1000-mmio", PNPMMIO_SIZE); 1559 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]); 1560 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++) 1561 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4, 1562 excluded_regs[i+1] - excluded_regs[i] - 4); 1563 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE); 1564 } 1565 1566 static void 1567 pci_e1000_uninit(PCIDevice *dev) 1568 { 1569 E1000State *d = E1000(dev); 1570 1571 timer_del(d->autoneg_timer); 1572 timer_free(d->autoneg_timer); 1573 timer_del(d->mit_timer); 1574 timer_free(d->mit_timer); 1575 qemu_del_nic(d->nic); 1576 } 1577 1578 static NetClientInfo net_e1000_info = { 1579 .type = NET_CLIENT_DRIVER_NIC, 1580 .size = sizeof(NICState), 1581 .can_receive = e1000_can_receive, 1582 .receive = e1000_receive, 1583 .receive_iov = e1000_receive_iov, 1584 .link_status_changed = e1000_set_link_status, 1585 }; 1586 1587 static void e1000_write_config(PCIDevice *pci_dev, uint32_t address, 1588 uint32_t val, int len) 1589 { 1590 E1000State *s = E1000(pci_dev); 1591 1592 pci_default_write_config(pci_dev, address, val, len); 1593 1594 if (range_covers_byte(address, len, PCI_COMMAND) && 1595 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) { 1596 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 1597 } 1598 } 1599 1600 static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) 1601 { 1602 DeviceState *dev = DEVICE(pci_dev); 1603 E1000State *d = E1000(pci_dev); 1604 uint8_t *pci_conf; 1605 uint8_t *macaddr; 1606 1607 pci_dev->config_write = e1000_write_config; 1608 1609 pci_conf = pci_dev->config; 1610 1611 /* TODO: RST# value should be 0, PCI spec 6.2.4 */ 1612 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10; 1613 1614 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 1615 1616 e1000_mmio_setup(d); 1617 1618 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio); 1619 1620 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); 1621 1622 qemu_macaddr_default_if_unset(&d->conf.macaddr); 1623 macaddr = d->conf.macaddr.a; 1624 1625 e1000x_core_prepare_eeprom(d->eeprom_data, 1626 e1000_eeprom_template, 1627 sizeof(e1000_eeprom_template), 1628 PCI_DEVICE_GET_CLASS(pci_dev)->device_id, 1629 macaddr); 1630 1631 d->nic = qemu_new_nic(&net_e1000_info, &d->conf, 1632 object_get_typename(OBJECT(d)), dev->id, d); 1633 1634 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr); 1635 1636 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d); 1637 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d); 1638 } 1639 1640 static void qdev_e1000_reset(DeviceState *dev) 1641 { 1642 E1000State *d = E1000(dev); 1643 e1000_reset(d); 1644 } 1645 1646 static Property e1000_properties[] = { 1647 DEFINE_NIC_PROPERTIES(E1000State, conf), 1648 DEFINE_PROP_BIT("autonegotiation", E1000State, 1649 compat_flags, E1000_FLAG_AUTONEG_BIT, true), 1650 DEFINE_PROP_BIT("mitigation", E1000State, 1651 compat_flags, E1000_FLAG_MIT_BIT, true), 1652 DEFINE_PROP_BIT("extra_mac_registers", E1000State, 1653 compat_flags, E1000_FLAG_MAC_BIT, true), 1654 DEFINE_PROP_END_OF_LIST(), 1655 }; 1656 1657 typedef struct E1000Info { 1658 const char *name; 1659 uint16_t device_id; 1660 uint8_t revision; 1661 uint16_t phy_id2; 1662 } E1000Info; 1663 1664 static void e1000_class_init(ObjectClass *klass, void *data) 1665 { 1666 DeviceClass *dc = DEVICE_CLASS(klass); 1667 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1668 E1000BaseClass *e = E1000_DEVICE_CLASS(klass); 1669 const E1000Info *info = data; 1670 1671 k->realize = pci_e1000_realize; 1672 k->exit = pci_e1000_uninit; 1673 k->romfile = "efi-e1000.rom"; 1674 k->vendor_id = PCI_VENDOR_ID_INTEL; 1675 k->device_id = info->device_id; 1676 k->revision = info->revision; 1677 e->phy_id2 = info->phy_id2; 1678 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 1679 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 1680 dc->desc = "Intel Gigabit Ethernet"; 1681 dc->reset = qdev_e1000_reset; 1682 dc->vmsd = &vmstate_e1000; 1683 dc->props = e1000_properties; 1684 } 1685 1686 static void e1000_instance_init(Object *obj) 1687 { 1688 E1000State *n = E1000(obj); 1689 device_add_bootindex_property(obj, &n->conf.bootindex, 1690 "bootindex", "/ethernet-phy@0", 1691 DEVICE(n), NULL); 1692 } 1693 1694 static const TypeInfo e1000_base_info = { 1695 .name = TYPE_E1000_BASE, 1696 .parent = TYPE_PCI_DEVICE, 1697 .instance_size = sizeof(E1000State), 1698 .instance_init = e1000_instance_init, 1699 .class_size = sizeof(E1000BaseClass), 1700 .abstract = true, 1701 .interfaces = (InterfaceInfo[]) { 1702 { INTERFACE_CONVENTIONAL_PCI_DEVICE }, 1703 { }, 1704 }, 1705 }; 1706 1707 static const E1000Info e1000_devices[] = { 1708 { 1709 .name = "e1000", 1710 .device_id = E1000_DEV_ID_82540EM, 1711 .revision = 0x03, 1712 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1713 }, 1714 { 1715 .name = "e1000-82544gc", 1716 .device_id = E1000_DEV_ID_82544GC_COPPER, 1717 .revision = 0x03, 1718 .phy_id2 = E1000_PHY_ID2_82544x, 1719 }, 1720 { 1721 .name = "e1000-82545em", 1722 .device_id = E1000_DEV_ID_82545EM_COPPER, 1723 .revision = 0x03, 1724 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT, 1725 }, 1726 }; 1727 1728 static void e1000_register_types(void) 1729 { 1730 int i; 1731 1732 type_register_static(&e1000_base_info); 1733 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) { 1734 const E1000Info *info = &e1000_devices[i]; 1735 TypeInfo type_info = {}; 1736 1737 type_info.name = info->name; 1738 type_info.parent = TYPE_E1000_BASE; 1739 type_info.class_data = (void *)info; 1740 type_info.class_init = e1000_class_init; 1741 type_info.instance_init = e1000_instance_init; 1742 1743 type_register(&type_info); 1744 } 1745 } 1746 1747 type_init(e1000_register_types) 1748